JP4506959B2 - Insulation monitoring device - Google Patents

Insulation monitoring device Download PDF

Info

Publication number
JP4506959B2
JP4506959B2 JP2004232032A JP2004232032A JP4506959B2 JP 4506959 B2 JP4506959 B2 JP 4506959B2 JP 2004232032 A JP2004232032 A JP 2004232032A JP 2004232032 A JP2004232032 A JP 2004232032A JP 4506959 B2 JP4506959 B2 JP 4506959B2
Authority
JP
Japan
Prior art keywords
leakage current
ground
ωcr
phase
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004232032A
Other languages
Japanese (ja)
Other versions
JP2005300514A (en
Inventor
義和 寺上
Original Assignee
株式会社中条エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社中条エンジニアリング filed Critical 株式会社中条エンジニアリング
Priority to JP2004232032A priority Critical patent/JP4506959B2/en
Publication of JP2005300514A publication Critical patent/JP2005300514A/en
Application granted granted Critical
Publication of JP4506959B2 publication Critical patent/JP4506959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は絶縁監視装置に係り、特に電気回路の絶縁状態を監視するために絶縁抵抗値を測定する技術に関する。   The present invention relates to an insulation monitoring device, and more particularly to a technique for measuring an insulation resistance value in order to monitor an insulation state of an electric circuit.

配電系統の絶縁状態を漏れ電流の大きさによって監視する方法が広く利用されている。ところが電子機器の普及に伴ってノイズフィルタ類の静電容量を通して流れる漏れ電流が絶縁抵抗を通して流れる漏れ電流に比して大きなものとなり、静電容量成分と抵抗分成分とのベクトル和である漏れ電流を監視するだけでは絶縁状態の良否判断が困難になってきている。   A method of monitoring the insulation state of the distribution system by the magnitude of the leakage current is widely used. However, with the spread of electronic devices, the leakage current that flows through the capacitance of noise filters becomes larger than the leakage current that flows through the insulation resistance, and the leakage current is the vector sum of the capacitance component and the resistance component. It is difficult to judge whether the insulation state is good or not just by monitoring.

絶縁状態の良否を判断しやすくするためには漏れ電流に含まれる静電容量成分を除去し絶縁抵抗を通して流れる成分のみを求めることが有効であり、被測定回路に低周波低電圧の絶縁抵抗監視用信号を印加し、検出した漏れ電流の中からこの印加周波数成分を抽出したものを信号電圧による抵抗分漏れ電流とし、信号電圧値と信号電圧による抵抗分漏れ電流値より絶縁抵抗を算出する方法が提案されている(例えば特許文献1参照)。   In order to make it easier to judge the quality of the insulation state, it is effective to obtain only the component that flows through the insulation resistance by removing the capacitance component contained in the leakage current. A method of calculating the insulation resistance from the signal voltage value and the resistance leakage current value due to the signal voltage, by applying the signal for use and extracting the applied frequency component from the detected leakage current as the resistance leakage current due to the signal voltage Has been proposed (see, for example, Patent Document 1).

しかし、絶縁抵抗監視用信号の印加装置及びバンドパスフィルタが必要なことから装置が大型且つ高価となること、主回路に印加信号が重畳されることによって負荷設備の誤動作が発生すること、印加信号を周波数20Hz以下の低周波数及び電圧2V以下程度の低電圧に抑えざるを得ないことから低周波数における注入変圧器の入出力変換損失増大と印加信号分漏れ電流が数10μA以下と小さくなることによる検出ZCTの入出力変換損失増大の影響により絶縁抵抗の測定精度を高くできないこと、などの欠点があった。   However, since the application device for the insulation resistance monitoring signal and the band pass filter are required, the device becomes large and expensive, the application signal is superimposed on the main circuit, the load equipment malfunctions, the application signal Because it is unavoidable to suppress the frequency to a low frequency of 20 Hz or less and a low voltage of about 2 V or less, the input / output conversion loss of the injection transformer at a low frequency is increased and the applied signal leakage current is reduced to several tens μA or less. There are drawbacks such as that the measurement accuracy of the insulation resistance cannot be increased due to an increase in the input / output conversion loss of the detection ZCT.

前述の問題を解決するために被測定回路への信号電圧印加を行なわない方法が数件提案されている。   In order to solve the above-mentioned problems, several methods have been proposed in which no signal voltage is applied to the circuit under measurement.

これら信号電圧を印加しない方法の一つは、被測定回路の漏れ電流及び対地電圧それぞれに含まれる高調波成分の代表次数における高調波漏れ電流ベクトルと高調波対地電圧ベクトルの位相関係より抵抗分漏れ電流を求め、代表次数の高調波対地電圧値をこの抵抗分漏れ電流値で除することにより絶縁抵抗を得る方法としている(例えば特許文献2参照)。   One of these methods that does not apply the signal voltage is a resistance leakage due to the phase relationship between the harmonic leakage current vector and the harmonic ground voltage vector at the representative order of the harmonic component contained in the leakage current and ground voltage of the circuit under test. A method of obtaining an insulation resistance by obtaining a current and dividing a harmonic voltage value of a representative order by this resistance leakage current value (see, for example, Patent Document 2).

また、信号電圧を印加しない別の方法では、被測定回路の漏れ電流及び対地電圧それぞれに含まれる高調波成分の二つの代表次数における高調波漏れ電流成分及び高調波対地電圧成分のスカラ量より連立方程式によって絶縁抵抗分を求め、この大きさにより絶縁状態の良否を判断する方法としている。これによれば、バンドパスフィルタや位相ずれ補正装置を必要としないため、装置が小形にできるとしている(例えば特許文献3参照)。
特開平1−143971号公報 特開平6−043196号公報 特開2003−177154号公報
In another method in which the signal voltage is not applied, the simultaneous measurement is performed based on the scalar amounts of the harmonic leakage current component and the harmonic ground voltage component in the two representative orders of the harmonic component included in the leakage current and the ground voltage of the circuit under test. An insulation resistance component is obtained by an equation, and the quality of the insulation state is judged by this magnitude. According to this, since a band-pass filter and a phase shift correction device are not required, the device can be miniaturized (see, for example, Patent Document 3).
JP-A-1-143971 Japanese Patent Laid-Open No. 6-043196 JP 2003-177154 A

しかし、特許文献2の例では、漏れ電流回路と電圧回路双方分のバンドパスフィルタ及び漏れ電流検出用零相変流器と対地電圧検出用変圧器のいずれかまたは双方の位相ずれを補正する装置を設置する必要があるために装置が大型且つ高価となること、絶縁抵抗値算出に必要となる対地電圧検出にあたり引出し配線を絶縁劣化個所に接続することは困難で実際には配電盤などのように漏れ電流発生個所から離れた場所とならざるを得ないという問題があり、検出した対地電圧には理論値の数%程度にまで減衰した高調波成分しか含まれない状態となるため、対地電圧の高調波成分値が正しく得られず絶縁抵抗の測定精度が低くなること、などの欠点があった。   However, in the example of Patent Document 2, a device that corrects a phase shift of either or both of a band-pass filter for both a leakage current circuit and a voltage circuit, a leakage current detection zero-phase current transformer, and a ground voltage detection transformer. It is difficult to connect the lead-out wiring to the insulation deterioration point when detecting the ground voltage required for calculating the insulation resistance value. There is a problem that it must be a place away from the location where the leakage current is generated, and the detected ground voltage contains only a harmonic component attenuated to about several percent of the theoretical value. There are drawbacks such as the fact that the harmonic component value cannot be obtained correctly and the measurement accuracy of the insulation resistance is lowered.

