JP4519245B2 - High-strength concrete members for high-speed traffic system structures - Google Patents

High-strength concrete members for high-speed traffic system structures Download PDF

Info

Publication number
JP4519245B2
JP4519245B2 JP2000053474A JP2000053474A JP4519245B2 JP 4519245 B2 JP4519245 B2 JP 4519245B2 JP 2000053474 A JP2000053474 A JP 2000053474A JP 2000053474 A JP2000053474 A JP 2000053474A JP 4519245 B2 JP4519245 B2 JP 4519245B2
Authority
JP
Japan
Prior art keywords
weight
parts
less
strength
traffic system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000053474A
Other languages
Japanese (ja)
Other versions
JP2001240451A (en
Inventor
俊久 丸田
晃太郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000053474A priority Critical patent/JP4519245B2/en
Publication of JP2001240451A publication Critical patent/JP2001240451A/en
Application granted granted Critical
Publication of JP4519245B2 publication Critical patent/JP4519245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction

Description

【0001】
【発明の属する技術分野】
本発明は、超高速鉄道、リニアモーターカーなどの高速度の交通システムを構成する構造物に用いる鉄筋コンクリート、プレストレストコンクリート等の高強度コンクリート部材に関する。
【0002】
【従来の技術】
従来から、鉄道などの陸上交通システム構造物として、鋼構造物などと共に、経済的で耐久性が高く、騒音などを低減可能な鉄筋コンクリート、プレストレストコンクリート等のコンクリート構造物が用いられてきた。なかでも、長大な橋梁や高架走行路などは、部材を軽量化する要請から、より高強度の部材が求められ、高性能減水剤を利用し水セメント比を低減した高強度コンクリート部材、及びそれらにプレストレスを導入したプレストレストコンクリート部材等が用いられてきた。
【0003】
一方、コンクリート部材の欠点である脆性を改善し、ひび割れ防止、靱性の向上を達成するために、繊維をコンクリートに混入することも、行われてきた。そしてこれらの各種高強度化技術を複合化し、コンクリート性状の向上を達成する技術として、特開平11-246255号では、セメント、金属繊維、骨材粒子、ポゾラン系反応粒子、分散剤に加えて、マトリックスの靱性を改善することができる成分を添加し、靱性、延性等の機械的挙動を改善する技術が開示されている。
【0004】
【発明が解決しようとする課題】
より短時間で目的地に到達したいという希望を満足させるために、陸上交通システムの高速化は近年益々進展する状況である。鉄道方式の交通システムでは350km/h以上、リニアモーターカーシステムでは500km/hを超える高速度の交通システムが実験段階から実用化に移されようとしている。このような高速度の交通システムにあっては、高速で走行する車両自体の機能や構造はもとより、システムの基盤となる走行路等の土木構造物にも、きわめて厳しい条件が課される。構造物の強度、靱性、耐久性等は当然であるが、その他に、高速度で移動する旅客の乗り心地を良好に維持し、安全性をも確保するためには、当該走行路等には高い精度の寸法安定性が要求される。
【0005】
この点で、従来のコンクリート構造物では、自重等による施工時から供用に至る期間の持続加重によるクリープひずみが無視できず、橋脚高の不整や桁のたわみ等を低減するために、実施工においてはクリープによる変形を予測して設計上げ越し量を決めて施工し、完成後にクリープが進行することにより、上げ越し変位が減少し、クリープの収束値において、各部位の変位が最小となるよう、細心の考慮を払った予測設計、施工が行われていた。しかしながら、現場施工においては、クリープの進行は工程の変更や気温、湿度などの影響を大きく受け、予測通りの効果を得ることは困難な場合が多かった。従って、強度や靱性を向上させた上で、クリープ自体を大幅に低減できるような性状の高強度コンクリート部材が望まれていた。
【0006】
【課題を解決するための手段】
前記の課題に鑑み、発明者らは、クリープ自体を大幅に低減できるような性状の高強度コンクリート部材について鋭意研究を重ねた結果に基づき、本発明の高速度交通システム構造物用高強度コンクリート部材を完成するに至った。その要諦は、セメント、ポゾラン系反応粒子、骨材粒子、分散剤、繊維、無機粉末更に繊維状粒子又は薄片状粒子を適宜組み合わせて、強度,靱性等の機械的挙動を改善する技術により製造したコンクリートには、従来知られていた高強度、高靱性といった特性の他に、クリープが著しく低減されるという予期しない特性が存し、これを応用することにより、クリープ自体を大幅に低減した高強度コンクリート部材が得られることを見いだしたことにある。
【0007】
すなわち、本発明は、まず第一に、少なくとも、セメント、ポゾラン質微粉末、粒径2mm以下の骨材、水、減水剤とを含む配合物の硬化体からなることを特徴とする高速度交通システム構造物用高強度コンクリート部材をその基本的な構成とするものである。また、第二として、当該配合物に金属繊維、有機繊維、炭素繊維の何れか1種又は2種以上を含むことを特徴とする高速度交通システム構造物用高強度コンクリート部材である。また、第三として、当該第一又は第二の配合物に、平均粒径3〜20μmの無機粉末を含む高速度交通システム構造物用高強度コンクリート部材であり、第四として、当該第一、第二又は第三の配合物に、平均粒度1mm以下の繊維状粒子又は薄片状粒子を含む高速度交通システム構造物用高強度コンクリート部材である。更に,上記第一から第四いずれかのコンクリート部材であって、プレテンション方式又はポストテンション方式いずれかの方式でプレストレスが導入されていることを特徴とする高速度交通システム構造物用高強度コンクリート部材を第五の形態とする。そして、高速度交通システムがリニアモーターカーであるか、又は鉄道である第一から第五いずれかの高速度交通システム構造物用高強度コンクリート部材も、本発明に含むものである。
【0008】
本発明によれば、高強度、高靱性の上に、クリープによる変位が著しく小さい高寸法精度の高速度交通システム構造物に適したコンクリート部材を得ることができる。なお、ここで述べる高速度交通システム構造物用高強度コンクリート部材としては、橋梁や高架橋のコンクリート桁、橋脚、橋台、アーチ、杭、走行路の側壁、軌道、軌道スラブ、床板、磁気浮上機能組み込みモジュール板等が想定されるが、これらに限定されるものではない。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明において用いられるセメントの種類は限定されない。普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや高炉セメント、フライアッシュセメント等の混合セメントを使用することができる。
【0010】
本発明において、コンクリートの早期強度を向上しようとする場合は、早強ポルトランドセメントを使用することが好ましく、コンクリートの流動性を向上しようとする場合は、中庸熱ポルトランドセメントや低熱ポルトランドセメントを使用することが好ましい。
【0011】
ポゾラン質微粉末としては、シリカヒューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカ等が挙げられる。一般に、シリカヒュームやシリカダストでは、その平均粒径は、1.0μm以下であり、粉砕等をする必要がないので本発明のポゾラン質微粉末として好的である。
【0012】
ポゾラン質微粉末を配合することにより、そのマイクロフィラー効果およびセメント分散効果によりコンクリートが緻密化し、圧縮強度が向上する。一方、ポゾラン質微粉末の添加量が多くなると単位水量が増大するので、ポゾラン質微粉末の添加量はセメント100重量部に対して5〜50重量部が好ましい。
【0013】
本発明においては粒径2mm以下の骨材が必須成分として用いられる。
この粒径2mm以下の骨材とは、85%(重量)累積粒径が2mm以下であることを指し、2mmより大きな骨材成分が含まれていることを妨げない。具体的には、川砂、陸砂、海砂、砕砂、珪砂及びこれらの混合物を使用することができる。骨材の配合量は、コンクリートの作業性や分離抵抗性、硬化後の強度やクラックに対する抵抗性等から、セメント100重量部に対して50〜250重量部が好ましく、80〜180重量部がより好ましい。
【0014】
また、上述の粒径2mm以下の骨材の他に、通常の高強度コンクリートに用いられる粗骨材を配合しても良い。具体的には、川砂利、山砂利、陸砂利、海砂利等の砂利、硬質砂岩、安山岩、石灰石等の砕石、スラグ骨材、人工軽量骨材等が例示できるが、これらに限定されるものではない。
【0015】
