JP4519932B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4519932B2
JP4519932B2 JP2008273316A JP2008273316A JP4519932B2 JP 4519932 B2 JP4519932 B2 JP 4519932B2 JP 2008273316 A JP2008273316 A JP 2008273316A JP 2008273316 A JP2008273316 A JP 2008273316A JP 4519932 B2 JP4519932 B2 JP 4519932B2
Authority
JP
Japan
Prior art keywords
single crystal
gate electrode
semiconductor device
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008273316A
Other languages
English (en)
Other versions
JP2009049429A (ja
Inventor
裕 ▲高▼藤
隆志 糸賀
ロイ ドロース スティーブン
正生 守口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008273316A priority Critical patent/JP4519932B2/ja
Publication of JP2009049429A publication Critical patent/JP2009049429A/ja
Application granted granted Critical
Publication of JP4519932B2 publication Critical patent/JP4519932B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]

Landscapes

  • Thin Film Transistor (AREA)

Description

本発明は、例えば、TFTで駆動するアクティブマトリクス駆動液晶表示装置等において、同一基板上に周辺駆動回路やコントロール回路を一体集積化した液晶表示装置の回路性能改善を図った半導体装置およびその製造方法、該半導体装置を製造する際に用いられる単結晶Si基板に関するものである。
従来より、ガラス基板上に非晶質Si(以下a−Siと略記する)や多結晶Si(以下P−Siと略記する)の薄膜トランジスタ(Thin Film Transistor、以下、TFTと記す)を形成し、液晶表示パネルや有機ELパネル等の駆動を行う、いわゆるアクティブマトリクス駆動を行う表示装置が使用されている。
特に、移動度が高く高速で動作するp−Siを用いて、周辺ドライバを集積化したものが用いられるようになっている。しかし、さらに高い性能が要求されるイメージプロセッサやタイミングコントローラ等のシステム集積化のためには、より高性能なSiデバイスが求められている。
これは、多結晶Siでは結晶性の不完全性に起因するギャップ内の局在準位や結晶粒界付近の欠陥やギャップ内局在準位に起因する、電子(または正孔)移動度の低下やS係数(サブスレショルド係数)の増大のため、高性能なSiのデバイスを形成するには、トランジスタの性能が充分ではないという問題があるためである。
そこで、さらに高性能なSiのデバイスを形成するため、単結晶Si薄膜からなる薄膜トランジスタ等のデバイスを予め形成し、これを絶縁基板上に貼り付けて半導体装置を形成する技術が研究されている(例えば、特許文献1、非特許文献1,2参照)。
特許文献1には、ガラス基板上に接着剤を用いて、予め作成した単結晶Si薄膜トランジスタを転写した半導体装置を使用し、アクティブマトリクス型液晶表示装置の表示パネルのディスプレイを作成する技術が開示されている。
また、特許文献2には、単結晶Si層の所定の深さに所定の濃度の水素イオンを注入した後、熱処理をすることによって、薄膜トランジスタを形成していない単結晶Si基板から薄膜状の単結晶Siを剥離する手法が開示されている。
また、薄膜トランジスタを形成していない単結晶Si基板から薄膜状の単結晶Siを剥離した後、その剥離した単結晶Siにトランジスタを形成する技術については、特許文献3に開示がある。すなわち、特許文献3には、単結晶Si基板上に絶縁膜を形成した後、酸化シリコン膜をパターンニングし、その後陽極化成処理を施すことによって酸化シリコン膜を形成しなかった箇所を多孔質化する。そして、主表面から単結晶Si層と多孔質層との双方が形成されている層を横切るように水素イオンを添加した後、表面に酸化シリコン膜を形成した他の基板と、単結晶Si基板とを接合する。そして、500℃程度に加熱することによって、水素イオンを添加した層から単結晶Si基板を分断し、他の基板上に薄膜の単結晶Siを形成する。そして、その薄膜の単結晶Siに、更にプロセスを施して薄膜トランジスタを他の基板上に形成するものが開示される。
特表平7−503557号(公表日1995年4月13日) 特許第3048201号(公開日1993年8月20日) 特開2000−106424号(公開日2000年4月11日) J.P.Salerno "Single Crystal Silicon AMLCDs",Conference Record of the 1994 International Display Research Conference(IDRC) P.39-44(1994) Q.-Y.Tong & U.Gesele, SEMICONDUCTOR WAFER BONDING : SCIENCE AND TECHNOLOGY ,John Wiley & Sons, New York(1999)
上記特許文献2及び特許文献3は、いずれも単結晶Si基板にトランジスタを形成する前に水素イオンを用いて単結晶Si基板の剥離を行っていたため、次のような問題が生じることはなかった。
すなわち、単結晶Si薄膜トランジスタが作成された後の単結晶Si基板において、水素イオンの注入が基板全面に対して行われると、トランジスタのチャネル部に水素イオンやHeイオンが注入され、僅かではあるが結晶格子欠陥を生じたり、あるいは高濃度の水素原子がアクセプタ不純物との複合体を作って非活性化したりする。その結果、トランジスタの閾値が負側にシフトするといったトランジスタ特性の劣化を招いていた。
