JP4524083B2 - Active energy ray-curable resin composition - Google Patents

Active energy ray-curable resin composition Download PDF

Info

Publication number
JP4524083B2
JP4524083B2 JP2003281435A JP2003281435A JP4524083B2 JP 4524083 B2 JP4524083 B2 JP 4524083B2 JP 2003281435 A JP2003281435 A JP 2003281435A JP 2003281435 A JP2003281435 A JP 2003281435A JP 4524083 B2 JP4524083 B2 JP 4524083B2
Authority
JP
Japan
Prior art keywords
component
glycol
active energy
resin
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003281435A
Other languages
Japanese (ja)
Other versions
JP2004244610A (en
Inventor
英之 丸山
敬明 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakamoto Yakuhin Kogyo Co Ltd
Original Assignee
Sakamoto Yakuhin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakamoto Yakuhin Kogyo Co Ltd filed Critical Sakamoto Yakuhin Kogyo Co Ltd
Priority to JP2003281435A priority Critical patent/JP4524083B2/en
Publication of JP2004244610A publication Critical patent/JP2004244610A/en
Application granted granted Critical
Publication of JP4524083B2 publication Critical patent/JP4524083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、硬化物の靭性を改良するために有用な新規のエポキシ樹脂および当該エポキシ樹脂を含有する活性エネルギー線硬化性樹脂組成物に関するものである。   The present invention relates to a novel epoxy resin useful for improving the toughness of a cured product and an active energy ray-curable resin composition containing the epoxy resin.

従来、活性エネルギー線硬化性樹脂組成物としては、不飽和二重結合を有する例えば(メタ)アクリロイル基等を有する化合物に光ラジカル重合開始剤を混合したものが一般によく使用されてきた。これは活性エネルギー線により光ラジカル重合開始剤が分解し活性種であるラジカルを発生させ、(メタ)アクリロイル基が重合し硬化物が得られるものである。   Conventionally, as an active energy ray-curable resin composition, a mixture of a compound having an unsaturated double bond, for example, a (meth) acryloyl group and a photo radical polymerization initiator has been generally used. This is because the radical photopolymerization initiator is decomposed by active energy rays to generate radicals which are active species, and a (meth) acryloyl group is polymerized to obtain a cured product.

しかし、上記(メタ)アクリロイル基等を有するラジカル重合系の硬化性樹脂は一般に粘度が高く、そのため塗装剤、接着剤等の用途に用いる場合には有機溶剤や反応性希釈剤を加える必要があった。有機溶剤による希釈は、作業環境や地球環境の悪化および経済的問題により減少してきてはいるが全く使用しないことは難しい状況であり、また反応性希釈剤を用いる場合にも環境や人体に有害な影響を及ぼすものが一般的であった。この他、ラジカル重合系の硬化性樹脂は酸素による硬化阻害が起こりやすく、この防止のため真空下または不活性ガスの存在下で硬化させなければならず、使用に際し活性エネルギー線照射装置に相応の設備が必要なものであった。   However, the radical polymerization type curable resin having the (meth) acryloyl group or the like generally has a high viscosity. Therefore, it is necessary to add an organic solvent or a reactive diluent when used in applications such as a coating agent and an adhesive. It was. Dilution with organic solvents has been reduced due to deterioration of the working environment and global environment and economic problems, but it is difficult to avoid using it at all, and it is also harmful to the environment and the human body when using reactive diluents. Influencing was common. In addition, radical polymerization type curable resins are prone to curing inhibition by oxygen, and in order to prevent this, they must be cured in a vacuum or in the presence of an inert gas. Equipment was necessary.

一方、上記の光ラジカル重合に対して、エポキシ樹脂に光カチオン重合開始剤を配合した活性エネルギー線硬化性樹脂組成物がある。これは活性エネルギー線により光カチオン重合開始剤が分解し活性種であるカチオンを発生させ、エポキシ樹脂が重合し硬化物が得られるものである。このカチオン重合系の硬化性樹脂は有機溶媒を用いず粘度を調整でき、臭気もほとんどなく、また酸素による重合阻害がないことより通常の大気雰囲気下で使用できるため非常に有用である。   On the other hand, there is an active energy ray-curable resin composition in which a photocationic polymerization initiator is blended with an epoxy resin for the above radical photopolymerization. This is because the photocationic polymerization initiator is decomposed by active energy rays to generate cations which are active species, and the epoxy resin is polymerized to obtain a cured product. This cationic polymerization type curable resin is very useful because it can be used in a normal atmosphere because it can adjust the viscosity without using an organic solvent, has almost no odor, and has no inhibition of polymerization by oxygen.

しかし、このカチオン重合系の硬化性樹脂には、活性エネルギー線を照射し得られた硬化物は一般的に、硬いが非常に脆いという大きな弱点をもっている。脆いとは、硬化物に曲げや引張などで大きな力が掛かると容易に破断することを意味し、官能的にも判断できる。硬化物ごとの脆さの比較は、JISに規定された引張試験にてその硬化物の強度と伸びを測定すると、脆さを破壊強度および破壊伸び率として数値化することができ対比しやすい。現在、そのような脆くない硬化物すなわち靭性ある硬化物が求められている。本発明でいう「靭性に優れた硬化物」とは、単に耐衝撃性や可撓性に優れるものではない。すなわち、ABS樹脂等の熱可塑性樹脂のように、硬化物自体に強度がありながらも、大きな力が掛かるに従い、降伏伸びを示してから破断する性質を有する硬化物を意味する。このような性質をもち、しかもカチオン重合の特長を併せ持つ硬化物またはそのような靭性を付与することができるエポキシ樹脂が長い間求められてきたが、いまだに満足するものは得られていなかった。   However, the curable resin of the cationic polymerization type has a great weakness that a cured product obtained by irradiation with active energy rays is generally hard but very brittle. The term “brittle” means that the cured product is easily broken when a large force is applied to the cured product, such as bending or pulling, and can be judged sensorily. The comparison of the brittleness of each cured product is easy to compare by measuring the strength and elongation of the cured product by a tensile test specified in JIS, whereby the brittleness can be quantified as the breaking strength and breaking elongation. Currently, there is a demand for such a non-brittle cured product, that is, a tough cured product. The “cured material having excellent toughness” as used in the present invention is not simply excellent in impact resistance and flexibility. That is, it means a cured product having a property of exhibiting a yield elongation and rupturing as a large force is applied, even though the cured product itself is strong, like a thermoplastic resin such as an ABS resin. A cured product having such properties and also having the characteristics of cationic polymerization or an epoxy resin capable of imparting such toughness has been sought for a long time, but no satisfactory one has been obtained yet.

このような中で、活性エネルギー線硬化物に靭性付与することができるエポキシ樹脂として、両末端カルボキシル化ポリブタジエンと3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートを加熱し、得られた脂環式エポキシ樹脂が提案されていた(例えば、特許文献1参照)。しかし、該エポキシを配合した硬化物の靭性は、屈曲性においてのみ判断しており、硬化皮膜の破断強度や破断時の伸び率には何も言及しておらず、該硬化皮膜をJIS記載の方法に基づき引張試験を実施した場合において、降伏伸びを示した後に破断する物性を示すか否か判別できず本発明における靭性とは意味を異にする。   Under such circumstances, the epoxy resin capable of imparting toughness to the active energy ray cured product is obtained by heating both terminal carboxylated polybutadiene and 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. An alicyclic epoxy resin has been proposed (see, for example, Patent Document 1). However, the toughness of the cured product blended with the epoxy is judged only in flexibility, and nothing is mentioned about the breaking strength of the cured film or the elongation at break, and the cured film is described in JIS. When a tensile test is carried out based on the method, it cannot be determined whether or not the material exhibits fracture properties after exhibiting yield elongation, and the meaning differs from toughness in the present invention.