また、特許文献3の例でも前述の例と同様に対地電圧の高調波成分値が正しく得られないことから、絶縁抵抗の測定精度が低くなるという欠点があった。   Also, the example of Patent Document 3 has a drawback that the measurement accuracy of the insulation resistance is lowered because the harmonic component value of the ground voltage cannot be obtained correctly as in the above example.

本発明はこのような事情に鑑みてなされたもので、小型かつ安価で精度の高い絶縁抵抗値測定を可能にする絶縁監視装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an insulation monitoring device that enables a small, inexpensive, and highly accurate insulation resistance value measurement.

前記目的を達成するために、請求項1に記載の絶縁監視装置は、被測定三相交流回路の対地電圧を検出する対地電圧検出手段と、前記被測定三相交流回路から大地への漏れ電流に含まれる高調波成分中の所定次数の漏れ電流成分値を検出する高調波漏れ電流検出手段と、前記対地電圧の所定次数における検出基準時点に対する位相を示す基準位相と前記漏れ電流の所定次数における検出基準時点に対する位相を示す基準位相との位相差を検出する位相検出手段と、前記位相検出手段により検出した所定次数における前記漏れ電流と前記対地電圧の位相関係に基づいて、前記被測定回路の対地絶縁抵抗Rと対地コンダクタンスωC(ωは2πf、fは前記漏れ電流の基本周波数、Cは静電容量)との積ωCRの値を算出するωCR算出手段と、前記対地電圧検出手段により検出した対地電圧Vと、前記高調波漏れ電流検出手段により検出した所定次数n(nは3の倍数)の漏れ電流成分値Ignと、前記ωCR算出手段により算出したωCRを、前記対地絶縁抵抗Rを導く所定の関係式R=F(V、Ign、ωCR)に与えて、前記対地絶縁抵抗Rを算出する対地絶縁抵抗算出手段と、前記対地絶縁抵抗算出手段により算出した対地絶縁抵抗Rに基づいて前記被測定回路の絶縁状態に関する情報を出力する出力手段と、を備えたことを特徴としている。
To achieve the above object, the insulation monitoring device of claim 1, a ground voltage detecting means for detecting a ground voltage of the measured three-phase alternating current circuit, the leakage may to earth from the measured three-phase alternating current circuit Harmonic leakage current detecting means for detecting a leakage current component value of a predetermined order in the harmonic component included in the current, a reference phase indicating a phase with respect to a detection reference time at a predetermined order of the ground voltage, and a predetermined order of the leakage current A phase detection unit that detects a phase difference from a reference phase indicating a phase with respect to a detection reference time in the phase, and a phase relationship between the leakage current and the ground voltage in a predetermined order detected by the phase detection unit. circuit ground insulation resistance R and ground conductance .omega.C (omega is 2 [pi] f, f is the fundamental frequency, C is the capacitance of the leakage current) and ωCR calculating means for calculating the value of the product ωCR with, A ground voltage V detected by serial ground voltage detecting means, and the leakage current component value I gn given order n detected (n is a multiple of 3) by the harmonic leakage current detecting means was calculated by the ωCR calculating means ωCR Is given to a predetermined relational expression R = F (V, I gn , ωCR) for deriving the ground insulation resistance R, and the ground insulation resistance calculation means for calculating the ground insulation resistance R and the ground insulation resistance calculation means Output means for outputting information on the insulation state of the circuit under test based on the calculated ground insulation resistance R.

請求項2に記載の絶縁監視装置は、請求項1に記載の発明において、前記出力手段は、前記被測定三相交流回路の絶縁状態に関する情報として、前記対地絶縁抵抗算出手段により算出した対地絶縁抵抗Rが所定値以下になったこと、又は、該対地絶縁抵抗Rに基づいて算出した抵抗分漏れ電流値が所定値以上になったことを表示、記録、外部出力又は通報することと、前記対地絶縁抵抗値R、前記抵抗分漏れ電流値のうち少なくともいずれかひとつにつき、その大きさによって安全領域、危険領域等のように少なくとも2つの領域に区分して表示、記録、外部出力又は通報することのいずれか又は両方を行なうことを特徴としている。
According to a second aspect of the present invention, there is provided the insulation monitoring apparatus according to the first aspect, wherein the output means is the ground insulation calculated by the ground insulation resistance calculating means as information relating to the insulation state of the three-phase AC circuit to be measured. Displaying, recording, external output or reporting that the resistance R has become a predetermined value or less, or that the resistance leakage current value calculated based on the ground insulation resistance R has become a predetermined value or more ; At least one of the ground insulation resistance value R and the resistance leakage current value is classified into at least two areas such as a safety area and a dangerous area according to the magnitude, and is displayed, recorded, externally output or notified. It is characterized by doing either or both.

請求項3に記載の絶縁監視装置は、請求項1又は2の発明において、前記対地絶縁抵抗算出手段は、請求項1に記載の対地電圧V、漏れ電流成分値Ign 、ωCRに基づく次式、
R=(V/Ign)×((1+(ωCR)20.5×(1+(nωCR)20.5 ―(1+(ωCR)20.5)/(1+(nωCR)20.5
又は、
R=(V/Ign)×((1+(ωCR)20.5/(1+(nωCR)20.5 )/((1/(1+(ωCR)20.5)+(1/(1+(nωCR)20.5))
を、前記関係式R=F(V、Ign、ωCR)として用いることを特徴としている。
The insulation monitoring device according to claim 3, in the invention of claim 1 or 2, wherein the ground insulation resistance calculation means, ground voltage V according to claim 1, leakage current component value I gn, based ωCR following formula,
R = (V / I gn ) × ((1+ (ωCR) 2 ) 0.5 × (1+ (nωCR) 2 ) 0.5 ― (1+ (ωCR) 2 ) 0.5 ) / (1+ (nωCR) 2 ) 0.5 )
Or
R = (V / I gn ) × ((1+ (ωCR) 2 ) 0.5 / (1+ (nωCR) 2 ) 0.5 ) / ((1 / (1+ (ωCR) 2 ) 0.5 ) + (1 / (1+ (nωCR) 2 ) 0.5 ))
Is used as the relational expression R = F (V, I gn , ωCR).

以上の如く構成される本願発明は、被測定回路の対地電圧スカラ量と漏れ電流に含まれる高調波成分のスカラ量を用い、漏れ電流n次高調波成分とn次対地アドミッタンスと、計算式誘導の段階で媒体として用いる対地電圧のn次理論的高調波成分と、同じく計算式誘導の段階で媒体として用いる高調波1次仮想漏れ電流との関係より絶縁抵抗を求めることを最も主要な特徴とする。   The present invention configured as described above uses the ground voltage scalar quantity of the circuit to be measured and the scalar quantity of the harmonic component included in the leakage current, the leakage current n-order harmonic component, n-order ground admittance, and calculation formula induction. The most important feature is to obtain the insulation resistance from the relationship between the nth-order theoretical harmonic component of the ground voltage used as the medium in the stage and the harmonic first-order virtual leakage current used as the medium in the calculation formula stage. To do.