また、ガラス基板に単結晶Siからなる薄膜トランジスタを転写する場合を考えると、単結晶Si薄膜にトランジスタを形成するには、ガラス基板の耐熱温度より遥かに高い温度での熱処理を必要とするため、ガラス基板の適用が極めて困難であった。
本発明は、上記の問題点を解決するためになされたもので、その目的は、ガラス等の絶縁基板上に単結晶Si薄膜トランジスタを転写する半導体装置において、単結晶Si薄膜トランジスタの特性劣化を防止しうる構成を提供することにある。
本発明の半導体装置は、上記の課題を解決するために、絶縁基板上に薄膜デバイスを形成してなる半導体装置において、上記半導体装置内で、ソース、ドレイン及びチャネル領域が非単結晶Siに形成されている非単結晶Si薄膜トランジスタと、ソース、ドレイン及びチャネル領域が単結晶Siに形成されている単結晶Si薄膜トランジスタとが混在しており、前記単結晶Si薄膜トランジスタは、ゲート電極とゲート絶縁膜を更に有しており、前記単結晶Si薄膜トランジスタは、該単結晶Si薄膜トランジスタと所定の濃度の水素イオン及び/またはHeイオンが前記ゲート絶縁膜を通過するように注入して形成した注入層を有する半導体基板を、前記絶縁基板に密着させ接合した後、熱処理を加えて前記注入層で劈開分離して、前記絶縁基板上に転写して形成され、かつ、前記単結晶Si薄膜トランジスタのゲート電極が、平均原子番号が28以上の元素、もしくは密度が10g/cm3以上の元素、あるいはその化合物を含む材料から構成されていることを特徴としている。
上記の構成によれば、水素イオンまたはHeイオンがゲート層を貫通することを防止して、ゲート電極下のシリコン−ゲート絶縁膜界面、及びチャネル領域を損傷から保護することができる。
また、本発明の半導体装置は、TFT液晶表示装置あるいは有機EL表示装置である構成とすることができる。
上記の構成によれば、同一基板上に表示パネル部と駆動回路部とを一体集積化したTFT液晶表示装置あるいは有機EL表示装置を製造するにあたって、表示パネル部におけるスイッチング素子等を非単結晶Si薄膜からなる薄膜トランジスタで構成し、駆動回路部等を単結晶Siからなる薄膜トランジスタを用いたデバイス構成とすることで、表示装置の回路性能改善を図ることできるため、本発明を極めて好適に適用できる。
また、本発明の半導体装置は、上記ゲート電極のパターンは、直交する2方向の両方において、2um以上の連続パターンを含まない構成とすることが好ましい。
上記の構成によれば、ゲートパターンをいずれの方向にも概2μm以上連続しないように形成する事により、イオン注入時の回り込みと、劈開が横に多少走る効果とにより、ゲート下部における劈開不良を回避できる。
本発明の半導体装置は、以上のように、絶縁基板上に薄膜デバイスを形成してなる半導体装置において、上記半導体装置内で、ソース、ドレイン及びチャネル領域が非単結晶Siに形成されている非単結晶Si薄膜トランジスタと、ソース、ドレイン及びチャネル領域が単結晶Siに形成されている単結晶Si薄膜トランジスタとが混在しており、前記単結晶Si薄膜トランジスタは、ゲート電極とゲート絶縁膜を更に有しており、前記単結晶Si薄膜トランジスタは、該単結晶Si薄膜トランジスタと所定の濃度の水素イオン及び/またはHeイオンが前記ゲート絶縁膜を通過するように注入して形成した注入層を有する半導体基板を、前記絶縁基板に密着させ接合した後、熱処理を加えて前記注入層で劈開分離して、前記絶縁基板上に転写して形成され、かつ、前記単結晶Si薄膜トランジスタのゲート電極が、平均原子番号が28以上の元素、もしくは密度が10g/cm3以上の元素、あるいはその化合物を含む材料から構成されている。
それゆえ、水素イオンまたはHeイオンがゲート層を貫通することを防止して、ゲート電極下のシリコン−ゲート絶縁膜界面、及びチャネル領域を損傷から保護することができる。
〔実施の形態1〕
本発明の実施の一形態について図1ないし図4に基づいて説明すれば、以下の通りである。
本実施の形態で説明する半導体装置は、非単結晶Siを基材とする薄膜トランジスタ及び単結晶Siを基材とする薄膜トランジスタを、ともに絶縁基板上に形成した高性能・高機能化に適した半導体装置である。この一例として以下には、非単結晶Siトランジスタ及び単結晶SiトランジスタとしてMOS型のものを用いて、TFTを備えたアクティブマトリクス基板を形成する場合について説明する。
MOS型の薄膜トランジスタは、活性半導体層、ゲート電極、ゲート絶縁膜、ゲート両側に形成された高濃度不純物ドープ部(ソース・ドレイン領域)からなり、ゲート電極により、ゲート下の半導体層のキャリア濃度が変調され、ソース−ドレイン間を流れる電流が制御される一般的なトランジスタである。
MOS型トランジスタの特性としては、CMOS(Complementary MOS)構造にすると、消費電力が少なく、電源電圧に応じて出力をフルに振ることができることから、低消費電力型のロジックに適している。
本実施の形態1に係る半導体装置10は、図2に示すように、絶縁基板50上に、SiO膜12、多結晶Siからなる非単結晶Si薄膜21を含むMOS型の非単結晶Si薄膜トランジスタ20、単結晶Si薄膜40´を備えたMOS型の単結晶Si薄膜トランジスタ(単結晶Si薄膜デバイス)30、金属配線13等を備えている。
絶縁基板50は、高歪点ガラスが用いられる。一例としてコーニング社のcode1737(アルカリ土類−アルミノ硼珪酸ガラス)を用いることができる。SiO膜12は、絶縁基板50の表面全体に、膜厚約50nmで形成されている。
単結晶Si薄膜40´を含む単結晶Si薄膜トランジスタ30は、ゲート電極32、平坦化膜39、ゲート絶縁膜としてのSiO膜36、および単結晶Si薄膜40´を備えている。
本実施の形態の半導体装置10では、以上のように、1枚の絶縁基板50上に、MOS型の非単結晶Si薄膜トランジスタ20と、MOS型の単結晶Si薄膜トランジスタ30とを共存させることで、特性が異なる複数の回路を集積化した高性能・高機能な半導体装置を得ることができる。また、1枚の絶縁基板50上に、全て単結晶Si薄膜からなるトランジスタを形成するよりも、安価に高性能・高機能な半導体装置を得ることができる。