減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤又は高性能AE減水剤を使用することができる。それらの中でも、高性能減水剤又は高性能AE減水剤を使用することが好ましい。減水剤の添加量は、コンクリートの流動性や分離抵抗性、硬化後の強度、さらにはコスト等から、セメントに対して、固形分換算で、0.5〜4.0重量%が好ましい。
【0016】
本発明において、水/セメント比は、コンクリートの流動性や分離抵抗性、硬化体の強度や耐久性、クリープの低減等から、10〜35重量%が好ましく、15〜30重量%がより好ましい。
【0017】
本発明においては、硬化体の曲げ強度を高める観点から、配合物に金属繊維、有機繊維、炭素繊維の何れか1種又は2種以上を含ませることが好ましい。
金属繊維としては、鋼繊維、アモルファス繊維等が挙げられるが、中でも鋼繊維は強度に優れており、またコストや入手のし易さの点からも好ましいものである。金属繊維は、径0.01〜1.0mm、長さ2〜30mmのものが好ましい。径が0.01mm未満では繊維自身の強度が不足し、張力を受けた際に切れやすくなる。径が1.0mmを超えると、同一配合量での本数が少なくなり、コンクリートの曲げ強度が低下する。長さが30mmを超えると、混練の際ファイバーボールが生じやすくなる。長さが2mm未満ではマトリックスとの付着力が低下し曲げ強度が低下する。
【0018】
金属繊維の配合量は凝結後のコンクリート体積の4%未満が好ましく、より好ましくは3.5%未満である。金属繊維の含有量は、流動性と硬化体の曲げ強度の観点から定められる。一般に、金属繊維の含有量が多くなると曲げ強度が向上するが、一方、流動性を確保するために単位水量も増大するので、金属繊維の含有量は前記の量が好ましい。
【0019】
有機質繊維としては、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維等が挙げられる。有機質繊維又は炭素繊維は、径0.005〜1.0mm、長さ2〜30mmのものが好ましい。有機質繊維又は炭素繊維の含有量は、凝結後のコンクリート体積の10%未満が好ましく、7%未満がより好ましい。なお、本発明においては、金属繊維、有機質繊維、炭素繊維の何れか2種以上を併用することは差し支えない。
【0020】
本発明においては、硬化体の充填密度を高め、強度向上並びにクリープを低減する観点から、平均粒径3〜20μm、より好ましくは平均粒径4〜10μmの無機粉末を含ませることが好ましい。無機粉末としては、石英粉末、石灰石粉末、Al2O3等の酸化物粉末、SiC等の炭化物粉末、SiN等の窒化物粉末等が挙げられるが、中でも、石英粉末は、コストや硬化体の品質安定性の点から好ましいものである。なお、石英粉末としては、石英や非晶質石英、オパール質やクリストバライト質のシリカ含有粉末等が挙げられる。無機粉末の配合量は、コンクリートの流動性、硬化体の強度等から、セメント100重量部に対して50重量部以下が好ましく、20〜35重量部がより好ましい。
【0021】
本発明においては更に、硬化体の靱性を高める観点、及び硬化体に載荷される荷重を効果的に分散し、クリープを低減する観点から、平均粒度が1mm以下の繊維状粒子又は薄片状粒子を含ませることが好ましい。ここで、粒子の粒度とは、その最大寸法の大きさ(特に、繊維状粒子ではその長さ)である。繊維状粒子としては、ウォラストナイト、ボーキサイト、ムライト等が、薄片状粒子としては、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。繊維状粒子又は薄片状粒子の配合量は、コンクリートの流動性、硬化体の強度や靱性等から、セメント100重量部に対して35重量部以下が好ましく、10〜25重量部がより好ましい。なお、繊維状粒子においては、硬化体の靱性を高める観点から、長さ/直径の比で表される針状度が3以上のものを用いるのが好ましい。
【0022】
本発明においては、コンクリートの混練方法は特に限定するものではない。また、混練に用いる装置も特に限定するものではなく、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等の慣用のミキサを使用することができる。
【0023】
上記混練したコンクリートを、鉄筋や連続繊維等の補強材を配置した型枠中に充填して成形し、養生・硬化させることで、本発明の高速度交通システム構造物用高強度コンクリート部材を製造することができる。なお、成形方法は特に限定するものではなく、流し込み成形等慣用の成形方法で行うことができる。また、コンクリートの養生方法も特に限定するものではなく、常温養生や蒸気養生等を行えばよい。
【0024】
更に本発明においては、上記方法に従ってコンクリート部材を製造する過程で、通常行われているプレテンション方式によりプレストレスを部材に導入することもできるし、部材のコンクリートが硬化した後で、通常行われているポストテンション方式によりプレストレスを部材に導入することもできる。本発明によるコンクリート部材にプレストレスを導入した場合、クリープが大幅に低減されることから、プレストレスの損失も大幅に低減できるという利点も生じる。
【0025】
また、本発明に用いるような水セメント比を小さくしたコンクリートでは、自己収縮による寸法変化も無視し得なくなるが、必要に応じて収縮低減剤を混和する等の対策を行うことにより、その影響を抑制することが可能である。
【0026】
【実施例】
以下、本発明のコンクリート部材を構成する硬化体について、実施例により説明する。
1.使用材料
1)セメント ;低熱ポルトランドセメント(太平洋セメント(株)製)
2)ポゾラン質微粉末;シリカヒューム(平均粒径0.2μm)
3) 骨材 ;珪砂4号と珪砂5号の2:1(重量比)混合品
4)金属繊維 ;鋼繊維(直径:0.2mm、長さ:15mm)
5)高性能AE減水剤;ポリカルボン酸系高性能AE減水剤
6)水 ;水道水
7)石英粉 ;平均粒径7μm
8)繊維状粒子;ウォラストナイト(平均長さ0.3mm、長さ/直径の 比4)
【0027】
2. 配合条件
実施例1
低熱ポルトランドセメント;100重量部
シリカヒューム ;32.5重量部
骨材 ;120重量部
石英粉 ;30重量部
ウォラストナイト ;24重量部
高性能AE減水剤 ;1.0重量% (対セメント 固形分)
水/セメント比 ;22重量%
鋼繊維 ;コンクリート体積の2%
【0028】
実施例2
低熱ポルトランドセメント;100重量部
シリカヒューム ;32.5重量部
骨材 ;120重量部
高性能AE減水剤 ;1.0重量% (対セメント 固形分)
水/セメント比 ;25重量%
【0029】
3.試験方法
1)混練方法
二軸練りミキサに各材料を一括投入し、混練
2)供試体
直径10cm、高さ20cmの円柱供試体及び10×10×40cmの角柱供試体
3) 圧縮強度試験方法
・供試体:円柱供試体
・ 養生条件:前置き(20℃)24時間後脱型し、28日間20℃水中養生
・ 強度の測定:JIS A 1108の方法に従った。
4) 曲げ強度試験方法
・ 供試体:角柱供試体
・ 養生条件:前置き(20℃)24時間後脱型し、28日間20℃水中養生
・ 強度の測定:JIS A 1106の方法に従った。
5) クリープ試験方法
・ 供試体:円柱供試体
・ 試験方法:JIS原案 コンクリートの圧縮クリープ試験方法(案)に従った。
(載荷材齢28日、載荷応力60MPa、試験材齢1000日)
【0030】
4. 試験結果
実施例1
1)圧縮強度 :230MPa
2) 曲げ強度 :47MPa
3) クリープ係数:0.20
実施例2
1)圧縮強度 :150MPa
2) 曲げ強度 :21MPa
3) クリープ係数:0.31
この実施例1、2の硬化体のクリープ係数の数値は、いずれも普通コンクリートの1/5以下、通常の高強度コンクリートの1/3以下の値であり、大幅にクリープが低減されている。従って、本実施例の硬化体配合を用いて製造した、高強度コンクリート部材は、大幅にクリープが低減され、寸法精度の安定化を図ることが可能である。
【0031】
【発明の効果】
本発明は、以上詳述したとおり、高強度、高靱性という特性と共に、クリープを大幅に低減したという性状を持つ高強度コンクリート部材であり、高速度交通システム構造物に用いることにより、その寸法精度の安定化を達成し、施工の効率化や工費の低減に大きく貢献するものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength concrete member such as a reinforced concrete or a prestressed concrete used for a structure constituting a high-speed traffic system such as a super-high-speed railway or a linear motor car.
[0002]
[Prior art]
Conventionally, concrete structures such as reinforced concrete and prestressed concrete, which are economical and highly durable and can reduce noise, have been used as land transportation system structures such as railways, as well as steel structures. In particular, for long bridges and elevated roadways, higher strength members are required due to the demand for weight reduction of members, and high strength concrete members that use a high-performance water reducing agent to reduce the water-cement ratio, and those Prestressed concrete members and the like in which prestress is introduced have been used.