また、本発明者らは以前にアルキレンオキサイドを付加させたジグリセリンを配合させて靭性を付与させる方法を提案してきた(特許文献2参照)。この方法によると、本発明でいう靭性ある活性エネルギー線硬化物に該当し良好な硬化物が得られるが、その強度においてはいまだ十分な値ではなく、伸びと強度のバランスからみて、充分な強度がまだ不足した硬化物であった。   In addition, the present inventors have previously proposed a method of adding toughness by blending diglycerin to which alkylene oxide is added (see Patent Document 2). According to this method, a tough active energy ray cured product as referred to in the present invention can be obtained, but a good cured product is obtained, but the strength is not yet sufficient, and in view of the balance between elongation and strength, sufficient strength is obtained. Was still a cured product.

この問題を解決し硬化物に靭性を付与することすることは、特に光造形分野、コーティング分野およびフレキシブルプリント配線基板用レジストの分野などにおいて求められている。
特開2001−329045号公報(段落97から106) 特願2002−168730号明細書(段落25から30)
In order to solve this problem and impart toughness to the cured product, there is a demand in particular in the fields of optical modeling, coating, and resist for flexible printed wiring boards.
JP 2001-329045 A (paragraphs 97 to 106) Japanese Patent Application No. 2002-168730 (paragraphs 25 to 30)

本発明は、有機溶剤を使用せず、臭気がほとんどなく、酸素阻害が起こらない光カチオン重合系組成物の特長を活かし、活性エネルギー線硬化物の靭性を改良できるエポキシ樹脂および当該エポキシ樹脂を含有する活性エネルギー線硬化性樹脂組成物を提供する事を目的とする。   The present invention uses an epoxy resin that does not use an organic solvent, has almost no odor, and does not cause oxygen inhibition, and can improve the toughness of an active energy ray cured product, and contains the epoxy resin An object of the present invention is to provide an active energy ray-curable resin composition.

本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、後述する新規なエポキシ樹脂を合成し、該樹脂を必須成分として含有する樹脂組成物が上記の目的を達成しうることを見出し、本発明を完成するに至った。   As a result of intensive research to solve the above-mentioned problems, the present inventors have synthesized a novel epoxy resin described later and found that a resin composition containing the resin as an essential component can achieve the above-described object. The present invention has been completed.

すなわち、本発明はグリコールのグリシジルエーテルとフェノール類化合物を反応させて得られる化合物であり、

Figure 0004524083
(mは1〜20の自然数、nは1〜14の自然数、Xはハロゲン原子またはC1〜5のアルキル基、aおよびbは0〜4の整数、GおよびGはグリシジル基又は水素原子(ただし、G、Gが同時に水素原子であることはない)、RはC1〜10のアルキレン基またはアルキリデン基、Rはアルキレン基、アルキリデン基、スルホニル基、酸素原子または原子団の存在しない直接結合を示す。)で示され、数平均分子量の範囲が600〜5000であるエポキシ樹脂を合成することおよび該エポキシ樹脂を含有する樹脂組成物を用いることにより上記の目的を達成しうることを見出した。 That is, the present invention is a compound obtained by reacting glycol glycidyl ether and a phenol compound,
Figure 0004524083
(M is a natural number of 1 to 20, n is a natural number of 1 to 14, X is an alkyl group, a and b are integers of 0 to 4, G 1 and G 2 are glycidyl groups or a hydrogen atom a halogen atom or C1~5 (However, G 1 and G 2 are not simultaneously hydrogen atoms), R 1 is a C1-10 alkylene group or alkylidene group, R 2 is an alkylene group, alkylidene group, sulfonyl group, oxygen atom or atomic group. The above object can be achieved by synthesizing an epoxy resin having a number average molecular weight of 600 to 5000 and using a resin composition containing the epoxy resin. I found out.

本発明の新規エポキシ樹脂および当該エポキシ樹脂を配合した活性エネルギー線硬化性樹脂組成物の硬化物の物性が靭性を示すという特長を有する。   The physical properties of the novel epoxy resin of the present invention and the cured product of the active energy ray-curable resin composition containing the epoxy resin are characterized by exhibiting toughness.

本発明における

Figure 0004524083
(mは1〜20の自然数、nは1〜14の自然数、Xはハロゲン原子またはC1〜5のアルキル基、aおよびbは0〜4の整数、GおよびGはグリシジル基又は水素原子(ただし、G、Gが同時に水素原子であることはない)、RはC1〜10のアルキレン基またはアルキリデン基、Rはアルキレン基、アルキリデン基、スルホニル基、酸素原子または原子団の存在しない直接結合を示す。)で示され、数平均分子量の範囲が600〜5000であるエポキシ樹脂<以下、(A)成分ともいう>はグリコールのグリシジルエーテル化合物とフェノール類化合物から合成される。このグリコールのグリシジルエーテル化合物は、少なくとも一つ好ましくは二つのグリシジルエーテルを有する化合物であり以下のものがある。すなわち、メチレングリコール,ジメチレングリコール,トリメチレングリコールおよびポリメチレングリコールのグリシジルエーテル、エチレングリコール,ジエチレングリコール,トリエチレングリコールおよびポリエチレングリコールのグリシジルエーテル、プロピレングリコール,ジプロピレングリコール,トリプロピレングリコールおよびポリプロピレングリコールのグリシジルエーテル、テトラメチレングリコール,ジテトラメチレングリコール,トリテトラメチレングリコール,ポリテトラメチレングリコールのグリシジルエーテル、1,4−ブタンジオールのグリシジルエーテル、1,6−ヘキサンジオールのグリシジルエーテル、ネオペンチルグリコールのグリシジルエーテルなどが挙げられ、好ましくはポリプロピレングリコールのジグリシジルエーテルおよびネオペンチルグリコールのグリシジルエーテルが用いられる。 In the present invention
Figure 0004524083
(M is a natural number of 1 to 20, n is a natural number of 1 to 14, X is an alkyl group, a and b are integers of 0 to 4, G 1 and G 2 are glycidyl groups or a hydrogen atom a halogen atom or C1~5 (However, G 1 and G 2 are not simultaneously hydrogen atoms), R 1 is a C1-10 alkylene group or alkylidene group, R 2 is an alkylene group, alkylidene group, sulfonyl group, oxygen atom or atomic group. An epoxy resin (hereinafter also referred to as component (A)) having a number average molecular weight in the range of 600 to 5000 is synthesized from a glycol glycidyl ether compound and a phenol compound. The glycol glycidyl ether compound is a compound having at least one, preferably two glycidyl ethers. That is, glycidyl ether of methylene glycol, dimethylene glycol, trimethylene glycol and polymethylene glycol, glycidyl ether of ethylene glycol, diethylene glycol, triethylene glycol and polyethylene glycol, glycidyl of propylene glycol, dipropylene glycol, tripropylene glycol and polypropylene glycol Ether, tetramethylene glycol, ditetramethylene glycol, tritetramethylene glycol, glycidyl ether of polytetramethylene glycol, glycidyl ether of 1,4-butanediol, glycidyl ether of 1,6-hexanediol, glycidyl ether of neopentyl glycol Etc., preferably polypropylene Glycidyl ethers of diglycidyl ether and neopentyl glycol recall is used.

また、本発明における(A)成分を合成するために用いられるもう一方の化合物であるフェノール類化合物としては、ビフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラメチルビフェノール、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、テトラブロモビフェノール、テトラブロモビスフェノールA、テトラブロモビスフェノールF、テトラブロモビスフェノールSなどが挙げられ、好ましくはビフェノールが用いられる。   The other compounds used for synthesizing the component (A) in the present invention are phenolic compounds such as biphenol, bisphenol A, bisphenol F, bisphenol S, tetramethylbiphenol, tetramethylbisphenol A, tetramethyl. Bisphenol F, tetramethylbisphenol S, tetrabromobiphenol, tetrabromobisphenol A, tetrabromobisphenol F, tetrabromobisphenol S, and the like can be mentioned, and biphenol is preferably used.