このような半導体装置10は、絶縁基板50上に単結晶Si薄膜トランジスタ30を形成する第1工程、及び非単結晶Si薄膜トランジスタ20を形成する第2工程を経て形成される。そこで、まず、第1工程について図1(a)〜(c)及び図2を用いて説明し、次に、第2工程について図2を用いて説明する。
最初に図1(a)に示される状態までの工程について説明する。単結晶Siウエハ(単結晶Si基板)40を、通常の洗浄法(希フッ酸により自然酸化膜を除去し、SC1、SC2洗浄でパーティクル、有機物等の除去を行うなど)にて洗浄する。
次に素子分離のための酸化膜及びゲート絶縁膜36を、熱酸化法により所定の領域に形成する。ゲート絶縁膜36の厚さは、5〜50nmとする。酸化法としては、パイロジェニック酸化法あるいはHCl酸化法などを用いることができる。
次に、閾値コントロールのための不純物(リンまたは、ホウ素)を単結晶Siウエハ40に注入する。
そして、W等の原子番号の大きい金属、あるいはその金属のシリサイド、あるいはこれらの材料を含むゲート電極膜35と多結晶Si膜34の複層からなるゲート電極材料を、厚さ200〜400nm程度、ゲート絶縁膜36上に形成する。ここでは膜厚約50nmのn多結晶Si上に膜厚約300nmのゲート電極膜をスパッタにより形成した。
このゲート電極膜35の形成は、通常のプロセスで使われるポリシリコンではなく、平均原子番号28以上、もしくは密度10g/cm以上の材料を含む材料で、ゲート電極膜35を形成していることが重要である。このように、平均原子番号或いは平均密度が大きい材料をゲート電極膜35として用いるのは、次の理由による。
トランジスタを単結晶Siに形成した後に薄膜化するには、後述するように、単結晶Siに水素イオン又はHeイオンを注入し、熱処理を行うことによって、単結晶Si中の水素イオン又はHeイオンの注入部を境として劈開剥離する手法を用いる。この手法における水素イオン又はHeイオンの注入時に、水素イオン又はHeイオンがゲート電極32の下にあるチャネル部を通過すると、チャネル部に欠陥が生じ、トランジスタ特性が劣化することになる。
そこで、水素イオン又はHeイオンがチャネル部を通過しないようにするためには、注入された水素イオン又はHeイオンの飛程が、ゲート電極と表面保護膜との膜厚の合計以下となるようにすれば、チャネル部の欠陥を防止できる。
そして、このゲート電極35に用い得る材料は、図3及び図4から求められる。図3は材料の平均原子番号と水素イオンあるいはHeイオンの単位エネルギあたりの飛程(Projection Range Per Energy)の関係を示しており、図4は材料の平均密度と水素イオンあるいはHeイオンの単位エネルギあたりの飛程の関係を示している。
図3及び図4において、塗り潰しの丸は水素イオンの飛程を示しており、白抜きの丸はHeイオンの飛程を示している。また、図3は、縦軸が単位エネルギあたりの飛程であり、横軸が平均原子番号であって、平均原子番号の低い順にSi、Ti、Ni、Ge、WSi、Ta、W、Pb、Uを示している。そして、図4は、縦軸が単位エネルギあたりの飛程であり、横軸が密度であって、密度の低い順にSi、Ti、Ge、Ni、WSi、Pb、Ta、U、Wを示している。
図3及び図4から見て取れるように、水素イオンあるいはHeイオンの飛程を十分に短縮する効果を発揮するSi(原子番号14,密度2.33g/cm)の約1/2程度以下の飛程とするためには、平均原子番号を基準にすれば28以上、密度を基準にすれば10g/cm以上の材料を用いると良い。
これをゲート電極32の材料に含めて形成して水素イオン又はHeイオンの飛程を十分短縮し、ゲート電極32の厚さを考慮に入れてパラメータを調整することにより、水素イオン或いはHeイオンの注入深さのピークをゲート電極中とすることができる。そして、その結果チャネル部のトランジスタ特性の劣化防止効果を得ることができる。
なお、ゲート電極32の材料は、上記したものの他にY、Hf、Au、Pt、Pd、Zr、MoSi、CoSi、PtSi、PdSi、HfSi、TaSi、ZrSiが用いうる。ゲート電極膜35の作成に当たっては、これらの材料から、所望する特性、抵抗及び耐熱性等を考慮して選択する。以上が、平均原子番号或いは平均密度が大きい材料をゲート電極膜35として用いる理由である。
次に、通常のフォトリソプロセスにより、成膜されたゲート電極材料をパターニングし、ゲート電極32を形成する。ここでは、上記ゲート電極32の線幅を約0.35μmとした。その他の部分も最大幅が約2um以下となるようにパターン化した。さらにトランジスタの導電型に対応してLDD(Lightly Doped Drain)部54となる箇所に自己整合的にリンまたは、ホウ素を注入する。
さらに、短チャネル対策の必要性に応じて、逆タイプの不純物のHALO注入を行い、ゲート電極32上に該ゲート電極32と同程度の膜厚のSiO膜をLPCVD等で堆積した後、RIE(Reactive Ion Etching)でこれをエッチングしてサイドウォール37を形成する。
次に、AsまたはBFを単結晶Siウエハ40に浅く注入し、900℃程度の熱処理により活性化させソース領域55、ドレイン領域56を形成する。その後、膜厚約50nm程度の表面保護膜38を形成する。ここでは、表面保護膜38としてSiO膜を形成した。
そして、表面保護膜38側から水素イオン注入を行う。注入エネルギー80keV、ドーズ量5E16cm−2とし、基板表面に対し垂直に注入した。このとき、概ね50nmのSiO膜を通すことによって、イオン注入時の単結晶Si中でのチャネリングが抑えられて鋭い注入ピークが形成される。
なお、従来では、垂直にイオン注入時に生じるチャネリングを避けるために基板表面の法線方向に対して約7度で斜めにイオン注入することが一般的であった。しかし、この場合には注入された水素イオン又はHeイオンの分布に非平面成分が生じ、剥離した面が平坦化しない等の問題を生じていたが、SiO膜を介して基板表面に対し垂直にイオン注入すると、非平面成分の発生が抑えられる。これにより、後述する劈開分離後の単結晶Si膜の表面の平坦性が向上した。