[0003]
On the other hand, in order to improve the brittleness, which is a defect of a concrete member, to prevent cracking and to improve toughness, it has also been performed to mix fibers into concrete. And as a technology to achieve the improvement of concrete properties by combining these various strength enhancement technologies, in JP-A-11-246255, in addition to cement, metal fibers, aggregate particles, pozzolanic reaction particles, dispersants, A technique for improving mechanical behavior such as toughness and ductility by adding a component capable of improving the toughness of the matrix is disclosed.
[0004]
[Problems to be solved by the invention]
In order to satisfy the desire to reach the destination in a shorter time, the speeding up of the land transportation system is advancing more and more in recent years. High-speed traffic systems exceeding 350 km / h for rail-type traffic systems and over 500 km / h for linear motor car systems are being put into practical use from the experimental stage. In such a high-speed traffic system, extremely severe conditions are imposed not only on the function and structure of the vehicle itself that runs at high speed, but also on civil engineering structures such as the running road that forms the basis of the system. The strength, toughness, durability, etc. of the structure are natural, but in addition, in order to maintain the ride comfort of passengers traveling at high speeds and ensure safety, the traveling roads, etc. High dimensional stability is required.
[0005]
In this regard, in conventional concrete structures, creep strain due to continuous load during the period from construction to service due to its own weight, etc. cannot be ignored, and in order to reduce irregularities in pier height and deflection of girders, etc. Predict the deformation due to creep and determine the amount of design rise, and when the creep progresses after completion, the rise displacement decreases, so that the displacement of each part is minimized at the creep convergence value. Predictive design and construction were performed with great care. However, in field construction, the progress of creep was greatly affected by process changes, temperature, humidity, etc., and it was often difficult to obtain the expected effect. Therefore, there has been a demand for a high-strength concrete member having such a property that the creep itself can be greatly reduced while improving the strength and toughness.
[0006]
[Means for Solving the Problems]
In view of the above-mentioned problems, the inventors based on the results of extensive research on a high-strength concrete member having a property capable of greatly reducing the creep itself, the high-strength concrete member for a high-speed traffic system structure of the present invention. It came to complete. The main point is that the cement, pozzolanic reaction particles, aggregate particles, dispersants, fibers, inorganic powders, as well as fibrous particles or flaky particles are appropriately combined to produce a mechanical behavior such as strength and toughness. In addition to the conventionally known properties such as high strength and high toughness, there is an unexpected property that the creep is remarkably reduced, and by applying this, the high strength that greatly reduces the creep itself It is in finding that a concrete member can be obtained.
[0007]
That is, the present invention firstly consists of a hardened body of a blend containing at least cement, pozzolanic fine powder, aggregate having a particle size of 2 mm or less, water, and a water reducing agent. A high-strength concrete member for a system structure has a basic configuration. Moreover, 2nd is a high-strength concrete member for high-speed traffic system structures characterized by including any 1 type, or 2 or more types of a metal fiber, organic fiber, and carbon fiber in the said compound. Moreover, it is the high-strength concrete member for high-speed traffic system structures containing the inorganic powder with an average particle diameter of 3-20 micrometers in the said 1st or 2nd compound as the 3rd, It is a high-strength concrete member for high-speed traffic system structures containing fibrous particles or flaky particles having an average particle size of 1 mm or less in the second or third blend. Further, the high strength for a high speed traffic system structure according to any one of the first to fourth concrete members, wherein prestress is introduced by either a pre-tension method or a post-tension method. The concrete member is the fifth form. And the high-speed traffic system is a linear motor car or a high-strength concrete member for a high-speed traffic system structure according to any one of the first to fifth high-speed traffic system structures is also included in the present invention.