上記(A)成分を公知の技術を用いて数平均分子量が通常600〜5000の範囲、好ましくは800〜4500の範囲、より好ましくは900〜4000の範囲になるようエポキシオリゴマー化物の合成を行う。得られたエポキシ樹脂はアルキレン部位とフェノール類部位が交互に並ぶ構造を持つ。すなわち、アルキレン部位は可撓性に優れ、フェノール類部位は強度に優れるので、可撓性部位と高強度部位が交互に現れる構造を持つ。   The component (A) is synthesized using a known technique so that the number average molecular weight is usually in the range of 600 to 5000, preferably in the range of 800 to 4500, more preferably in the range of 900 to 4000. The resulting epoxy resin has a structure in which alkylene and phenolic moieties are alternately arranged. That is, since the alkylene part is excellent in flexibility and the phenolic part is excellent in strength, it has a structure in which the flexible part and the high-strength part appear alternately.

従来の光カチオン硬化では、配合時に可撓性を有する化合物と高強度を有した化合物を配合しても、活性エネルギー線を照射後の硬化物においては可撓性を有する部位と高強度を有する部位は交互になるよう反応を制御することができなかった。   In conventional photocationic curing, even if a compound having flexibility and a compound having high strength are blended at the time of blending, the cured product after irradiation with active energy rays has flexibility and a high strength. The reaction could not be controlled to alternate sites.

本発明は、可撓性部位と高強度部位が交互に現れる構造を有する化合物を配合することにより、活性エネルギー線硬化後においても、その構造が維持され靭性の改良に寄与する。また、分子量が600より小さい場合には可撓性部位と高強度部位が交互に現れる構造を有することが困難となり、靭性を発現することができなくなる。一方、分子量が5000をより大きい場合には化合物の粘度が数十万mPa・s(25℃)と大きくなるので、該化合物を多量配合すると配合樹脂としての粘度が高くなり取り扱いが難しくなり、少量配合すると靭性の効果が十分に発揮されない。   In the present invention, by adding a compound having a structure in which a flexible part and a high-strength part appear alternately, the structure is maintained even after active energy ray curing, and contributes to improvement of toughness. When the molecular weight is smaller than 600, it becomes difficult to have a structure in which flexible portions and high-strength portions appear alternately, and toughness cannot be expressed. On the other hand, when the molecular weight is greater than 5000, the viscosity of the compound increases to several hundreds of thousands mPa · s (25 ° C.). Therefore, when a large amount of the compound is blended, the viscosity of the compounded resin increases and handling becomes difficult. When blended, the effect of toughness is not sufficiently exhibited.

特に、フェノール類化合物としてビフェノールを使用した場合、平面構造をとるビフェニル基同士が分子間力による弱い結合を有し、これが応力を緩和する役目をし、靭性の改良に大きく寄与する。   In particular, when biphenol is used as the phenolic compound, biphenyl groups having a planar structure have weak bonds due to intermolecular forces, which serve to relieve stress and greatly contribute to improvement of toughness.

本発明の活性エネルギー線硬化性樹脂組成物で用いる化合物としては、<(A)成分>、光重合開始剤<以下、(E)成分ともいう>、オキシラン環を有する光カチオン重合性樹脂<以下、(B)成分ともいう>を必須成分とするが、それら以外にも、(メタ)アクリロイル基を有する光ラジカル重合性樹脂<以下、(C)成分ともいう>、およびポリオール化合物<以下、(D)成分ともいう>、その他の成分を配合することもできる。   As the compound used in the active energy ray-curable resin composition of the present invention, <(A) component>, photopolymerization initiator <hereinafter also referred to as (E) component>, photocationic polymerizable resin having an oxirane ring <below , Also referred to as (B) component> as an essential component, but in addition to these, a photo-radical polymerizable resin having a (meth) acryloyl group <hereinafter also referred to as (C) component>, and a polyol compound <hereinafter, ( D) Also referred to as component>, other components can be blended.

(A)成分の配合割合は通常5〜50重量%、好ましくは10〜45重量%、さらに好ましくは15〜40重量%である。(A)成分が過少の場合には、十分な靭性が発現せず好ましくない。一方、過剰の場合には、活性エネルギー線硬化性樹脂の硬化速度が遅くなるため好ましくない。   The blending ratio of the component (A) is usually 5 to 50% by weight, preferably 10 to 45% by weight, and more preferably 15 to 40% by weight. When the component (A) is too small, sufficient toughness is not exhibited, which is not preferable. On the other hand, an excessive amount is not preferable because the curing rate of the active energy ray-curable resin becomes slow.

オキシラン環を有する光カチオン重合性樹脂<(B)成分>とは、光重合開始剤の存在下で光照射することにより重合反応や架橋反応を起こすオキシラン環を有する有機化合物である。   The photocationically polymerizable resin <component (B)> having an oxirane ring is an organic compound having an oxirane ring that undergoes a polymerization reaction or a crosslinking reaction when irradiated with light in the presence of a photopolymerization initiator.

(B)成分として使用することのできる樹脂としては、少なくとも一つ好ましくは二つ以上のオキシラン環を有するグリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。   Examples of the resin that can be used as the component (B) include glycidyl ether type epoxy resins and alicyclic epoxy resins having at least one, preferably two or more oxirane rings.

グリシジルエーテル型エポキシ樹脂としては、特に限定されるものではないが、グリセリン、ジグリセリン、ポリグリセリン、ジエチレングリコール、ポリエチレングリコール、ソルビトールなどのポリグリシジルエーテル、およびグリセリン、ジグリセリン、ポリグリセリン、ジエチレングリコール、ポリエチレングリコール、ソルビトールなどのアルキレンオキサイド付加体のポリグリシジルエーテル、ブチルグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、水素化フェノールノボラック型エポキシ樹脂、フェニルグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ハロゲン化ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ハロゲン化クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などが挙げられる。   The glycidyl ether type epoxy resin is not particularly limited, but glycerin, diglycerin, polyglycerin, diethylene glycol, polyethylene glycol, polyglycidyl ether such as sorbitol, and glycerin, diglycerin, polyglycerin, diethylene glycol, polyethylene glycol. , Polyglycidyl ethers of alkylene oxide adducts such as sorbitol, butyl glycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, Trimethylolpropane polyglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogen Phenol novolac type epoxy resin, phenyl glycidyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, halogenated bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, halogenated cresol Examples thereof include novolac type epoxy resins and phenol novolac type epoxy resins.

脂環式エポキシ樹脂は、特に限定されるものではないが、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、エポキシ化ポリブタジエンなどが挙げられ、好ましくは3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレートが用いられる。   The alicyclic epoxy resin is not particularly limited, but 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, epoxidized polybutadiene Preferably, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate is used.

(B)成分の配合割合は通常45〜90重量%、好ましくは50〜85重量%、さらに好ましくは55〜80重量%である。(B)成分が過少の場合には、活性エネルギー線硬化性樹脂の粘度が高く取り扱いが困難である。一方、過剰の場合には、十分な靭性が発現せず好ましくない。   The blending ratio of component (B) is usually 45 to 90% by weight, preferably 50 to 85% by weight, and more preferably 55 to 80% by weight. When the component (B) is too small, the active energy ray-curable resin has a high viscosity and is difficult to handle. On the other hand, an excessive amount is not preferable because sufficient toughness is not exhibited.