上記イオン注入においては、ゲート電極形成領域ではゲート電極の表面保護膜38側表面から約250nmの深さ、及びそれ以外の領域では単結晶Siウエハ40においてゲート絶縁膜36との境界面から約670nmの深さに水素イオンのピークができ、単結晶Siウエハ40においては水素イオン注入層41が形成される(尚、この時、ゲート電極膜35においては水素イオン注入層41’が形成される)。以上の工程までを終了した状態が図1(a)に示される状態である。
次に、図1(b)に示す状態までの工程について説明する。TEOS(tetra-ethoxy-silane)あるいはTMCTS(Tetra-methyl-cyclo-tetra-siloxane)を用いたプラズマCVDにより、表面保護膜38上に平坦化膜39を形成し、CMP(Chemical-Mechanical Polishing)によって平坦化処理後、単結晶Si基板を所定の形状に切断する。ここで、TEOSあるいはTMCTSを用いたプラズマCVDによって平坦化膜39を形成した場合、その表面被覆性が優れ、かつ後述の絶縁基板との接合性が優れていた。
一方、上記単結晶Siウエハ40上における単結晶Si薄膜トランジスタの主要構造の形成工程とは別に、ガラス、石英、或いは耐熱性透明樹脂からなる絶縁性基板表面50の表面全体にTEOSとOとの混合ガスを用いて、プラズマCVDによって、膜厚約50nmのSiO膜60を堆積したものを用意する。
ここでは、予め非単結晶Siデバイス(図示せず)として多結晶SiのTFTアレイ、及び簡単な走査回路のゲート・不純物ドーピング工程を終えたコーニング社のcode1737ガラスの表面にTEOSとOとの混合ガスを用いて、プラズマCVDによって、膜厚約50nmのSiO膜60を堆積したものを用意した。
そして、透明絶縁性基板50および切断した単結晶Si基板の両基板をSC−1洗浄して活性化した後、単結晶Si基板を所定の位置にアライメントし、上記両基板を室温で密着させて接合する。上記単結晶Si基板と透明絶縁性基板50とはVan der Waals力、水素結合、あるいは電気双極子の寄与により接合される。なお、SC−1液はアンモニア水(NHOH:30%)と、過酸化水素水(H:30%)と純水(HO)を5:12:60の割合で混合したものを用いた。以上の工程までを終了した状態が図1(b)に示されるものである。
さらに、図1(c)に示す状態までの工程について説明する。図1(b)の状態のものを400℃〜600℃、ここでは約550℃の温度の熱処理を行う。熱処理を行うと、
Si-OH + Si-OH → Si-O-Si + H2O
の反応が生じ、上記両基板の接合が原子同士の強固な結合に変わるとともに、水素イオン注入部41にて水素が単結晶Si基板中で拡散し微小気泡を生じ、水素イオン注入部41を境に単結晶Siウエハ40の不要部分の劈開剥離を生じさせ、単結晶Siを薄膜化し薄膜単結晶Si40´を形成することができる。
なお、ゲート電極中に注入された水素は、平坦化膜39の堆積時、基板温度を300−350℃にした時点で大半が脱離するため、特段の問題は生じない。以上の工程までを終了した状態が図1(c)に示されるものである。
その後、更に工程を加えて、図2に示す半導体装置を形成する方法について説明する。図1(c)に示すように不要部分が剥離されて約550〜670nmの膜厚で残った単結晶Si薄膜40’の表面をRIEで所定の膜厚にエッチングし、更に不要部分をエッチング除去し、単結晶Si薄膜40’を島状に加工する。その後、表面の損傷層を等方性プラズマエッチングまたはウエットエッチングにより除去する。ここではバッファフッ酸によるウエットエッチングにて約10nmライトエッチした。これにより、絶縁基板50上に膜厚約50nmの単結晶Si薄膜トランジスタ30が形成される。以上が第1工程である。
その後、絶縁基板50の全面にSiHとNOとの混合ガスを用いたプラズマCVDによって、膜厚約200nmの第2のSiO膜を堆積し、さらに、その全面にSiH4ガスを用いてプラズマCVDにより、膜厚約50nmの非晶質Si膜を堆積する。
そして、非晶質Si膜にエキシマレーザを照射して、加熱、結晶化し、多結晶Si層21を成長させる。
次に、デバイスの活性領域となる部分を残すために、不要な多結晶Si膜をエッチング除去し、島状のパターンを得る。
このあと、よく知られた一般的な材料及びプロセスで、層間絶縁膜形成、コンタクトホール開口を経て、配線メタル13を成膜・パターニングすることで、図2に示すような、転写された単結晶Siデバイス30と成膜による半導体材料を用いた非単結晶Siデバイス20とが混在したデバイスを形成する。
なお、上記には非晶質のSi膜にエキシマレーザを照射して多結晶Si層21を成長させたが、この工程を省いて非晶質のまま使用してもよく、この場合でも、単結晶Siデバイスと非単結晶Siデバイス20とが混在したデバイスを形成することができる。また、イオン注入は水素イオンを用いたものを例として記載したが、水素イオンの代わりにHeイオンを注入してもよい。更には、水素イオンまたはHeイオンを単独で注入することに限定されるものでもなく、水素イオンとHeイオンとの両方を注入してもよい。
〔実施の形態2〕
本発明の実施の一形態について図5に基づいて説明すれば、以下の通りである。
本実施の形態で説明する半導体装置は、非単結晶Siを基材とする薄膜トランジスタ及び単結晶Siを基材とする薄膜トランジスタをともに絶縁基板上に形成した高性能・高機能化に適した半導体装置である。この一例として以下には、非単結晶Siトランジスタ及び単結晶SiトランジスタとしてMOS型のものを用いて、TFTを備えたアクティブマトリクス基板を形成する場合について説明する。
ここで、上記実施の形態1にて説明した半導体装置は、水素イオンまたはHeイオンがゲート電極32を貫通することを防止して、ゲート電極32下のシリコン−ゲート絶縁膜界面、及び単結晶Siを損傷から保護し、トランジスタ特性の劣化を防止することを目的としている。このため、ゲート電極下の領域においては、単結晶Si基材内には水素イオン注入層が形成されないこととなる。
しかし、このように、ゲート電極下の単結晶Si膜において水素イオン注入層が形成されない場合、該ゲート電極の線幅が十分に細ければ特に問題は無いが、ゲート電極の線幅が大きい場合には、十分に劈開剥離が生じない恐れがある。本実施の形態2に係る半導体装置は、そのような不具合を解消できる点に特徴を有するものである。