[0008]
ADVANTAGE OF THE INVENTION According to this invention, the concrete member suitable for the high-speed traffic system structure of the high dimensional accuracy in which the displacement by creep is remarkably small on top of high intensity | strength and high toughness can be obtained. The high-strength concrete members for high-speed traffic system structures described here include bridges and viaduct concrete girders, piers, abutments, arches, piles, side walls of tracks, tracks, track slabs, floor boards, and magnetic levitation functions. Although a module board etc. are assumed, it is not limited to these.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The kind of cement used in the present invention is not limited. Various portland cements such as ordinary portland cement, early-strength portland cement, intermediate heat portland cement, low heat portland cement, mixed cements such as blast furnace cement and fly ash cement can be used.
[0010]
In the present invention, when trying to improve the early strength of concrete, it is preferable to use early-strength Portland cement, and when improving the fluidity of concrete, use moderately hot Portland cement or low heat Portland cement. It is preferable.
[0011]
Examples of the pozzolanic fine powder include silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, and precipitated silica. In general, silica fume or silica dust has an average particle size of 1.0 μm or less and is preferably used as the pozzolanic fine powder of the present invention because it does not need to be pulverized.
[0012]
By blending the pozzolanic fine powder, the concrete is densified by the micro filler effect and the cement dispersing effect, and the compressive strength is improved. On the other hand, as the amount of pozzolanic fine powder added increases, the amount of unit water increases. Therefore, the amount of pozzolanic fine powder added is preferably 5 to 50 parts by weight with respect to 100 parts by weight of cement.
[0013]
In the present invention, an aggregate having a particle size of 2 mm or less is used as an essential component.
The aggregate having a particle size of 2 mm or less means that the 85% (weight) cumulative particle size is 2 mm or less, and does not prevent the inclusion of an aggregate component larger than 2 mm. Specifically, river sand, land sand, sea sand, crushed sand, quartz sand, and mixtures thereof can be used. The blending amount of the aggregate is preferably 50 to 250 parts by weight, more preferably 80 to 180 parts by weight with respect to 100 parts by weight of cement, from the workability and separation resistance of the concrete, the strength after hardening and the resistance to cracking, and the like. preferable.
[0014]
Moreover, you may mix | blend the coarse aggregate used for normal high-strength concrete other than the above-mentioned aggregate with a particle size of 2 mm or less. Specific examples include gravel such as river gravel, mountain gravel, land gravel, sea gravel, hard sandstone, andesite, crushed stone such as limestone, slag aggregate, artificial lightweight aggregate, etc. is not.
[0015]
As the water reducing agent, a lignin-based, naphthalenesulfonic acid-based, melamine-based, or polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent. The amount of the water reducing agent added is preferably 0.5 to 4.0% by weight in terms of solid content with respect to cement, from the fluidity and separation resistance of concrete, the strength after curing, and the cost.
[0016]
In the present invention, the water / cement ratio is preferably 10 to 35% by weight, more preferably 15 to 30% by weight, from the viewpoint of fluidity and separation resistance of concrete, strength and durability of the cured body, reduction of creep, and the like.
[0017]