(メタ)アクリロイル基を有する光ラジカル重合性樹脂<(C)成分>とは、ラジカル性光重合開始剤の存在下で光照射することにより重合反応や架橋反応を起こすラジカル重合性有機化合物である。   The photo-radically polymerizable resin <(C) component> having a (meth) acryloyl group is a radical polymerizable organic compound that undergoes a polymerization reaction or a crosslinking reaction when irradiated with light in the presence of a radical photopolymerization initiator. .

(C)成分として使用することのできる樹脂としては、少なくとも一つ好ましくは二つ以上の(メタ)アクリロイル基を有する樹脂などが挙げられる。   Examples of the resin that can be used as the component (C) include resins having at least one, preferably two or more (meth) acryloyl groups.

具体的に(メタ)アクリレート化合物としては、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールテトラ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレートなどが挙げられ、好ましくはトリメチロールプロパントリメタアクリレートが用いられる。   Specific examples of the (meth) acrylate compound include dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra ( (Meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, alkyl modified dipenta Erythritol penta (meth) acrylate, alkyl-modified dipentaerythritol tetra (meth) acrylate, alkyl-modified Pentaerythritol tri (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, and caprolactone-modified dipentaerythritol penta (meth) acrylate., Preferably trimethylolpropane trimethacrylate are used.

上記の化合物は、モノマーに限らずオリゴマー化物でも良く、1種単独でまたは2種以上のものを組み合わせて(C)成分を構成することができる。本発明の樹脂成分中における(C)成分の割合は、通常は0〜30重量%とされ、好ましくは0〜20重量%である。(C)成分が過剰の場合には、空気中における活性エネルギー線硬化性樹脂の硬化速度が遅く好ましくない。   The above-mentioned compound is not limited to a monomer but may be an oligomerized product, and the component (C) can be constituted by one kind alone or in combination of two or more kinds. The proportion of the component (C) in the resin component of the present invention is usually 0 to 30% by weight, preferably 0 to 20% by weight. When the component (C) is excessive, the curing rate of the active energy ray-curable resin in air is not preferable because it is slow.

ポリオール化合物<(D)成分>とは、1分子中に3個以上の水酸基を有する有機化合物である。この成分は樹脂硬化物の機械的特性、特に靭性付与に必要な成分で、配合することにより伸びに特長のある硬化物が得られる。   The polyol compound <(D) component> is an organic compound having three or more hydroxyl groups in one molecule. This component is a component necessary for imparting mechanical properties of the resin cured product, particularly toughness, and a cured product having a characteristic in elongation can be obtained by blending.

(D)成分として使用することのできる樹脂としては、トリメチロールプロパン、グリセリン、グリセリンのエチレンオキサイド付加物またはプロピレンオキサイド付加物、ジグリセリン、ジグリセリンのエチレンオキサイド付加物またはプロピレンオキサイド付加物、トリグリセリンのエチレンオキサイド付加物またはプロピレンオキサイド付加物、グリセリン4量体以上のポリグリセリンのエチレンオキサイド付加物またはプロピレンオキサイド付加物などが挙げられ、好ましくはジグリセリンのプロピレンオキサイド付加物が用いられる。   Examples of the resin that can be used as the component (D) include trimethylolpropane, glycerin, ethylene oxide adduct of propylene oxide or propylene oxide adduct, diglycerin, ethylene oxide adduct of propylene oxide or propylene oxide adduct, triglycerin. Ethylene oxide adducts or propylene oxide adducts, polyglycerol ethylene oxide adducts or propylene oxide adducts of glycerin tetramer or higher, and diglycerin propylene oxide adducts are preferably used.

上記(D)成分は、1種単独でまたは2種以上のものを組み合わせて(D)成分を構成することができる。本発明の樹脂成分中における(D)成分の割合は、通常0〜30重量、好ましくは0〜20重量%である。(D)成分が過剰の場合には硬化速度が遅くなり、硬化物の強度が弱くなる。   The component (D) can be used as a component (D) alone or in combination of two or more. The proportion of the component (D) in the resin component of the present invention is usually 0 to 30% by weight, preferably 0 to 20% by weight. When the component (D) is excessive, the curing rate becomes slow and the strength of the cured product becomes weak.

本発明で用いる光重合開始剤<(E)成分>とは、活性エネルギー線を照射することにより活性され、カチオン種またはラジカル種を発生し前記(A)成分および(B)成分をカチオン重合させる化合物または(D)成分をラジカル重合させる化合物である。   The photopolymerization initiator <(E) component> used in the present invention is activated by irradiating active energy rays, generates cationic species or radical species, and cationically polymerizes the components (A) and (B). It is a compound that radically polymerizes the compound or component (D).

光重合開始剤のうちカチオン種を発生させる光カチオン重合開始剤としては、特に限定されるものではないが、芳香族ヨードニウム塩、芳香族スルホニウム塩、ジアゾニウム塩等のオニウム塩や、鉄−アレン錯体等の有機金属錯体類等が挙げられる。光酸発生剤は一般式(1)
(R Z)+m(MXn−m−m (1)
[(1)式中、カチオンはオニウム塩であり、ZはS,Se,Te,P,As,Sb,Bi,O,I,Br,Cl,またはN≡Nであり、R、R、RおよびRは同一または異なる有機基である。a,b,c,dは、それぞれ0〜3の整数であって、(a+b+c+d)はZの価数に等しい。Mはハロゲン化物錯体の中心原子を構成する金属またはメタロイドであり、例えばB,P,As,Sb,Fe,Sn,Bi,Al,Ca,In,Ti,Zn,Sc,V,Cr,Mn,Coなどである。Xはハロゲン原子である。mはハロゲン化物錯体イオンの正味の電荷であり、nはハロゲン化物錯体イオン中の原子の数である。]で表される。
Among the photopolymerization initiators, the photocation polymerization initiator that generates a cationic species is not particularly limited, but onium salts such as aromatic iodonium salts, aromatic sulfonium salts, diazonium salts, and iron-allene complexes. And the like, and the like. The photoacid generator has the general formula (1)
(R 1 a R 2 b R 3 c R 4 d Z) + m (MX n-m) -m (1)
[In the formula (1), the cation is an onium salt, Z is S, Se, Te, P, As, Sb, Bi, O, I, Br, Cl, or N≡N, and R 1 , R 2 , R 3 and R 4 are the same or different organic groups. a, b, c, and d are each an integer of 0 to 3, and (a + b + c + d) is equal to the valence of Z. M is a metal or metalloid constituting the central atom of the halide complex. For example, B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co and the like. X is a halogen atom. m is the net charge of the halide complex ion and n is the number of atoms in the halide complex ion. It is represented by

上記一般式における陽イオン(R Z)の具体例としては芳香族スルホニウム、芳香族ジアゾニウム、芳香族ヨードニウム、芳香族アンモニウム、[(1−メチルエチル)ベンゼン]−鉄カチオンなどが挙げられる。陰イオン(MXn−m)の具体例としてはテトラフルオロボレート(BF)、ヘキサフルオロアンチモネート(SbF)、ヘキサフルオロホスフェート(PF)、ヘキサフルオロアーセネート(AsF)、ヘキサクロロアンチモネート(SbCl)などが挙げられる。 Specific examples of the cation (R 1 a R 2 b R 3 c R 4 d Z) in the above general formula include aromatic sulfonium, aromatic diazonium, aromatic iodonium, aromatic ammonium, and [(1-methylethyl) benzene. ] -Iron cations and the like. Specific examples of the anion (MX n-m ) include tetrafluoroborate (BF 4 ), hexafluoroantimonate (SbF 6 ), hexafluorophosphate (PF 6 ), hexafluoroarsenate (AsF 6 ), hexachloroantimonate (SbCl 6 ) and the like.

また、一般式[MX(OH)]で表される陰イオンを有するオニウム塩を使用することもできる。さらに、テトラキスペンタフルオロフェニルボレート[B(C ]、過塩素酸イオン(ClO )、トリフルオロメタンスルホン酸イオン(CFSO )、フルオロスルホン酸イオン(FSO )、トルエンスルホン酸イオンなどの他の陰イオンを有するオニウム塩を使用することもできる。 Moreover, the onium salt which has the anion represented by general formula [MXn (OH) < - >] can also be used. Further, tetrakispentafluorophenylborate [B (C 6 F 5 ) 4 ], perchlorate ion (ClO 4 ), trifluoromethanesulfonate ion (CF 3 SO 3 ), fluorosulfonate ion (FSO 3 ), Onium salts having other anions such as toluenesulfonate ions can also be used.

このようなオニウム塩のうち、有用なオニウム塩は以下のものである。すなわち、芳香族スルホニウム塩には、ビス[4−(ジフェニルスルホニオ)フェニル]スルフィドビスへキサフルオロホスフェート、ビス[4−(ジフェニルスルホニオ)フェニル]スルフィドビスへキサフルオロアンチモネート、ビス[4−(ジフェニルスルホニオ)フェニル]スルフィドビステトラフルオロボレート、ビス[4−(ジフェニルスルホニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレート、ジフェニル−4−(フェニルチオ)フェニルスルホニウムへキサフルオロホスフェート、ジフェニル−4−(フェニルチオ)フェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル−4−(フェニルチオ)フェニルスルホニウムテトラフルオロボレート、ジフェニル−4−(フェニルチオ)フェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムへキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス[4−(ジ(4−(2−ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドビスへキサフルオロホスフェート、ビス[4−(ジ(4−(2−ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、ビス[4−(ジ(4−(2−ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドビステトラフルオロボレート、ビス[4−(ジ(4−(2−ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィドテトラキス(ペンタフルオロフェニル)ボレート等;芳香族ヨードニウム塩には、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムへキサフルオロアンチモネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムへキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウムへキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムへキサフルオロホスフェート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムへキサフルオロアンチモネート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムテトラフルオロボレート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等;芳香族ジアゾニウム塩には、フェニルジアゾニウムへキサフルオロホスフェート、フェニルジアゾニウムヘキサフルオロアンチモネート、フェニルジアゾニウム テトラフルオロボレート、フェニルジアゾニウムテトラキス(ペンタフルオロフェニル)ボレート等;芳香族アンモニウム塩には、1−べンジル−2−シアノピリジニウムへキサフルオロホスフェート、1−ベンジル−2−シアノピリジニウムへキサフルオロアンチモネート、1−ベンジル−2−シアノピリジニウムテトラフルオロボレート、1−べンジル−2−シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート、1−(ナフチルメチル)−2−シアノピリジニウムヘキサフルオロホスフェート、1−(ナフチルメチル)−2−シアノピリジニウムへキサフルオロアンチモネート、1−(ナフチルメチル)−2−シアノピリジニウムテトラフルオロボレート、1−(ナフチルメチル)−2−シアノピリジニウムテトラキス(ペンタフルオロフェニル)ボレート等;(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)べンゼン]−Fe塩には、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−Fe(II)ヘキサフルオロホスフェート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−Fe(II)へキサフルオロアンチモネート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−Fe(II)テトラフルオロボレート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−Fe(II)テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。   Among such onium salts, useful onium salts are as follows. That is, aromatic sulfonium salts include bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (diphenylsulfonio) phenyl] sulfide bishexafluoroantimonate, bis [4- (Diphenylsulfonio) phenyl] sulfide bistetrafluoroborate, bis [4- (diphenylsulfonio) phenyl] sulfidetetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl-4 -(Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetrafluoroborate, diphenyl-4- (phenylthio) phene Rusulfonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluorophosphate, bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bishexafluoroantimony Bis [4- (di (4- (2-hydroxyethoxy)) phenylsulfonio) phenyl] sulfide bistetrafluoroborate, bis [4- (di (4- ( -Hydroxyethoxy)) phenylsulfonio) phenyl] sulfide tetrakis (pentafluorophenyl) borate and the like; aromatic iodonium salts include diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium Tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (penta Fluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) 4) phenyliodonium hexafluorophosphate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrafluoroborate, 4 -Methylphenyl-4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate and the like; aromatic diazonium salts include phenyldiazonium hexafluorophosphate, phenyldiazonium hexafluoroantimonate, phenyldiazonium tetrafluoroborate, Phenyldiazonium tetrakis (pentafluorophenyl) borate, etc .; aromatic ammonium salts include 1-benzyl-2-cyanopyridinium hexafluorophosphine 1-benzyl-2-cyanopyridinium hexafluoroantimonate, 1-benzyl-2-cyanopyridinium tetrafluoroborate, 1-benzyl-2-cyanopyridinium tetrakis (pentafluorophenyl) borate, 1- (naphthyl) Methyl) -2-cyanopyridinium hexafluorophosphate, 1- (naphthylmethyl) -2-cyanopyridinium hexafluoroantimonate, 1- (naphthylmethyl) -2-cyanopyridinium tetrafluoroborate, 1- (naphthylmethyl)- 2-cyanopyridinium tetrakis (pentafluorophenyl) borate and the like; (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe salt includes (2,4-cyclopentadiene-1 -Ill) [(1-Meth Ruethyl) benzene] -Fe (II) hexafluorophosphate, (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe (II) hexafluoroantimonate, (2,4- Cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe (II) tetrafluoroborate, (2,4-cyclopentadien-1-yl) [(1-methylethyl) benzene] -Fe (II ) Tetrakis (pentafluorophenyl) borate and the like.

光重合開始剤のうちラジカル種を発生させる光ラジカル重合開始剤としては、特に限定されるものではないが、例えばアセトフェノン、アセトフェノンベンジルケタール、アントラキノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、カルバゾール、キサントン、4−クロロベンゾフェノン、4,4’−ジアミノベンゾフェノン、1,1−ジメトキシデオキシベンゾイン、3,3’−ジメチル−4−メトキシベンゾフェノン、チオキサントン系化合物、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−2−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、トリフェニルアミン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリ−メチルペンチルフォスフィンオキサイド、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2,2‘−ジメトキシ−1,2−ジフェニルエタン−1−オン、フルオレノン、フルオレン、ベンズアルデヒド、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾフェノン、ミヒラーケトン、3−メチルアセトフェノン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン(BTTB)、およびBTTBとキサンテン、チオキサンテン、クマリン、ケトクマリンその他の色素増感剤との組み合わせなどを挙げることができる。   Among the photopolymerization initiators, the photoradical polymerization initiator that generates radical species is not particularly limited. For example, acetophenone, acetophenone benzyl ketal, anthraquinone, 1- (4-isopropylphenyl) -2-hydroxy- 2-methylpropan-1-one, carbazole, xanthone, 4-chlorobenzophenone, 4,4′-diaminobenzophenone, 1,1-dimethoxydeoxybenzoin, 3,3′-dimethyl-4-methoxybenzophenone, thioxanthone compounds, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-2-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, Triphenylamine, 2,4,6-trimethylbenzo Rudiphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-tri-methylpentylphosphine oxide, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1- Phenylpropan-1-one, 2,2′-dimethoxy-1,2-diphenylethane-1-one, fluorenone, fluorene, benzaldehyde, benzoin ethyl ether, benzoin propyl ether, benzophenone, Michler's ketone, 3-methylacetophenone, 3, 3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone (BTTB), and combinations of BTTB with xanthene, thioxanthene, coumarin, ketocoumarin and other dye sensitizers It can gel.

上記の光カチオン重合開始剤および光ラジカル重合開始剤は、1種単独でまたは2種以上のものを組み合わせて(E)成分を構成することができる。本発明の樹脂成分中における(E)成分の割合は、通常0.1〜10重量%とされ、好ましくは0.2〜7重量%とされ、さらに好ましくは0.3〜5重量%である。(E)成分が過少の場合は硬化速度が遅くなるため好ましくない。また、過剰の場合には、硬化速度が一定以上より速くならずに配合樹脂のコストが高くなるのみであるため好ましくない。   Said photocationic polymerization initiator and radical photopolymerization initiator can comprise (E) component individually by 1 type or in combination of 2 or more types. The proportion of the component (E) in the resin component of the present invention is usually 0.1 to 10% by weight, preferably 0.2 to 7% by weight, and more preferably 0.3 to 5% by weight. . When the component (E) is too small, the curing rate is slow, which is not preferable. Moreover, when it is excessive, the curing rate is not faster than a certain value, and the cost of the compounded resin is increased, which is not preferable.

本発明の活性エネルギー線硬化性樹脂組成物には、光硬化性を損なわない範囲において、上記の(A)〜(E)の成分以外のその他の成分を含有させることができる。かかる成分としては、ビニルエーテル、オキセタン樹脂などのカチオン重合性樹脂、アミン類、チオキサントン類、アントラセン類、フェノチアジン類、カルバゾール類からなる光増感剤、分解してp−トルエンスルホン酸などの酸を発生する酸増殖剤、水酸化アルカリ金属・炭酸アルカリ土類金属・リン酸アルカリ土類金属などの酸補足剤、着色剤、老化防止剤、レベリング剤、界面活性剤、紫外線吸収剤、シランカップリング剤、無機充填剤、樹脂粒子、濡れ性改良剤などを挙げることができる。   The active energy ray-curable resin composition of the present invention may contain other components other than the components (A) to (E) as long as the photocurability is not impaired. Such components include cationically polymerizable resins such as vinyl ether and oxetane resins, photosensitizers composed of amines, thioxanthones, anthracenes, phenothiazines, and carbazoles, and decompose to generate acids such as p-toluenesulfonic acid. Acid growth agents, acid supplements such as alkali metal hydroxides, alkaline earth metal carbonates, alkaline earth metal phosphates, colorants, anti-aging agents, leveling agents, surfactants, UV absorbers, silane coupling agents , Inorganic fillers, resin particles, wettability improvers and the like.

本発明における活性エネルギー線とは特に限定されるものではないが、例えばマイクロ波、赤外線、可視光、紫外線、X線、γ線、電子線等が挙げられ、好ましくはその中でも簡便に使用でき、比較的エネルギーの大きい紫外線が使用される。   The active energy ray in the present invention is not particularly limited, and examples thereof include microwaves, infrared rays, visible light, ultraviolet rays, X-rays, γ rays, electron beams, etc. UV rays with relatively high energy are used.

上記の紫外線は、光源として低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、固体レーザー、気体レーザーなどが挙げられ特に限定されるものではないが、好ましくは高圧水銀灯または固体レーザーが使用される。   The ultraviolet ray is not particularly limited as a light source such as a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a metal halide lamp, a solid-state laser, or a gas laser, but preferably a high-pressure mercury lamp or a solid-state laser is used. Is done.

以下、本発明の詳細を合成例及び実施例により具体的に説明する。ただし、本発明はその要旨を越えない限り、以下の実施例に制約されるものではない。   Hereinafter, the details of the present invention will be specifically described with reference to synthesis examples and examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

<実施例1>
撹拌機、温度計を備えた1Lのセパラブルフラスコに、ポリプロピレングリコール(m=7)のジグリシジルエーテル(SR−4PG(阪本薬品工業(株)製))272gとビフェノール28g、トリエチルベンジルアンモニウムクロリド1.0gをとり、窒素気流下、170℃にて8時間反応させた。反応終了後、エポキシ当量520g/eq、粘度1050mPa・s(25℃)の液状生成物(以下、A−1と略す)を得た。A−1の数平均分子量は、ゲル・パーミエーション・クロマトグラフィーで測定した標準ポリスチレン換算で1000であった。
<Example 1>
In a 1 L separable flask equipped with a stirrer and a thermometer, 272 g of diglycidyl ether of polypropylene glycol (m = 7) (SR-4PG (manufactured by Sakamoto Pharmaceutical Co., Ltd.)), 28 g of biphenol, triethylbenzylammonium chloride 1 0.0 g was taken and reacted at 170 ° C. for 8 hours under a nitrogen stream. After completion of the reaction, a liquid product (hereinafter abbreviated as A-1) having an epoxy equivalent of 520 g / eq and a viscosity of 1050 mPa · s (25 ° C.) was obtained. The number average molecular weight of A-1 was 1000 in terms of standard polystyrene measured by gel permeation chromatography.

<実施例2>
ポリプロピレングリコール(m=7)のジグリシジルエーテル(SR−4PG(阪本薬品工業(株)製))の量を244g、ビフェノールの量を56gに変更した以外は実施例1と同様の条件で反応を行い、エポキシ当量1700g/eq、粘度138000mPa・s(25℃)の液状生成物(以下、A−2と略す)を得た。A−2の数平均分子量は、ゲル・パーミエーション・クロマトグラフィーで測定した標準ポリスチレン換算で3000であった。
<Example 2>
The reaction was conducted under the same conditions as in Example 1 except that the amount of diglycidyl ether of polypropylene glycol (m = 7) (SR-4PG (manufactured by Sakamoto Pharmaceutical Co., Ltd.)) was changed to 244 g and the amount of biphenol was changed to 56 g. And a liquid product (hereinafter abbreviated as A-2) having an epoxy equivalent of 1700 g / eq and a viscosity of 138000 mPa · s (25 ° C.) was obtained. The number average molecular weight of A-2 was 3000 in terms of standard polystyrene measured by gel permeation chromatography.

<実施例3>
ポリプロピレングリコール(m=7)のジグリシジルエーテルに代えてトリプロピレングリコール(m=3)のジグリシジルエーテル(SR−TPG(阪本薬品工業(株)製))270g、ビフェノールの量を30gに変更した以外は実施例1と同様の条件で反応を行い、エポキシ当量315g/eq、粘度840mPa・s(25℃)の液状生成物(以下、A−3と略す)を得た。A−3の数平均分子量は、ゲル・パーミエーション・クロマトグラフィーで測定した標準ポリスチレン換算で600であった。
<Example 3>
Instead of diglycidyl ether of polypropylene glycol (m = 7), 270 g of dipropylidyl ether of tripropylene glycol (m = 3) (SR-TPG (manufactured by Sakamoto Pharmaceutical Co., Ltd.)) and the amount of biphenol were changed to 30 g. The reaction was conducted under the same conditions as in Example 1 to obtain a liquid product (hereinafter abbreviated as A-3) having an epoxy equivalent of 315 g / eq and a viscosity of 840 mPa · s (25 ° C.). The number average molecular weight of A-3 was 600 in terms of standard polystyrene measured by gel permeation chromatography.

<実施例4>
ポリプロピレングリコール(m=7)のジグリシジルエーテルに代えてネオペンチルグリコールのジグリシジルエーテル(SR−NPG(阪本薬品工業(株)製))230g、ビフェノールの量を70gに変更した以外は実施例1と同様の条件で反応を行い、エポキシ当量420g/eq、粘度140000mPa・s(25℃)の液状生成物(以下、A−4と略す)を得た。A−4の数平均分子量は、ゲル・パーミエーション・クロマトグラフィーで測定した標準ポリスチレン換算で900であった。
<Example 4>
Example 1 except that 230 g of diglycidyl ether of neopentyl glycol (SR-NPG (manufactured by Sakamoto Pharmaceutical Co., Ltd.)) and 70 g of biphenol were substituted for the diglycidyl ether of polypropylene glycol (m = 7). The reaction was carried out under the same conditions as above to obtain a liquid product (hereinafter abbreviated as A-4) having an epoxy equivalent of 420 g / eq and a viscosity of 140,000 mPa · s (25 ° C.). The number average molecular weight of A-4 was 900 in terms of standard polystyrene measured by gel permeation chromatography.