また、本実施の形態2に係る半導体装置の構成は、およそ上記実施の形態1に示したものと同様であるため、実施の形態1と同じ構成を有する部分については、同じ部材番号を付し、その詳細な説明は省略する。
本実施の形態2に係る半導体装置の製造方法について、図5(a)〜図5(c)を用いて説明すれば以下のとおりである。
最初に、図5(a)に示される状態までの工程について説明する。単結晶Siウエハ(単結晶Si基板)40を、通常の洗浄法(希フッ酸により自然酸化膜を除去し、SC1、SC2洗浄でパーティクル、有機物等の除去を行うなど)にて洗浄する。
次に素子分離のための薄い酸化膜(図示せず)及びゲート絶縁膜36を、熱酸化法により所定の領域に形成する。ゲート絶縁膜36の厚さは、5〜50nmとする。酸化法としては、パイロジェニック酸化法あるいはHCl酸化法などを用いることができる。
次に、閾値コントロールのための不純物(リンまたは、ホウ素)を単結晶Siウエハ40に注入する。
そして、W等の原子番号の大きい金属、あるいはその金属のシリサイド、あるいはこれらの材料を含むゲート電極膜35と多結晶Si膜34の複層からなるゲート電極材料を、厚さ200〜400nm程度、ゲート絶縁膜36上に形成する。ここでは膜厚約50nmのn多結晶Si上に膜厚約300nmのゲート電極膜をスパッタにより形成した。なお、ゲート電極膜35の材料選択に関しては、実施の形態1と同様である。
次に、通常のフォトリソプロセスにより、成膜されたゲート電極材料をパターニングし、ゲート電極32を形成する。ここでは、上記ゲート電極32の線幅を約0.35μmとした。その他の部分も最大幅が約2um以下となるようにパターン化した。さらにトランジスタの導電型に対応してLDD(Lightly Doped Drain)部54となる箇所に自己整合的にリンまたは、ホウ素を注入する。
さらに、短チャネル対策の必要性に応じて、逆タイプの不純物のHALO注入を行い、ゲート電極上に該ゲート電極と同程度の膜厚のSiO膜をLPCVD等で堆積した後、RIE(Reactive Ion Etching)でこれをエッチングしてサイドウォール37を形成する。
次に、AsまたはBFを単結晶Siウエハ40に浅く注入し、900℃程度の熱処理により活性化させソース領域55、ドレイン領域56を形成する。その後、膜厚約50nm程度の表面保護膜38を形成する。ここでは、表面保護膜38としてSiO膜を形成した。
そして、表面保護膜38側から水素イオン注入を行う。ここでは注入エネルギー80keV、ドーズ量5E16cm−2とし、基板表面に対し垂直に注入した。このとき、SiO膜を通すことによって、イオン注入を垂直に行ってもチャネリングが抑えられるとともに、劈開分離後の単結晶Si膜の表面の平坦性が向上する。
上記イオン注入においては、ゲート電極形成領域ではゲート電極の表面保護膜38側表面から約250nmの深さ、及びそれ以外の領域では単結晶Siウエハ40においてゲート絶縁膜36との境界面から約670nmの深さに水素イオンのピークができ、単結晶Siウエハ40においては水素イオン注入層41が形成される(尚、この時、ゲート電極膜35においては水素イオン注入層41’が形成される)。
さらに、本実施の形態2に係る半導体装置では、注入エネルギー約175keV、ドーズ量2E16cm−2として、2回目の水素イオン注入を行う。上記2回目のイオン注入においては、ゲート電極形成領域では単結晶Siウエハ40においてゲート絶縁膜36との境界面から約670nmの深さ、及びそれ以外の領域では単結晶Siウエハ40においてゲート絶縁膜36との境界面から約1536nmの深さに水素イオンのピークが来た。
この2回目の水素イオン注入を、1回目の水素イオン注入に対して約1/2〜1/5程度の濃度の水素イオンを注入エネルギーを上げて行うことにより、ゲート電極32下のシリコン−ゲート絶縁膜界面、及び多結晶Si膜34に発生する、水素イオンの通過による結晶の損傷や不純物の活性度低下等を軽減しながらも、所定の深さにゲート電極32の下方にも水素イオン注入層を形成する。
これにより、ゲート電極下の領域において、ゲート電極32の形成領域以外の領域に注入した高濃度の水素イオンの注入深さと概同じ深さとなるような水素イオン注入層42が形成される。ゲート電極材料は上記特性と必要な抵抗や耐熱性を考慮して選択される。以上の工程までを終了した状態が図5(a)に示される状態である。
次に、図5(b)に示す状態までの工程について説明する。TEOS(tetra-ethoxy-silane)あるいはTMCTS(Tetra-methyl-cyclo-tetra-siloxane)を用いたプラズマCVDにより、表面保護膜38上に平坦化膜39を形成し、CMP(Chemical-Mechanical Polishing)によって平坦化処理後、単結晶Si基板を所定の形状に切断する。
一方、上記単結晶Siウエハ40上における単結晶Si薄膜トランジスタの主要構造の形成工程とは別に、ガラス基板などの絶縁性基板表面50の表面全体にTEOSとOとの混合ガスを用いて、プラズマCVDによって、膜厚約50nmのSiO膜60を堆積したものを用意する。
ここでは、予め非単結晶Siデバイス(図示せず)として多結晶SiのTFTアレイ、及び簡単な走査回路のゲート・不純物ドーピング工程を終えたコーニング社のcode1737ガラスの表面にTEOSとOとの混合ガスを用いて、プラズマCVDによって、膜厚約50nmのSiO膜60を堆積したものを用意した。
そして、透明絶縁性基板50および切断した単結晶Si基板の両基板をSC−1洗浄して活性化した後、単結晶Si基板を所定の位置にアライメントし、上記両基板を室温で密着させて接合する。上記単結晶Si基板と透明絶縁性基板50とはVan der Waals力、水素結合、あるいは電気双極子による寄与により接合される。なお、SC−1液はアンモニア水(NHOH:30%)と、過酸化水素水(H:30%)と純水(HO)を5:12:60の割合で混合したものを用いた。以上の工程までを終了した状態が図5(b)に示されるものである。
さらに、図5(c)に示す状態までの工程について説明する。図5(b)の状態のものを400℃〜600℃、ここでは約550℃の温度の熱処理を行うと、
Si-OH + Si-OH → Si-O-Si + H2O