In the present invention, from the viewpoint of increasing the bending strength of the cured body, it is preferable to include one or more of metal fibers, organic fibers, and carbon fibers in the blend.
Examples of the metal fibers include steel fibers and amorphous fibers, among which steel fibers are excellent in strength and are preferable from the viewpoint of cost and availability. The metal fiber preferably has a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. If the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and it is easy to break when subjected to tension. When the diameter exceeds 1.0 mm, the number of the same compounding amount decreases, and the bending strength of the concrete decreases. If the length exceeds 30 mm, fiber balls are likely to occur during kneading. If the length is less than 2 mm, the adhesive strength with the matrix is lowered and the bending strength is lowered.
[0018]
The blending amount of the metal fiber is preferably less than 4% of the concrete volume after setting, and more preferably less than 3.5%. The content of the metal fiber is determined from the viewpoints of fluidity and bending strength of the cured body. In general, when the content of the metal fiber is increased, the bending strength is improved. On the other hand, since the unit water amount is increased in order to ensure fluidity, the content of the metal fiber is preferably the above amount.
[0019]
Examples of the organic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, and aramid fiber. The organic fiber or carbon fiber preferably has a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm. The organic fiber or carbon fiber content is preferably less than 10% of the concrete volume after setting, and more preferably less than 7%. In the present invention, any two or more of metal fibers, organic fibers, and carbon fibers may be used in combination.
[0020]
In the present invention, it is preferable to include an inorganic powder having an average particle size of 3 to 20 μm, more preferably an average particle size of 4 to 10 μm, from the viewpoint of increasing the filling density of the cured body, improving strength, and reducing creep. Examples of inorganic powders include quartz powder, limestone powder, oxide powder such as Al2O3, carbide powder such as SiC, nitride powder such as SiN, etc. Among them, quartz powder is cost and stability of the quality of the cured product. From the point of view, it is preferable. Examples of the quartz powder include quartz, amorphous quartz, opal and cristobalite silica-containing powders, and the like. The blending amount of the inorganic powder is preferably 50 parts by weight or less, more preferably 20 to 35 parts by weight with respect to 100 parts by weight of cement, from the fluidity of concrete, the strength of the cured body, and the like.
[0021]
In the present invention, from the viewpoint of increasing the toughness of the cured body and effectively dispersing the load loaded on the cured body and reducing creep, fibrous particles or flaky particles having an average particle size of 1 mm or less are used. It is preferable to include. Here, the particle size of the particle is the size of the maximum dimension (particularly, the length of the fibrous particle). Examples of fibrous particles include wollastonite, bauxite, mullite, and examples of flaky particles include mica flakes, talc flakes, vermiculite flakes, and alumina flakes. The blending amount of the fibrous particles or the flaky particles is preferably 35 parts by weight or less, more preferably 10 to 25 parts by weight with respect to 100 parts by weight of cement in view of the fluidity of concrete, the strength and toughness of the hardened body. In addition, it is preferable to use a fibrous particle having a needle-like degree represented by a length / diameter ratio of 3 or more from the viewpoint of increasing the toughness of the cured body.
[0022]
In the present invention, the concrete kneading method is not particularly limited. Moreover, the apparatus used for kneading is not particularly limited, and a conventional mixer such as an omni mixer, a pan-type mixer, a biaxial kneading mixer, and a tilting cylinder mixer can be used.
[0023]
The above-mentioned kneaded concrete is filled into a formwork in which reinforcing materials such as reinforcing bars and continuous fibers are placed, molded, cured and cured, and the high-strength concrete member for the high-speed traffic system structure of the present invention is manufactured. can do. In addition, a shaping | molding method is not specifically limited, It can carry out by conventional shaping | molding methods, such as casting. Also, the concrete curing method is not particularly limited, and normal temperature curing, steam curing, or the like may be performed.
[0024]
Furthermore, in the present invention, in the process of manufacturing a concrete member according to the above method, prestress can be introduced into the member by a pretensioning method that is usually performed, or is normally performed after the concrete of the member is hardened. It is also possible to introduce prestress into the member by the post-tension method. When prestress is introduced into the concrete member according to the present invention, since creep is greatly reduced, there is an advantage that loss of prestress can be greatly reduced.
[0025]
In addition, in concrete with a reduced water-cement ratio as used in the present invention, dimensional changes due to self-shrinkage cannot be ignored, but the effect can be reduced by taking measures such as adding a shrinkage reducing agent as necessary. It is possible to suppress.
[0026]
【Example】
Hereinafter, the hardening body which comprises the concrete member of this invention is demonstrated by an Example.
1. Materials used 1) Cement: Low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
2) Pozzolanic fine powder; silica fume (average particle size 0.2 μm)
3) Aggregate: 2: 1 (weight ratio) mixture of silica sand 4 and silica sand 4 4) Metal fiber: Steel fiber (diameter: 0.2 mm, length: 15 mm)
5) High-performance AE water reducing agent; polycarboxylic acid-based high-performance AE water reducing agent 6) Water; tap water 7) Quartz powder; Average particle size 7 μm
8) Fibrous particles; wollastonite (average length 0.3 mm, length / diameter ratio 4)
[0027]
2. Formulation Example 1
Low heat Portland cement; 100 parts by weight silica fume; 32.5 parts by weight aggregate; 120 parts by weight quartz powder; 30 parts by weight wollastonite; 24 parts by weight high-performance AE water reducing agent; 1.0% by weight (based on cement solids)
Water / cement ratio: 22% by weight
Steel fiber: 2% of concrete volume
[0028]
Example 2
Low heat Portland cement; 100 parts by weight silica fume; 32.5 parts by weight aggregate; 120 parts by weight high-performance AE water reducing agent; 1.0% by weight (vs. cement solids)
Water / cement ratio: 25% by weight
[0029]
3. Test method 1) Kneading method Each material is put into a biaxial kneader at once. Kneading 2) Cylindrical specimen with 10cm diameter and 20cm height and prismatic specimen with 10x10x40cm 3) Compressive strength test method Specimen: Cylindrical specimen: Curing condition: Demolded after 24 hours (20 ° C), cured for 20 days at 20 ° C under water, strength measurement: JIS A 1108 method was followed.
4) Bending strength test method-Specimen: prismatic specimen-Curing conditions: Pre-formation (20 ° C) 24 hours after demolding, 28-day 20 ° C water curing-Strength measurement: JIS A 1106 method was followed.
5) Creep test method ・ Specimen: Cylindrical specimen ・ Test method: JIS draft Concrete compression creep test method (draft) was followed.
(Loading material age 28 days, loading stress 60 MPa, test material age 1000 days)
[0030]
4). Test result Example 1
1) Compressive strength: 230 MPa
2) Bending strength: 47 MPa
3) Creep coefficient: 0.20
Example 2
1) Compressive strength: 150 MPa
2) Bending strength: 21 MPa
3) Creep coefficient: 0.31
The values of the creep coefficients of the cured bodies of Examples 1 and 2 are both 1/5 or less of ordinary concrete and 1/3 or less of ordinary high-strength concrete, and the creep is greatly reduced. Therefore, the high-strength concrete member manufactured by using the cured body formulation of the present embodiment can greatly reduce creep and stabilize the dimensional accuracy.
[0031]
【The invention's effect】
As described in detail above, the present invention is a high-strength concrete member having properties such as high strength and high toughness, and a property that the creep is greatly reduced. This will greatly contribute to the improvement of construction efficiency and reduction of construction costs.