本発明の絶縁監視装置によれば、信号電圧印加装置が不用なために小形で安価なものにできる。また、被測定回路の対地電圧と漏れ電流の高調波成分にのみ依存し、実回路において検出が困難な電圧の高調波成分には依存しないので、電気回路の絶縁抵抗値を高精度に且つ経済的に測定できる。   According to the insulation monitoring device of the present invention, since the signal voltage applying device is unnecessary, it can be made small and inexpensive. Also, since it depends only on the harmonic component of the voltage to be measured and the leakage current of the circuit to be measured, and not on the harmonic component of the voltage that is difficult to detect in the actual circuit, the insulation resistance value of the electric circuit is highly accurate and economical. Can be measured automatically.

従って、絶縁劣化の経時的変化を正確に捉え警報を行うことが容易となり、事前に点検保守を可能ならしめて事故を未然に防止することが可能となる。   Therefore, it is easy to accurately detect changes over time in insulation deterioration and issue an alarm, and it is possible to prevent accidents by making it possible to perform inspection and maintenance in advance.

以下、添付図面に従って本発明に係る絶縁監視装置の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of an insulation monitoring apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

本発明は、被測定回路から大地への漏れ電流Igに含まれる高調波成分中の任意の次数nにおける漏れ電流成分値Ign及び絶縁抵抗Rと対地コンダクタンスnωC(nは整数、ω=2πf、fは基本周波数、Cは静電容量)からなるn次対地アドミッタンスYnを用いてn次理論的対地電圧Enを表した第1の関係式と、前述の次数nにおける漏れ電流成分値Ign、n次対地アドミッタンスYnに、対地電圧V、高調波1次仮想漏れ電流成分Ig1及び絶縁抵抗Rと対地コンダクタンスωCからなる高調波1次対地アドミッタンスY1を加えてn次理論的対地電圧Enを表した第2の関係式とを連立方程式として解くことによって対地電圧の高調波成分値に依存しないで絶縁抵抗Rを算出する方法及び絶縁監視装置を提供するものである。 The present invention, the leakage current component value I gn and insulation resistance R and ground conductance EnuomegaC (n in any order n in harmonic components included in the leakage current I g to the ground from the circuit under test is an integer, omega = 2 [pi] f , f is the fundamental frequency, C is the first and the relational expression, the leakage current component value at order n of the above representation of the n-th theoretical ground voltage E n using n-th ground admittance Y n consisting of capacitance) I gn , nth-order ground admittance Y n , ground voltage V, harmonic primary virtual leakage current component I g1, harmonic primary ground admittance Y 1 consisting of insulation resistance R and ground conductance ωC, and nth-order theoretical it is to provide a method and an insulation monitoring device for calculating the insulation resistance R without depending on the harmonic component values of the voltage to ground by solving a second equation which represents the ground voltage E n as simultaneous equations.

第1の関係式は漏れ電流Igに含まれる高調波成分中の任意の次数nにおける、漏れ電流成分値Ignを、次数nにおける理論的対地電圧Enと絶縁抵抗R及び対地コンダクタンスnωCからなる対地アドミッタンスYnで示した
gn=Yn×En …………………………………………… 式(1)
を基本として導く。
n=((1/R)2+(nωC)20.5 …………… 式(2)
=(1+(nωCR)20.5 ×(1/R) ………… 式(3)
式(1)に式(3)を代入すると
gn=(1+(nωCR)20.5×(1/R)×En … 式(4)
となり、これより得られる
n=(Ign×R)/(1+(nωCR)20.5 ……… 式(5)
を第1の関係式とする。
At any order n in harmonics first relational expression contained in the leakage current I g, the leakage current component value I gn, from a theoretical ground voltage E n and the insulation resistance R and ground conductance nωC in order n shown by comprising ground admittance Y n I gn = Y n × E n ................................................... formula (1)
Guide as a basis.
Y n = ((1 / R) 2 + (nωC) 2 ) 0.5 …………… Formula (2)
= (1+ (nωCR) 2 ) 0.5 × (1 / R) ............ Formula (3)
Substituting equation (3) into equation (1), I gn = (1+ (nωCR) 2 ) 0.5 × (1 / R) × E n ... equation (4)
E n = (I gn × R) / (1+ (nωCR) 2 ) 0.5 obtained from this ......... Formula (5)
Is the first relational expression.

第2の関係式は図1の(イ)に示すように高調波1次対地電圧E1が、高調波成分中の任意の次数nにおける理論的対地電圧Enに、高調波1次とn次の漏れ電流成分比と高調波1次とn次の対地アドミッタンス成分比との和を乗じたものとした
1=((Ig1/Ign)+(Yn/Y1))×En ………… 式(6)
を基本として導く。
式(6)中の高調波1次対地電圧E1は対地電圧Vにほぼ等しいとみなせるので
1≒V …………………………………… 式(7)
また
1=(1+(ωCR)20.5 ×(1/R) ………… 式(8)
g1=Y1×E1≒(1+(ωCR)20.5 ×(V/R) …… 式(9)
n=(1+(nωCR)20.5 ×(1/R) ………… 式(10)
なので、式(6)に式(7)から式(10)を代入し整理すると
V=(((1+(ωCR)2)V+Ign・R(1+(nωCR)20.5 )/(Ign・R(1+(ωCR)20.5 ))En ……… 式(11)
となり、これより得られる
n=(Ign・R(1+(ωCR)20.5 )V/((1+(ωCR)2)V+Ign・R(1+(nωCR)20.5 ) ………… 式(12)
を第2の関係式とする。
The second relational expression harmonic primary voltages to ground E 1 as shown in (b) of FIG. 1, the theoretical ground voltage E n in any order n in harmonics, harmonic primary and n E 1 = ((I g1 / I gn ) + (Y n / Y 1 )) × E obtained by multiplying the next leakage current component ratio by the sum of the harmonic first order and nth order ground admittance component ratio n ............ Formula (6)
Guide as a basis.
Since the harmonic primary ground voltage E 1 in the equation (6) can be regarded as almost equal to the ground voltage V, E 1 ≈V ……………………………… (7)
Y 1 = (1+ (ωCR) 2 ) 0.5 × (1 / R) ............ Formula (8)
I g1 = Y 1 × E 1 ≈ (1+ (ωCR) 2 ) 0.5 × (V / R) ...... Formula (9)
Y n = (1+ (nωCR) 2 ) 0.5 × (1 / R) ............ Formula (10)
Therefore, substituting the formulas (7) to (10) into the formula (6) and rearranging them results in V = (((1+ (ωCR) 2 ) V + I gn · R (1+ (nωCR) 2 ) 0.5 ) / (I gn · R (1+ (ωCR) 2 ) 0.5 )) E n ......... Formula (11)
E n = (I gn · R (1+ (ωCR) 2 ) 0.5 obtained from this ) V / ((1+ (ωCR) 2 ) V + I gn · R (1+ (nωCR) 2 ) 0.5 ) ............ Formula (12)
Is the second relational expression.

式(5)と式(12)を連立方程式として解くことにより得られる
R=(V/Ign)×((1+(ωCR)20.5×(1+(nωCR)20.5 ―(1+(ωCR)20.5)/(1+(nωCR)20.5) ……… 式(13)
が絶縁抵抗値Rを算出する式となる。
R = (V / I gn ) × ((1+ (ωCR) 2 ) 0.5 × (1+ (nωCR) 2 ) 0.5 obtained by solving the equations (5) and (12) as simultaneous equations — (1+ (ωCR) 2 ) 0.5 ) / (1+ (nωCR) 2 ) 0.5 ) Equation (13)
Is an equation for calculating the insulation resistance value R.

第2の関係式は図1の(ロ)に示すように高調波n次における理論的対地電圧Enが高調波1次対地電圧E1に、高調波1次とn次の対地アドミッタンス成分比と高調波1次とn次の漏れ電流成分比との差を乗じたものとした
n=((Y1/Yn)―(Ign/Ig1))E1 ………… 式(14)
を基本として導くこともできる。
Theoretically ground voltage E n harmonics primary voltages to ground E 1 second relational expression of harmonic order n, as shown in the (B) 1, harmonics primary and n next ground admittance component ratio And E n = ((Y 1 / Y n ) − (I gn / I g1 )) E 1, which is obtained by multiplying the difference between the first harmonic and the n-th order leakage current component ratio ( 1 ) 14)
Can be guided as a basis.

式(14)に式(7)から式(10)を代入し整理して得られた
n=(((1+(ωCR)20.5 )/((1+(nωCR)20.5 ))V―Ign・R/(1+(ωCR)20.5 ………… 式(15)
がもう一つの第2の関係式となり、式(5)と式(15)を連立方程式として解くことにより得られる
R=(V/Ign)×((1+(ωCR)20.5/(1+(nωCR)20.5 )/((1/(1+(ωCR)20.5)+(1/(1+(nωCR)20.5)) ……… 式(16)
が絶縁抵抗値Rを算出するもう一つの式となる。
E n = (((1+ (ωCR) 2 ) 0.5 obtained by substituting Equation (10) from Equation (7) into Equation (14) and rearranging. ) / ((1+ (nωCR) 2 ) 0.5 )) V-I gn · R / (1+ (ωCR) 2 ) 0.5 ............ Formula (15)
Becomes another second relational expression, and R = (V / I gn ) × ((1+ (ωCR) 2 ) 0.5 / (1+) obtained by solving the equations (5) and (15) as simultaneous equations. (NωCR) 2 ) 0.5 ) / ((1 / (1+ (ωCR) 2 ) 0.5 ) + (1 / (1+ (nωCR) 2 ) 0.5 )) Equation (16)
Is another formula for calculating the insulation resistance value R.

式(13)または式(16)は、
R=F(V、Ign、ωCR) ……………… 式(17)
で表され、測定において減衰の影響を受けやすい対地電圧の高調波成分には依存しないことを示している。
Formula (13) or Formula (16) is
R = F (V, I gn , ωCR) ……………… Formula (17)
This indicates that the measurement does not depend on the harmonic component of the ground voltage that is susceptible to attenuation.

対地電圧Vは電圧測定回路によって与えられ、漏れ電流の高調波n次成分Ignは零相変流器によって検出した漏れ電流をフーリエ展開するなどの方法によって与えられるので、残るωCRが被測定回路固有の数値として与えられれば絶縁抵抗値Rが算出できることを示している。 The ground voltage V is given by the voltage measurement circuit, and the harmonic n-th order component I gn of the leakage current is given by a method such as Fourier expansion of the leakage current detected by the zero-phase current transformer, so that the remaining ωCR is the measured circuit. It shows that the insulation resistance value R can be calculated if given as a specific numerical value.

被測定回路が単相交流回路の場合、ωCRは次のようにして表わすことができる。
漏れ電流の静電容量成分Igcと抵抗成分Igr
gc=ωCV ……………… 式(18)
gr=V/R ……………… 式(19)
であり
gc/Igr=(ωCV)/(V/R)=ωCR
ωCR=Igc/Igr ……………… 式(20)
のように、ωCRは漏れ電流の静電容量成分Igcと抵抗成分Igrの比として表わされる。
When the circuit under test is a single-phase AC circuit, ωCR can be expressed as follows.
The electrostatic capacitance component I gc and the resistance component I gr of the leakage current are I gc = ωCV (18)
I gr = V / R ……………… Formula (19)
And I gc / I gr = (ωCV) / (V / R) = ωCR
ωCR = I gc / I gr ……………… Formula (20)
As described above, ωCR is expressed as a ratio of the capacitance component I gc and the resistance component I gr of the leakage current.

被測定回路が三相交流回路の場合は、零相変流器で検出する漏れ電流が各相漏れ電流のベクトル和であるために、高調波3m(mは整数)次以外では漏れ電流の大きさや位相が各相アドミッタンスのアンバランスに左右されたものとなり、静電容量成分と抵抗成分の比を求めることができないため、三相とも同相となって重なる高調波3次においてωCRを求める。
高調波3次における漏れ電流の静電容量成分Igcnと抵抗成分Igrn
gcn=3ωCE ……… 式(21)
grn=En/R ……… 式(22)
であり
gcn/Igrn=(3ωCEn)/(En/R)=3ωCR
ωCR=(Igcn/Igrn)/(3) ……………… 式(23)
のように、ωCRは漏れ電流の静電容量成分Igcnと抵抗成分Igrnの比を次数3mで除したものとして表わされる。
For the circuit to be measured is a three-phase alternating current circuit, for the leakage current detected by the ZCT is a vector sum of each phase leakage current, harmonics 3 m (m is an integer) of the leakage current in the following non Since the magnitude and phase depend on the imbalance of each phase admittance, and the ratio of the capacitance component and the resistance component cannot be obtained, ωCR is obtained at the harmonic 3 m order where all three phases are in phase. .
The capacitance component I gcn and the resistance component I grn of the leakage current in the harmonic 3 m-th order are I gcn = 3 m ωCE n (Equation 21)
I grn = E n / R ......... Formula (22)
I gcn / I grn = (3 m ωCE n ) / (E n / R) = 3 m ωCR
ωCR = (I gcn / I grn ) / (3 m ) (23)
As,? Cr is expressed as a value obtained by dividing the capacitance component I gcn the ratio of the resistance component I grn leakage current in order 3m of.

ωCRすなわち漏れ電流の静電容量成分Igcnと抵抗成分Igrnの比は、漏れ電流をフーリエ展開した際に算出される偶数次高調波成分値の次数による増加傾向より得られる。 The ratio of the capacitance component I gcn of the leakage current, that is, the resistance component I grn , is obtained from the increasing tendency of the even-order harmonic component value calculated when the leakage current is Fourier-expanded.

多くの負荷において漏れ電流中に偶数次高調波成分が検出される。   In many loads, even harmonic components are detected in the leakage current.

図2は電灯負荷回路の漏れ電流高調波成分を表す分布図であり、偶数次高調波成分値の存在が認められる。   FIG. 2 is a distribution diagram showing the leakage current harmonic component of the lamp load circuit, and the presence of even-order harmonic component values is recognized.

インバータを電源とする三相交流回路に既知の抵抗と静電容量からなる対地模擬回路を接続した実験においても偶数次の漏れ電流高調波成分の存在と、対地静電容量の大きさに応じて漏れ電流高調波成分が次数によって増加する傾向が認められる。   Even in an experiment in which a ground simulation circuit consisting of a known resistance and capacitance is connected to a three-phase AC circuit that uses an inverter as a power source, depending on the presence of even-order leakage current harmonic components and the magnitude of the ground capacitance There is a tendency for the leakage current harmonic component to increase with the order.

図3は、対地模擬回路のアドミッタンスを変えて行った2種類の実験における漏れ電流の高調波成分値を示す。   FIG. 3 shows harmonic component values of leakage current in two types of experiments conducted by changing the admittance of the ground simulation circuit.

図3における黒丸は、対地模擬回路を抵抗150kΩと静電容量0.047μFの並列とし、三相歪波交流電圧を印加した場合の漏れ電流をフーリエ展開して得られた偶数次高調波成分を次数順に表したもので、偶数次の中から三相各相の漏れ電流が同相となる3n次(nは整数)のみを抽出して記載してある。   Black circles in FIG. 3 represent even harmonic components obtained by Fourier expansion of the leakage current when a ground simulation circuit is connected in parallel with a resistance of 150 kΩ and a capacitance of 0.047 μF, and a three-phase distorted AC voltage is applied. Expressed in order of order, only the 3n-th order (n is an integer) in which the leakage current of each phase of the three phases is in phase is extracted from even-orders.

図3における白丸は、対地模擬回路を抵抗75kΩのみとし、三相歪波交流電圧を印加した場合の漏れ電流をフーリエ展開し偶数次高調波成分を次数順に表したもので、前記と同様に3n次(nは整数)のみを抽出して記載してある。   The white circles in FIG. 3 represent a ground simulation circuit having a resistance of only 75 kΩ, and the leakage current when a three-phase distorted wave AC voltage is applied is Fourier-expanded to represent even-order harmonic components in order. Only the next (n is an integer) is extracted and described.

これらの偶数次高調波漏れ電流群は、対地静電容量が存在する場合は図3の実線に示すように次数の増加に伴う増加傾向を示し、静電容量が含まれない場合は図3の破線に示すように勾配の無い平坦な直線となっている。   These even-order harmonic leakage current groups show an increasing tendency as the order increases as shown by the solid line in FIG. 3 when the ground capacitance exists, and when the capacitance is not included in FIG. As shown by the broken line, it is a flat straight line having no gradient.

このように偶数次高調波漏れ電流群が次数の増加に応じた直線状となり、静電容量が含まれない場合は無勾配となることより、偶数次の高調波対地電圧は次数の増加に対してほとんど変化しないとみなされ、以下に記す方法によってωCRを求めることができる。   In this way, even-order harmonic leakage current groups are linear according to the increase in order, and when there is no capacitance, the even-order harmonic ground voltage is increased against the increase in order. Therefore, ωCR can be obtained by the method described below.

高調波偶数次漏れ電流の次数A成分をIgA、次数B成分をIgB、次数A及び次数Bの対地電圧をEABとすると
gA=EAB×(1+(AωCR)20.5/R ・・・・・・ 式(24)
gB=EAB×(1+(BωCR)20.5/R ・・・・・・ 式(25)
gB/IgA=(1+(BωCR)20.5 /(1+(AωCR)20.5 ・・・ 式(26)
式(26)を整理すると
ωCR=((IgB 2−IgA 2)/(B2gA 2−A2gB 2))0.5 ・・・・・・ 式(27)
としてωCRを求められる。
If the order A component of the harmonic even-order leakage current is I gA , the order B component is I gB , and the ground voltage of the order A and the order B is E AB , then I gA = E AB × (1+ (AωCR) 2 ) 0.5 / R .... Formula (24)
I gB = E AB × (1+ (BωCR) 2 ) 0.5 / R Equation (25)
I gB / I gA = (1+ (BωCR) 2 ) 0.5 / (1+ (AωCR) 2 ) 0.5 Formula (26)
Rearranging equation (26), ωCR = ((I gB 2 -I gA 2 ) / (B 2 I gA 2 -A 2 I gB 2 )) 0.5 ... Equation (27)
ΩCR is obtained as follows.

実用にあたっては式(27)をできるだけ多くの偶数次数間について計算し、その平均値を採用するか、高調波偶数次漏れ電流群について最少自乗法などの統計手法で
g=a(x−1)+b
(Ig:統計処理後の偶数次高調波漏れ電流、a:勾配、x:偶数次の高調波次数、b:次数1における仮想漏れ電流)
のように直線化処理を行った後に式(24)から式(27)の計算を行うなど、できるだけ多くの偶数次漏れ電流群を利用することにより(複数のωCRの平均値を算出する等により)ωCR算出誤差を少なくすることができる。
In practical use, Equation (27) is calculated between as many even orders as possible, and the average value is adopted, or the harmonic even-order leakage current group is calculated using a statistical method such as the least squares method as follows: I g = a (x−1 + B
(I g : even-order harmonic leakage current after statistical processing, a: gradient, x: even-order harmonic order, b: virtual leakage current in order 1)
By using as many even-order leakage current groups as possible (for example, calculating an average value of a plurality of ωCRs) ) The ωCR calculation error can be reduced.

なお、高調波偶数次漏れ電流成分の一部が他の次数成分に比較して突出した値となることがあるが、この突出値は漏れ電流を時分割サンプリングする際の時間幅の影響で計算上発生するものとみなされるので、ωCRを求める計算への適用から除外する。   Note that some of the harmonic even-order leakage current components may have a value that protrudes compared to other order components, but this value is calculated due to the time width when the leakage current is time-division sampled. Since it is considered to occur, it is excluded from the application to the calculation for obtaining ωCR.

ωCRすなわち漏れ電流の静電容量成分Igcnと抵抗成分Igrnの比は、対地電圧と漏れ電流の位相角を求めることからも得られる。 The ratio of ωCR, that is, the capacitance component I gcn of the leakage current and the resistance component I grn can also be obtained by determining the phase angle of the ground voltage and the leakage current.

図4は対地電圧と漏れ電流の位相角Φ及び漏れ電流抵抗分Igrと静電容量分Igcとの関係を示すベクトル図である。 FIG. 4 is a vector diagram showing the relationship between the ground voltage, the phase angle Φ of the leakage current, the leakage current resistance component I gr, and the capacitance component I gc .

被測定回路が単相交流回路の場合は対地電圧と漏れ電流より位相角Φ及びωCRを求めることができる。   When the circuit under test is a single-phase AC circuit, the phase angles Φ and ωCR can be obtained from the ground voltage and the leakage current.

対地電圧の多分割サンプリング瞬時値と漏れ電流の多分割サンプリング瞬時値の積を積分した有効電力Wと対地電圧の実効値と漏れ電流の実効値の積である皮相電力VAより対地電圧と漏れ電流との位相Φを
Φ=cos-1(W/VA) …………式(28)
のように求めることができる。
gc/Igr=tanΦ …………式(29)
なので、式(20)、式(29)より
ωCR=tanΦ=tan(cos-1(W/VA)) …………式(30)
としてωCRが求められる。
The ground voltage and leakage current from the effective power W obtained by integrating the product of the multi-point sampling instantaneous value of the ground voltage and the multi-point sampling instantaneous value of the leakage current and the apparent power VA which is the product of the effective value of the ground voltage and the effective value of the leakage current. Φ = cos −1 (W / VA) ............ Formula (28)
Can be obtained as follows.
I gc / I gr = tanΦ ............ Formula (29)
Therefore, from the equations (20) and (29), ωCR = tanΦ = tan (cos −1 (W / VA)) ............ Equation (30)
ΩCR is obtained as follows.

被測定回路が三相交流回路の場合は、三相とも同相となって重なる高調波3次(は整数)において対地電圧と漏れ電流の位相角を求める。
When the circuit to be measured is a three-phase AC circuit, the phase angle of the ground voltage and the leakage current is obtained at the harmonic 3 m-th order ( m is an integer) that is in phase with all three phases.

対地電圧の高調波成分はその大きさが減衰したものしか得られないことが多く有効電力や皮相電力を求めることには適用できないが、対地電圧の高調波代表次数成分が同次数の漏れ電流成分との位相判別には適用できるので下記の方法によって漏れ電流の高調波成分との位相角Φnを求めることができる。
Harmonic components of ground voltage are often only attenuated in magnitude, and cannot be applied to obtain active power or apparent power, but leakage current components of the same order as the harmonic representative order component of ground voltage Therefore , the phase angle Φ n with the harmonic component of the leakage current can be obtained by the following method.

高調波3次における対地電圧と漏れ電流の位相角Φnは、対地電圧と漏れ電流をフーリエ展開して得られる対地電圧と漏れ電流の検出基準点に対する位相角の差として
The phase angle Φ n of the ground voltage and leakage current in the harmonic 3 m order is the difference between the phase angle of the ground voltage and leakage current obtained by Fourier expansion of the ground voltage and leakage current with respect to the detection reference point.

Figure 0004506959
但し
Figure 0004506959



ωCR=tanΦn/3=tan(tan-1(bV/aV)―tan-1(bI/aI))/3 …………式(32)
のように求めることができる。
Figure 0004506959
However,
Figure 0004506959



ωCR = tan Φ n / 3 m = tan (tan −1 (b V / a V ) −tan −1 (b I / a I )) / 3 m ............ formula (32)
Can be obtained as follows.

対地電圧の高調波成分値が減衰したものである事に起因して式(32)の計算値に誤差が生ずることがあるので、実用にあたっては式(32)をできるだけ多くの次数において計算し、その平均値を採用することによりωCR算出誤差を少なくできる。   An error may occur in the calculated value of the equation (32) due to the attenuation of the harmonic component value of the ground voltage. Therefore, in practical use, the equation (32) is calculated in as many orders as possible, By adopting the average value, the ωCR calculation error can be reduced.

式(27)あるいは式(30)もしくは式(32)にて求めたωCRを、式(13)または式(16)に代入して絶縁抵抗を算出することができる。   The insulation resistance can be calculated by substituting ωCR obtained by Expression (27), Expression (30), or Expression (32) into Expression (13) or Expression (16).

三相交流回路の場合は、漏れ電流の高調波3次成分のみにおいて絶縁抵抗を算出する。
For a three-phase alternating current circuit, it calculates the insulation resistance only in harmonic 3 m th component of the leakage current.

式(13)または式(16)の計算はできるだけ多くの次数について実施し、その平均値を採用する等の手法により絶縁抵抗算出精度の向上がはかれる。   The calculation of the expression (13) or the expression (16) is performed for as many orders as possible, and the accuracy of calculating the insulation resistance is improved by a method of adopting the average value.

ただし、複数の計算値の中で一部の次数において他の次数とはかけ離れた計算結果となるものについてはその次数を絶縁抵抗を求める計算への適用から除外する。前述の除外理由は、他の次数とはかけ離れた計算結果となる原因が漏れ電流を時分割サンプリングする際の時間幅の影響によって一部の次数において実際の成分値からかけ離れた値として計算されてしまうものだからである。
除外判定方法は計算値群の中で標準偏差値が設定値を超えてしまう次数のものを除外するなどが考えられるが、選択した次数のうち計算結果が最大のものと最小のものを除外し残りの次数における計算結果の平均値をもって絶縁抵抗とする方法で実用上十分な結果が得られる。
However, among the plurality of calculated values, some of the orders resulting in a calculation result that is far from other orders are excluded from the application to the calculation for obtaining the insulation resistance. The reason for the exclusion described above is that the calculation result is far from the other component orders. It is because it ends up.
Exclusion judgment methods such as excluding those with the standard deviation value exceeding the set value in the calculated value group may be excluded, but the selected order with the largest and smallest calculation results are excluded. A practically sufficient result can be obtained by using the average value of the calculation results in the remaining orders as the insulation resistance.

図5は、被測定回路と絶縁監視装置への入力を示す図で、被測定回路1の対地アドミッタンスを形成する絶縁抵抗Rと対地静電容量Cは大地に対して並列となり、この並列回路から大地及び変圧器TRの2次側接地線2を経由して漏れ電流Ig0が流れる。 FIG. 5 is a diagram showing the input to the circuit under test and the insulation monitoring device. The insulation resistance R and the ground capacitance C forming the ground admittance of the circuit under test 1 are parallel to the ground. flowing leakage current Ig 0 through the earth and transformer secondary side ground line 2 of TR.

絶縁監視装置6へは、被測定回路1に設置した零相変流器3によって検出した漏れ電流Ig0の2次出力Ig及び対地電圧存在相より検出した対地電圧Vが入力される。 The insulation monitoring device 6 receives the secondary output Ig of the leakage current Ig 0 detected by the zero-phase current transformer 3 installed in the circuit under test 1 and the ground voltage V detected from the ground voltage existence phase.

図6は本発明の絶縁監視装置の実施例を示す構成図である。図6において6は監視装置であり、次の各部から構成されている。3は図5で示した漏れ電流検出用の零相変流器であり、その2次出力線4は対地電圧検出線5とともに入力部41に入力される。51は監視装置の内部に動作用電圧を供給する電源部、6aは入力部にて内部信号に変換されたアナログ信号を後述する演算処理部6cの指示を受けて前記入力部41の出力をサンプリング及びディジタル値に変換するA/D変換部、6bは漏れ電流について高調波成分を抽出するためのフーリエ変換部、6cはA/D変換部6aに対するサンプリング及びディジタル変換指示、また得られたディタル値を記憶部6dに記憶させると共に、前記実施例の方法により絶縁抵抗及び抵抗分漏れ電流を算出するための演算処理部である。また、演算処理部6cは算出結果である絶縁抵抗値及び抵抗分漏れ電流値の後述する出力部6gへの出力も併せて行う。   FIG. 6 is a block diagram showing an embodiment of the insulation monitoring apparatus of the present invention. In FIG. 6, reference numeral 6 denotes a monitoring device, which is composed of the following units. Reference numeral 3 denotes a leakage current detection zero-phase current transformer shown in FIG. 5, and the secondary output line 4 is input to the input unit 41 together with the ground voltage detection line 5. Reference numeral 51 denotes a power supply unit that supplies an operating voltage to the inside of the monitoring device. A / D conversion unit for converting to a digital value, 6b is a Fourier transform unit for extracting harmonic components of leakage current, 6c is a sampling and digital conversion instruction for the A / D conversion unit 6a, and the obtained digital value Is stored in the storage unit 6d and is an arithmetic processing unit for calculating an insulation resistance and a resistance leakage current by the method of the above embodiment. The arithmetic processing unit 6c also outputs an insulation resistance value and a resistance leakage current value, which are calculation results, to an output unit 6g described later.

出力部6gは、被測定回路の絶縁状態の情報として、前記演算処理部6cにより得られた結果を表示器などの視覚表示、ブザーなどの音声通知あるいは、通信により上位装置10への遠隔通知を行うための出力部である。設定部6eは警報出力の判断値などを与えるものであり、絶縁抵抗や抵抗分漏れ電流の演算値がこの設定値に達した場合に出力部6aあるいは上位装置10に出力する。出力手段は表示器などによる視覚表示、ブザーなどの音声通知、演算結果や異常発生時刻の通知及び記録である。なお、前述の警報判断値の設定や警報保持状態の解除は上位装置10からも行える。   The output unit 6g gives the result obtained by the arithmetic processing unit 6c as visual information such as a display, a voice notification such as a buzzer, or a remote notification to the host device 10 through communication as information on the insulation state of the circuit under test. It is an output part for performing. The setting unit 6e gives a judgment value for alarm output and the like, and outputs the output value to the output unit 6a or the host device 10 when the calculated value of the insulation resistance or resistance leakage current reaches the set value. The output means is a visual display by a display device, a sound notification such as a buzzer, a notification and a recording of a calculation result and an abnormality occurrence time. The above-described alarm judgment value can be set and the alarm holding state can be canceled from the host device 10.

記憶部6dまたは上位装置10は演算結果の定期記憶を継続的に行うことができ、絶縁状態の連続記録や絶縁劣化進行状況の連続監視及び遡及チェックに利用できる。   The storage unit 6d or the host device 10 can continuously store the calculation results, and can be used for continuous recording of the insulation state, continuous monitoring of the progress of insulation deterioration, and retroactive checking.

なお、前記演算処理部6cにより抵抗分漏れ電流を算出してその値を絶縁抵抗値や抵抗分漏れ電流値と共に出力部6gに出力し、絶縁抵抗値表示器などでの表示対象、又は、ブザーなどの警報出力の対象としてもよい。   The arithmetic processing unit 6c calculates the resistance leakage current and outputs the value together with the insulation resistance value and the resistance leakage current value to the output unit 6g to display on the insulation resistance value indicator or the like or a buzzer. It is good also as a target of alarm output, such as.

また、絶縁抵抗、抵抗分漏れ電流、静電容量分漏れ電流のいずれかにつき、その大きさによって安全領域、危険領域等のように少なくとも2つの領域に区分して表示、記録、外部出力又は通報するようにしてもよい。   In addition, any one of insulation resistance, resistance leakage current, and capacitance leakage current is classified into at least two areas such as a safety area and a dangerous area depending on its magnitude, and is displayed, recorded, externally output or notified. You may make it do.

本発明による実施例を説明するための高調波1次とn次における対地電圧の関係を示す関係図である。It is a relationship figure which shows the relationship of the ground voltage in the harmonic primary and n order for demonstrating the Example by this invention. 三相交流模擬回路における漏れ電流の偶数次高調波成分値群を示す分布図である。It is a distribution map which shows the even-order harmonic component value group of the leakage current in a three-phase alternating current simulation circuit. 実負荷における漏れ電流高調波成分の分布図である。It is a distribution map of the leakage current harmonic component in an actual load. 対地電圧と漏れ電流との位相角及び漏れ電流抵抗分と静電容量分の関係を示す関係図である。It is a relationship figure which shows the phase angle of a ground voltage and a leakage current, and the relationship between a leakage current resistance component and an electrostatic capacitance component. 漏れ電流回路と絶縁監視装置への入力方法を示す回路図である。It is a circuit diagram which shows the leakage current circuit and the input method to an insulation monitoring apparatus. 本発明の実施の形態による絶縁監視装置の構成を示す構成図である。It is a block diagram which shows the structure of the insulation monitoring apparatus by embodiment of this invention. 従来技術(例えば特許文献1)による絶縁監視方式の説明図である。It is explanatory drawing of the insulation monitoring system by a prior art (for example, patent document 1). 従来技術(例えば特許文献2)による絶縁監視方式の説明図である。It is explanatory drawing of the insulation monitoring system by a prior art (for example, patent document 2). 従来の実施例(例えば特許文献3)による絶縁監視方式の説明図である。It is explanatory drawing of the insulation monitoring system by the conventional Example (for example, patent document 3).

符号の説明Explanation of symbols

V・・・被測定回路の対地電圧
n・・・n次高調波における理論的対地電圧
g・・・被測定回路の漏れ電流
g1・・・第1次高調波における仮想漏れ電流
gn・・・n次高調波における漏れ電流
R・・・絶縁抵抗
C・・・対地間静電容量
nωC・・・n次高調波における対地コンダクタンス
1・・・第1次高調波における対地アドミッタンス
n・・・n次高調波における対地アドミッタンス
φ・・・対地電圧と漏れ電流との位相角
φn・・・n次高調波における対地電圧と漏れ電流との位相角
W・・・有効電力
VA・・・皮相電力
1・・・被測定回路
2・・・変圧器2次側接地線
3・・・零相変流器
4・・・零相電流入力部
5・・・対地電圧入力部
6・・・絶縁抵抗測定機器
6a・・・A/D変換部
6b・・・フーリエ変換部
6c・・・演算処理部
6d・・・記憶部
6e・・・設定部
6g・・・出力部
10・・・上位装置
V: Ground voltage E n of the circuit to be measured Theoretical ground voltage I g at the n-th harmonic: Leakage current I g1 of the circuit to be measured: Virtual leakage current I at the first harmonic gn : Leakage current R at the nth harmonic: Insulation resistance C: Ground-to-ground capacitance nωC: Ground conductance Y at the nth harmonic: 1 ... Ground admittance at the first harmonic Y n ... Ground admittance in the n-th order harmonic φ ... Phase angle between ground voltage and leakage current φ n ... Phase angle between the ground voltage and leakage current in n-order harmonic W ... Active power VA ... Apparent power 1 ... Circuit under test 2 ... Transformer secondary side ground line 3 ... Zero phase current transformer 4 ... Zero phase current input part 5 ... Ground voltage input part 6 ... Insulation resistance measuring device 6a ... A / D conversion unit 6b ... Fourier transform unit 6c ... Arithmetic processing unit 6d ... storage unit 6e ... setting unit 6g ... output unit 10 ... host device

Claims (3)

被測定三相交流回路の対地電圧を検出する対地電圧検出手段と、
前記被測定三相交流回路から大地への漏れ電流に含まれる高調波成分中の所定次数の漏れ電流成分値を検出する高調波漏れ電流検出手段と、
前記対地電圧の所定次数における検出基準時点に対する位相を示す基準位相と前記漏れ電流の所定次数における検出基準時点に対する位相を示す基準位相との位相差を検出する位相検出手段と、
前記位相検出手段により検出した所定次数における前記漏れ電流と前記対地電圧の位相関係に基づいて、前記被測定回路の対地絶縁抵抗Rと対地コンダクタンスωC(ωは2πf、fは前記漏れ電流の基本周波数、Cは静電容量)との積ωCRの値を算出するωCR算出手段と、
前記対地電圧検出手段により検出した対地電圧Vと、前記高調波漏れ電流検出手段により検出した所定次数n(nは3の倍数)の漏れ電流成分値Ignと、前記ωCR算出手段により算出したωCRを、前記対地絶縁抵抗Rを導く所定の関係式R=F(V、Ign、ωCR)に与えて、前記対地絶縁抵抗Rを算出する対地絶縁抵抗算出手段と、
前記対地絶縁抵抗算出手段により算出した対地絶縁抵抗Rに基づいて前記被測定回路の絶縁状態に関する情報を出力する出力手段と、
を備えたことを特徴とする絶縁監視装置。
A ground voltage detecting means for detecting a ground voltage of the three-phase AC circuit to be measured;
A harmonic leakage current detecting means for detecting a leakage current component value of a predetermined order in the harmonic components included in the leakage current to ground from the measured three-phase alternating current circuit,
Phase detection means for detecting a phase difference between a reference phase indicating a phase with respect to a detection reference time in a predetermined order of the ground voltage and a reference phase indicating a phase with respect to a detection reference time in a predetermined order of the leakage current;
Based on the phase relationship between the leakage current and the ground voltage in a predetermined order which is detected by said phase detecting means, the ground insulation resistance R and ground conductance .omega.C (omega is 2πf of the circuit to be measured, f is the fundamental of the leakage current ΩCR calculating means for calculating the value of the product ωCR with the frequency, C is capacitance) ,
The ground voltage V detected by the ground voltage detection means, the leakage current component value I gn of the predetermined order n (n is a multiple of 3) detected by the harmonic leakage current detection means, and the ωCR calculated by the ωCR calculation means To the predetermined relational expression R = F (V, I gn , ωCR) for deriving the ground insulation resistance R, and the ground insulation resistance calculation means for calculating the ground insulation resistance R;
Output means for outputting information on the insulation state of the circuit under test based on the ground insulation resistance R calculated by the ground insulation resistance calculation means;
An insulation monitoring device comprising:
前記出力手段は、前記被測定三相交流回路の絶縁状態に関する情報として、前記対地絶縁抵抗算出手段により算出した対地絶縁抵抗Rが所定値以下になったこと、又は、該対地絶縁抵抗Rに基づいて算出した抵抗分漏れ電流値が所定値以上になったことを表示、記録、外部出力又は通報することと、前記対地絶縁抵抗値R、前記抵抗分漏れ電流値のうち少なくともいずれかひとつにつき、その大きさによって安全領域、危険領域等のように少なくとも2つの領域に区分して表示、記録、外部出力又は通報することのいずれか又は両方を行なうことを特徴とする請求項1の絶縁監視装置。 The output means, as information on the insulation state of the three-phase AC circuit to be measured, indicates that the ground insulation resistance R calculated by the ground insulation resistance calculation means has become a predetermined value or less, or based on the ground insulation resistance R Displaying, recording, external output or reporting that the resistance leakage current value calculated in the above has reached a predetermined value or more, and at least one of the ground insulation resistance value R and the resistance leakage current value , 2. The insulation monitoring apparatus according to claim 1, wherein one or both of display, recording, external output and notification are performed by dividing into at least two areas such as a safety area and a dangerous area depending on the size of the area. . 前記対地絶縁抵抗算出手段は、請求項1に記載の対地電圧V、漏れ電流成分値Ign 、ωCRに基づく次式、
R=(V/Ign)×((1+(ωCR)20.5×(1+(nωCR)20.5 ―(1+(ωCR)20.5)/(1+(nωCR)20.5
又は、
R=(V/Ign)×((1+(ωCR)20.5/(1+(nωCR)20.5 )/((1/(1+(ωCR)20.5)+(1/(1+(nωCR)20.5))
を、前記関係式R=F(V、Ign、ωCR)として用いることを特徴とする請求項1又は2の絶縁監視装置。
The ground insulation resistance calculation means, ground voltage V according to claim 1, leakage current component value I gn, the following equation based on? Cr,
R = (V / I gn ) × ((1+ (ωCR) 2 ) 0.5 × (1+ (nωCR) 2 ) 0.5 ― (1+ (ωCR) 2 ) 0.5 ) / (1+ (nωCR) 2 ) 0.5 )
Or
R = (V / I gn ) × ((1+ (ωCR) 2 ) 0.5 / (1+ (nωCR) 2 ) 0.5 ) / ((1 / (1+ (ωCR) 2 ) 0.5 ) + (1 / (1+ (nωCR) 2 ) 0.5 ))
Is used as the relational expression R = F (V, I gn , ωCR). 3. The insulation monitoring apparatus according to claim 1, wherein:
JP2004232032A 2004-03-16 2004-08-09 Insulation monitoring device Active JP4506959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232032A JP4506959B2 (en) 2004-03-16 2004-08-09 Insulation monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004074876 2004-03-16
JP2004232032A JP4506959B2 (en) 2004-03-16 2004-08-09 Insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2005300514A JP2005300514A (en) 2005-10-27
JP4506959B2 true JP4506959B2 (en) 2010-07-21

Family

ID=35332186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232032A Active JP4506959B2 (en) 2004-03-16 2004-08-09 Insulation monitoring device

Country Status (1)

Country Link
JP (1) JP4506959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977481B2 (en) * 2007-01-18 2012-07-18 株式会社中条エンジニアリング Insulation monitoring device
CN113391124B (en) * 2021-06-03 2023-09-29 珠海万力达电气自动化有限公司 Insulation level monitoring method, device and system for medium-voltage power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154464A (en) * 1984-08-27 1986-03-18 Toyo Commun Equip Co Ltd Measuring instrument of earth insulating resistance
JPS63175776A (en) * 1987-01-16 1988-07-20 Nkk Corp Method and device for diagnosing insulation of electric equipment
JPH01286725A (en) * 1988-05-13 1989-11-17 Fuji Electric Co Ltd Ground-fault detection system
JP2003177154A (en) * 2001-10-04 2003-06-27 Hitachi Ltd Measuring method of leakage current or resistance, its monitoring apparatus and its monitoring system
JP2004184346A (en) * 2002-12-06 2004-07-02 Hitachi Industrial Equipment Systems Co Ltd Insulation state measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154464A (en) * 1984-08-27 1986-03-18 Toyo Commun Equip Co Ltd Measuring instrument of earth insulating resistance
JPS63175776A (en) * 1987-01-16 1988-07-20 Nkk Corp Method and device for diagnosing insulation of electric equipment
JPH01286725A (en) * 1988-05-13 1989-11-17 Fuji Electric Co Ltd Ground-fault detection system
JP2003177154A (en) * 2001-10-04 2003-06-27 Hitachi Ltd Measuring method of leakage current or resistance, its monitoring apparatus and its monitoring system
JP2004184346A (en) * 2002-12-06 2004-07-02 Hitachi Industrial Equipment Systems Co Ltd Insulation state measuring apparatus

Also Published As

Publication number Publication date
JP2005300514A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
US9625503B2 (en) Method and device for analysing the quality of the electrical energy in a three-phase electric network
JP5419079B2 (en) Tap setting method of arc extinguishing reactor, tap setting device thereof, and tap setting program thereof
KR101407864B1 (en) Impedance calculation appratus and sinusoidal insulation monitoring apparatus comprising the voltage sensing
JP5494929B2 (en) Ground fault current detection method and detection apparatus
JP5743296B1 (en) Leakage location exploration method and apparatus
JP4977481B2 (en) Insulation monitoring device
JP5418219B2 (en) High voltage insulation monitoring device
KR20180015566A (en) Leakage current measuring method and leakage current measuring apparatus
JP2009145122A (en) Apparatus for measuring leakage current
JP2007071774A (en) Insulation measuring method and apparatus therefor
EP1581816B1 (en) Measuring method for deciding direction to a flickering source
JP2009198188A (en) Ground resistance meter
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
JP4506959B2 (en) Insulation monitoring device
JP4143463B2 (en) Insulation monitoring device
KR20080071259A (en) Measurement device of leakage current ohmic value on power line and method thereof
JP2004184346A (en) Insulation state measuring apparatus
JP3312172B2 (en) Distribution line ground fault protection relay test method and apparatus
KR101909379B1 (en) Leakage current measuring method and leakage current measuring apparatus
KR100771939B1 (en) Measuring instrument for an electric current leakage
JP7009025B2 (en) Voltage measuring device, voltage measuring method
KR20080015650A (en) Electric leakage detecting system
JP5636698B2 (en) DC accident point inspection device
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4506959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250