の反応が生じ、上記両基板の接合が原子同士の強固な結合に変わるとともに、水素イオン注入部41にて水素が単結晶Siを拡散し微小気泡を生じ、水素イオン注入部41および42を境に単結晶Siウエハ40の不要部分の劈開剥離を生じさせ、単結晶Siを薄膜化して単結晶Si薄膜40´を形成することができる。
なお、ゲート電極中に注入された水素は、平坦化膜39の堆積時、基板温度を300−350℃にした時点で大半が脱離するため、特段の問題は生じない。また、ゲート電極下に注入された水素イオンにより形成される水素イオン注入部42は劈開分離を助け、略均一な劈開面を得ることができる。以上の工程までを終了した状態が図5(c)に示されるものである。
これ以降の工程では、上記実施の形態1と同様の工程でもって、図2に示すような、転写された単結晶Siデバイス30と堆積による半導体材料を用いた非単結晶Siデバイス20とが混在したデバイスを形成することができる。
尚、上記、水素イオン又はHeイオンの注入は、1回目が高濃度かつ低エネルギー、2回目が低濃度かつ高エネルギーとしているが、この順序は逆であっても良い。また、上記イオン注入は、水素イオンの代わりにHeイオンを注入してもよい。さらには、水素イオンまたはHeイオンを単独で注入することに限定されるものでもなく、水素イオンとHeイオンとの両方を注入してもよい。
Heイオンを注入した場合の実験例としては、1回目イオン注入エネルギーを約75keVに、また2回目イオンの注入エネルギーを約220keVに設定し、水素イオンと同程度の濃度でイオン注入を試みた。その結果、Si膜厚が少し薄くなったが、ほぼ同様な結果が得られた。
但し、水素イオンを用いた場合と、Heイオンを用いた場合との特性比較では、最終的に得られたTFTの電子移動度は水素イオンを用いた場合が高く、Heイオンを用いた場合が低い。一方、水素イオンを用いた場合には、特にNch TFTの閾値が負にシフトする傾向があったが、Heイオンを用いた場合にはそのような傾向は認められなかった。
〔実施の形態3〕
本発明の実施の一形態について図6に基づいて説明すれば、以下の通りである。
本実施の形態で説明する半導体装置は、非単結晶Siを基材とする薄膜トランジスタ及び単結晶Siを基材とする薄膜トランジスタをともに絶縁基板上に形成した高性能・高機能化に適した半導体装置である。この一例として以下には、非単結晶Siトランジスタ及び単結晶SiトランジスタとしてMOS型のものを用いて、TFTを備えたアクティブマトリクス基板を形成する場合について説明する。
ここで、上記実施の形態1および2にて説明した半導体装置は、単結晶Si基板上にゲート電極を形成し、その後、水素イオンまたはHeイオンの注入を行った後、平坦化膜を形成して、単結晶Si基板と透明絶縁性基板との接合を行っている。このため、水素イオンまたはHeイオンの注入時点においては、ゲート電極の周りの段差によって、注入されるイオンの分布に乱れが生じ、劈開分離後におけるSi薄膜の分離面の平坦性が低下するといった問題がある。本実施の形態3に係る半導体装置は、そのような不具合を解消できる点に特徴を有するものである。
また、本実施の形態3に係る半導体装置の構成は、およそ上記実施の形態1または2に示したものと同様であるため、実施の形態1または2と同じ構成を有する部分については、同じ部材番号を付し、その詳細な説明は省略する。
本実施の形態3に係る半導体装置の製造方法について、図6(a)〜図6(c)を用いて説明すれば以下のとおりである。
最初に、図6(a)に示される状態までの工程について説明する。単結晶Siウエハ(単結晶Si基板)40を、通常の洗浄法(希フッ酸により自然酸化膜を除去し、SC1、SC2洗浄でパーティクル、有機物等の除去を行うなど)にて洗浄する。
次に素子分離のための薄い酸化膜(図示せず)及びゲート絶縁膜36を、熱酸化法により所定の領域に形成する。ゲート絶縁膜36の厚さは、5〜50nmとする。酸化法としては、パイロジェニック酸化法あるいはHCl酸化法などを用いることができる。
そして、W等の原子番号の大きい金属、あるいはその金属のシリサイド、あるいはこれらの材料を含むゲート電極膜35と多結晶Si膜34の複層からなるゲート電極材料を、厚さ200〜400nm程度、ゲート絶縁膜36上に形成する。ここでは膜厚約50nmのn多結晶Si上に膜厚約300nmのゲート電極膜をスパッタにより形成した。なお、ゲート電極膜35の材料選択に関しては、実施の形態1と同様である。
次に、通常のフォトリソプロセスにより、成膜されたゲート電極材料をパターニングし、ゲート電極32を形成する。ここでは、上記ゲート電極32の線幅を約0.35μmとした。その他の部分も最大幅が約2um以下となるようにパターン化した。
さらに、トランジスタの導電型に対応してLDD(Lightly Doped Drain)部54となる箇所に自己整合的にリンまたは、ホウ素を注入する。その後、短チャネル対策の必要性に応じて、逆タイプの不純物のHALO注入を行い、ゲート電極32上に該ゲート電極32と同程度の膜厚のSiO膜をLPCVD等で堆積した後、RIE(Reactive Ion Etching)でこれをエッチングしてサイドウォール37を形成する。
次に、AsまたはBFを単結晶Siウエハ40に浅く注入し、900℃程度の熱処理により活性化させソース領域55、ドレイン領域56を形成する。その後、TEOSあるいはTMCTSを用いたプラズマCVDで膜厚約400nm〜500nm程度の絶縁膜39’を形成し、CMP(Chemical-Mechanical Polishing)により平坦化処理し、単結晶Si膜40上のSiO膜(ゲート絶縁膜36および絶縁膜39)の膜厚を約350nmとした。
このように、本実施の形態3では、水素イオン注入を行う前に、水素又はHeイオンを注入する面を平坦化しておく。このようにすることで、注入された高濃度の水素イオンの分布の乱れが少なくなり、劈開分離時のSi薄膜の平坦性が向上する。
次に、注入エネルギー60keV、ドーズ量5E16cm−2で絶縁膜39’の形成面に対して垂直に水素イオンの注入を行う。このとき、絶縁膜39’を通すことによって、イオン注入を垂直に行ってもチャネリングが抑えられるとともに、劈開分離後の単結晶Si膜の表面の平坦性が向上する。
ここでは、水素イオンがゲート電極形成領域ではゲート電極の表面保護膜38側表面から約190nmの深さ、及びそれ以外の領域では単結晶Siウエハ40においてゲート絶縁膜36との境界面から約200nmの深さに水素イオンのピークができ、水素イオン注入層41が形成される。ゲート下のチャネル部には水素イオンは注入されない。
以上の工程までを終了した状態が図6(a)に示される。
次に、図6(b)に示す状態までの工程について説明する。図6(a)に示すように形成された単結晶Si基板を所定の形状に切断する。
一方、上記単結晶Siウエハ40上における単結晶Si薄膜トランジスタの主要構造の形成工程とは別に、ガラス基板などの絶縁性基板表面50の表面全体にTEOSとOとの混合ガスを用いて、プラズマCVDによって、膜厚約50nmのSiO膜60を堆積したものを用意する。
ここでは、予め非単結晶Siデバイス(図示せず)として多結晶SiのTFTアレイ、及び簡単な走査回路のゲート・不純物ドーピング工程を終えたコーニング社のcode1737ガラスの表面にTEOSとOとの混合ガスを用いて、プラズマCVDによって、膜厚約50nmのSiO膜60を堆積したものを用意した。
そして、透明絶縁性基板50および切断した単結晶Si基板の両基板をSC−1洗浄して活性化した後、単結晶Si基板を所定の位置にアライメントし、上記両基板を室温で密着させて接合する。なお、SC−1液はアンモニア水(NHOH:30%)と、過酸化水素水(H:30%)と純水(HO)を5:12:60の割合で混合したものを用いた。以上の工程までを終了した状態が図6(b)に示されるものである。
さらに、図6(c)に示す状態までの工程について説明する。図6(b)の状態のものを400℃〜600℃、ここでは約550℃の温度の熱処理を行うことにより、
Si-OH + Si-OH → Si-O-Si + H2O
の反応が生じ、上記両基板の接合が原子同士の強固な結合に変わるとともに、水素イオン注入部41にて水素が単結晶Si中を拡散し微小気泡を生じ、水素イオン注入部41を境に単結晶Siウエハ40の不要部分の劈開剥離を生じさせ、単結晶Siを薄膜化して単結晶Si薄膜40´を形成することができる。以上の工程までを終了した状態が図6(c)に示されるものである。
なお、ゲート電極中に注入された水素は、平坦化膜39の堆積時、基板温度を300−350℃にした時点で大半が脱離するため、特段の問題は生じない。
これ以降の工程では、上記実施の形態1と同様の工程でもって、図2に示すような、転写された単結晶Siデバイス30と堆積による半導体材料を用いた非単結晶Siデバイス20とが混在したデバイスを形成することができる。
尚、本実施の形態3における上記説明では、実施の形態1と同様、水素イオンの注入は、単一エネルギーによる高濃度イオンの注入工程を1回のみを行ったが、実施の形態2のように注入されるイオンの濃度と注入エネルギーとを替え、2回のイオン注入工程を行ってもよい。このような2回のイオン注入工程を行った方が、劈開分離後のSi膜の平坦性が優れていることは言うまでない。
また、上記実施の形態1から3において、単結晶Si薄膜トランジスタ30におけるゲート電極32のパターンは、直交する2方向の両方において、2μm以上の連続パターンを含まない形状とすることが好ましい。
すなわち、ゲートパターンにおいて概ね2μm以上の連続領域があると、その下には水素イオン等が注入されない領域となるか又は水素イオン濃度が低い領域となるので、その部分だけSi膜がきれいに劈開できず、大きくえぐれたり、くっついて分割できなくなる、といった不具合が生じる可能性がある。これに対し、ゲートパターンをいずれの方向にも概2μm以上連続しないように形成する事により、イオン注入時の回り込みと、劈開が横に多少走る効果とにより、上記不具合を回避して良好な分割が行えるようになる。具体例としては、大きな連続パターンに2〜5μm程度の穴を開け、ゲートパターン内の概2μm以上の連続パターンが生じないようにすることが考えられる。
特性の異なる2種類の半導体デバイスを同一基板上に形成することができ、それぞれの長所を生かした用い方をすることによって、表示装置をはじめとするさまざまな用途に適用できる。特に、TFTで駆動するアクティブマトリクス駆動液晶表示装置等に用いることによって、同一基板上に周辺駆動回路やコントロール回路を一体集積化した液晶表示装置の回路性能改善に利用することができる。
図1(a)ないし図1(c)本発明の一実施形態を示すものであり、実施の形態1に係る半導体装置の製造工程を示す断面図である。 本発明に係る半導体装置の構造例を示す断面図である。 水素イオンおよびHeイオンの単位エネルギー当たりの飛程と、イオン注入が行われる材料の原子番号との関係を示すグラフである。 水素イオンおよびHeイオンの単位エネルギー当たりの飛程と、イオン注入が行われる材料の密度との関係を示すグラフである。 実施の形態2に係る半導体装置の製造工程を示す断面図である。 実施の形態3に係る半導体装置の製造工程を示す断面図である。
符号の説明
10 半導体装置
20 非単結晶Si薄膜トランジスタ(非単結晶Si薄膜からなる薄膜トランジスタ)
21 非単結晶Si薄膜
30 結晶Si薄膜トランジスタ(単結晶Siからなる薄膜トランジスタ)
32 ゲート電極
34 多結晶Si膜(ゲート電極)
35 ゲート電極膜
36 SiO膜(ゲート絶縁膜)
38 表面保護膜(SiO膜)
39 絶縁膜
39’ 絶縁膜(平坦化用絶縁膜)
40’ 単結晶Si薄膜
50 絶縁基板

Claims (6)

  1. 絶縁基板上に薄膜デバイスを形成してなる半導体装置において、
    上記半導体装置内で、ソース、ドレイン及びチャネル領域が非単結晶Siに形成されている非単結晶Si薄膜トランジスタと、ソース、ドレイン及びチャネル領域が単結晶Siに形成されている単結晶Si薄膜トランジスタとが混在しており、
    前記単結晶Si薄膜トランジスタは、平均原子番号が28以上の元素、もしくは密度が10g/cm 以上の元素、あるいはその化合物を含む材料から構成されているゲート電極とゲート絶縁膜とを更に有しており、
    前記単結晶Si薄膜トランジスタは、該単結晶Si薄膜トランジスタと、前記ゲート電極が形成されている領域では、水素イオン及び/またはHeイオンの飛程が、前記ゲート電極の膜厚以下となり、かつ、前記ゲート電極が形成されていない領域では、水素イオン及び/またはHeイオンの飛程が、前記ゲート絶縁膜の膜厚よりも大きくなるように水素イオン及び/またはHeイオンを注入して形成した注入層を有する半導体基板を、前記絶縁基板に密着させ接合した後、熱処理を加えて前記注入層で劈開分離して、前記絶縁基板上に転写して形成されていることを特徴とする半導体装置。
  2. 上記絶縁基板が、可視光波長域において透過性を有することを特徴とする請求項1に記載の半導体装置。
  3. 上記半導体装置は、TFT液晶表示装置あるいは有機EL表示装置であることを特徴とする請求項1又は2に記載の半導体装置。
  4. 前記元素は、金属又は半金属であることを特徴とする請求項1から3の何れか1項に記載の半導体装置。
  5. 上記ゲート電極は、タングステンあるいはタングステンシリサイドからなる層を含むことを特徴とする請求項1から4の何れか1項に記載の半導体装置。
  6. 上記ゲート電極のパターンは、直交する2方向の両方において、2um以上の連続パターンを含まないことを特徴とする請求項1から5の何れかに1項に記載の半導体装置。
JP2008273316A 2008-10-23 2008-10-23 半導体装置 Expired - Fee Related JP4519932B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273316A JP4519932B2 (ja) 2008-10-23 2008-10-23 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273316A JP4519932B2 (ja) 2008-10-23 2008-10-23 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004087914A Division JP4219838B2 (ja) 2004-03-24 2004-03-24 半導体基板の製造方法、並びに半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2009049429A JP2009049429A (ja) 2009-03-05
JP4519932B2 true JP4519932B2 (ja) 2010-08-04

Family

ID=40501291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273316A Expired - Fee Related JP4519932B2 (ja) 2008-10-23 2008-10-23 半導体装置

Country Status (1)

Country Link
JP (1) JP4519932B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238860A (ja) * 1998-02-19 1999-08-31 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP2001508943A (ja) * 1997-01-27 2001-07-03 コミツサリア タ レネルジー アトミーク イオン打込ステップを備えるとともに、イオンから保護された領域を具備した、特に半導体膜からなる、薄膜を得るための方法
JP2003282885A (ja) * 2002-03-26 2003-10-03 Sharp Corp 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508943A (ja) * 1997-01-27 2001-07-03 コミツサリア タ レネルジー アトミーク イオン打込ステップを備えるとともに、イオンから保護された領域を具備した、特に半導体膜からなる、薄膜を得るための方法
JPH11238860A (ja) * 1998-02-19 1999-08-31 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP2003282885A (ja) * 2002-03-26 2003-10-03 Sharp Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2009049429A (ja) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4794810B2 (ja) 半導体装置の製造方法
JP4651924B2 (ja) 薄膜半導体装置および薄膜半導体装置の製造方法
JP4451488B2 (ja) 半導体素子の転写方法及び半導体装置の製造方法
JP4540359B2 (ja) 半導体装置およびその製造方法
JP4319078B2 (ja) 半導体装置の製造方法
US7119365B2 (en) Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
KR100725247B1 (ko) 반도체 장치, 반도체 기판의 제조 방법, 및 반도체 장치의제조 방법
KR100586356B1 (ko) 반도체 장치의 제조 방법
JP4837240B2 (ja) 半導体装置
WO2009084311A1 (ja) 半導体装置、単結晶半導体薄膜付き基板及びそれらの製造方法
WO2009084312A1 (ja) 半導体装置、単結晶半導体薄膜付き基板及びそれらの製造方法
JP3970814B2 (ja) 半導体装置の製造方法
JP4519932B2 (ja) 半導体装置
JP2010141246A (ja) 半導体装置の製造方法
JP2005026472A (ja) 半導体装置の製造方法
JP2004119636A (ja) 半導体装置およびその製造方法
JP5064343B2 (ja) 半導体装置の製造方法
JP4076930B2 (ja) 半導体装置の製造方法
US20100283104A1 (en) Semiconductor device and method for manufacturing the same
JP4515525B2 (ja) 半導体装置
JP4545449B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees