以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。
(電子写真感光体及び硬化性樹脂組成物)
図1は、本発明の電子写真感光体の好適な一実施形態を示す模式断面図である。図1に示す電子写真感光体1は、導電性支持体2と、感光層3とから構成されている。感光層3は、導電性支持体2上に、下引層4、電荷発生層5、電荷輸送層6及び保護層7がこの順序で積層された構造を有している。図1に示す電子写真感光体1では、最外層である保護層7が、下記(i)又は(ii)の反応生成物を含む硬化性樹脂組成物を硬化させてなる機能層となっている。
(i)少なくとも、フェノール構造を有する化合物と、ホルムアルデヒド若しくはホルムアルデヒドを生じる化合物と、アルコール可溶性の熱可塑性樹脂と、を反応させて得られる反応生成物。
(ii)少なくとも、アルコール可溶性でありフェノール構造を有する熱可塑性樹脂と、ホルムアルデヒド若しくはホルムアルデヒドを生じる化合物と、を反応させて得られる反応生成物。
また、図2〜5は、それぞれ本発明の電子写真感光体の他の好適な実施形態を示す模式断面図である。図2〜3に示す電子写真感光体は、図1に示す電子写真感光体と同様に電荷発生層5と電荷輸送層6とに機能が分離された感光層3を備えるものである。また、図4〜5は、電荷発生材料と電荷輸送材料とを同一の層(単層型感光層8)に含有するものである。
図2に示す電子写真感光体1は、導電性支持体2上に電荷発生層5、電荷輸送層6及び保護層7が順次積層された構造を有するものである。また、図3に示す電子写真感光体1は、導電性支持体2上に下引層4、電荷輸送層6、電荷発生層5、保護層7が順次積層された構造を有するものである。図2及び3に示す電子写真感光体1においては、保護層7が、上記の硬化性樹脂組成物を硬化させてなる機能層となっている。
また、図4に示す電子写真感光体1は、導電性支持体2上に下引層4、単層型感光層8及び保護層7が順次積層された構造を有するものである。また、図5に示す電子写真感光体1は、導電性支持体2上に単層型感光層8及び保護層7が順次積層された構造を有するものである。図4及び5に示す電子写真感光体1においては、保護層7が、上記の硬化性樹脂組成物を硬化させてなる機能層となっている。
上記のように、本発明の電子写真感光体が備える感光層は、電荷発生材料と電荷輸送材料とを同一の層に含有する単層型感光層、又は電荷発生材料を含有する層(電荷発生層)と電荷輸送材料を含有する層(電荷輸送層)とを別個に設けた機能分離型感光層のいずれであってもよい。機能分離型感光層の場合、電荷発生層と電荷輸送層の積層順序はいずれが上層であってもよい。なお、機能分離型感光層の場合、それぞれの層がそれぞれの機能を満たせばよいという機能分離ができるため、より高い機能を実現できる。
以下、代表例として図1に示す電子写真感光体1に基づいて、各要素について説明する。
導電性支持体2としては、例えば、アルミニウム、銅、亜鉛、ステンレス、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等の金属又は合金を用いて構成される金属板、金属ドラム、金属ベルト等が挙げられる。また、導電性支持体2としては、導電性ポリマー、酸化インジウム等の導電性化合物やアルミニウム、パラジウム、金等の金属又は合金を塗布、蒸着又はラミネートした紙、プラスチックフィルム、ベルト等も使用できる。
導電性支持体2の表面は、レーザ光を照射する際に生じる干渉縞を防止するために、中心線平均粗さRaで0.04μm〜0.5μmに粗面化することが好ましい。導電性支持体2の表面のRaが0.04μm未満であると、鏡面に近くなるので干渉防止効果が不十分となる傾向がある。他方、Raが0.5μmを越えると、被膜を形成しても画質が不十分となる傾向がある。非干渉光を光源に用いる場合には、干渉縞防止の粗面化は特に必要なく、導電性支持体2表面の凹凸による欠陥の発生が防げるため、より長寿命化に適する。
粗面化の方法としては、研磨剤を水に懸濁させて支持体に吹き付けることによって行う湿式ホーニング、又は回転する砥石に支持体を圧接し、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が好ましい。
また、他の粗面化の方法としては、導電性支持体2表面を粗面化することなく、導電性又は半導電性粉体を樹脂中に分散させて、支持体表面上に層を形成し、その層中に分散させる微粒子により粗面化する方法も好ましく用いられる。
上記陽極酸化処理は、アルミニウムを陽極とし電解質溶液中で陽極酸化することによりアルミニウム表面に酸化膜を形成するものである。電解質溶液としては、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、そのままの多孔質陽極酸化膜は、化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、陽極酸化膜の微細孔を加圧水蒸気又は沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行う。
陽極酸化膜の膜厚については、0.3〜15μmが好ましい。この膜厚が0.3μm未満であると、注入に対するバリア性が乏しく効果が不十分となる傾向がある。他方、15μmを超えると、繰り返し使用による残留電位の上昇を招く傾向がある。
また、導電性支持体2には、酸性水溶液による処理又はベーマイト処理を施してもよい。リン酸、クロム酸及びフッ酸からなる酸性処理液による処理は以下のようにして実施される。先ず、酸性処理液を調整する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、リン酸が10〜11質量%の範囲、クロム酸が3〜5質量%の範囲、フッ酸が0.5〜2質量%の範囲であって、これらの酸全体の濃度は13.5〜18質量%の範囲が好ましい。処理温度は42〜48℃が好ましいが、処理温度を高く保つことにより、一層速く、かつ厚い被膜を形成することができる。被膜の膜厚は、0.3〜15μmが好ましい。0.3μm未満であると、注入に対するバリア性が乏しく効果が不十分となる傾向がある。他方、15μmを超えると、繰り返し使用による残留電位の上昇を招く傾向がある。
ベーマイト処理は、90〜100℃の純水中に5〜60分間浸漬すること、又は90〜120℃の加熱水蒸気に5〜60分間接触させることにより行うことができる。被膜の膜厚は、0.1〜5μmが好ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。
下引層4は、導電性支持体2上に形成される。下引層4は、例えば、有機金属化合物及び/又は結着樹脂を含有して構成される。
有機金属化合物としては、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物、ジルコニウムカップリング剤等の有機ジルコニウム化合物、チタンキレート化合物、チタンアルコキシド化合物、チタネートカップリング剤等の有機チタン化合物、アルミニウムキレート化合物、アルミニウムカップリング剤等の有機アルミニウム化合物のほか、アンチモンアルコキシド化合物、ゲルマニウムアルコキシド化合物、インジウムアルコキシド化合物、インジウムキレート化合物、マンガンアルコキシド化合物、マンガンキレート化合物、スズアルコキシド化合物、スズキレート化合物、アルミニウムシリコンアルコキシド化合物、アルミニウムチタンアルコキシド化合物、アルミニウムジルコニウムアルコキシド化合物等が挙げられる。
有機金属化合物としては、残留電位が低く良好な電子写真特性を示すため、特に有機ジルコニウム化合物、有機チタニル化合物、有機アルミニウム化合物が好ましく使用される。
結着樹脂としては、ポリビニルアルコール、ポリビニルメチルエーテル、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、メチルセルロース、エチレン−アクリル酸共重合体、ポリアミド、ポリイミド、カゼイン、ゼラチン、ポリエチレン、ポリエステル、フェノール樹脂、塩化ビニル−酢酸ビニル共重合体、エポキシ樹脂、ポリビニルピロリドン、ポリビニルピリジン、ポリウレタン、ポリグルタミン酸、ポリアクリル酸等の公知のものが挙げられる。これらを2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて適宜設定することができる。
また、下引層4には、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス2メトキシエトキシシラン、ビニルトリアセトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−2−アミノエチルアミノプロピルトリメトキシシラン、γ−メルカプロプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、β−3,4−エポキシシクロヘキシルトリメトキシシラン等のシランカップリング剤を含有させてもよい。
また、下引層4中には、低残留電位化や環境安定性の観点から、電子輸送性顔料を混合/分散して使用することもできる。電子輸送性顔料としては、特開昭47−30330号公報に記載のペリレン顔料、ビスベンズイミダゾールペリレン顔料、多環キノン顔料、インジゴ顔料、キナクリドン顔料等の有機顔料、また、シアノ基、ニトロ基、ニトロソ基、ハロゲン原子等の電子吸引性の置換基を有するビスアゾ顔料やフタロシアニン顔料等の有機顔料、酸化亜鉛、酸化チタン等の無機顔料が挙げられる。
これらの顔料の中では、ペリレン顔料、ビスベンズイミダゾールペリレン顔料、多環キノン顔料、酸化亜鉛又は酸化チタンが、電子移動性が高いので好ましく使用される。
また、これらの顔料の表面は、分散性、電荷輸送性を制御する目的で上記カップリング剤や、結着樹脂等で表面処理してもよい。
電子輸送性顔料は多すぎると下引層4の強度を低下させ、塗膜欠陥の原因となるため、下引層4の固形分全量を基準として好ましくは95質量%以下、より好ましくは90質量%以下で使用される。
また、下引層4には、電気特性の向上や光散乱性の向上等の目的により、各種の有機化合物の微粉末若しくは無機化合物の微粉末を添加することが好ましい。特に、酸化チタン、酸化亜鉛、亜鉛華、硫化亜鉛、鉛白、リトポン等の白色顔料やアルミナ、炭酸カルシウム、硫酸バリウム等の体質顔料としての無機顔料やポリテトラフルオロエチレン樹脂粒子、ベンゾグアナミン樹脂粒子、スチレン樹脂粒子等が有効である。
添加微粉末の粒径は、0.01〜2μmのものが好ましい。微粉末は必要に応じて添加されるが、その添加量は下引層4の固形分全量を基準として、10〜90質量%であることが好ましく、30〜80質量%であることがより好ましい。
下引層4は上述した各構成材料を含有する下引層形成用塗布液を用いて形成される。下引層形成用塗布液に使用される有機溶剤としては、有機金属化合物や結着樹脂を溶解し、また、電子輸送性顔料を混合及び/又は分散したときにゲル化や凝集を起こさないものであればよい。
有機溶剤としては、例えば、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常のものが挙げられる。これらは、1種を単独で又は2種以上を混合して用いることができる。
各構成材料の混合及び/又は分散方法は、ボールミル、ロールミル、サンドミル、アトライター、振動ボールミル、コロイドミル、ペイントシェーカー超音波等を用いる常法が適用される。混合及び/又は分散は有機溶剤中で行われる。
下引層4を形成する際の塗布方法としては、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
乾燥は、通常、溶剤を蒸発させ、成膜可能な温度で行われる。特に、酸性溶液処理、ベーマイト処理を行った導電性支持体2は、基材の欠陥隠蔽力が不十分となり易いため、下引層4を形成することが好ましい。
下引層4の膜厚は、好ましくは0.01〜30μm、より好ましくは0.05〜25μmである。
電荷発生層5は、電荷発生材料、さらには必要に応じて結着樹脂を含んで構成される。
電荷発生材料は、ビスアゾ、トリスアゾ等のアゾ顔料、ジブロモアントアントロン等の縮環芳香族顔料、ペリレン顔料、ピロロピロール顔料、フタロシアニン顔料等の有機顔料や三方晶セレン、酸化亜鉛等の無機顔料等公知のものを使用することができる。電荷発生材料としては、特に、380〜500nmの露光波長の光源を用いる場合には、金属及び無金属フタロシアニン顔料、三方晶セレン、ジブロモアントアントロン等が好ましい。その中でも、特開平5−263007号公報及び特開平5−279591号公報に開示されたヒドロキシガリウムフタロシアニン、特開平5−98181号公報に開示されたクロロガリウムフタロシアニン、特開平5−140472号公報及び特開平5−140473号公報に開示されたジクロロスズフタロシアニン、特開平4−189873号公報及び特開平5−43813号公報に開示されたチタニルフタロシアニンが特に好ましい。
また、上記のヒドロキシガリウムフタロシアニンの中でも特に、分光吸収スペクトルで、810〜839nmに吸収極大を有し、一次粒子径が0.10μm以下であり、且つ、BET法による比表面積値が45m2/g以上であるものが好ましい。
結着樹脂としては、広範な絶縁性樹脂から選択することができる、また、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシランなどの有機光導電性ポリマーから選択することもできる。好ましい結着樹脂としては、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノールAとフタル酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等の絶縁性樹脂を挙げることができるが、これらに限定されるものではない。これらの結着樹脂は、1種を単独で又は2種以上を混合して用いることができる。
電荷発生層5は、電荷発生材料を蒸着により、又は電荷発生材料及び結着樹脂を含有する電荷発生層形成用塗布液により形成される。電荷発生層5を、電荷発生層形成用塗布液を用いて形成する場合、電荷発生材料と結着樹脂の配合比(質量比)は、10:1〜1:10の範囲が好ましい。
電荷発生層形成用塗布液に、上記各構成材料を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の通常の方法を用いることができる。この際、分散によって顔料の結晶型が変化しない条件が必要とされる。さらにこの分散の際、粒子を好ましくは0.5μm以下、より好ましくは0.3μm以下、さらに好ましくは0.15μm以下の粒子サイズにすることが有効である。
分散に用いる溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤が挙げられる。これらは、1種を単独で又は2種以上を混合して用いることができる。
電荷発生層形成用塗布液を用いて電荷発生層5を形成する際には、塗布方法としては、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
電荷発生層5の膜厚は、好ましくは0.1〜5μm、より好ましくは0.2〜2.0μmである。
電荷輸送層6は、電荷輸送材料及び結着樹脂を含有して、又は高分子電荷輸送材を含有して構成される。
電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン等のフルオレノン化合物、キサントン系化合物、ベンゾフェノン系化合物、シアノビニル系化合物、エチレン系化合物等の電子輸送性化合物、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物等の正孔輸送性化合物が挙げられるが、特にこれらに限定されない。これらの電荷輸送材料は、1種を単独で又は2種以上を混合して用いることができる。
また、電荷輸送材料としては、モビリティーの観点から、下記一般式(a−1)、(a−2)又は(a−3)で示される化合物が好ましい。
上記式(a−1)中、R34は水素原子又はメチル基を、k10は1又は2を示す。また、Ar6及びAr7は置換もしくは未置換のアリール基、−C6H4−C(R38)=C(R39)(R40)、又は、−C6H4−CH=CH−CH=C(Ar)2を示し、置換基としてはハロゲン原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、又は炭素数1〜3のアルキル基で置換された置換アミノ基が挙げられる。また、R38、R39、R40は水素原子、置換又は未置換のアルキル基、置換又は未置換のアリール基を、Arは置換又は未置換のアリール基を示す。
上記式(a−2)中、R35及びR35’はそれぞれ独立に水素原子、ハロゲン原子、炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基を、R36、R36’、R37及びR37’はそれぞれ独立にハロゲン原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、炭素数1〜2のアルキル基で置換されたアミノ基、置換若しくは未置換のアリール基、−C(R38)=C(R39)(R40)、又は、−CH=CH−CH=C(Ar)2を、R38、R39及びR40はそれぞれ独立に水素原子、置換若しくは未置換のアルキル基、又は置換若しくは未置換のアリール基を、Arは置換又は未置換のアリール基を示す。また、m4及びm5はそれぞれ独立に0〜2の整数を示す。
ここで、上記式(a−3)中、R41は水素原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、置換若しくは未置換のアリール基、又は、−CH=CH−CH=C(Ar)2を示す。Arは、置換又は未置換のアリール基を示す。R42、R42’、R43、及びR43’はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、炭素数1〜2のアルキル基で置換されたアミノ基、又は置換若しくは未置換のアリール基を示す。
電荷輸送層6に用いる結着樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂等が挙げられる。これらの結着樹脂は、1種を単独で又は2種以上を混合して用いることができる。電荷輸送材料と結着樹脂との配合比(質量比)は、10:1〜1:5が好ましい。
また、高分子電荷輸送材としては、ポリ−N−ビニルカルバゾール、ポリシラン等の電荷輸送性を有する公知のものを用いることができる。特に、特開平8−176293号公報や特開平8−208820号公報に示されているポリエステル系高分子電荷輸送材は、高い電荷輸送性を有しており、特に好ましいものである。
高分子電荷輸送材はそれだけでも電荷輸送層6の構成材料として使用可能であるが、上記結着樹脂と混合して成膜してもよい。
電荷輸送層6は、上記構成材料を含有する電荷輸送層形成用塗布液を用いて形成される。
電荷輸送層形成用塗布液の溶剤としては、ベンゼン、トルエン、キシレン、クロルベンゼン等の芳香族炭化水素類、アセトン、2−ブタノン等のケトン類、塩化メチレン、クロロホルム、塩化エチレン等のハロンゲン化脂肪族炭化水素類、テトラヒドロフラン、エチルエーテル等の環状若しくは直鎖状のエーテル類等の通常の有機溶剤が挙げられる。これらは1種を単独で或いは2種以上を混合して用いることができる。
電荷輸送層形成用塗布液の塗布方法としては、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
電荷輸送層6の膜厚は、好ましくは5〜50μm、より好ましくは10〜30μmである。
感光層3には、画像形成装置中で発生するオゾンや酸化性ガス、又は光、熱による感光体の劣化を防止する目的で、酸化防止剤、光安定剤、熱安定剤等の添加剤を添加することができる。
酸化防止剤としては、例えば、ヒンダードフェノール、ヒンダードアミン、パラフェニレンジアミン、アリールアルカン、ハイドロキノン、スピロクロマン、スピロインダノン及びそれらの誘導体、有機硫黄化合物、有機燐化合物等が挙げられる。光安定剤としては、例えば、ベンゾフェノン、ベンゾトリアゾール、ジチオカルバメート、テトラメチルピペリジン等の誘導体が挙げられる。
また、感光層3には、感度の向上、残留電位の低減、繰り返し使用時の疲労低減等を目的として、少なくとも1種の電子受容性物質を含有させることができる。
電子受容物質としては、例えば、無水コハク酸、無水マレイン酸、ジブロム無水マレイン酸、無水フタル酸、テトラブロム無水フタル酸、テトラシアノエチレン、テトラシアノキノジメタン、o−ジニトロベンゼン、m−ジニトロベンゼン、クロラニル、ジニトロアントラキノン、トリニトロフルオレノン、ピクリン酸、o−ニトロ安息香酸、p−ニトロ安息香酸、フタル酸等を挙げることができる。これらのうち、フルオレノン系、キノン系や、Cl、CN、NO2等の電子吸引性置換基を有するベンゼン誘導体が特に好ましい。
本実施形態の電子写真感光体1においては、保護層7が、下記(i)又は(ii)の反応生成物(フェノール樹脂複合体)を含む硬化性樹脂組成物を硬化させてなる機能層であり、感光体の最外層である。以下、硬化性樹脂組成物を構成する各成分について説明する。
(i)少なくとも、フェノール構造を有する化合物と、ホルムアルデヒド若しくはホルムアルデヒドを生じる化合物と、アルコール可溶性の熱可塑性樹脂と、を反応させて得られる反応生成物。
(ii)少なくとも、アルコール可溶性でありフェノール構造を有する熱可塑性樹脂と、ホルムアルデヒド若しくはホルムアルデヒドを生じる化合物と、を反応させて得られる反応生成物。
上記フェノール構造を有する化合物としては、例えば、レゾルシン、ビスフェノール等、フェノール、クレゾール、キシレノール、パラアルキルフェノール、パラフェニルフェノール等の水酸基を1個含む置換フェノール類、カテコール、レゾルシノール、ヒドロキノン等の水酸基を2個含む置換フェノール類、ビスフェノールA、ビスフェノールZなどのビスフェノール類、ビフェノール類等を挙げることができる。
また、上記フェノール構造を有する化合物として、上記のフェノール構造を有する化合物とホルムアルデヒド又はホルムアルデヒドを生ずる化合物とを反応させることで得られるフェノール樹脂を用いてもよい。かかるフェノール樹脂としては、モノメチロールフェノール類、ジメチロールフェノール類、トリメチロールフェノール類のモノマー、及びそれらの混合物、又はそれらをオリゴマー化したもの、並びにモノマーとオリゴマーの混合物などが挙げられる。また、これらのフェノール樹脂を得るための反応は、酸、あるいは、アルカリなどの触媒下で行なうことが好ましい。このとき用いられる酸触媒としては、硫酸、パラトルエンスルホン酸、フェノールスルホン酸、リン酸などが挙げられる。アルカリ触媒としては、NaOH、KOH、Ca(OH)2、Mg(OH)2、Ba(OH)2、CaO、MgO等のアルカリ金属及びアルカリ土類金属の水酸化物や酸化物、あるいはアミン系触媒や、酢酸亜鉛、酢酸ナトリウムなどの酢酸塩類などが挙げられる。ここで、アミン系触媒としては、アンモニア、ヘキサメチレンテトラミン、トリメチルアミン、トリエチルアミン、トリエタノールアミン等が挙げられるが、これらに限定されるものではない。なお、用いる触媒によっては、残留する触媒によりキャリアが著しくトラップされ、電子写真特性を悪化させる場合がある。そのような場合は、触媒を減圧で留去するか、中和するか、シリカゲルなどの吸着剤やイオン交換樹脂などと接触させることにより不活性化、あるいは、除去することが好ましい。
ホルムアルデヒド又はホルムアルデヒドを生ずる化合物としては、ホルムアルデヒドの他、ホルムアルデヒドを生ずる化合物として、パラホルムアルデヒド、ヘキサメチレンテトラミン等のアルデヒド誘導体、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド、ベンズアルデヒドに代表される芳香族アルデヒド、フルフラール等の異節環アルデヒドなどが挙げられ、これらを単独であるいは2種以上を組み合わせて用いることができる。これらの中で好ましいものは、ホルムアルデヒド及びパラホルムアルデヒドである。
上記アルコール可溶性の熱可塑性樹脂としては、アルコール系溶剤(メタノール、エタノール、ブタノール等)に溶解するものであれば特に限定されるものではないが、例えば、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂等のポリビニルアセタール樹脂、エチルセルロース等のセルロール樹脂、ノボラック型フェノール樹脂、ポリビニルフェノール樹脂等が挙げられる。これらの樹脂は、他の成分と直接化学結合を形成するものであっても、IPN(Interpenetrating Polymer Network)構造を形成するものであってもよい。また、これらの樹脂は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、2種以上のモノマーからなる共重合体であってもよい。上記樹脂の中でも、電気特性及び成膜性をより向上させる観点から、ノボラック型フェノール樹脂、ポリビニルフェノール樹脂、ポリビニルアセタール樹脂が好ましい。
上記ノボラック型フェノール樹脂とは、フェノール類を酸性触媒等で縮合させて得られる可溶可融性樹脂のことをいう。このようなノボラック型フェノール樹脂としては、市販のものでは例えば、「タマノール−758」、「タマノール−7759」(荒川化学工業(株)製、商品名)、「ECN−1280」(チバガイギー(株)社製、商品名)、「PR−HF−3」、「PR−HF−6」、「PR−53194」、「PR−53195」、「PR−54869」(住友ベークライト社製、商品名)等が挙げられる。
また、上記ポリビニルフェノール樹脂とは、ビニルフェノール類を単独で又はその他の共重合可能な成分と重合させて得られる樹脂のことをいう。ビニルフェノール類としては、例えば、p−ヒドロキシスチレン、4−ビニル−2−メチルフェノール、4−ビニル−3−メチルフェノール、4−ビニル−2−エチルフェノール、4−ビニル−3−エチルフェノール等のいわゆるビニル基(CH2=CH−)を有する化合物、4−イソプロペニルフェノール、4−イソプロペニル−2−メチルフェノール、4−イソプロペニル−3−メチルフェノール、4−イソプロペニル−2−エチルフェノール等のビニル基(CH2=C(CH3)−)を有する化合物が挙げられる。また、その他の共重合可能な成分としては、例えば、スチレン類、アクリル酸及びそのエステル誘導体、α−置換アクリル酸及びそのエステル誘導体などのモノマーが挙げられる。スチレン類の例としてはスチレンや置換スチレン等が挙げられ、アクリル酸及びそのエステル誘導体の例としてはアクリル酸、アクリル酸メチル類が挙げられ、α−置換アクリル酸及びそのエステル誘導体の例としては、メタクリル酸、メタクリル酸エチル、メタクリル酸ターシャリーブチル等が挙げられる。
商業的に入手可能なポリビニルフェノール樹脂としては、例えば、「マルカリンカーMシリーズ」、「マルカリンカーCHM」、「マルカリンカーCMM」、「マルカリンカーMB」、「マルカリンカーPHM−C」、「マルカリンカーCSTシリーズ」(以上、丸善石油化学社製、商品名)等が挙げられる。
上記ポリビニルアセタール樹脂としては、例えば、「エスレックシリーズ」(積水化学社製、商品名)等が市販のものとして挙げられる。
また、上記アルコール可溶性でありフェノール構造を有する熱可塑性樹脂としては、例えば、上記のノボラック型フェノール樹脂、上記のポリビニルフェノール樹脂が挙げられる。
上記のアルコール可溶性の熱可塑性樹脂及びアルコール可溶性でありフェノール構造を有する熱可塑性樹脂の重量平均分子量は、300〜100000が好ましく、500〜5000がより好ましい。かかる重量平均分子量が300未満であると、硬化性樹脂組成物を硬化させてなる機能層の機械的強度、耐傷性、成膜性等を十分向上させる効果が得られ難くなる傾向にある。一方、かかる重量平均分子量が100000を超えると、(i)又は(ii)の反応生成物の塗布液への溶解度が低下することによりかかる樹脂の添加量が制限されやすくなる、(i)又は(ii)の反応生成物を製造する際にゲル化しやすくなる、或いは、硬化性樹脂組成物を硬化させて機能層(本実施形態においては保護層7)を形成する場合に成膜不良が発生し易くなる等の不都合が生じる場合がある。
(i)の反応生成物は、例えば、上記フェノール構造を有する化合物及び上記アルコール可溶性の熱可塑性樹脂を所定の溶媒に溶解させ、更に上記ホルムアルデヒド若しくはホルムアルデヒドを生じる化合物と、必要に応じて所定の触媒とを添加し、温度60〜120℃で1〜48時間加熱撹拌することにより合成することができる。なお、フェノール構造を有する化合物が上記熱可塑性樹脂を十分溶解可能なものであれば、必ずしも溶媒を用いる必要はない。なお、用いる触媒によっては、残留する触媒によりキャリアが著しくトラップされ、電子写真特性を悪化させる場合がある。そのような場合は、触媒を減圧で留去するか、中和するか、シリカゲルなどの吸着剤やイオン交換樹脂などと接触させることにより不活性化、あるいは、除去することが好ましい。本実施形態においては、反応後の反応液を減圧下(例えば、10〜100mmHg)、温度20〜60℃で乾燥させる乾燥工程を行い、更に、乾燥させたものを再び上記溶媒に溶解させる溶解工程と、上記乾燥工程とを3回以上繰り返すことが好ましい。
上記所定の溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類やアセトン、MEK(メチルエチルケトン)などのケトン、酢酸エチル等のエステル類等、上記の温度及び減圧度で蒸発する溶剤等が挙げられる。
上記所定の触媒としては、酸及びアルカリなどの触媒が挙げられる。酸触媒としては、硫酸、パラトルエンスルホン酸、フェノールスルホン酸、リン酸などが挙げられる。アルカリ触媒としては、NaOH、KOH、Ca(OH)2、Mg(OH)2、Ba(OH)2、CaO、MgO等のアルカリ金属及びアルカリ土類金属の水酸化物や酸化物、あるいはアミン系触媒や、酢酸亜鉛、酢酸ナトリウムなどの酢酸塩類などが挙げられる。ここで、アミン系触媒としては、アンモニア、ヘキサメチレンテトラミン、トリメチルアミン、トリエチルアミン、トリエタノールアミン等が挙げられる。
また、(ii)の反応生成物は、例えば、上記アルコール可溶性でありフェノール構造を有する熱可塑性樹脂を所定の溶媒に溶解させ、更に上記ホルムアルデヒド若しくはホルムアルデヒドを生じる化合物と、必要に応じて所定の触媒とを添加し、温度60〜120℃で1〜48時間加熱撹拌することにより合成することができる。溶媒及び触媒は、上記と同様のものを用いることができる。なお、用いる触媒によっては、残留する触媒によりキャリアが著しくトラップされ、電子写真特性を悪化させる場合がある。そのような場合は、触媒を減圧で留去するか、中和するか、シリカゲルなどの吸着剤やイオン交換樹脂などと接触させることにより不活性化、あるいは、除去することが好ましい。本実施形態においては、反応後の反応液を減圧下(例えば、10〜100mmHg)、温度20〜60℃で乾燥させる乾燥工程を行い、更に、乾燥させたものを再び上記溶媒に溶解させる溶解工程と、上記乾燥工程とを3回以上繰り返すことが好ましい。
上記(i)及び(ii)においては、上記フェノール構造を有する化合物、上記アルコール可溶性の熱可塑性樹脂、及び、上記アルコール可溶性でありフェノール構造を有する熱可塑性樹脂のすべてを併用してもよい。
本実施形態において、硬化性樹脂組成物における上記(i)又は(ii)の反応生成物の含有量は、硬化性樹脂組成物中の固形分全量を基準として10〜90質量%であることが好ましく、20〜80質量%であることがより好ましく、30〜70質量%であることが特に好ましい。この含有量が10質量%未満であると、硬化反応が不十分で強度不足になる傾向があり、90質量%を超えると、電気特性等の電子写真感光体としての特性が不十分になる傾向がある。
上記(i)又は(ii)の反応生成物を含む硬化性樹脂組成物は、良好な電気特性を有する保護層7を形成するために、導電性微粒子、又は、電荷輸送性物質若しくはその誘導体のうちの1種以上を含有することが好ましい。
上記導電性微粒子としては、例えば、金属、金属酸化物及びカーボンブラック等が挙げられる。金属としては、例えば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀及びステンレス等、又はこれらの金属をプラスチックの粒子の表面に蒸着したもの等が挙げられる。金属酸化物としては、例えば、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ及びアンチモンをドープした酸化ジルコニウム等が挙げられる。これらの導電性微粒子は、1種を単独で又は2種以上を組み合わせて用いることができる。2種以上を組み合わせて用いる場合は、単に混合しても、固溶体や融着の形にしてもよい。
本実施形態においては、保護層7の透明性を十分確保する観点から、上記導電性微粒子のうち金属酸化物を用いることが好ましい。また、同様の理由から、上記導電性微粒子の体積平均粒径が0.3μm以下であることが好ましく、0.1μm以下であることがより好ましい。
更に、上記導電性微粒子は、分散性のコントロールなどのために微粒子の表面が処理されていることが好ましい。このような処理に用いる処理剤としては、シランカップリング剤、シリコーンオイル、シロキサン化合物、及び界面活性剤等が挙げられる。これらはフッ素原子を含有することが好ましい。
硬化性樹脂組成物における導電性微粒子の含有量は、上記(i)又は(ii)の反応生成物の合計100質量部に対して、10〜200質量部であることが好ましく、20〜100質量部であることがより好ましい。かかる含有量が10質量部未満であると、良好な電気特性が得られにくくなる傾向があり、200質量部を超えると、成膜性が低下し強度が低下する傾向がある。
上記電荷輸送性物質としては、反応性官能基を有するものであって、上記(i)又は(ii)の反応生成物と相溶するものが好ましく、更に、かかる反応生成物と化学結合を形成するものがより好ましい。
反応性官能基を有する電荷輸送性物質としては、下記一般式(I)、(II)、(III)、(IV)又は(V)で示される化合物が、成膜性、機械強度及び安定性に優れるため好ましい。
F[−D−Si(R
1)
(3-a)Q
a]
b (I)
[式(I)中、Fは正孔輸送能を有する化合物から誘導される有機基を、Dは可とう性を有する2価の基を、R
1は水素原子、置換若しくは未置換のアルキル基又は置換若しくは未置換のアリール基を、Qは加水分解性基を、aは1〜3の整数を、bは1〜4の整数を示す。]
F[−(X
1)
n1R
2−Z
1H]
m1 (II)
[式(II)中、Fは正孔輸送能を有する化合物から誘導される有機基を示し、R
2はアルキレン基を示し、Z
1は酸素原子、硫黄原子、NH又はCOOを示し、X
1は酸素原子又は硫黄原子を示し、m1は1〜4の整数を示し、n1は0又は1を示す。]
F[−(X
2)
n2−(R
3)
n3−(Z
2)
n4G]
n5 (III)
[式(III)中、Fは正孔輸送能を有する化合物から誘導される有機基を示し、X
2は酸素原子又は硫黄原子を示し、R
3はアルキレン基を示し、Z
2は、酸素原子、硫黄原子、NH又はCOOを示し、Gはエポキシ基を示し、n2、n3及びn4はそれぞれ独立に0又は1を示し、n5は1〜4の整数を示す。]
[式(IV)中、Fは正孔輸送性を有する化合物から誘導される有機基を示し、Tは2価の基を示し、Yは酸素原子又は硫黄原子を示し、R
4、R
5及びR
6はそれぞれ独立に水素原子又は1価の有機基を示し、R
7は1価の有機基を示し、m2は0又は1を示し、n6は1〜4の整数を示す。但し、R
6とR
7は互いに結合してYをヘテロ原子とする複素環を形成してもよい。]
[式(V)中、Fは正孔輸送性を有する化合物から誘導される有機基を示し、Tは2価の基を示し、R
8は1価の有機基を示し、m3は0又は1を示し、n7は1〜4の整数を示す。]
また、上記一般式(I)〜(V)で表わされる化合物における上記Fは、下記一般式(VI)で表される基であることが好ましい。
[式(VI)中、Ar
1、Ar
2、Ar
3及びAr
4はそれぞれ独立に置換又は未置換のアリール基を示し、Ar
5は置換若しくは未置換のアリール基又はアリーレン基を示し、且つAr
1〜Ar
5のうち1〜4個は、上記一般式(I)で表わされる化合物における下記一般式(VII)で示される部位、上記一般式(II)で表わされる化合物における下記一般式(VIII)で示される部位、上記一般式(III)で表わされる化合物における下記一般式(IX)で示される部位、上記一般式(IV)で表わされる化合物における下記一般式(X)で示される部位、又は、上記一般式(V)で表わされる化合物における下記一般式(XI)で示される部位と結合するための結合手を有する。]
−D−Si(R
1)
(3-a)Q
a (VII)
−(X
1)
n1R
1−Z
1H (VIII)
−(X
2)
n2−(R
2)
n3−(Z
2)
n4G (IX)
また、上記一般式(VI)中のAr1〜Ar4で示される置換又は未置換のアリール基としては、具体的には、下記一般式(1)〜(7)に示されるアリール基が好ましい。
上記式(1)〜(7)中、R9は水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、それらで置換されたフェニル基若しくは未置換のフェニル基、又は炭素数7〜10のアラルキル基を示し、R10〜R12はそれぞれ水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のアルコキシ基、それらで置換されたフェニル基若しくは未置換のフェニル基、炭素数7〜10のアラルキル基又はハロゲン原子を示し、Arは置換又は未置換のアリーレン基を示し、Xは上記一般式(VII)〜(XI)で表される構造のいずれかを示し、c及びsはそれぞれ0又は1を示し、tは1〜3の整数を示す。
また、上記式(7)で示されるアリール基におけるArとしては、下記式(8)又は(9)で示されるアリーレン基が好ましい。
上記式(8)、(9)中、R13及びR14はそれぞれ水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のアルコキシ基で置換されたフェニル基、または未置換のフェニル基、炭素数7〜10のアラルキル基、又は、ハロゲン原子を示し、tは1〜3の整数を示す。
また、上記式(7)で示されるアリール基におけるZ’としては、下記式(10)〜(17)で示される2価の基が好ましい。
式(10)〜(17)中、R15及びR16はそれぞれ水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数1〜4のアルコキシ基で置換されたフェニル基、または未置換のフェニル基、炭素数7〜10のアラルキル基、又は、ハロゲン原子を示し、Wは2価の基を示し、q及びrはそれぞれ1〜10の整数を示し、tはそれぞれ1〜3の整数を示す。
また、上記式(16)〜(17)中、Wは下記式(18)〜(26)で示される2価の基を示す。なお、式(25)中、uは0〜3の整数を示す。
また、上記一般式(VI)におけるAr5の具体的構造としては、k=0の時は上記Ar1〜Ar4の具体的構造におけるc=1の構造が、k=1の時は上記Ar1〜Ar4の具体的構造におけるc=0の構造が挙げられる。
また、上記一般式(I)で示される化合物としては、より具体的には、下記化合物(I−1)〜(I−61)が挙げられる。なお、下記化合物(I−1)〜(I−61)は、一般式(VI)で示される化合物のAr1〜Ar5及びkを下記の表に示されるように組み合わせ、且つ、アルコキシシリル基(s)を下記の表に示される特定のものとしたものである。
また、上記一般式(II)で示される化合物としては、より具体的には、下記化合物(II−1)〜(II−37)が挙げられる。なお、下記表中、結合手は記載されているが置換基が記載されていないものはメチル基を示す。
また、上記一般式(III)で示される化合物としては、より具体的には、下記化合物(III−1)〜(III−47)が挙げられる。なお、下記表中、Me又は結合手は記載されているが置換基が記載されていないものはメチル基を、Etはエチル基を示す。
また、上記一般式(IV)で表される化合物としては、より具体的には、下記化合物(IV−1)〜(IV−40)が挙げられる。なお、下記表中、Me又は結合手は記載されているが置換基が記載されていないものはメチル基を、Etはエチル基を示す。
また、上記一般式(V)で表される化合物としては、より具体的には、下記化合物(V−1)〜(V−55)が挙げられる。なお、下記表中、Me又は結合手は記載されているが置換基が記載されていないものはメチル基を示す。
また、保護層7を形成するための硬化性樹脂組成物には、保護層7の強度、膜抵抗等の種々の物性をコントロールするために、下記一般式(XII)で示される化合物を添加することもできる。
Si(R50)(4−c)Qc (XII)
[上記式(XII)中、R50は水素原子、アルキル基又は置換若しくは未置換のアリール基を、Qは加水分解性基を、cは1〜4の整数を示す。]
上記一般式(XII)で示される化合物の具体例としては以下のようなシランカップリング剤が挙げられる。シランカップリング剤としては、テトラメトキシシラン、テトラエトキシシラン等の四官能性アルコキシシラン(c=4);メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、メチルトリメトキシエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、3−(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、1H,1H,2H,2H−パーフルオロアルキルトリエトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H−パーフルオロオクチルトリエトシキシラン等の三官能性アルコキシシラン(c=3);ジメチルジメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジメトキシシラン等の二官能性アルコキシシラン(c=2);トリメチルメトキシシラン等の1官能アルコキシシラン(c=1)等を挙げることができる。膜の強度を向上させるためには3及び4官能のアルコキシシランが好ましく、可とう性、成膜性を向上させるためには1及び2官能のアルコキシシランが好ましい。
また、主にこれらのカップリング剤より作製されるシリコン系ハードコート剤も用いることができる。市販のハードコート剤としては、KP−85、X−40−9740、X−40−2239(以上、信越シリコーン社製)、及びAY42−440、AY42−441、AY49−208(以上、東レダウコーニング社製)等を用いることができる。
また、保護層7を形成するための硬化性樹脂組成物には、保護層7の強度を高めるために、下記一般式(XIII)に示すような2つ以上のケイ素原子を有する化合物を用いることも好ましい。
B−(Si(R51)(3−d)Qd)2 (XIII)
[上記式(XIII)中、Bは2価の有機基を、R51は水素原子、アルキル基又は置換若しくは未置換のアリール基を、Qは加水分解性基を、dは1〜3の整数を示す。]
上記一般式(XIII)で示される化合物としては、より具体的には、下記化合物(XIII−1)〜(XIII−16)が好ましいものとして挙げることができる。
さらに、膜特性のコントロール、液寿命の延長等のため、アルコール系、ケトン系溶剤に可溶な樹脂を添加してもよい。このような樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂等のポリビニルアセタール樹脂(たとえば積水化学社製エスレックB、K等)、ポリアミド樹脂、セルロース樹脂、フェノール樹脂等が挙げられる。特に、電気特性を向上させる観点から、ポリビニルアセタール樹脂が好ましい。
また、放電ガス耐性、機械強度、耐傷性、粒子分散性、粘度コントロール、トルク低減、磨耗量コントロール、ポットライフの延長等の目的で種々の樹脂を添加することができる。本実施形態においては、アルコールに溶解する樹脂を更に加えることが好ましい。アルコール系溶剤に可溶な樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂等のポリビニルアセタール樹脂(たとえば積水化学社製エスレックB、K等)、ポリアミド樹脂、セルロ−ス樹脂等が挙げられる。特に、電気特性を向上させる観点から、ポリビニルアセタール樹脂が好ましい。
上記樹脂の分子量は2000〜100000が好ましく、5000〜50000がさらに好ましい。分子量は2000より小さいと所望の効果が得られなくなる傾向があり、100000より大きいと溶解度が低くなり添加量が限られてしまったり、塗布時に製膜不良の原因になったりする傾向がある。添加量は1〜40質量%が好ましく、さらに好ましくは1〜30質量%であり、5〜20質量%が最も好ましい。添加量が1質量%よりも少ない場合は所望の効果が得られにくくなり、40質量%よりも多くなると高温高湿下での画像ボケが発生しやすくなる恐れがある。また、上記の樹脂は単独で用いてもよいが、それらを混合して用いてもよい。
また、ポットライフの延長、膜特性のコントロールのため、下記一般式(XIV)で示される繰り返し構造単位を持つ環状化合物、若しくはその化合物からの誘導体を含有させることが好ましい。
[上記式(XIV)中、A
1及びA
2は、それぞれ独立に一価の有機基を示す。]
一般式(XIV)で示される繰り返し構造単位を持つ環状化合物としては、市販の環状シロキサンを挙げることができる。具体的には、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状ジメチルシクロシロキサン類、1,3,5−トリメチル−1,3,5−トリフェニルシクロトリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7,9−ペンタメチル−1,3,5,7,9−ペンタフェニルシクロペンタシロキサン等の環状メチルフェニルシクロシロキサン類、ヘキサフェニルシクロトリシロキサン等の環状フェニルシクロシロキサン類、3−(3,3,3−トリフルオロプロピル)メチルシクロトリシロキサン等のフッ素原子含有シクロシロキサン類、メチルヒドロシロキサン混合物、ペンタメチルシクロペンタシロキサン、フェニルヒドロシクロシロキサン等のヒドロシリル基含有シクロシロキサン類、ペンタビニルペンタメチルシクロペンタシロキサン等のビニル基含有シクロシロキサン類等の環状のシロキサン等を挙げることができる。これらの環状シロキサン化合物は1種を単独で用いてもよいが、2種以上を混合して用いてもよい。
更に、電子写真感光体表面の耐汚染物付着性、潤滑性、硬度等を制御するために、保護層7を形成するための硬化性樹脂組成物には、各種微粒子を添加することもできる。
微粒子の一例として、ケイ素原子含有微粒子を挙げることができる。ケイ素原子含有微粒子とは、構成元素にケイ素を含む微粒子であり、具体的には、コロイダルシリカ及びシリコーン微粒子等が挙げられる。ケイ素原子含有微粒子として用いられるコロイダルシリカは、体積平均粒子径が好ましくは1〜100nm、より好ましくは10〜30nmであり、酸性若しくはアルカリ性の水分散液、或いはアルコール、ケトン、エステル等の有機溶媒中に分散させたものから選ばれ、一般に市販されているものを使用することができる。硬化性樹脂組成物中のコロイダルシリカの固形分含有量は、特に限定されるものではないが、成膜性、電気特性、強度の面から硬化性樹脂組成物中の固形分全量を基準として好ましくは0.1〜50質量%の範囲、より好ましくは0.1〜30質量%の範囲で用いられる。
ケイ素原子含有微粒子として用いられるシリコーン微粒子は、球状で、体積平均粒子径が好ましくは1〜500nm、より好ましくは10〜100nmであり、シリコーン樹脂粒子、シリコーンゴム粒子及びシリコーン表面処理シリカ粒子から選ばれ、一般に市販されているものを使用することができる。
シリコーン微粒子は、化学的に不活性で、樹脂への分散性に優れる小径粒子であり、さらに十分な特性を得るために必要とされる含有量が低いため、架橋反応を阻害することなく、電子写真感光体の表面性状を改善することができる。即ち、強固な架橋構造中に均一に取り込まれた状態で、電子写真感光体表面の潤滑性、撥水性を向上させ、長期間にわたって良好な耐磨耗性、耐汚染物付着性を維持することができる。硬化性樹脂組成物中のシリコーン微粒子の含有量は、硬化性樹脂組成物中の固形分全量を基準として好ましくは0.1〜30質量%の範囲であり、より好ましくは0.5〜10質量%の範囲である。
また、その他の微粒子としては、4弗化エチレン、3弗化エチレン、6弗化プロピレン、弗化ビニル、弗化ビニリデン等のフッ素系微粒子や”第8回ポリマー材料フォーラム講演予稿集 p89”に示されるような、フッ素樹脂と水酸基を有するモノマーを共重合させた樹脂からなる微粒子、ZnO−Al2O3、SnO2−Sb2O3、In2O3−SnO2、ZnO−TiO2、ZnO−TiO2、MgO−Al2O3、FeO−TiO2、TiO2、SnO2、In2O3、ZnO、MgO等の半導電性金属酸化物を挙げることができる。
また、電子写真感光体表面の耐汚染物付着性、潤滑性、硬度等を制御するために、シリコーンオイル等のオイルを添加することもできる。シリコーンオイルとしては、例えば、ジメチルポリシロキサン、ジフェニルポリシロキサン、フェニルメチルシロキサン等のシリコーンオイル、アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシル変性ポリシロキサン、カルビノール変性ポリシロキサン、メタクリル変性ポリシロキサン、メルカプト変性ポリシロキサン、フェノール変性ポリシロキサン等の反応性シリコーンオイル等を挙げることができる。これらは、保護層7を形成するための硬化性樹脂組成物中に予め添加してもよいし、感光体を作製後、減圧、或いは加圧下等で含浸処理してもよい。
また、保護層7を形成するための硬化性樹脂組成物は、可塑剤、表面改質剤、酸化防止剤、光劣化防止剤等の添加剤を含有することもできる。可塑剤としては、例えば、ビフェニル、塩化ビフェニル、ターフェニル、ジブチルフタレート、ジエチレングリコールフタレート、ジオクチルフタレート、トリフェニル燐酸、メチルナフタレン、ベンゾフェノン、塩素化パラフィン、ポリプロピレン、ポリスチレン、各種フルオロ炭化水素等が挙げられる。
保護層7を形成するための硬化性樹脂組成物には、ヒンダートフェノール、ヒンダートアミン、チオエーテル又はホスファイト部分構造を持つ酸化防止剤を添加することができ、環境変動時の電位安定性・画質の向上に効果的である。
酸化防止剤としては以下のような化合物が挙げられる。例えば、ヒンダートフェノール系としては、「Sumilizer BHT−R」、「Sumilizer MDP−S」、「Sumilizer BBM−S」、「Sumilizer WX−R」、「Sumilizer NW」、「Sumilizer BP−76」、「Sumilizer BP−101」、「Sumilizer GA−80」、「Sumilizer GM」、「Sumilizer GS」以上住友化学社製、「IRGANOX1010」、「IRGANOX1035」、「IRGANOX1076」、「IRGANOX1098」、「IRGANOX1135」、「IRGANOX1141」、「IRGANOX1222」、「IRGANOX1330」、「IRGANOX1425WL」、「IRGANOX1520L」、「IRGANOX245」、「IRGANOX259」、「IRGANOX3114」、「IRGANOX3790」、「IRGANOX5057」、「IRGANOX565」以上チバスペシャリティーケミカルズ社製、「アデカスタブAO−20」、「アデカスタブAO−30」、「アデカスタブAO−40」、「アデカスタブAO−50」、「アデカスタブAO−60」、「アデカスタブAO−70」、「アデカスタブAO−80」、「アデカスタブAO−330」以上旭電化製。ヒンダートアミン系としては、「サノールLS2626」、「サノールLS765」、「サノールLS770」、「サノールLS744」以上三共ライフテック社製、「チヌビン144」、「チヌビン622LD」以上チバスペシャリティーケミカルズ社製、「マークLA57」、「マークLA67」、「マークLA62」、「マークLA68」、「マークLA63」以上旭電化製、「スミライザーTPS」以上住友化学社製、チオエーテル系としては、「スミライザーTP−D」以上住友化学社製、ホスファイト系としては、「マーク2112」、「マークPEP・8」、「マークPEP・24G」、「マークPEP・36」、「マーク329K」、「マークHP・10」以上旭電化製が挙げられ、特にヒンダートフェノール、ヒンダートアミン系酸化防止剤が好ましい。さらに、これらは架橋膜を形成する材料と架橋反応可能な例えばアルコキシシリル基等の置換基で変性してもよい。
また、保護層7を形成するための硬化性樹脂組成物には、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノールAとフタル酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等の絶縁性樹脂を含有させてもよい。この場合、絶縁性樹脂は、所望の割合で添加することができ、これにより、電荷輸送層6との接着性、熱収縮やハジキによる塗布膜欠陥等をさらに抑制することができる。
また、保護層7を形成するための硬化性樹脂組成物又はその調整時には、触媒を添加することができる。触媒としては、塩酸、酢酸、硫酸などの無機酸、蟻酸、プロピオン酸、シュウ酸、安息香酸、フタル酸、マレイン酸などの有機酸、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、アンモニア、トリエチルアミンなどのアルカリ触媒、さらに以下に示すような、系に不溶な固体触媒を用いることもできる。
系に不溶な固体触媒としては、例えば、アンバーライト15、アンバーライト200C、アンバーリスト15E(以上、ローム・アンド・ハース社製);ダウエックスMWC−1−H、ダウエックス88、ダウエックスHCR−W2(以上、ダウ・ケミカル社製);レバチットSPC−108、レバチットSPC−118(以上、バイエル社製);ダイヤイオンRCP−150H(三菱化成社製);スミカイオンKC−470、デュオライトC26−C、デュオライトC−433、デュオライト−464(以上、住友化学工業社製);ナフィオン−H(デュポン社製)等の陽イオン交換樹脂;アンバーライトIRA−400、アンバーライトIRA−45(以上、ローム・アンド・ハース社製)等の陰イオン交換樹脂;Zr(O3PCH2CH2SO3H)2、Th(O3PCH2CH2COOH)2等のプロトン酸基を含有する基が表面に結合されている無機固体;スルホン酸基を有するポリオルガノシロキサン等のプロトン酸基を含有するポリオルガノシロキサン;コバルトタングステン酸、リンモリブデン酸等のヘテロポリ酸;ニオブ酸、タンタル酸、モリブデン酸等のイソポリ酸;シリカゲル、アルミナ、クロミア、ジルコニア、CaO、MgO等の単元系金属酸化物;シリカ−アルミナ、シリカ−マグネシア、シリカ−ジルコニア、ゼオライト類等複合系金属酸化物;酸性白土、活性白土、モンモリロナイト、カオリナイト等の粘土鉱物;LiSO4、MgSO4等の金属硫酸塩;リン酸ジルコニア、リン酸ランタン等の金属リン酸塩;LiNO3、Mn(NO3)2等の金属硝酸塩;シリカゲル上にアミノプロピルトリエトキシシランを反応させて得られた固体等のアミノ基を含有する基が表面に結合されている無機固体;アミノ変性シリコーン樹脂等のアミノ基を含有するポリオルガノシロキサン等が挙げられる。
また、硬化性樹脂組成物の調製の際に、光機能性化合物、反応生成物、水、溶剤などに不溶な固体触媒を用いると、塗布液の安定性が向上する傾向にあるため好ましい。系に不溶な固体触媒とは、触媒成分が、上記一般式(I)〜(V)で表わされる化合物、他の添加剤、水、溶剤等に不溶であれば特に限定されない。
これらの系に不溶な固体触媒の使用量は特に制限されないが、加水分解性基を有する化合物の合計100質量部に対して0.1〜100質量部が好ましい。また、これらの固体触媒は、前述の通り、原料化合物、反応生成物、溶剤などに不溶であるため、反応後、常法にしたがって容易に除去することができる。
反応温度及び反応時間は原料化合物や固体触媒の種類及び使用量に応じて適宜選択されるものであるが、反応温度は通常0〜100℃、好ましくは10〜70℃、より好ましくは15〜50℃であり、反応時間は好ましくは10分〜100時間である。反応時間が上記上限値を超えるとゲル化が起こりやすくなる傾向にある。
また、硬化性樹脂組成物を調製する際に、系に不溶な触媒を用いた場合は、強度、液保存安定性などを向上させる目的で、さらに系に溶解する触媒を併用することが好ましい。そのような触媒としては、前述のものに加え、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリ(sec−ブチレート)、モノ(sec−ブトキシ)アルミニウムジイソプロピレート、ジイソプロポキシアルミニウム(エチルアセトアセテート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムビス(エチルアセトアセテート)モノアセチルアセトネート、アルミニウムトリス(アセチルアセトネート)、アルミニウムジイソプロポキシ(アセチルアセトネート)、アルミニウムイソプロポキシ−ビス(アセチルアセトネート)、アルミニウムトリス(トリフルオロアセチルアセトネート)、アルミニウムトリス(ヘキサフルオロアセチルアセトネート)等の有機アルミニウム化合物を使用することができる。
また、有機アルミニウム化合物以外には、ジブチルスズジラウリレート、ジブチルスズジオクチエート、ジブチルスズジアセテート等の有機スズ化合物;チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(ブトキシ)ビス(アセチルアセトネート)、チタニウムビス(イソプロポキシ)ビス(アセチルアセトネート)等の有機チタニウム化合物;ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)、ジルコニウムビス(イソプロポキシ)ビス(アセチルアセトネート)等のジルコニウム化合物;等も使用することができるが、安全性、低コスト、ポットライフ長さの観点から、有機アルミニウム化合物を使用するのが好ましく、特にアルミニウムキレート化合物がより好ましい。
これらの系に溶解する触媒の使用量は特に制限されないが、加水分解性基を有する化合物の合計100質量部に対して0.1〜20質量部が好ましく、0.3〜10質量%が特に好ましい。
また、保護層7を形成する際に、有機金属化合物を触媒として用いる場合には、ポットライフ、硬化効率の面から、多座配位子を添加することが好ましい。このような多座配位子としては、以下に示すようなもの及びそれらから誘導されるものを挙げることができるが、これらに限定されるものではない。
具体的には、アセチルアセトン、トリフルオロアセチルアセトン、ヘキサフルオロアセチルアセトン、ジピバロイルメチルアセトン等のβ−ジケトン類;アセト酢酸メチル、アセト酢酸エチル等のアセト酢酸エステル類;ビピリジン及びその誘導体;グリシン及びその誘導体;エチレンジアミン及びその誘導体;8−オキシキノリン及びその誘導体;サリチルアルデヒド及びその誘導体;カテコール及びその誘導体;2−オキシアゾ化合物等の2座配位子;ジエチルトリアミン及びその誘導体;ニトリロトリ酢酸及びその誘導体等の3座配位子;エチレンジアミンテトラ酢酸(EDTA)及びその誘導体等の6座配位子;等を挙げることができる。さらに、上記のような有機系配位子の他、ピロリン酸、トリリン酸等の無機系の配位子を挙げることができる。多座配位子としては、特に2座配位子が好ましく、具体例としては、上記の他、下記一般式(XV)で示される2座配位子が挙げられる。
[上記式(XV)中、R
51及びR
52はそれぞれ独立に、炭素数1〜10のアルキル基、フッ化アルキル基、又は炭素数1〜10のアルコキシ基を示す。]
多座配位子としては、上記一般式(XV)で示される2座配位子を用いることが好ましく、上記一般式(XV)中のR51とR52とが同一のものが特に好ましい。R51とR52とを同一にすることで、室温付近での配位子の配位力が強くなり、硬化性樹脂組成物のさらなる安定化を図ることができる。
多座配位子の配合量は、任意に設定することができるが、用いる有機金属化合物の1モルに対し、0.01モル以上とすることが好ましく、0.1モル以上とすることがより好ましく、1モル以上とすることが特に好ましい。
保護層7は、上述した各構成材料を含有する硬化性樹脂組成物を、保護層形成用塗布液として用いて形成される。
上記の成分を含有する硬化性樹脂組成物の調製は、無溶媒で行うか、必要に応じてメタノール、エタノール、プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類等の溶剤を用いて行うことができる。かかる溶剤は1種を単独で又は2種以上を混合して使用可能であるが、好ましくは沸点が100℃以下のものである。溶剤の使用量は任意に設定できるが、上記した一般式(I)〜(V)で表される化合物を用いる場合、溶剤量が少なすぎるとかかる化合物が析出しやすくなるため、上記一般式(I)〜(V)で表される化合物1質量部に対して好ましくは0.5〜30質量部、より好ましくは1〜20質量部で溶剤は使用される。
硬化性樹脂組成物を硬化させる際の反応温度及び反応時間は特に制限されないが、形成される保護層7の機械的強度及び化学的安定性の点から、反応温度は好ましくは60℃以上、より好ましくは80〜200℃であり、反応時間は好ましくは10分〜5時間である。また、硬化性樹脂組成物の硬化により得られる保護層7を高湿度状態に保つことは、保護層7の特性の安定化を図る上で有効である。さらには、用途に応じてヘキサメチルジシラザンやトリメチルクロロシランなどを用いて保護層7に表面処理を施して疎水化することもできる。
硬化性樹脂組成物を電荷輸送層6上に塗布する場合、塗布方法としては、ブレードコーティング法、マイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
なお、塗布の際には1回の塗布により必要な膜厚が得られない場合、複数回重ね塗布することにより必要な膜厚を得ることができる。複数回の重ね塗布を行なう場合、加熱処理は塗布の度に行なってもよいし、複数回重ね塗布した後でもよい。
保護層7の膜厚は、0.5〜15μmが好ましく、1〜10μmがより好ましく、1〜5μmがさらに好ましい。
また、上記硬化性樹脂組成物を硬化させてなる保護層7は、優れた電荷輸送性と優れた機械強度とを有する上に光電特性も十分であるため、これをそのまま積層型感光体の電荷輸送層として用いることもできる。
また、図4及び5に示す電子写真感光体のように、感光層3が単層型感光層8を有する場合、単層型感光層8は、電荷発生材料と結着樹脂とを含有して形成される。電荷発生材料としては機能分離型感光層における電荷発生層5に使用されるものと同様のものを、結着樹脂としては機能分離型感光層における電荷発生層5及び電荷輸送層6に用いられる結着樹脂と同様のものを用いることができる。単層型感光層8中の電荷発生材料の含有量は、単層型感光層8における固形分全量を基準として好ましくは10〜85質量%、より好ましくは20〜50質量%である。単層型感光層8には、光電特性を改善する等の目的で電荷輸送材料や高分子電荷輸送材料を添加してもよい。その添加量は単層型感光層8における固形分全量を基準として5〜50質量%とすることが好ましい。また、塗布に用いる溶剤や塗布方法は、上記各層と同様のものを用いることができる。単層型感光層8の膜厚は、5〜50μm程度が好ましく、10〜40μmとすることがさらに好ましい。
また、図1〜5に示した電子写真感光体1においては、最外層である保護層7が本発明の硬化性樹脂組成物を硬化させてなる機能層となっているが、かかる機能層は最外層でなくてもよい。例えば、下引層4が本発明の硬化性樹脂組成物を硬化させてなる機能層となっていてもよい。このような下引層は、下引層を形成するための塗布液に上記(i)又は(ii)の反応生成物を含有させ、この塗布液を用いることにより形成できる。また、同様に、上記(i)又は(ii)の反応生成物を含む電荷発生層形成用塗布液、電荷輸送層形成用塗布液、及び、単層型感光層形成用塗布液を調製することにより、本発明の硬化性樹脂組成物を硬化させてなる電荷発生層、電荷輸送層、及び、単層型感光層を形成できる。
また、本発明の硬化性樹脂組成物を硬化させてなる機能層と隣接する層がプラスチック材料を含んでなるプラスチック層である場合、本発明にかかる上記(i)又は(ii)の反応生成物がプラスチック材料との親和性に優れていることにより両層間の密着性が向上する効果も得られる。
(画像形成装置及びプロセスカートリッジ)
図6は、本発明の画像形成装置の好適な一実施形態を示す模式図である。図6に示す画像形成装置100は、画像形成装置本体(図示せず)に、上述した本発明の電子写真感光体1を備えるプロセスカートリッジ20と、露光装置30と、転写装置40と、中間転写体50とを備える。なお、画像形成装置100において、露光装置30はプロセスカートリッジ20の開口部から電子写真感光体1に露光可能な位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体1に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体1に当接可能に配置されている。
プロセスカートリッジ20は、ケース内に電子写真感光体1とともに帯電装置21、現像装置25、クリーニング装置27及び繊維状部材(歯ブラシ形状)29を、取り付けレールにより組み合わせて一体化したものである。なお、ケースには、露光のための開口部が設けられている。
ここで、帯電装置21は、電子写感光体1を接触方式により帯電させるものである。また、現像装置25は、電子写真感光体1上の静電潜像を現像してトナー像を形成するものである。
以下、現像装置25に使用されるトナーについて説明する。かかるトナーとしては、平均形状係数(ML2/A)が100〜150であることが好ましく、100〜140であることがより好ましい。さらに、トナーとしては、体積平均粒子径が2〜12μmであることが好ましく、3〜12μmであることがより好ましく、3〜9μmであることがさらに好ましい。このような平均形状係数及び体積平均粒子径を満たすトナーを用いることにより、高い現像、転写性、及び高画質の画像を得ることができる。
トナーは、上記平均形状係数及び体積平均粒子径を満足する範囲のものであれば特に製造方法により限定されるものではないが、例えば、結着樹脂、着色剤及び離型剤、必要に応じて帯電制御剤等を加えて混練、粉砕、分級する混練粉砕法;混練粉砕法にて得られた粒子を機械的衝撃力又は熱エネルギーにて形状を変化させる方法;結着樹脂の重合性単量体を乳化重合させ、形成された分散液と、着色剤及び離型剤、必要に応じて帯電制御剤等の分散液とを混合し、凝集、加熱融着させ、トナー粒子を得る乳化重合凝集法;結着樹脂を得るための重合性単量体と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法;結着樹脂と、着色剤及び離型剤、必要に応じて帯電制御剤等の溶液とを水系溶媒に懸濁させて造粒する溶解懸濁法等により製造されるトナーが使用される。
また、上記方法で得られたトナーをコアにして、さらに凝集粒子を付着、加熱融合してコアシェル構造をもたせる製造方法等、公知の方法を使用することができる。なお、トナーの製造方法としては、形状制御、粒度分布制御の観点から水系溶媒にて製造する懸濁重合法、乳化重合凝集法、溶解懸濁法が好ましく、乳化重合凝集法が特に好ましい。
トナー母粒子は、結着樹脂、着色剤及び離型剤からなり、必要であれば、シリカや帯電制御剤を含有して構成される。
トナー母粒子に使用される結着樹脂としては、スチレン、クロロスチレン等のスチレン類、エチレン、プロピレン、ブチレン、イソプレン等のモノオレフィン類、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等のビニルエステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ドデシル等のα−メチレン脂肪族モノカルボン酸エステル類、ビニルメチルエーテル、ビニルエチルエーテル、ビニルブチルエーテル等のビニルエーテル類、ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロペニルケトン等のビニルケトン類等の単独重合体及び共重合体、ジカルボン酸類とジオール類との共重合によるポリエステル樹脂等が挙げられる。
特に代表的な結着樹脂としては、ポリスチレン、スチレン−アクリル酸アルキル共重合体、スチレン−メタクリル酸アルキル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエチレン、ポリプロピレン、ポリエステル樹脂等を挙げることができる。さらに、ポリウレタン、エポキシ樹脂、シリコーン樹脂、ポリアミド、変性ロジン、パラフィンワックス等を挙げることもできる。
また、着色剤としては、マグネタイト、フェライト等の磁性粉、カーボンブラック、アニリンブルー、カルイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロリド、フタロシアニンブルー、マラカイトグリーンオキサレート、ランプブラック、ローズベンガル、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド57:1、C.I.ピグメント・イエロー97、C.I.ピグメント・イエロー17、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:3等を代表的なものとして例示することができる。
離型剤としては、低分子ポリエチレン、低分子ポリプロピレン、フィッシャートロピィシュワックス、モンタンワックス、カルナバワックス、ライスワックス、キャンデリラワックス等を代表的なものとして例示することができる。
また、帯電制御剤としては、公知のものを使用することができるが、アゾ系金属錯化合物、サリチル酸の金属錯化合物、極性基を含有するレジンタイプの帯電制御剤を用いることができる。湿式製法でトナーを製造する場合、イオン強度の制御と廃水汚染の低減の点で水に溶解しにくい素材を使用することが好ましい。また、トナーとしては、磁性材料を内包する磁性トナー及び磁性材料を含有しない非磁性トナーのいずれであってもよい。
現像装置25に用いるトナーとしては、上記トナー母粒子及び上記外添剤をヘンシェルミキサー又はVブレンダー等で混合することによって製造することができる。また、トナー母粒子を湿式にて製造する場合は、湿式にて外添することも可能である。
現像装置25に用いるトナーには滑性粒子を添加してもよい。滑性粒子としては、グラファイト、二硫化モリブデン、滑石、脂肪酸、脂肪酸金属塩等の固体潤滑剤や、ポリプロピレン、ポリエチレン、ポリブテン等の低分子量ポリオレフィン類、加熱により軟化点を有するシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等のような脂肪族アミド類やカルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等のような植物系ワックス、ミツロウのような動物系ワックス、モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等のような鉱物、石油系ワックス、及びそれらの変性物が使用できる。これらは、1種を単独で、又は2種以上を併用して使用できる。但し、平均粒径としては0.1〜10μmの範囲が好ましく、上記化学構造のものを粉砕して、粒径をそろえてもよい。トナーへの添加量は好ましくは0.05〜2.0質量%、より好ましくは0.1〜1.5質量%の範囲である。
現像装置25に用いるトナーには、電子写真感光体表面の付着物、劣化物除去の目的等で、無機微粒子、有機微粒子、該有機微粒子に無機微粒子を付着させた複合微粒子等を加えることができる。
無機微粒子としては、シリカ、アルミナ、チタニア、ジルコニア、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸マグネシウム、酸化亜鉛、酸化クロム、酸化セリウム、酸化アンチモン、酸化タングステン、酸化スズ、酸化テルル、酸化マンガン、酸化ホウ素、炭化ケイ素、炭化ホウ素、炭化チタン、窒化ケイ素、窒化チタン、窒化ホウ素等の各種無機酸化物、窒化物、ホウ化物等が好適に使用される。
また、上記無機微粒子を、テトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等のチタンカップリング剤、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)γ−アミノプロピルトリメトキシシラン塩酸塩、ヘキサメチルジシラザン、メチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトエリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フェニルトリメトキシシラン、o−メチルフェニルトリメトキシシラン、p−メチルフェニルトリメトキシシラン等のシランカップリング剤等で処理を行ってもよい。また、シリコーンオイル、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸金属塩によって疎水化処理したものも好ましく使用される。
有機微粒子としては、スチレン樹脂粒子、スチレンアクリル樹脂粒子、ポリエステル樹脂粒子、ウレタン樹脂粒子等を挙げることができる。
粒子径としては、体積平均粒子径で好ましくは5nm〜1000nm、より好ましくは5nm〜800nm、さらに好ましくは5nm〜700nmでのものが使用される。体積平均粒子径が、上記下限値未満であると、研磨能力に欠ける傾向があり、他方、上記上限値を超えると、電子写真感光体表面に傷を発生しやすくなる傾向がある。また、上述した粒子と滑性粒子との添加量の和が0.6質量%以上であることが好ましい。
トナーに添加されるその他の無機酸化物としては、粉体流動性、帯電制御等の為、1次粒径が40nm以下の小径無機酸化物を用い、更に付着力低減や帯電制御の為、それより大径の無機酸化物を添加することが好ましい。これらの無機酸化物微粒子は公知のものを使用できるが、精密な帯電制御を行う為にはシリカと酸化チタンを併用することが好ましい。また、小径無機微粒子については表面処理することにより、分散性が高くなり、粉体流動性を上げる効果が大きくなる。さらに、炭酸カルシウム、炭酸マグネシウム等の炭酸塩や、ハイドロタルサイト等の無機鉱物を添加することも放電精製物を除去するために好ましい。
また、電子写真用カラートナーはキャリアと混合して使用されるが、キャリアとしては、鉄粉、ガラスビーズ、フェライト粉、ニッケル粉又はそれ等の表面に樹脂コーティングを施したものが使用される。また、キャリアとの混合割合は、適宜設定することができる。
クリーニング装置27は、繊維状部材(ロール形状)27aと、クリーニングブレード(ブレード部材)27bとを備える。
クリーニング装置27は、繊維状部材27a及びクリーニングブレード27bが設けられているが、クリーニング装置としてはどちらか一方を備えるものでもよい。繊維状部材27aとしては、ロール形状の他に歯ブラシ状としてもよい。また、繊維状部材27aは、クリーニング装置本体に固定してもよく、回転可能に支持されていてもよく、さらに感光体軸方向にオシレーション可能に支持されていてもよい。繊維状部材27aとしては、ポリエステル、ナイロン、アクリル等や、トレシー(東レ社製)等の極細繊維からなる布状のもの、ナイロン、アクリル、ポリオレフィン、ポリエステル等の樹脂繊維を基材状又は絨毯状に植毛したブラシ状のもの等を挙げることができる。また、繊維状部材27aとしては、上述したものに、導電性粉末やイオン導電剤を配合して導電性を付与したり、繊維一本一本の内部又は外部に導電層が形成されたもの等を用いることもできる。導電性を付与した場合、その抵抗値としては繊維単体で102〜109Ωのものが好ましい。また、繊維状部材27aの繊維の太さは、好ましくは30d(デニール)以下、より好ましくは20d以下であり、繊維の密度は好ましくは2万本/inch2以上、より好ましくは3万本/inch2以上である。
クリーニング装置27には、クリーニングブレード、クリーニングブラシで感光体表面の付着物(例えば、放電生成物)を除去することが求められる。この目的を長期に渡って達成すると共にクリーニング部材の機能を安定化させるために、クリーニング部材には、金属石鹸、高級アルコール、ワックス、シリコーンオイルなどの潤滑性物質(潤滑成分)を供給することが好ましい。
例えば、繊維状部材27aとしてロール状のものを用いる場合、金属石鹸、ワックス等の潤滑性物質と接触させ、電子写真感光体表面に潤滑成分を供給することが好ましい。クリーニングブレード27bとしては、通常のゴムブレードが用いられる。このようにクリーニングブレード27bとしてゴムブレードを使用する場合には、電子写真感光体表面に潤滑成分を供給することは、ブレードの欠けや磨耗を抑制することに特に効果的である。
以上説明したプロセスカートリッジ20は、画像形成装置本体に対して着脱自在としたものであり、画像形成装置本体とともに画像形成装置を構成するものである。
露光装置30としては、帯電した電子写真感光体1を露光して静電潜像を形成させるものであればよい。また、露光装置30の光源としては、マルチビーム方式の面発光レーザを用いることが好ましい。
転写装置40としては、電子写真感光体1上のトナー像を被転写媒体(中間転写体50)に転写するものであればよく、例えば、ロール形状の通常使用されるものが使用される。
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体50の形態としては、ベルト状以外にドラム状のものを用いることもできる。なお、この中間転写体を備えていない直接転写方式の画像形成装置もあるが、本発明の電子写真感光体はこのような画像形成装置に好適である。その理由は、直接転写方式の画像形成装置では、プリント用紙からの紙粉やタルク等が発生しそれが電子写真感光体へ付着しやすく、付着物に起因する画質欠陥が発生する傾向にある。しかし、本発明の電子写真感光体によれば、クリーニング性に優れているため紙粉やタルク等の除去が容易であり、直接転写方式の画像形成装置であっても安定した画像を得ることができる。
なお、本発明でいう被転写媒体とは、電子写真感光体1上に形成されたトナー像を転写する媒体であれば特に制限はない。例えば、電子写真感光体1から直接、紙等に転写する場合は紙等が被転写媒体であり、また、中間転写体50を用いる場合には中間転写体が被転写媒体になる。
図7は、本発明の画像形成装置の他の実施形態を示す模式図である。図7に示す画像形成装置110は、電子写真感光体1が画像形成装置本体に固定され、帯電装置22、現像装置25及びクリーニング装置27がそれぞれカートリッジ化されており、それぞれ帯電カートリッジ、現像カートリッジ、クリーニングカートリッジとして独立して備えられている。なお、帯電装置22は、コロナ放電方式により帯電させる帯電装置を備えている。
画像形成装置110においては、電子写真感光体1とそれ以外の各装置が分離されており、帯電装置22、現像装置25及びクリーニング装置27が画像形成装置本体にビス、かしめ、接着又は溶接により固定されることなく、引き出し、押しこみによる操作にて脱着可能である。
本発明の電子写真感光体は耐磨耗性に優れるため、カートリッジ化することが不要となる場合がある。したがって、帯電装置22、現像装置25又はクリーニング装置27をそれぞれ本体にビス、かしめ、接着又は溶接により固定されることなく、引き出し、押しこみによる操作にて脱着可能な構成とすることで、1プリント当りの部材コストを低減することができる。また、これらの装置のうち2つ以上を一体化したカートリッジとして着脱可能とすることもでき、それにより1プリント当りの部材コストをさらに低減することができる。
なお、画像形成装置110は、帯電装置22、現像装置25及びクリーニング装置27がそれぞれカートリッジ化されている以外は、画像形成装置100と同様の構成を有している。
図8は、本発明の画像形成装置の他の実施形態を示す模式図である。画像形成装置120は、プロセスカートリッジ20を4つ搭載したタンデム方式のフルカラー画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ20がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用できる構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
タンデム方式の画像形成装置120では、各色の使用割合により各電子写真感光体の磨耗量が異なってくるために、各電子写真感光体の電気特性が異なってくる傾向がある。これに伴い、トナー現像特性が初期の状態から除々に変化してプリント画像の色合いが変化し、安定な画像を得ることができなくなる傾向にある。特に、画像形成装置を小型化するために、小径の電子写真感光体が使用される傾向にあり、30mmΦ以下のものを用いたときにはこの傾向が顕著になる。ここで、電子写真感光体に、本発明の電子写真感光体の構成を採用すると、その直径を30mmΦ以下とした場合にもその表面の磨耗が十分に抑制される。また、感光体を小径化すると回転数が増え、クリーニング部材や感光体へのストレスの増加によってクリーニング不良や感光体表面の剥がれが生じやすくなる傾向にあるが、電子写真感光体に、本発明の電子写真感光体の構成を採用することでこのような傾向も十分抑制される。したがって、本発明の電子写真感光体は、タンデム方式の画像形成装置に対して特に有効である。
図9は、本発明の画像形成装置の他の実施形態を示す模式図である。図9に示した画像形成装置130は、1つの電子写真感光体で複数の色のトナー画像を形成させる、所謂4サイクル方式の画像形成装置である。画像形成装置130は、駆動装置(図示せず)により所定の回転速度で図中の矢印Aの方向に回転される感光体ドラム1を備えており、感光体ドラム1の上方には、感光体ドラム1の外周面を帯電させる帯電装置22が設けられている。
また、帯電装置22の上方には面発光レーザアレイを露光光源として備える露光装置30が配置されている。露光装置30は、光源から射出される複数本のレーザビームを、形成すべき画像に応じて変調すると共に、主走査方向に偏向し、感光体ドラム1の外周面上を感光体ドラム1の軸線と平行に走査させる。これにより、帯電した感光体ドラム1の外周面上に静電潜像が形成される。
感光体ドラム1の側方には現像装置25が配置されている。現像装置25は回転可能に配置されたローラ状の収容体を備えている。この収容体の内部には4個の収容部が形成されており、各収容部には現像器25Y,25M,25C,25Kが設けられている。現像器25Y,25M,25C,25Kは各々現像ローラ26を備え、内部に各々Y,M,C,Kの色のトナーを貯留している。
画像形成装置130でのフルカラーの画像の形成は、感光体ドラム1が4回転する間に行われる。すなわち、感光体ドラム1が4回転する間、帯電装置22は感光体ドラム1の外周面の帯電、露光装置20は、形成すべきカラー画像を表すY,M,C,Kの画像データのうちの何れかに応じて変調したレーザビームを感光体ドラム1の外周面上で走査させることを、感光体ドラム1が1回転する毎にレーザビームの変調に用いる画像データを切替えながら繰り返す。また現像装置25は、現像器25Y,25M,25C,25Kの何れかの現像ローラ26が感光体ドラム1の外周面に対応している状態で、外周面に対応している現像器を作動させ、感光体ドラム1の外周面に形成された静電潜像を特定の色に現像し、感光体ドラム1の外周面上に特定色のトナー像を形成させることを、感光体ドラム1が1回転する毎に、静電潜像の現像に用いる現像器が切り替わるように収容体を回転させながら繰り返す。これにより、感光体ドラム1が1回転する毎に、感光体ドラム1の外周面上には、Y,M,C,Kのトナー像が互いに重なるように順次形成されることになり、感光体ドラム1が4回転した時点で感光体ドラム1の外周面上にフルカラーのトナー像が形成されることになる。
また、感光体ドラム1の略下方には無端の中間転写ベルト50が配設されている。中間転写ベルト50はローラ51,53,55に巻掛けられており、外周面が感光体ドラム1の外周面に接触するように配置されている。ローラ51,53,55は図示しないモータの駆動力が伝達されて回転し、中間転写ベルト50を図1矢印B方向に回転させる。
中間転写ベルト50を挟んで感光体ドラム1の反対側には転写装置(転写器)40が配置されており、感光体ドラム1の外周面上に形成されたトナー像は転写装置40によって中間転写ベルト50の画像形成面に転写される。
また、感光体ドラム1を挟んで現像装置25の反対側には、感光体ドラム1の外周面に潤滑剤供給装置29及びクリーニング装置27が配置されている。感光体ドラム12の外周面上に形成されたトナー像が中間転写ベルト50に転写されると、潤滑剤供給装置29により感光体ドラム1の外周面に潤滑剤が供給され、当該外周面のうち転写されたトナー像を担持していた領域がクリーニング装置27により清浄化される。
中間転写ベルト50よりも下方側にはトレイ60が配置されており、トレイ60内には記録材料としての用紙Pが多数枚積層された状態で収容されている。トレイ60の左斜め上方には取り出しローラ61が配置されており、取り出しローラ61による用紙Pの取り出し方向下流側にはローラ対63、ローラ65が順に配置されている。積層状態で最も上方に位置している記録紙は、取り出しローラ61が回転されることによりトレイ60から取り出され、ローラ対63、ローラ65によって搬送される。
また、中間転写ベルト50を挟んでローラ55の反対側には転写装置42が配置されている。ローラ対63、ローラ65によって搬送された用紙Pは、中間転写ベルト50と転写器42の間に送り込まれ、中間転写ベルト50の画像形成面に形成されたトナー像が転写装置42によって転写される。転写装置42よりも用紙Pの搬送方向下流側には、定着ローラ対を備えた定着装置44が配置されており、トナー像が転写された用紙Pは、転写されたトナー像が定着装置44によって溶融定着された後に画像形成装置130の機体外へ排出され、排紙トレイ(図示せず)上に載置される。
次に、図10を参照し、面発光レーザアレイを露光光源として備える露光装置30の好ましい例について詳述する。露光装置30はm本(mは少なくとも3以上)のレーザビームを射出する面発光レーザアレイ70を備えている。なお、図10では、簡略化のためにレーザビームを3本のみ示しているが、面発光レーザをアレイ化して成る面発光レーザアレイ70は、数十本のレーザビームを射出するように構成することができ、また、面発光レーザの配列(面発光レーザアレイ70から射出されるレーザビームの配列)についても、1列に配列する以外に、2次元的に(例えばマトリクス状に)配列することも可能である。
面発光レーザアレイ70のレーザビーム射出側には、コリメートレンズ72、ハーフミラー74が順に配置されている。面発光レーザアレイ70から射出されたレーザビームは、コリメートレンズ72によって略平行光束とされた後にハーフミラー74に入射され、ハーフミラー74によって一部が分離・反射される。ハーフミラー74のレーザビーム反射側にはレンズ76、光量センサ78が順に配置されており、ハーフミラー74によって主レーザビーム(露光に用いるレーザビーム)から分離・反射された一部のレーザビームは、レンズ76を透過して光量センサ78へ入射され、光量センサ78によって光量が検出される。
なお、面発光レーザは、露光に用いるレーザビームが射出される側と反対側からはレーザビームが射出されない(端面発光レーザでは両側から射出される)ため、レーザビームの光量を検出・制御するためには、上記のように露光に用いるレーザビームの一部を分離して光量検出に供することが必要になる。
ハーフミラー74の主レーザビーム射出側にはアパーチャ80、副走査方向にのみパワーを有するシリンダレンズ82、折り返しミラー84が順に配置されており、ハーフミラー74から射出された主レーザビームは、アパーチャ80によって整形された後に、回転多面鏡86の反射面近傍で主走査方向に長い線状に結像するようにシリンダレンズ82によって屈折され、折り返しミラー84によって回転多面鏡86側へ反射される。なお、アパーチャ80は複数本のレーザビームを均等に整形するために、コリメートレンズ72の焦点位置近傍に配置することが望ましい。
回転多面鏡86は、図示しないモータの駆動力が伝達されて図9中の矢印C方向に回転され、折り返しミラー84によって反射されて入射されたレーザビームを主走査方向に沿って偏向・反射する。回転多面鏡86のレーザビーム射出側には主走査方向にのみパワーを有するFθレンズ88,90が配置されており、回転多面鏡86によって偏向・反射されたレーザビームは、電子写真感光体1の外周面上を略等速で移動し、且つ主走査方向の結像位置が電子写真感光体1の外周面上に一致するようにFθレンズ88,90によって屈折される。
Fθレンズ88,90のレーザビーム射出側には、副走査方向にのみパワーを有するシリンダミラー92,94が順に配置されており、Fθレンズ88,90を透過したレーザビームは、副走査方向の結像位置が電子写真感光体1の外周面に一致するようにシリンダミラー92,94によって反射され、感光体ドラム1の外周面上に照射される。なお、シリンダミラー92,94は回転多面鏡86と電子写真感光体1の外周面を副走査方向において共役にする面倒れ補正機能も有している。
また、シリンダミラー92のレーザビーム射出側には、レーザビームの走査範囲のうち走査開始側の端部(SOS:Start Of Scan)に相当する位置にピックアップミラー96が配置されており、ピックアップミラー96のレーザビーム射出側にはビーム位置検出センサ98が配置されている。面発光レーザアレイ70から射出されたレーザビームは、回転多面鏡86の各反射面のうちのレーザビームを反射している面が、入射ビームをSOSに相当する方向へ反射する向きとなったときに、ピックアップミラー96で反射されてビーム位置検出センサ98に入射される(図10の想像線も参照)。
ビーム位置検出センサ98から出力された信号は、回転多面鏡86の回転に伴って電子写真感光体1の外周面上を走査されるレーザビームを変調して静電潜像を形成するにあたり、各回の主走査における変調開始タイミングの同期をとるために用いられる。
また、露光装置30では、コリメートレンズ72とシリンダレンズ82、2枚のシリンダミラー92,94が各々副走査方向においてアフォーカルになる様に配置されている。これは、複数本のレーザビームの走査線湾曲(BOW)の差と複数本のレーザビームによる走査線間隔の変動を抑制するためである。
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<フェノール樹脂複合体の作製>
(合成例1)
窒素気流下、3口フラスコ中で、メタノール70質量部に「マルカリンカーM S−1」(丸善化学社製、ポリビニルフェノールホモポリマー、Mw:1600〜2400)70質量部を溶解させた。続いて、この溶液に、ホルマリン(関東化学社製、37%水溶液)120質量部及びトリエチルアミン(東京化成社製)1.4質量部を加え、85℃にて5時間加熱撹拌した。その後、溶液を室温まで冷却し、減圧下(約45℃、20mmHg)で乾燥した。次に、乾燥後の反応生成物にメタノール100質量部を加えて溶解させた後、この溶液を減圧下(約45℃、20mmHg)で乾燥した。この溶解及び乾燥の工程を3回繰り返すことにより、粘性の反応生成物97質量部を得た。この反応生成物を「フェノール樹脂複合体−1」とした。また、得られた反応生成物のIRスペクトルを図11に示す。
(合成例2)
窒素気流下、3口フラスコ中で、メタノール90質量部に「マルカリンカーCHM」(丸善化学社製、ビニルフェノール及びメタクリル酸ヒドロキシエチルの組成比約1:1の共重合体、Mw:7000〜14000)70質量部を溶解させた。続いて、この溶液に、ホルマリン(関東化学社製、37%水溶液)120質量部及びトリエチルアミン(東京化成社製)1.4質量部を加え、80℃にて4時間加熱撹拌した。その後、溶液を室温まで冷却し、減圧下(約45℃、20mmHg)で乾燥した。次に、乾燥後の反応生成物にメタノール100質量部を加えて溶解させた後、この溶液を減圧下(約45℃、20mmHg)で乾燥した。この溶解及び乾燥の工程を3回繰り返すことにより、粘性の反応生成物102質量部を得た。この反応生成物を「フェノール樹脂複合体−2」とした。また、得られた反応生成物のIRスペクトルを図12に示す。
(合成例3)
窒素気流下、3口フラスコ中に、フェノール50質量部、エスレックBXL(積水化学社製、アセタール化度62mol%、重合度300)5質量部、ホルマリン(関東化学社製、37%水溶液)86.2質量部及びトリエチルアミン(東京化成社製)1質量部を加え、80℃にて6時間加熱撹拌した。その後、溶液を室温まで冷却し、減圧下(約45℃、20mmHg)で乾燥した。次に、乾燥後の反応生成物にメタノール100質量部を加えて溶解させた後、この溶液を減圧下(約45℃、20mmHg)で乾燥した。この溶解及び乾燥の工程を3回繰り返すことにより、粘性の反応生成物95質量部を得た。この反応生成物を「フェノール樹脂複合体−3」とした。また、得られた反応生成物のIRスペクトルを図13に示す。
<電子写真感光体の作製>
(感光体−1)
JIS H4080 材質記号A3003アルミニウム合金よりなる引き抜き管を用意し、センタレス研磨装置により研磨して表面粗さRZを0.6μmとした。次に、この引き抜き管の外周面に対して、脱脂処理、2質量%水酸化ナトリウム溶液による1分間のエッチング処理、中和処理、及び純水洗浄をこの順に行った。次に、陽極酸化処理工程として10質量%硫酸溶液によりシリンダー表面に陽極酸化膜(電流密度1.0A/dm2)を形成した。水洗後、1質量%酢酸ニッケル溶液80℃に25分間浸漬して封孔処理を行った。さらに、純水洗浄、乾燥処理を行った。このようにして、引き抜き管の外周面に約7.5μmの陽極酸化膜を形成して導電性支持体を得た。
次に、X線回折スペクトルにおけるブラッグ角(2θ±0.2°)が7.5°、9.9°、12.5°、16.3°、18.6°、25.1°、28.3°に強い回折ピークを持つヒドロキシガリウムフタロシアニン1質量部を、ポリビニルブチラール(エスレックBM−S、積水化学社製)1質量部及び酢酸n−ブチル100質量部と混合し、これをガラスビーズと共にペイントシェーカーで2時間分散処理することにより電荷発生層用塗布液を調製した。得られた塗布液を下引層が形成された導電性支持体上に浸漬コートし、100℃で10分間加熱乾燥して膜厚約0.15μmの電荷発生層を形成した。
次に、下記式(CT−1)で表されるベンジジン化合物2質量部、及び下記式(B−1)で表される繰り返し単位を有する高分子化合物(粘度平均分子量:39,000)2.5質量部をクロロベンゼン25質量部に溶解させて電荷輸送層用塗布液を調製した。得られた塗布液を上記電荷発生層上に浸漬コーティング法で塗布し、130℃、40分の加熱を行い膜厚20μmの電荷輸送層を形成した。
次に、上記式(II−13)で表される化合物4.5質量部及び上記合成例1で得られた「フェノール樹脂複合体−1」5.5質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、140℃で40分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−1」とした。
(感光体−2)
先ず、ホーニング処理を施した円筒状のアルミニウム基材上に、有機ジルコニウム化合物(トリブトキシアセチルアセトナトジルコニウム[(C5H7O2)Zr(OC4H9)3、「オルガチックスZC540」、松本製薬社製])100質量部、シラン化合物(商品名「A1100」、日本ユニカー社製)10質量部、ポリビニルブチラール(商品名「エスレックBM−S」、積水化学社製)3質量部、イソプロパノール380質量部及びブタノール200質量部を撹拌混合して得られた下引層形成用塗布液を浸漬塗布法により塗布し、150℃で10分間加熱乾燥させることにより膜厚0.17μmの下引層を形成した。
次に、X線回折スペクトルにおけるブラッグ角(2θ±0.2°)が7.4°、16.6°、25.5°、28.3°に強い回折ピークを持つクロロガリウムフタロシアニン1質量部を、ポリビニルブチラール(エスレックBM−S、積水化学社製)1質量部及び酢酸n−ブチル100質量部と混合し、これをガラスビーズと共にペイントシェーカーで1時間分散処理することにより電荷発生層用塗布液を調製した。得られた塗布液を上記下引層上に浸漬コートし、100℃で10分間加熱乾燥して膜厚約0.15μmの電荷発生層を形成した。
次に、下記式(CT−2)で表されるベンジジン化合物2質量部、及び下記式(B−2)で表される繰り返し単位を有する高分子化合物(粘度平均分子量:50,000)3質量部をクロロベンゼン20質量部に溶解させて電荷輸送層用塗布液を調製した。得られた塗布液を上記電荷発生層上に浸漬コーティング法で塗布し、130℃、45分の加熱を行い膜厚20μmの電荷輸送層を形成した。
次に、上記式(III−2)で表される化合物4.5質量部、上記合成例1で得られた「フェノール樹脂複合体−1」5質量部、及び、Nacure4116(楠本化成社製)0.2質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、140℃で40分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−2」とした。
(感光体−3)
酸化亜鉛(SMZ−017N:テイカ社製)100質量部と、トルエン500質量部とを攪拌混合し、シランカップリング剤(A1100:日本ユニカー社製)を2質量部添加し、5時間攪拌した。その後トルエンを減圧蒸留にて留去し、120℃で2時間焼き付けを行った。得られた表面処理酸化亜鉛を蛍光X線により分析した結果、Si元素強度は亜鉛元素強度の1.8×10−4であった。
表面処理を施した酸化亜鉛を35質量部、硬化剤としてブロック化イソシアネート(スミジュール3175、住友バイエルンウレタン社製)を15質量部、ブチラール樹脂(BM−1、積水化学社製)を6質量部、及びメチルエチルケトンを44質量部混合し、1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い分散液を得た。得られた分散液に触媒としてジオクチルスズジラウレートを0.005質量部、及びトスパール130(GE東芝シリコン社製)を17質量部添加し、下引層形成用塗布液を得た。この塗布液を、浸漬塗布法にてアルミニウム基材上に塗布し、160℃で100分の乾燥硬化を行い、膜厚20μmの下引層を得た。表面粗さは、東京精密社製表面粗さ形状測定器サーフコム570Aを使用し、測定距離2.5mm、走査速度0.3mm/secで測定し、Rz値0.24であった。
次に、X線回折スペクトルにおけるブラッグ角(2θ±0.2°)が27.2°に強い回折ピークを持つチタニルフタロシアニン1質量部を、ポリビニルブチラール(エスレックBM−S、積水化学社製)1質量部及び酢酸n−ブチル100質量部と混合し、これをガラスビーズと共にペイントシェーカーで1時間分散処理することにより電荷発生層用塗布液を調製した。得られた塗布液を上記で形成された下引層上に浸漬コートし、100℃で10分間加熱乾燥して膜厚約0.15μmの電荷発生層を形成した。
次に、上記式(CT−1)で表されるベンジジン化合物2質量部、及び上記式(B−1)で表される繰り返し単位を有する高分子化合物(粘度平均分子量:50,000)2.5質量部をクロロベンゼン30質量部に溶解させて電荷輸送層用塗布液を調製した。得られた塗布液を上記電荷発生層上に浸漬コーティング法で塗布し、130℃、40分の加熱を行い膜厚20μmの電荷輸送層を形成した。
次に、上記式(IV−3)で表される化合物5質量部、及び、上記合成例1で得られた「フェノール樹脂複合体−1」5質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、150℃で45分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−3」とした。
(感光体−4)
感光体−3の作製において、上記式(IV−3)で表される化合物の代わりに上記式(V−48)で表される化合物を用いたこと以外は感光体−3の作製と同様にして、電子写真感光体を得た。この電子写真感光体を「感光体−4」とした。
(感光体−5)
感光体−3の作製において、上記式(IV−3)で表される化合物の代わりに上記式(V−11)で表される化合物を用いたこと以外は感光体−3の作製と同様にして、電子写真感光体を得た。この電子写真感光体を「感光体−5」とした。
(感光体−6)
感光体−3の作製と同様にして電荷輸送層まで作成した。
次に、上記式(I−3)で表される化合物3質量部、Me(MeO)2−Si−(CH2)4−Si−Me(OMe)20.5質量部、及び、ヘキサメチルシクロトリシロキサン0.5質量部を、ブチルアルコール5質量部に溶解させた。この溶液にイオン交換樹脂(アンバーリスト15E、ローム・アンド・ハース社製)0.3質量部を加え、室温で攪拌することにより5時間保護基の交換反応を行った。
その後、この溶液に、n−ブタノールを8質量部、及び蒸留水を0.3質量部添加し、15分加水分解を行なった。加水分解したものからイオン交換樹脂を濾過分離した溶液に対し、アルミニウムトリスアセチルアセトナート(Al(aqaq)3)を0.1質量部、アセチルアセトンを0.1質量部、3,5−ジ−t−ブチル−4−ヒドロキシトルエン(BHT)を0.4質量部、上記合成例1で得られた「フェノール樹脂複合体−1」を2質量部及び「PR−51206」(住友ベークライト社製、商品名)を3質量部加え、保護層形成用塗布液を得た。この塗布液を上記電荷輸送層上にリング型浸漬塗布法により塗布し、室温で5分風乾した。その後、130℃で1時間加熱処理して硬化し、膜厚約3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−6」とした。
(感光体−7)
感光体−3の作製と同様にして電荷輸送層まで作成した。
次に、「KBM7103」(信越化学社製、商品名)で表面処理(処理量6%)したアンチモンドープ酸化すず微粒子T−1(ジェコム社製、一次粒子径:0.02μm)50質量部及びエタノール140質量部を、サンドミルにて70時間かけて分散し、更に、ポリテトラフルオロエチレン(PTFE)微粒子(体積平均粒径0.18μm)10質量部を加えて分散を行った。その後、上記合成例1で得られた「フェノール樹脂複合体−1」20質量部を更に加えて撹拌混合して保護層形成用塗布液を得た。この塗布液を上記電荷輸送層上にリング型浸漬塗布法により塗布し、室温で5分風乾した。その後、150℃で1時間加熱処理して硬化し、膜厚約3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−7」とした。
(感光体−8)
感光体−3の作製と同様にして下引層まで作成した。
次に、X線回折スペクトルにおけるブラッグ角(2θ±0.2°)が7.5°、9.9°、12.5°、16.3°、18.6°、25.1°、28.3°に強い回折ピークを持つヒドロキシガリウムフタロシアニン1質量部を、ポリビニルブチラール(エスレックBM−S、積水化学社製)1質量部及び酢酸n−ブチル100質量部と混合し、これをガラスビーズと共にペイントシェーカーで2時間分散処理することにより電荷発生層用塗布液を調製した。得られた塗布液を下引層が形成された導電性支持体上に浸漬コートし、100℃で10分間加熱乾燥して膜厚約0.15μmの電荷発生層を形成した。
次に、上記式(CT−1)で表されるベンジジン化合物2質量部、及び上記式(B−1)で表される繰り返し単位を有する高分子化合物(粘度平均分子量:80,000)2.5質量部をクロロベンゼン25質量部に溶解させて電荷輸送層用塗布液を調製した。得られた塗布液を上記電荷発生層上に浸漬コーティング法で塗布し、130℃、40分の加熱を行い膜厚20μmの電荷輸送層を形成した。
次に、上記式(II−13)で表される化合物4.5質量部及び上記合成例2で得られた「フェノール樹脂複合体−2」5.5質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、140℃で40分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−8」とした。
(感光体−9)
感光体−8の作製と同様にして電荷輸送層まで作成した。
次に、上記式(V−48)で表される化合物4.5質量部及び上記合成例2で得られた「フェノール樹脂複合体−2」5.5質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、140℃で40分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−9」とした。
(感光体−10)
感光体−8の作製と同様にして電荷輸送層まで作成した。
次に、上記式(III−2)で表される化合物4.5質量部及び上記合成例3で得られた「フェノール樹脂複合体−3」5.5質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、140℃で40分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−10」とした。
(感光体−11)
感光体−8の作製と同様にして電荷輸送層まで作成した。
次に、上記式(IV−3)で表される化合物4.5質量部、上記合成例3で得られた「フェノール樹脂複合体−3」5.5質量部及びPL2211(群栄化学社製、商品名)1質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、140℃で40分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−11」とした。
(感光体−12)
感光体−8の作製と同様にして電荷輸送層まで作成した。
次に、上記式(II−13)で表される化合物4.5質量部及びPL4804(群栄化学社製、商品名)5質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、140℃で40分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−12」とした。
(感光体−13)
感光体−8の作製と同様にして電荷輸送層まで作成した。
次に、上記式(II−13)で表される化合物4.5質量部、PL4804(群栄化学社製、商品名)4質量部及びエスレックBXL(積水化学社製、アセタール化度62mol%、重合度300)1質量部を、メタノール20質量部に加えて保護層形成用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、140℃で40分間加熱処理して硬化させ、膜厚3μmの保護層を形成して電子写真感光体を得た。この電子写真感光体を「感光体−13」とした。
<成膜性評価試験>
上記で作製された感光体−1〜13の表面(保護層の表面)を光学顕微鏡で観察し、表面の突起状故障(最大幅約50μm以上の突起)の個数をカウントし、以下の評価基準に基づいて評価した。その結果を表51に示す。
A:感光体上に突起状故障が発見されない。
B:感光体上に突起状故障が50個以下確認される(長期使用上での評価については、更に後の実機走行試験後において感光体表面の評価がA又はBとなる場合を問題なしとする)。
C:感光体上に突起状故障が50個を超え100個以下確認される(スペックの厳しいカラー機などでは実使用上も問題あり)。
D:感光体上に突起状故障が100個を超え確認される(実使用上問題あり)。
(実施例1〜11、比較例1及び2)
上記で作製された感光体−1〜13を、表51に示すように富士ゼロックス社製プリンターDocu Centre C6550Iのブラック部用の感光体としてそれぞれ搭載し、画像形成装置を構成した。
<実機走行試験>
実施例1〜11、比較例1及び2の画像形成装置(富士ゼロックス社製プリンターDocu Centre C6550I)を用いて実機走行試験を行った。すなわち、先ず、高温高湿(28℃、80%RH)の環境下で1万枚の画像形成(画像濃度約10%)を行い、次に、低温低湿(10℃、25%RH)の環境下にて1万枚の画像形成(画像濃度約10%)を行った。その後、感光体表面の評価、並びに、画質の評価、感光体の磨耗量及びクリーニング性の評価を下記の方法に基づいて行った。得られた結果を表51に示す。
<感光体表面の評価>
上記実機走行試験を行った後の電子写真感光体の表面(保護層の表面)を光学顕微鏡で観察し、表面のスジ状ハガレ故障の個数をカウントし、以下の評価基準に基づいて評価した。
A:感光体上にスジ状ハガレ故障が発見されない。
B:感光体上にスジ状ハガレ故障(プロセス方向1mm、幅0.5mm以上)が5個以下確認される(実使用では問題なし)。
C:感光体上にスジ状ハガレ故障(プロセス方向1mm、幅0.5mm以上)が5個を超え20個以下確認される(スペックの厳しいカラー機などでは実使用上も問題あり)。
D:感光体上にスジ状ハガレ故障(プロセス方向1mm、幅0.5mm以上)が20個を超え確認される(実使用上問題あり)。
<画質の評価>
上記実機走行試験を行った後、高温高湿(28℃、80%RH)の環境下での画像形成を行い、そのときの画質(30%ハーフトーン再現性)を、以下の評価基準に基づいて評価した。
A:問題なし。
B:ごく僅かにハーフトーンの濃度異常が見られる(実使用では問題なし)。
C:僅かにハーフトーンの濃度異常が見られる(スペックの厳しいカラー機などでは実使用上も問題あり)。
D:細線の一部消失、又は、ハーフトーンの濃度異常が見られる(実使用上問題あり)。
<クリーニング性の評価>
上記実機走行試験を行った後、A4用紙に100%濃度未転写画像を1枚出力し、その直後に画像形成装置を強制的に停止させ、感光体の表面を目視にて観察し、クリーニング不良の度合いを以下の評価基準に基づいて評価した。
A:問題なし。
B:若干のクリーニング不良が見られる(実使用では問題なし)。
C:クリーニング不良が見られる(実使用上問題あり)。
<感光体の磨耗量>
実機走行試験前後で感光体の膜厚を測定し、感光体10,000回転あたりの膜厚減量(nm/1万回転)を算出した。
なお、上記実機走行試験及び画質の評価において露光量は、各感光体に応じて、感光体表面の100%濃度部の帯電電位が−300V±10V、ホワイト部の帯電電位が−705V±10Vとなるように適宜調節した。
表51に示されるように、本発明の硬化性樹脂組成物を用いて作製された感光体1〜11は突起状欠陥の発生が十分少ないことが確認された。そして、これらの感光体1〜11を備える実施例1〜11の画像形成装置では、長期間画像形成を行った場合であっても感光体表面の剥がれやクリーニング不良が十分抑制されていることが確認された。さらには、実施例1〜11の画像形成装置では、感光体の磨耗量が十分小さいとともに、ハーフトーンの再現性も長期に亘って良好に維持されることが確認された。したがって、本発明によれば、長期に亘って高品質の画像を形成することが可能であることが分かった。
1…電子写真感光体、2…導電性支持体、3…感光層、4…下引層、5…電荷発生層、6…電荷輸送層、7…保護層、8…単層型感光層、20…プロセスカートリッジ、100,110,120,130…画像形成装置。