Claims (5)

少なくとも、セメント100質量部、ポゾラン質微粉末5〜50重量部、85質量%累積粒径が2mm以下の骨材50〜250重量部、水10〜35重量部、減水剤(固形分換算)0.5〜4.0重量部と、径0.01〜1.0mm、長さ2〜30mmの金属繊維を凝結後のコンクリート体積の2%以上、4%未満と、平均粒径3〜20μmの無機粉末20〜50重量部と、を含む配合物の硬化体であることを特徴とする低クリープ高寸法精度の高速度交通システム構造物用高強度コンクリート部材。At least, cement 100 parts by weight pozzolanic substance fine powder 5-50 parts by weight, 50 to 250 parts by weight of 85 wt% cumulative particle diameter of 2mm or less of the aggregate, 10 to 35 weight parts of water, water reducing agent (in terms of solid content) 0.5% to 4.0 parts by weight , 2% to less than 4% of the concrete volume after setting metal fibers having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm, and an average particle size of 3 to 20 μm A high-strength concrete member for a high-speed traffic system structure with a low creep and a high dimensional accuracy, characterized in that it is a cured product of a blend containing 20 to 50 parts by weight of an inorganic powder. 配合物に、さらに、径0.005〜1.0mm、長さ2〜30mmの有機繊維を凝結後のコンクリート体積の10%未満、及び/又は径0.005〜1.0mm、長さ2〜30mmの炭素繊維を凝結後のコンクリート体積の10%未満含む請求項1記載の低クリープ高寸法精度の高速度交通システム構造物用高強度コンクリート部材。 The blend further comprises organic fibers having a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm, and less than 10% of the concrete volume after setting, and / or a diameter of 0.005 to 1.0 mm and a length of 2 to 2. The high-strength concrete member for a high-speed traffic system structure with low creep and high dimensional accuracy according to claim 1, comprising 30 % of carbon fiber less than 10% of the concrete volume after setting . 少なくとも、セメント100重量部、ポゾラン質微粉末5〜50重量部、85質量%累積粒径が2mm以下の骨材50〜250重量部、水10〜35重量部、減水剤(固形分換算)0.5〜4.0重量部と、径0.01〜1.0mm、長さ2〜30mmの金属繊維を凝結後のコンクリート体積の2%以上、4%未満と、平均粒径3〜20μmの無機粉末20〜50重量部と、を含む配合物の硬化体で、プレテンション方式又はポストテンション方式いずれかの方式でプレストレスが導入されたことを特徴とする、低クリープ高寸法精度の高速度交通システム構造物用高強度コンクリート部材。At least, cement 100 parts by weight, pozzolanic substance fine powder 5 to 50 parts by weight, and 50 to 250 parts by weight of 85 wt% cumulative particle diameter of 2mm or less of the aggregate, 10 to 35 parts by weight of water, water reducing agent (in terms of solid content) 0.5% to 4.0 parts by weight , 2% to less than 4% of the concrete volume after setting metal fibers having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm, and an average particle size of 3 to 20 μm 20 to 50 parts by weight of an inorganic powder, and a low creep high dimensional accuracy high, characterized in that pre-stress is introduced by either a pre-tension method or a post-tension method. High-strength concrete member for speed traffic system structures. 配合物に、さらに、径0.005〜1.0mm、長さ2〜30mmの有機繊維を凝結後のコンクリート体積の10%未満、及び/又は径0.005〜1.0mm、長さ2〜30mmの炭素繊維を凝結後のコンクリート体積の10%未満含む請求項3記載の低クリープ高寸法精度の高速度交通システム構造物用高強度コンクリート部材。 The blend further comprises organic fibers having a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm, and less than 10% of the concrete volume after setting, and / or a diameter of 0.005 to 1.0 mm and a length of 2 to 2. The high-strength concrete member for high-speed traffic system structures with low creep and high dimensional accuracy according to claim 3, comprising less than 10% of 30 mm of carbon fiber after setting . 高速度交通システムがリニアモーターカー又は、鉄道である請求項1乃至4のいずれかに記載の低クリープ高速度交通システム構造物用高強度コンクリート部材。  The high-strength concrete member for a low creep high-speed traffic system structure according to any one of claims 1 to 4, wherein the high-speed traffic system is a linear motor car or a railway.
JP2000053474A 2000-02-29 2000-02-29 High-strength concrete members for high-speed traffic system structures Expired - Lifetime JP4519245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053474A JP4519245B2 (en) 2000-02-29 2000-02-29 High-strength concrete members for high-speed traffic system structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053474A JP4519245B2 (en) 2000-02-29 2000-02-29 High-strength concrete members for high-speed traffic system structures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010093719A Division JP5252590B2 (en) 2010-04-15 2010-04-15 High-strength concrete members for high-speed traffic system structures

Publications (2)

Publication Number Publication Date
JP2001240451A JP2001240451A (en) 2001-09-04
JP4519245B2 true JP4519245B2 (en) 2010-08-04

Family

ID=18574856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053474A Expired - Lifetime JP4519245B2 (en) 2000-02-29 2000-02-29 High-strength concrete members for high-speed traffic system structures

Country Status (1)

Country Link
JP (1) JP4519245B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056841B2 (en) * 2002-09-30 2008-03-05 太平洋セメント株式会社 Prestressed hydraulic cured body
JP2004155623A (en) * 2002-11-08 2004-06-03 Taiheiyo Cement Corp Prestressed concrete
JP2004224633A (en) * 2003-01-23 2004-08-12 Taiheiyo Cement Corp Prestressed concrete pavement slab
JP2004224639A (en) * 2003-01-23 2004-08-12 Taiheiyo Cement Corp Slab member
JP2005112695A (en) * 2003-10-10 2005-04-28 Dps Bridge Works Co Ltd Concrete bar member
US7640864B2 (en) 2004-11-10 2010-01-05 Taisei Corporation Non-magnetic concrete structure, a sidewall for a guideway and a method for installing such a sidewall for the guideway
JP2012001395A (en) * 2010-06-17 2012-01-05 Shimizu Corp High-strength concrete
CN104058652B (en) * 2014-05-29 2016-01-20 安徽华塑股份有限公司 A kind of strong concrete and preparation method thereof
JP6646908B2 (en) * 2015-11-30 2020-02-14 太平洋セメント株式会社 Concrete member for high-speed traffic system structure and method of manufacturing the same
JP2022104777A (en) * 2020-12-29 2022-07-11 株式会社Hpc沖縄 High-strength fiber reinforced concrete

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145147A (en) * 1980-04-11 1981-11-11 Taisei Corp Cement for prestressed concrete
JPH03266607A (en) * 1990-03-16 1991-11-27 Tokyo Seiko Co Ltd Twisted non-magnetic wire body for prestressed concrete
JPH04119957A (en) * 1990-09-07 1992-04-21 Ohbayashi Corp High-strength concrete
JPH0532445A (en) * 1991-07-29 1993-02-09 Osaka Gas Co Ltd Cement composition, mortar and production of fiber-reinforced concrete composite material
JPH05213654A (en) * 1991-09-20 1993-08-24 Nippon Cement Co Ltd Hydraulic composition and process for producing concrete pile by using this composition
JPH09500352A (en) * 1993-07-01 1997-01-14 ブイゲ METAL FIBER CONCRETE COMPOSITION FOR MOLDING CONCRETE PARTS, OBTAINED PARTS AND METHOD OF THERMAL CURING
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JPH11246255A (en) * 1997-11-27 1999-09-14 Bouygues Sa Metallic fiber reinforced concrete, cement matrix and premix thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178647A (en) * 1991-12-27 1993-07-20 Sumitomo Metal Ind Ltd Water-permeable composition
JPH11130505A (en) * 1997-10-31 1999-05-18 Railway Technical Res Inst Grout composition for railway track

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145147A (en) * 1980-04-11 1981-11-11 Taisei Corp Cement for prestressed concrete
JPH03266607A (en) * 1990-03-16 1991-11-27 Tokyo Seiko Co Ltd Twisted non-magnetic wire body for prestressed concrete
JPH04119957A (en) * 1990-09-07 1992-04-21 Ohbayashi Corp High-strength concrete
JPH0532445A (en) * 1991-07-29 1993-02-09 Osaka Gas Co Ltd Cement composition, mortar and production of fiber-reinforced concrete composite material
JPH05213654A (en) * 1991-09-20 1993-08-24 Nippon Cement Co Ltd Hydraulic composition and process for producing concrete pile by using this composition
JPH09500352A (en) * 1993-07-01 1997-01-14 ブイゲ METAL FIBER CONCRETE COMPOSITION FOR MOLDING CONCRETE PARTS, OBTAINED PARTS AND METHOD OF THERMAL CURING
JPH11130508A (en) * 1997-10-30 1999-05-18 Taiheiyo Cement Corp Cement-based composition and its hardened body
JPH11246255A (en) * 1997-11-27 1999-09-14 Bouygues Sa Metallic fiber reinforced concrete, cement matrix and premix thereof

Also Published As

Publication number Publication date
JP2001240451A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US7465350B2 (en) Hydraulic composition
Sadrekarimi Development of a light weight reactive powder concrete
US10882791B2 (en) High performance concretes and methods of making thereof
JP4519245B2 (en) High-strength concrete members for high-speed traffic system structures
CN112209683B (en) Self-compacting C120 ready-mixed dry material concrete and preparation method thereof
JP2002348167A (en) Hydraulic composition
JP2004115315A (en) High-flow concrete
JPH07300358A (en) Hydraulic grout material for paving and grout
JP5252590B2 (en) High-strength concrete members for high-speed traffic system structures
JP4519252B2 (en) Seismic reinforcement panel
JP4002153B2 (en) Bridge superstructure
JP2004155623A (en) Prestressed concrete
WO2007054960A2 (en) A method of production for metallic iron concrete hardener and cement concrete made therefrom
KR100789627B1 (en) Composition and manufacturing method for ultra-high-strength concrete manhole
Marke et al. Comparative evaluation of the flexural strength of concrete and colcrete
Sami et al. Influence of Nano Silica on the compressive strength and flexural behaviour of Bridge rubberised concrete
JP2001254302A (en) Sleeper for railway line
JP4167787B2 (en) Composite material
Gehan et al. Experimental investigation of self-compacting concrete beams with nano materials additives
Sha et al. Development of a fast-hardening retarding high-early-strength concrete with low-alkalinity sulphoaluminate cement and practical application
JP4342701B2 (en) Hardened cement and method for producing the same
Alimov et al. Self-compacting fine-grained concretes with compensated shrinkage
JP2004315333A (en) Draining type precast pavement plate
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2001270763A (en) Pressure-receiving plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term