<比較例1>
トリプロピレングリコール(m=3)のジグリシジルエーテル(SR−TPG(阪本薬品工業(株)製))の量を278g、ビフェノールの量を22gに変更した以外は実施例3と同様の条件で反応を行い、エポキシ当量は285g/eq、粘度は560mPa・s(25℃)の液状生成物(以下、A−5と略す)を得た。A−5の数平均分子量は、ゲル・パーミエーション・クロマトグラフィーで測定した標準ポリスチレン換算で500であった。
<Comparative Example 1>
The reaction was carried out under the same conditions as in Example 3 except that the amount of diglycidyl ether of tripropylene glycol (m = 3) (SR-TPG (manufactured by Sakamoto Pharmaceutical Co., Ltd.)) was changed to 278 g and the amount of biphenol was changed to 22 g. And a liquid product (hereinafter abbreviated as A-5) having an epoxy equivalent of 285 g / eq and a viscosity of 560 mPa · s (25 ° C.) was obtained. The number average molecular weight of A-5 was 500 in terms of standard polystyrene measured by gel permeation chromatography.

<実施例5>
表1に示す処方配合に従って、実施例1で得られたA−1を19重量%、ビスフェノールF型ジグリシジルエーテル「エピコート807」(ジャパンエポキシレジン(株)製)80重量%、トリアリールスルホニウムヘキサフルオロアンチモネート塩系光カチオン重合開始剤「SP−170」(旭電化工業(株)製)1重量%を攪拌容器内に仕込み、50℃で1時間攪拌することにより、無色透明な液状組成物(本発明の樹脂組成物)を得た。
得られた樹脂組成物をPETフィルム上にバーコーターで約200μmの膜厚になるように塗布した。続いて、高圧水銀灯にて1.0J/cm(365nm)照射し、1日間温度23℃、湿度50%の恒温恒湿下で状態調整を行った。
得られた硬化膜の物性評価を、下記の評価方法で行った。その結果を表1に示した。
<Example 5>
According to the formulation shown in Table 1, A-1 obtained in Example 1 was 19% by weight, bisphenol F type diglycidyl ether “Epicoat 807” (manufactured by Japan Epoxy Resin Co., Ltd.), 80% by weight, triarylsulfonium hexa Fluoroantimonate salt-based photocationic polymerization initiator “SP-170” (manufactured by Asahi Denka Kogyo Co., Ltd.) 1 wt% is charged into a stirring vessel and stirred at 50 ° C. for 1 hour, whereby a colorless transparent liquid composition (Resin composition of the present invention) was obtained.
The obtained resin composition was applied on a PET film with a bar coater so as to have a film thickness of about 200 μm. Subsequently, 1.0 J / cm 2 (365 nm) was irradiated with a high-pressure mercury lamp, and the condition was adjusted under constant temperature and humidity at a temperature of 23 ° C. and a humidity of 50% for one day.
The physical properties of the obtained cured film were evaluated by the following evaluation methods. The results are shown in Table 1.

<実施例6〜10>
表1に示す処方配合に従って、(A)、(B)、(E)を混合し、また必要に応じて(C)、(D)成分およびその他の成分を攪拌混合したこと以外は実施例5と同様にして、液状組成物(本発明の樹脂組成物)を得た後、硬化膜を作成し、物性評価を行った。その結果を表1に示した。
<Examples 6 to 10>
Example 5 except that (A), (B), (E) were mixed according to the formulation shown in Table 1, and (C), (D) and other components were mixed with stirring as required. In the same manner as above, after obtaining a liquid composition (resin composition of the present invention), a cured film was prepared, and physical properties were evaluated. The results are shown in Table 1.

<比較例2〜5>
表1に示す処方配合に従って、各構成成分を攪拌混合したこと以外は実施例5と同様にして液状組成物を得た後、硬化皮膜を作成し、物性評価を行った。その結果を表1に示した。
<Comparative Examples 2-5>
According to the formulation shown in Table 1, a liquid composition was obtained in the same manner as in Example 5 except that each constituent component was stirred and mixed, and then a cured film was prepared and evaluated for physical properties. The results are shown in Table 1.

以下に、上述の実施例等における評価方法を説明する。
(引張強度、破壊伸び率、降伏伸び率、初期弾性率)
島津製作所(株)製のAUTO GRAPH S-2000を用いて、JIS K 7127に準じ、得られた硬化膜を引張速度1mm/min、標線間距離50mmの条件で測定した。なお、初期弾性率は伸び率2.5%での引張強度を用いて算出した。
Below, the evaluation method in the above-mentioned Example etc. is demonstrated.
(Tensile strength, breaking elongation, yield elongation, initial elastic modulus)
Using the AUTO GRAPH S-2000 manufactured by Shimadzu Corporation, the obtained cured film was measured under the conditions of a tensile speed of 1 mm / min and a distance between marked lines of 50 mm according to JIS K7127. The initial elastic modulus was calculated using the tensile strength at an elongation of 2.5%.

Figure 0004524083
Figure 0004524083

上記表1に示したように、実施例で示した樹脂組成物は、破壊伸び率(X)から降伏伸び率(Y)(ただし、降伏伸びを示さない硬化物に関しては最大荷重で破断することから最大荷重での伸び率とする)を減算した値が大きいことから、耐衝撃性に優れ、強度と伸びを兼ね備えた靭性に優れた樹脂であることが分かった。   As shown in Table 1 above, the resin compositions shown in the examples are broken from the elongation at break (X) to the yield elongation (Y) (however, a cured product that does not exhibit yield elongation is broken at the maximum load. From the fact that the value obtained by subtracting the elongation at maximum load is large, it was found that the resin is excellent in impact resistance and excellent in toughness having both strength and elongation.

硬化物の靭性が要求される分野、例えば光造形分野、コーティング、レジスト、接着剤、塗料等に配合して使用できる。
It can be blended and used in fields where the toughness of the cured product is required, such as the optical modeling field, coatings, resists, adhesives, paints and the like.

Claims (1)

グリコールのグリシジルエーテルとフェノール類化合物を反応させて得られる化合物であり、
Figure 0004524083
(mは1〜20の自然数、nは1〜14の自然数、Xはハロゲン原子またはC1〜5のアルキル基、aおよびbは0〜4の整数、GおよびGはグリシジル基又は水素原子(ただし、G、Gが同時に水素原子であることはない)、RはC1〜10のアルキレン基またはアルキリデン基、Rはアルキレン基、アルキリデン基、スルホニル基、酸素原子または原子団の存在しない直接結合を示す。)で示され、数平均分子量の範囲が600〜5000であるエポキシ樹脂、光重合開始剤、及び、オキシラン環を有する光カチオン重合性樹脂([化1]で示され、数平均分子量の範囲が600〜5000であるエポキシ樹脂を除く。)を含有する活性エネルギー線硬化性樹脂組成物。
It is a compound obtained by reacting glycidyl ether of glycol with a phenol compound,
Figure 0004524083
(M is a natural number of 1 to 20, n is a natural number of 1 to 14, X is an alkyl group, a and b are integers of 0 to 4, G 1 and G 2 are glycidyl groups or a hydrogen atom a halogen atom or C1~5 (However, G 1 and G 2 are not simultaneously hydrogen atoms), R 1 is a C1-10 alkylene group or alkylidene group, R 2 is an alkylene group, alkylidene group, sulfonyl group, oxygen atom or atomic group. An epoxy resin having a number average molecular weight in the range of 600 to 5000, a photopolymerization initiator, and a photocationically polymerizable resin having an oxirane ring (shown by [Chemical Formula 1]). , Excluding epoxy resins having a number average molecular weight in the range of 600 to 5000.) .
JP2003281435A 2003-01-22 2003-07-29 Active energy ray-curable resin composition Expired - Fee Related JP4524083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281435A JP4524083B2 (en) 2003-01-22 2003-07-29 Active energy ray-curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003013987 2003-01-22
JP2003281435A JP4524083B2 (en) 2003-01-22 2003-07-29 Active energy ray-curable resin composition

Publications (2)

Publication Number Publication Date
JP2004244610A JP2004244610A (en) 2004-09-02
JP4524083B2 true JP4524083B2 (en) 2010-08-11

Family

ID=33032000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281435A Expired - Fee Related JP4524083B2 (en) 2003-01-22 2003-07-29 Active energy ray-curable resin composition

Country Status (1)

Country Link
JP (1) JP4524083B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815877B2 (en) * 2005-05-31 2011-11-16 Dic株式会社 Epoxy resin composition, cured product thereof, novel hydroxy compound, novel epoxy resin and production method thereof
JP5493246B2 (en) * 2007-03-08 2014-05-14 Dic株式会社 Phenolic resin compositions, epoxy resin compositions, cured products thereof, water-based paints, novel phenolic resins, and novel epoxy resins
JP4863288B2 (en) * 2007-03-20 2012-01-25 Jsr株式会社 Photo-curable resin composition for optical three-dimensional modeling and three-dimensional modeling
CN101809500A (en) 2007-03-20 2010-08-18 帝斯曼知识产权资产管理有限公司 stereolithography resin compositions and three-dimensional objects made therefrom
JP5334389B2 (en) * 2007-03-29 2013-11-06 Jsr株式会社 Photo-curable resin composition for optical three-dimensional modeling and three-dimensional modeling
JP5317503B2 (en) * 2007-03-29 2013-10-16 Jsr株式会社 Photo-curable resin composition for optical three-dimensional modeling and three-dimensional modeling
JP5736613B2 (en) * 2010-10-01 2015-06-17 協立化学産業株式会社 Low-eluting epoxy resin, partially esterified epoxy resin, production method thereof, and curable resin composition containing the same
JP5773201B2 (en) * 2011-08-15 2015-09-02 Dic株式会社 Thermal adhesive sheet
JP2015152854A (en) * 2014-02-18 2015-08-24 旭化成イーマテリアルズ株式会社 Photosensitive resin composition, photosensitive resin laminate, and method for forming resist pattern
JP2019172998A (en) * 2018-03-29 2019-10-10 阪本薬品工業株式会社 Epoxy resin and curable resin composition containing the same
JP2019189864A (en) * 2018-04-24 2019-10-31 阪本薬品工業株式会社 Epoxy resin composition and cured product thereof
JP7417366B2 (en) * 2019-05-17 2024-01-18 阪本薬品工業株式会社 Epoxy resin composition and its cured product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417999A (en) * 1977-07-06 1979-02-09 Ciba Geigy Ag Glycidyl and hydroxyl grouppcontaining linear polyether resin and preparation thereof
JPS6136320A (en) * 1984-07-30 1986-02-21 Toshiba Corp Photo-setting composition
JPH09183923A (en) * 1995-12-28 1997-07-15 Shinto Paint Co Ltd Cationic electrodeposition coating composition
JPH10130367A (en) * 1996-10-28 1998-05-19 Toyo Ink Mfg Co Ltd Cationically curable prepolymer and active energy ray-curing type coating material composition using the same
JPH11181282A (en) * 1997-12-25 1999-07-06 Sumitomo Bakelite Co Ltd Resin composition
JP2000273143A (en) * 1999-03-25 2000-10-03 Sumitomo Bakelite Co Ltd Semiconductor apparatus
JP2000277666A (en) * 1999-03-25 2000-10-06 Sumitomo Bakelite Co Ltd Conductive ball reinforcing resin sheet
JP2001329045A (en) * 2000-05-25 2001-11-27 Asahi Denka Kogyo Kk Novel alicyclic epoxy resin, its production method and curable resin composition containing the resin
JP2002265560A (en) * 2001-03-07 2002-09-18 Sakamoto Yakuhin Kogyo Co Ltd Novel epoxy compound and active energy ray-curable epoxy resin composition therefrom
JP2004010827A (en) * 2002-06-10 2004-01-15 Sakamoto Yakuhin Kogyo Co Ltd Active energy ray curable resin composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417999A (en) * 1977-07-06 1979-02-09 Ciba Geigy Ag Glycidyl and hydroxyl grouppcontaining linear polyether resin and preparation thereof
JPS6136320A (en) * 1984-07-30 1986-02-21 Toshiba Corp Photo-setting composition
JPH09183923A (en) * 1995-12-28 1997-07-15 Shinto Paint Co Ltd Cationic electrodeposition coating composition
JPH10130367A (en) * 1996-10-28 1998-05-19 Toyo Ink Mfg Co Ltd Cationically curable prepolymer and active energy ray-curing type coating material composition using the same
JPH11181282A (en) * 1997-12-25 1999-07-06 Sumitomo Bakelite Co Ltd Resin composition
JP2000273143A (en) * 1999-03-25 2000-10-03 Sumitomo Bakelite Co Ltd Semiconductor apparatus
JP2000277666A (en) * 1999-03-25 2000-10-06 Sumitomo Bakelite Co Ltd Conductive ball reinforcing resin sheet
JP2001329045A (en) * 2000-05-25 2001-11-27 Asahi Denka Kogyo Kk Novel alicyclic epoxy resin, its production method and curable resin composition containing the resin
JP2002265560A (en) * 2001-03-07 2002-09-18 Sakamoto Yakuhin Kogyo Co Ltd Novel epoxy compound and active energy ray-curable epoxy resin composition therefrom
JP2004010827A (en) * 2002-06-10 2004-01-15 Sakamoto Yakuhin Kogyo Co Ltd Active energy ray curable resin composition

Also Published As

Publication number Publication date
JP2004244610A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP1237983B1 (en) Polymerizable composition, cured material thereof and method for manufacturing the same
JP5156620B2 (en) UV curable resin composition
JP4667145B2 (en) Photocurable resin composition and resin composition for plastics comprising the same
US7964248B2 (en) Dual photoinitiator, photocurable composition, use thereof and process for producing a three dimensional article
JP4524083B2 (en) Active energy ray-curable resin composition
JP5152213B2 (en) Cationic curable resin composition comprising a polymer having two or more oxetanyl groups
JP5059634B2 (en) Liquid curable composition and cured product thereof
JP2023022039A (en) Sealant, cured body, organic electroluminescent display, and method for producing device
JP2013166893A (en) Radiation-curable composition for stereophotolithography
WO2004076522A1 (en) Curable resin composition
JP4524127B2 (en) Novel epoxy resin and curable resin composition containing the same
JP5699835B2 (en) Curable composition, coating composition using the same, and cured products thereof
JP4251058B2 (en) Cationic curable resin composition
JP2005336349A (en) Cationically polymerizable composition
JP7227695B2 (en) Photocurable resin composition
JP7155005B2 (en) Resin composition for optical stereolithography
JP4251138B2 (en) Curing accelerator for cationic polymerization type composition
JP4302365B2 (en) Water peelable active energy ray curable adhesive
JP3424772B2 (en) Photopolymerization initiator, energy ray-curable composition containing the same, and cured product thereof
US20230322998A1 (en) Photo-curable resin composition for use in stereolithography
JP7207973B2 (en) Curable resin composition
JP3792572B2 (en) Novel oligomer-containing epoxy compound and active energy ray-curable epoxy resin composition using the same
JP3896119B2 (en) Photocurable resin composition for display element and display element
JP2004010827A (en) Active energy ray curable resin composition
JP2020044835A (en) Curable resin composition for three-dimensional molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4524083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees