JP4504012B2 - 半導体処理のための方向付けられたガスの射出装置 - Google Patents

半導体処理のための方向付けられたガスの射出装置 Download PDF

Info

Publication number
JP4504012B2
JP4504012B2 JP2003508816A JP2003508816A JP4504012B2 JP 4504012 B2 JP4504012 B2 JP 4504012B2 JP 2003508816 A JP2003508816 A JP 2003508816A JP 2003508816 A JP2003508816 A JP 2003508816A JP 4504012 B2 JP4504012 B2 JP 4504012B2
Authority
JP
Japan
Prior art keywords
gas injection
substrate
gas
orifice
processing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003508816A
Other languages
English (en)
Other versions
JP2004531903A (ja
Inventor
ストラング、エリック、ジュニア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of JP2004531903A publication Critical patent/JP2004531903A/ja
Application granted granted Critical
Publication of JP4504012B2 publication Critical patent/JP4504012B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

この出願は,“SHOWER-HEAD GAS INJECTION APPARATUS WITH SECONDARY HIGH PRESSURE PULSED GAS UNJECTION”の名称で2001年3月2に出願された先願No.60/272,452、並びに“DIRECTED GAS INJECTION APPARATUS FOR SEMICONDUCTOR PROCESSING”の名称で2001年6月29に出願された先願No.60/310,436に関連している。また、この出願は、2001年6月29日に出願された先願No.60/301,413に関連している。これら出願の内容は、ここで参照として組み入れられる。
本発明は、プラズマ処理システムで、成形されたオリフイスもしくはノズルを使用するための方法並びに装置に向けられている。
集積回路(IC)の製造において、酸化エッチングへの一般的なアプローチは、アルゴンと、C(例えば、C)と、Oとを含んだ処理ガスがプラズマを形成するために低圧雰囲気に導入される容量結合型プラズマ(CCP)を使用している。ここから、プラズマ解離化学の特性が、エッチングされる基板表面の材料(即ち、選択酸化エッチングのためのCF)と化学反応に適した化学反応の最適な生成物に向けられている。更に、プラズマは、エッチングの化学的特性を果たすように、基板表面にエネルギーを与えるのに適した多数の正にチャージされたイオン(例えば、単にチャージされたAr)を発生させる。一般的に、基板RFバイアスが、基板表面にイオンエネルギーを作用させて制御可能な指向性のある方法で基板表面にイオンを引き付けて、所望のフィーチャーの側壁プロファイルのための異方性エッチングを果たすために使用されている。
プラズマ中での原子、分子、並びにイオン化種の異なる振る舞いにより、酸化エッチングは、2つのユニークな方法があると思われている。第1には、電子がプラズマ中で加熱されて、過フッ化炭化水素種による衝突により解離が生じてラジカル種、例えば、CF,CF,CF等ができることである。第2には、電子がアルゴン原子をイオン化するに充分なエネルギーに加熱されて、生じたイオンが、基板表面を励起してCFx/SiO化学反応をさせるのに利用されることである。
例えば、図1には、酸化層でのエッチングのフィーチャーの分解図が示されている。プラズマ中で、過フッ化炭化水素のラジカルが形成される。この後に、これらラジカルは、基板へと拡散し、エッチングのフィーチャー表面上に堆積する。好ましくは、ウエハ表面での部分的なCFラジカルの集中が増すことにより、幾つかの効果が得られる(Nakagawa et al.1998,Booth 1998,Kiss et al.1992,Butterbaugh et al.1991,Tatsumi et al.1998)。特に、(1)パターンニングされたホトレジスト上へCFポリマー層を形成することにより、SiO対レジストのエッチングの選択性を改良するためにエッチング処理中にレジストを保護する。(2)側壁に沿ってCFポリマー層を形成することにより、改良されたエッチングの異方性を保護することができる。(3)フィーチャーの底にCFxを形成することにより、揮発性生成物を生成する、即ち、多くの化学反応の1つが2CF+SiO→SiF+2COであり得る、シリコンに対する酸化物の選択性エッチングに適したエッチング反応を生じさせることができる。かくして、図2に示されるように、基板表面へのイオンの衝突の指向性により、異方性エッチングが生じる。ここでは、アルゴンイオンのエネルギーが、エッチングのフィーチャーでのエッチングの化学特性を生じさせるのに充分である。
酸化物での高アスペクト比のコンタクトエッチング(例えば、エッチングレート、側壁プロファイル、選択性等)を改善するために、上述した文献で提案されている1つの技術は、CFラジカルを形成するためのプラズマ化学特性の最適化を勧めている。これを実施するのに際して、過フッ化炭化水素、特に、CFの濃度は、τn<σγ>と非常に関連性があることが知られている(Tatsumi et al.1998)。ここで、τはガス持続時間、nは電子密度、σは解離衝突断面積、γは電子速度、そして、<σγ>は、正規化された電子エネルギー分布関数での積σγの積分値である。かくして、一般的なプラクテスは、上に列挙した状態を達成するために、好ましいエッチングラジカルの濃度を最適にするようにプラズマ密度を調節する必要がある。一般的に、これにより、酸化エッチングにおいて、最大エッチングレートが制限される。この欠点は、エッチングの選択性の仕様もしくは側壁プロファイルの仕様を合わせることにより、度々補われている。例えば、エッチングレートは、プラズマ密度にほとんど比例する(イオン密度は、擬似中性プラズマ(quasi-neutral plasma)のための電子密度と等しく、両者は、プラズマ密度と一般的に称されている)。一方、エッチング選択性は、プラズマ密度が高い解離のラジカルの濃度(即ち、CxFy処理の化学特性での酸化エッチングのための高いフッ素ラジカル濃度)を生じさせるのに充分に大きければ、プラズマ密度に逆比例する。更に、過度に高い解離レートによる不適当な化学特性は、フィーチャー側壁の不適切な保護を生じさせる。かくして、当方性エッチングを生じさせる側壁プロファイルを危うくする。最後に、不十分なプラズマ密度と低い解離(即ち、CF,CF等の高濃度)とは、エッチングのフィーチャーの底に溜まる物質(即ち、C)により、エッチングストップを生じさせる。このために、プラズマ密度と好ましいラジカル濃度との密接な関係により、エッチングレート、エッチング選択性、並びに側壁プロファイル(もしくは異方性)のための僅かに許容可能な動作仕様を達成するように働く非常に狭いパラメータスペースとなる。これは、エッチングに対する要求が、深く高いアスペクト比のコンタクトをエッチングする間に変わるので、特に、一般的なハードウエアと処理プラクテスに対して大きな欠点である。
通常の半導体処理装置に利用されている代表的なシャワーヘッドガス射出システムにおいて、射出プレートは、一般的に、数百(数百ないし数千)の射出オリフイスのアレイを有する。これらオリフイスを通って、ガスが、100−1000sccmアルゴンに等しい流量で、処理領域へと導入される。更に、各射出オリフイスは、オリフイスの直径に対するオリフイスの長さの比L/dが、10よりも大きい(即ち、L/d>>1)である長さLと直径dとにより特徴付けられる図3に示されるような円形オリフイスである。例えば、代表的なオリフイスの直径は、0.5mmであり、また、代表的なオリフイスの長さは、1cmであり、かくしてアスペクト比L/d=20である。
このデザインに従えば、ガスは、低い吐出係数のオリフイスの非常に広い角度分布でオリフイスの出口から放出される。オリフイスの吐出係数Cは、等エントロピーの質量流量に対する実際の質量流量の比により与えられる。この等エントロピーの質量流量は、擬似的な1次元の摩擦が無く断熱した流れに対するEulerの式(もしくはNavier-Stokeの式)から以下のように導かれ得る。
式1
Figure 0004504012
ここで、γは、ガスに対する比熱、Rは、気体定数、Pは、全圧力、Tは、全温度、そして、Aは、最小断面(スロート)積(即ち、A=πd/4)である。C<<1のときには、オリフイス中の全圧力実収率はかなり減じられ、このために、オリフイスのフラックスの角度分布は、非常に広くなる。かくして、従来のガス射出システムのデザインの欠点は、比較的低いガス射出オリフイスの吐出係数である。
更に、従来のシステムは、ガス射出オリフイスの吐出係数の制御に対して欠点がある。多くの場合、ガス射出オリフイスは、腐食に曝され、このために、ガス射出特性は、基板対基板に対して、またバッチ対バッチに対して、処理時間と共に変化する。従来のシステムは、“消耗物品(consumable)”のガス射出システムの状態をモニターできないばかりか、“消耗物品”のガス射出システムの寿命を長くするように、ガス射出特性を制御しようとする試みもなかった。制御が不可能な吐出係数のガス射出オリフイスに加えて、従来のデザインは、更なる欠点がある。即ち、ガス射出オリフイスは、基板表面に対して部分的に均一で指向性のあるガス流を与えるように配置されていない
本発明の目的は、各々がオリフイスの吐出係数を改善するように設定された1もしくは複数のガス射出オリフイスを有するガス射出システムデザインを提供することである。
本発明の他の目的は、各々がオリフイスの出口でのガス流の指向性を改善するように設定された1もしくは複数のガス射出オリフイスを有するガス射出システムデザインを提供することである。
本発明の他の目的は、各々が基板表面に直交する化学種のフラックスを改善するように設定された1もしくは複数のガス射出オリフイスを有するガス射出システムデザインを提供することである。
本発明の目的は、基板表面に直交する化学種のフラックスの空間での均一性を改善するように設定された複数のガス射出オリフイスを有するガス射出システムデザインを提供することである。
本発明の他の目的は、複数のガス射出オリフイスと、固有のガス射出パラメータをモニターするセンサーと、1もしくは複数のガス射出オリフイスの状態をモニターするために使用されるコントローラとを有するガス射出システムデザインを提供することである。ガス射出オリフイスの状態は、消耗部品の交換を決定するために使用され得る。
本発明の他の目的は、複数のガス射出オリフイスと、固有のガス射出パラメータをモニターするセンサーと、1もしくは複数のガス射出オリフイスの状態をモニターするために使用されるコントローラとを有するガス射出システムデザインを提供することである。ガス射出オリフイスの現在の使用状態は、現在の使用状態をデザイン状態に戻すように使用されることができて、ガス射出オリフイスを制御することと、消耗可能な部品の寿命を長くすることとができる。
エッチングレートと、エッチング選択性と、エッチングのフィーチャーの側壁プロファイルとを改善するために、本発明は、露出された基板表面に部分に対する化学種の輸送(ケミカルトランスポート)の改善を果たすために、材料処理装置で利用されるガス射出デザインを改善している。(ここで使用されているような“基板”は、これらに限定はされないが、半導体ウエハ並びに液晶ディスプレイパネルを含み、プラズマ雰囲気で処理される如何なるワークピースをも意味する)。露出された基板表面は、材料のエッチング工程か堆積工程かで処理される。これら工程の組み合わせは、露出された基板表面の材料成分並びに/もしくは表面形状を変える機能を果たす。材料処理装置が、処理プラズマを利用する場合には、化学種の輸送に対する改善は、解離化学特性に、かくしてラジカル濃度に影響すると共に、基板表面での高いアスペクト比のフィーチャーの近くのラジカル輸送にも影響する。本発明は、ガス射出オリフイスの間隔とオリフイスの吐出係数とを最大にして、基板表面に対して直交した均一で指向性のあるガス流を与えるように、改良されたガス射出オリフイスデザインを利用している。
図4は、中に処理領域12が形成された処理チャンバ10を備えた材料処理システム1を概略的に示す。前記処理領域12は、減圧されたガスとプラズマとを、好ましくは含む。材料の処理チャンバ10は、更に上側ガス射出プレート20を有し、このプレートを通して、処理ガスは、処理チャンバ10の中に入る。更に、チャンバ10内には、上に基板35が載置される基板ホルダー30が設けられている。この基板35の上面は、前記処理領域12に露出されている。前記基板ホルダー30は、基板35の露出面とガス射出プレート20との間の間隔hが変えられ得るように、移送装置36により垂直方向に移動され得る。前記処理領域12から流れ出るガスは、チャンバポート38を通って真空ポンプ40へと排気される。材料処理装置1は、更に、質量流量(マスフロー)コントローラ44と、圧力センサー46と、真空ポンプ(ゲートバルブ等)40と、チャンバ圧力センサー49と、基板ホルダーの移送装置36とに接続されたコントローラ42を有する。ガス射出プレート20のデザインに対する改良は、基板35の材料処理での改善を促進する。これらのフィーチャーは、以下に説明される。
図5の(A),(b),(C)は、本発明に係わるガス射出オリフイスの3つの例を示す。第1の断面図(図5(A))は、開口径(スロート直径)d(例えば、dは、0.025ないし0.5mmのオーダである)スロート45と、長さLの第1の側壁50とを有する音響(sonic)オリフイスと称されているものを示す。好ましくは、アスペクト比L/dは、1よりもかなり小さい(例えば、L/d<<1)。吐出係数(上述した)は、最小領域の断面(例えば、スロート45)に対する最小領域の断面(例えば、第1の側壁)の比に非常に関連している。一般的に、スロート45の第1の側壁50は、オリフイスの中心線55と平行である。ガス射出オリフイスは、更に、このオリフイスのスロート45にガスが入ることを可能にしている入口65を有する。ガス射出オリフイスが形成される材料の厚さに対応して、オリフイスの入口65は、所定の流入長と、スロート45の断面積よりも実質的に大きい断面積とを有する第2の側壁70を備えた流路を持っている。例えば、前記入口65の断面積は、スロート45の断面積よりも、好ましくは10倍大きい。この入口65のデザインは、ガスが前記スロート45に入る前にスロート入口壁75に達するまで、第2の側壁70間を通るように、設定されている。一実施の形態(図示せず)では、スロート入口壁75は、第1の側壁50(ここからスロート45の開口が始まる)に達するまで平坦(flat)に維持されている。
図5(A)に示された図示の実施の形態においては、スロート入口壁75は、このスロート入口壁75とオリフイスの中心線55との間の傾斜(図5(A)で80で示された角度αを有する)を有する(この結果、スロート45への入口の所に円錐セクションを形成している)。この入口角度αは、好ましくは45°であるが、スロート入口壁75の入口角度80は、上述したように30ないし90°の範囲で変更し得る(80ないし90°の入口角度80は、上述したような“平坦”なスロート入口壁75と等価である)。
図5(B)は、射出オリフイスの第2の実施の形態、即ち発散(divergent)ノズルの断面を示す。この発散ノズルは、直径d(例えば、dは、0.025ないし0.5mmのオーダである)と対応したアスペクト比L/d<<1(例えば、L/d<0.5)とを有するスロート45を具備している。ノズルのスロートを超えて、直径dのスロート45から直径dの出口85に向かって直径が大きくなる円錐形の発散セクションが位置されている。この直径比d/dは、4のオーダである。前記円錐形の目的は、ガスが低圧雰囲気へと広がるレートを規制することである。一般的に、図5(B)で90として示されている角度βは、径方向の流のロスを最小にすると共にノズルの壁からの流の分離を可能な限り抑制するために、約18°を超えないことが望ましい。また、小さい角度は、摩擦ロスが大きくなると共に、所定の面積比に対してノズル長が長くなる。従って、角度90は、好ましくは、5<β<20°、そして、より好ましくは、15<β<20°である。前記円錐形のセクションは、凹んだセクション、特に、機械特性(即ち、“パーフェクトノズル(perfect nozzle)”もしくは(“最小長さノズル”(minimum-length nozzle))の方法を使用してデザインされる円滑壁外形状に変更され得る。例えば、基板表面で感じられる平均(特別)圧力を最大にすることを望むのであれば、Kn>0.005の場合には、音響オリフイスを選定すれば良く、また、Kn<0.005のときには、発散オリフイスを選定すれば良い。可変ハードスヘア(VHS)モデル;Bird,G.A.,Molecular gas dynamics and the direct simulation of gas flows,Clarendon Press,Oxford(1994)を使用して予測される平均自由行程の見積りから導かれるクヌーセン数Knを想定している。
(C)に示された第3の実施の形態において、入口65と、壁70を備えた入口領域と、スロート入口壁75とは除去されており、ガス射出オリフイスは、壁50の(即ち、スロート45の)長さLに等しい厚さの1枚の材料内に形成されている。図5(C)に示された実施の形態は、ここでは単純オリフイスと称されている。
要約すると、(1)シヤワーヘッドオリフイスと(2)成形オリフイスもしくはノズル(例えば、音響オリフイスもしくは発散ノズル)との間のガスオリフイスの幾何学形状での相違は、非常に異なる流れ状態を生じさせる。
図6は、オリフイスのクヌーセン数Knに対する測定された吐出係数を示す。このオリフイスのクヌーセン数は、スロートの直径dに対する全(即ち、停滞)状態での平均自由行程を表す。Kn<0.01は、連続したレシピを表し、0.01<Kn<1は、遷移レシピを表し、そして、Kn>1は、自由分子流レシピを表していることに注意せよ。明らかに、吐出係数は、広い範囲のKnのに対しては、アスペクト比L/d=20に対してよりもアスペクト比L/d=0.5に対しての方がかなり大きい(4ないし5倍)
前記音響オリフイスに対する吐出係数は、オリフイスのフラックスの角度分布を狭くすることができる。換言すれば、射出全圧力の増加(即ち、クネーセン数の減少)並びに/もしくは吐出係数の増大により、高精度で指向されたガスジェットを発生させることができる。
図5の(A)ないし(C)の連続した参照によれば、ガス射出オリフイスデザインは、吐出係数C(図6に示される)を大きくもしくは最大にするように記載されている。しかし、より一般的には、オリフイスに部分的なガス射出動作と2つの部分的に規定されたパラメータ、即ち、オリフイスのアスペクト比L/dとオリフイスのクネーセン数Knとの関係が、確立されている。かくして、パラメータΠ、例えば、吐出係数Cのような測定可能なパラメータが、前記2つのパラメータ、即ち、CD=CD(L/d,Kn)により表され得る。例えば、非ディメンション的な解析のルールを使用することにより、上記パラメータは、互いに交換可能とされ得るし、また、上記式をΠ=Π(CD,L/d)のように書き換えられることができる。実験によれば、上述したガス射出オリフイスデザインは、基板35の露出面近くの数密度に影響し、次に、後述する入射角(基板の表面での)の可能性分布関数に影響する。
図4を参照すると、処理ガス25は、ガス射出プレート20を通って処理領域12に入る。ここで、このガス射出プレート20の表面22は、基板35の露出面に対してほぼ平行である。例えば、処理ガス25は、基板35の表面にほぼ垂直な方向に射出される。基板35の表面での表面垂直ベクトルに対して、表面ガス入射角の例示的な可能性分布関数(PDF)χは、ガス射出プレート20のガス射出オリフイスの直下の場所については図7に示されている。かくして、この場所では、原子/分子が、基板35の表面に直交するように(300として図7で示された角度で当たる)動く可能性が高い(しかし、ガス射出オリフイスに対して直接的に“インライン(in-line)の場所から横方向に動くときには、この観察は正しくない)。前記PDFの“狭さ(narrowness)”もしくは“広さ(broadness)”は、バックグラウンドの圧力と、ガス射出プレート20の表面20と基板35の露出面との間の間隔hとに高く依存する。更に、入射角PDF(χ)の可能性分布関数は、基板35の露出面とガス射出プレート20との間の間隔Hに対するガス射出プレート20のガス射出オリフイスΔsの間隔に強く影響される。
基板35の露出面(もしくは、エッチング又は堆積フィーチャーへの入口領域)の近くでの質量輸送(mass transport)での変化に影響を及ぼすために、上述した2つの独立したパラメータが利用できる。上記エッチング又は堆積フィーチャーへのマスのフラックスは、(1)基板35の露出面の近くの気体数密度(gas number density)と、(2)直交入射とほぼ等しい角度で表面に原子/分子が衝突する可能性とに、依存している。上記説明を考察すると、第2の可能性Πは、吐出係数Cと、オリフイスアスペクト比L/dと、ガス射出プレート20での相対的ガス射出オリフイス間隔Δs/h(ここで、Δsは、ガス射出プレート20でのガス射出オリフイス間隔であり、また、hは、ガス射出プレート20と基板35の露出面との間の間隔(即ち、距離)である)と、チャンバクネーセン数Knの関数として、即ち、Π=Π(C,L/d,Δs/h,Kn)として表わされる。最初の2つの従属変数(C並びにL/d)は、図5(A)ないし(C)を参照して説明したように、ガス射出オリフイスのデザインに関係付けられている。このガス射出オリフイスのデザインは、基板35の露出面の近くの気体数密度に強く影響を及ぼし、また、程度は低いが、入射角の可能性分布関数にも影響を及ぼす。第3の変数は、ガス射出プレート20でのガス射出オリフイスの相対間隔に関係しており、基板35の露出面を横切る入射角の可能性に強く影響を及ぼす。
前記Δs/hの好ましい選定が以下に論じられる。最後に、第4の変数は、チヤンバの状態もしくはバックグラウンド圧力に基づくクネーセン数、即ち、Kn=λ/hである。ここで、λは(バックグラウンド)チャンバ圧力を使用して規定される平均自由行程である。例えば、Knが大きい場合には、PDF(χ)は狭く、Knが小さい場合には、PDF(χ)は広い。
基板35の近くの輸送特性の変化に影響を及ぼすために、上記(ガス射出オリフイスデザインに関連した)第1の従属変数(即ち、吐出係数Cは、基板処理の間に、そして基板毎に調節可能である。また、第2の従属変数、即ち、オリフイスアスペクト比L/dは、アブリオリでザデインされ得る。換言すると、アスペクト比(オリフイスのプラズマ腐食により処理中に変化するけれども)は、単一のウエハの処理の間では一般的に制御が不可能である。Cに対する変化は、射出全圧力(質量流量)に対する変化によってなされ得る。例えば、射出全圧力の増加(即ち、質量流量の増加)は、吐出係数を増加させ得る。Cの調節は、以下に詳細に説明される。
基板35の近くの輸送特性の変化に影響を及ぼすために、第3の変数、即ち、相対間隔Δs/hは、基板の処理の間に、そして、移送装置36を使用した基板ホルダー30の垂直方向の移動に従って基板毎にhに対する変化によって調節され得る。
基板35の近くの輸送特性の変化に影響を及ぼすために、第4の変数、即ち、(バックグラウンド)チャンバのクネーセン数Knは、基板処理の間に、そして、基板毎に調節され得る。Knに対する変化は、移送装置36による間隔h並びに/もしくは(バックグラウンド)チヤンバ圧力と、質量流量並びに/もしくはチヤンバ圧力センサー49に接続された真空ポンプのスロットルバルブのセッテングとの変化により、夫々影響され得る。
更に、図7を参照すると、基板35の表面にほぼ直交する方向に動く、もしくは特定の角度範囲内での原子/分子を見る可能性を最大にするために、ガス射出オリフイスの間隔は、以下の式に従って決定される。
Δs=2htan(φ) (2)
ここで、Δsは、図8で400により示されたようなガス射出オリフイス間隔、φは、図8で410で示されるような、正常の入射からの許容可能な角偏差(半角)、そして、hは、図8で420で示されるような、ガス射出プレート20と基板35の露出面との間の間隔(即ち、距離)である。エッチングもしくは堆積プロファイル中への質量輸送を最適化するために、半角φは、フィーチャー許容半角φ=tan-1(d/2l)と一致するべきである。ここで、dフィーチャー直径(即ち、横方向長さスケール)、そして、lフィーチャー長さ(即ち、長手方向長さスケール)であり、これに関しては図2に示している。換言すれば、φ≦φ、即ち、相対ガス射出オリフイス間隔h/Δsの逆数がフィーチャーのアスペクト比AR=l/dと一致すべきである。即ち、h/Δs≧AR。
図9は、中を処理ガス25が流れる複数のガス射出オリフイスを有するガス射出プレート20を示す平面図である。ここでは、これらオリフイスは、如何なる所望のオリフイスとこれに隣接した(囲んだ)オリフイスとの間の間隔(Δs)400が同じなように好ましくは六角形のパターンに配設されている。
最後に、前記(バックグラウンド)チャンバのクネーセン数Knは、PDF(χ)の全幅半値最大δFWHMが、エッチングもしくは堆積フィーチャーの中へ質量輸送の効率を最大にするために、フィーチャー許容半角2φの2倍にほぼ等しいように、好ましくは選定される。例えば、h=25mmで、AR=10(:1)の場合には、(バックグラウンド)チャンバ圧力は、上記条件を満たすためには、約2ないし5mTorrである。ガス射出オリフイス間隔と、パターンと、チャンバ状態と、オリフイス断面(即ち、図5(A)ないし(C))に対するデザイン規格を組合わせると、ガス射出プレート20のデザインは、プラスもしくはマイナスの角度範囲310内で、基板35の表面にほぼ直交して動く原子/分子の数を均一に最大にすることができる。例えば、基板35の表面の部分での原子/分子の数と、基板35の表面にほぼ直交する方向に動く原子/電子を見る可能性との両者を最大にすることにより、プラズマ処理は最適にされ得る。
例えば、酸化エッチングにおいて、ガス射出オリフイスのアレイが、不活性ガス(例えば、アルゴン)で希釈された処理ガス(即ち、C)を処理領域12の中へと連続的に射出する。ガス種の処理レシピの一例は、300sccmのアルゴンと、5sccmのCと、10sccmの酸素とを含むことができる。このような流量に対して、射出全圧力は、36000個の射出オリフイス(d=0.05mm,L=0.025mm)のアレイと、400sccmのアルゴンの質量流量との場合には、約5Torrである。このようなデザインにおいて、ガス射出オリフイスは、(1)六角形のパターンで各々1ミリメートル離間されており、かくして、垂直の入射に対して±1°(例えば、1°は、12:1のアスペクト比のフィーチャーのエッチングもしくは堆積に適した要求よりも小さい)の最適化された基板35の表面の近くでの均一かつ指向性のある流れを可能にしている。ガス射出オリフイス間隔(Δs)400は、ガス射出プレート20と基板35の露出面間の距離hが25mmには、1mmとなるように、決定される。
図5(A)ないし(C)に示されているような、音響オリフイス、発散ノズル、もしくは、単純オリフイスは、ステンレススチール、アルミニウム、アルミナ、シリコン、石英、シリコンカーバイト、カーボン等、幅広い材料で製造され得る。アルミニウムにより形成された場合には、オリフイス/ノズルは、プラズマによる腐食を防ぐために、陽極酸化され得る。更に、ガス射出オリフイスは、保護バリアを
形成するように、Yでスプレイコーテングされ得る。音響オリフイスもしくは発散ノズルは、ダイアモンドバイト切削加工、超音波ミリング、レーザカッテング等の幅広い種々の機械加工技術を使用して製造され得る。また、ある種の適用においては、オリフイスの製造は、エッチングを使用できる。実際、オリフイス/ノズルが製造される材料の全厚さがミリメートルのオーダの場合には、オリフイスのエッチングは、通常実施されているエッチングレートと道理に適った処理時間とによりなされる。
例えば、図10並びに11に従って、プレート用基板(即ち、750ミクロンの厚さの多結晶シリコンウエハ)に1もしくは複数のガス射出オリフイスを製造する方法が説明される。図10には、製造工程が示され、その処理は、図11に示された工程のリストに反映されている。製造プロセスは、工程500でスタートされる。工程510は、プレート用基板512の第1の表面にホトレジストフイルム514を形成し、パターンがホトレジストフイルムにホトリソグラフ技術により転写される。パターンニングされたフィーチャーの幅は、約1400ミクロンで良い。
工程520で、フィーチャー522が、約700ミクロンもしくはこれ以上の深さに(異方性)フィーチャー522をエッチングするのに必要な時間により定められた所定の時間、KOH/アルコール液中にプレート用基板512を浸漬することにより、プレート用基板512にウエットエッチングされる。このウエットエッチングが完了した後に、ホトレジストマスク514は、除去される。
工程530で、プレート用基板512は、反転され、第2のホトレジストフイルム532が、プレート用基板512の第2の(反対の)表面に塗布され、そして、パターン534が、ホトリソグラフ技術によりホトレジストフイルム532に転写される。このパターンニングされたフィーチャーの幅は、約50ミクロンで良い。
工程540で、プレート用基板512は、この分野で良く知られているプラズマ処理装置内でSF/O(/C)もしくはCl組成を利用してドライエッチングされて、ガス射出オリフイス(d=0.050mm,L≦0.050mm)が形成され得る。代表的なエッチングレートは、50ミクロン/分であり、かくして、ガス射出オリフイスの製造を果たすためのドライエッチング時間は、1分よりも短くなることが期待される。エッチングが終了すると、ホトレジスト532が剥離される。このプロセスは、工程550で終了される。
シリコンを使用した製造は、腐食剤(フッ素)として、酸化エッチングプロセスで有用であるから、さらなる効果があるけれども、これは、時間と共に消耗されてオリフイスの腐食となる。もし、そうであれば、ガス射出オリフイスの動作は、圧力センサー46(図4)を使用して、射出全圧力をモニターすることにより、観察できる。この射出全圧力の低下は、ガス射出オリフイスの腐食(即ち、ガス射出オリフイスの開口、もしくは最小断面領域Aの増加、もしくは長さLの減少)を意味することができる。この情報は、消耗可能なガス射出プレート20の交換寿命を決定することができる。
図4を参照すると、処理ガスの流れをモニターし、調節するマスフローコントローラ44に接続されたガス供給源48を出た処理ガスは、ガス射出プレート20を通って処理領域12に入り、真空ポンプ40により排出される。このガス射出システムのモニターと制御とは、コントローラ42によりなされる。このコントローラ42は、ガス供給源と、マスフローコントローラ44と、圧力センサー46と、チャンバ圧力センサー49と、基板ホルダーの移送装置36と、真空ポンプ40とに接続されている。時間の関数として、コントローラ42は、圧力センサー46を介して射出全圧力をモニターし、また、圧力の例示的なトレースが、図12に示されている。
図5(A)ないし(C)に示されているようなオリフイスがガス射出オリフイスの一側に存在するプラズマにより腐食されるときに、プラズマがガス射出オリフイスの長さLの全長に渡って腐食させると、前記ガス射出オリフイスの長さLは、時間と共に減少し、ガス射出オリフイスのスロート領域は広がる。ガス射出オリフイスのプラズマ腐食の例が、図13に示されている。図13には、図3に示されているのと類似したガス射出オリフイスの(裂けた)断面が、示されている。ここで、オリフイスの左端が腐食されている。オリフイスの長さLの減少は、吐出係数の増加となるオリフイスのアスペクト比L/dに対応する。そして、この吐出係数の増加は、有効スロート面積の増加となり、図12(領域600)に示されるような射出全圧力の減少へと変換される。しかし、長さLとスロートの直径dとが変化する異なるレートにより、前者並びに後者の腐食レジメは、図12の圧力トレースの傾斜の変化により区別され得る。
図12に示されるように、射出全圧力が閾値以下になると、コントローラ42は、ガス射出システムの部品(消耗物品)の交換を予定するように警告を発することができる。また、このコントローラ42は、ガス射出オリフイスの吐出係数の変化を補うように、処理ガスの流れの性質を変更することにより、ガス射出システムの劣化を無効にすることができ、かくして、消耗部品の寿命を延ばすことができる。
式(1)を使用すると、測定される射出全圧力は、“理論的な”(もしくは等エントロピーの)質量流速に関係付けられ得る。質量流量コントローラ44により、(実際の)質量流量を更に記録することにより、エントロピーの質量流量に対する実際の質量流量の比は、ガス射出システムに対する平均吐出係数を与える。ガス射出オリフイスが腐食されると(図13)、オリフイスのアスペクト比L/dは減少する。このために、射出全圧力が減少すると(図12)、オリフイスのクネーセン数Knは大きくなる。減少するアスペクト比L/dと増加するクネーセン数Knとにより、図6を参照して説明されたように、吐出係数は、アスペクト比L/dとクネーセン数Knとの関数なので、吐出係数は変化する。このような吐出係数の変化は、図14に示された特性曲線(700並びに710)の移動として観察され得る。図14において、ガス射出システムは、第1の特性曲線700上の第1のポイント720で動作するようにデザインされている。吐出係数が変化し、また処理ガスの質量流量が一定に維持される(質量流量コントローラによって)のに従って、動作ポイントは、第1の特性曲線700上の第1のポイントから第2の特性曲線710上の第2のポイント730へとシフトする。オリフイスのアスペクト比L/dとクネーセン数Knに対する吐出係数の依存性に応じて、前記第2のポイント730は、第1のポイント720の吐出係数よりも大きいか(図14に示されるように)、または小さい吐出係数を有することができる。図14の場合には、射出全圧力をさらに減じるように質量流量を減じることにより、コントローラ42は、第2の特性曲線710上の第2のポイント730から第2の特性曲線710上の第3のポイント740へと動作ポイントを移動させ、また、(短い)破線750により示された値のデザイン吐出係数に戻る。論じたような制御シーケンスに従うことにより、ガス射出システムの吐出係数は、一定に保たれる。かくして、材料処理システム1は、交換の前のガス射出消耗部品の使用期間を長くすることができる(処理の質量流量が処理のレシピのために設定された制御限界を超えるように実質的に変化しない限り)。
上述し図示された例示的な実施の形態は、本発明の好ましい実施の形態を説明しており、請求項の範囲を限定することは意味していないことが判るであろう。本発明の種々の変更並びに変形は、上記技術に照らして可能である。かくして、請求項の範囲内で、本発明は、特にここに説明した以外でも実施され得ることは理解できよう。
過フッ化炭化水素のプラズマによりエッチングされている高いアスペクト比のフィーチャーの断面図である。 アルゴンのプラズマの存在下でのエッチングされている高いアスペクト比のフィーチャーの断面図である。 シャワーヘッド射出オリフイスの拡大された断面図である。 本発明の一実施の形態に係わる材料処理システムの概略的な断面図である。 (A)は、本発明の第1の態様に係わる音波オリフイスを示し、(B)は、本発明の第2の態様に係わる発散ノズルを示し、そして、(C)は、本発明の第3の態様に係わるシンプルなオリフイスを示す。 オリフイスのクネーセン数Knと、オリフイスのアスペクト比と、吐出係数との関係を示すグラフである。 基板表面に対しての部分的なガス入射角の可能な分布関数を概略的に示す図である。 ガス射出オリフイスの間隔に関する一例の概略的な断面図である。 ガス射出オリフイスの間隔に関する一例の概略的な平面図である。 ガス射出オリフイスを形成するための方法を示す概略的な図である。 ガス射出オリフイスを形成するための方法の過程を示す図である。 ガス射出オリフイスの腐食の間の射出全圧力を概略的に示す図である。 プラズマ腐食に曝されたガス射出オリフイスを写真で示す図である。 吐出係数を調節するための制御路の一例を示す図である。

Claims (26)

  1. 処理チャンバと、
    この処理チャンバに接続された真空ポンプと、
    基板の一表面にほぼ垂直になるように、処理チャンバの中へガスを射出するように構成された複数の成形されたガス射出オリフイスを有するガス射出プレートを備えたガス射出システムと、
    前記処理チャンバと、前記真空ポンプと、前記ガス射出システムとに接続されるように構成され、および、前記基板の前記表面にほぼ直交する方向に動く、基板の前記表面の近くの粒子の数を最大にすることにより、基板の処理を制御するように構成された処理コントローラとを具備し、
    前記コントローラは、ガス射出システムの吐出係数が一定に保たれるように、測定された射出全圧力の変化に基づいて処理ガスの質量流量を変化させるように構成されている、基板を処理するための材料処理システム。
  2. 前記成形されたガス射出オリフイスの各々は、これに関連した可能性分布関数(PDF)を有し、このPDFは、基板の前記表面での表面垂直ベクトルに対するガス入射角の関数である、請求項1の材料処理システム。
  3. ス入射角度は、基板での特定のアスペクト比のフィーチャーのための許容角度に依存している請求項2の材料処理システム。
  4. 前記複数の成形されたガス射出オリフイスの少なくとも1つは、入口領域と、スロートと、前記スロートから前記ガス射出オリフイスの出口に向かって直径が大きくなる円錐形の発散セクションとを有する発散ノズルである請求項1の材料処理システム。
  5. 前記複数の成形されたガス射出オリフイスの少なくとも1つは、入口領域と、前記ガス射出オリフイスの出口に位置されたスロートとを有する音響オリフイスである請求項1の材料処理システム。
  6. 前記複数の成形されたガス射出オリフイスの少なくとも1つは、前記ガス射出オリフイスの中心線と平行な側壁を有する開口からなり、スロートの長さに等しい厚さの1枚の材料内に形成されている単純オリフイスである請求項1の材料処理システム。
  7. 吐出係数が、基板の前記表面の近くでの数密度を最大にするように、成形されたガス射出オリフイスの各々に対して確立されている請求項1の材料処理システム。
  8. 前記ガス射出プレートは、基板の前記表面から第1の距離だけ隔てて位置されている請求項1の材料処理システム。
  9. 前記複数の成形されたガス射出オリフイスは、少なくとも1回のエッチング工程を使用して形成される請求項1の材料処理システム。
  10. 前記複数の成形されたガス射出オリフイスは、少なくとも1回の堆積工程を使用して形成される請求項1の材料処理システム。
  11. 前記ガス射出プレートは、シリコンにより形成されている請求項1の材料処理システム。
  12. 前記前記ガス射出プレートは、前記処理チャンバ内に着脱可能に設けられている請求項1の材料処理システム。
  13. 前記ガス射出システムは、複数のガス分配マニホールドを有し、また、前記ガス射出プレートは、これら複数のガス分配マニホールドの少なくとも1つに接続されている請求項1の材料処理システム。
  14. 前記ガス射出プレートは、基板に対して実行される処理に依存している請求項1の材料処理システム。
  15. 前記ガス射出プレートは、基板に対して実行される処理に依存しているオリフイスパターンを有する請求項1の材料処理システム。
  16. 前記成形されたガス射出オリフイス間の隔離距離は、一定である請求項1の材料処理システム。
  17. 前記成形されたガス射出オリフイス間の隔離距離は、基板に対して実行される処理に依存している請求項1の材料処理システム。
  18. 前記処理コントローラは、前記ガス射出プレートと、基板の前記表面との間の距離を決定する請求項1の材料処理システム。
  19. 射出されたガスが、プラズマ処理チャンバに入るのに従って、射出されたガスの圧力をモニターするように構成された圧力計を更に具備し、
    前記処理コントローラは、射出されたガスがプラズマ処理チャンバに入るのに従って、射出されたガスの圧力が閾値以下であるかどうかをモニターするように構成され、および前記圧力が前記閾値以下の場合には、ガス射出プレートが交換される必要があるかどうかを特定するように構成されている、請求項1の材料処理システム。
  20. 基板の上面から所定距離の所にガス射出プレートを位置させることと、
    このガス射出プレートの中の複数の成形されたガス射出部を介して処理ガスを駆動させることと、
    プラズマを形成するように、前記複数の成形されたガス射出部を介して駆動された処理ガスにRF電力を印加することと、
    前記ガス射出プレートを備えたガス射出システムの吐出係数が一定に保たれるように、測定された射出全圧力の変化に基づいて処理ガスの質量流量を変化させることと、
    基板にエッチングと堆積との少なくとも一方を果たすこととを具備する、プラズマ処理雰囲気内で基板を処理する方法。
  21. 前記駆動させる工程は、処理ガスを、入口領域と、前記ガス射出部の出口に位置されたスロートとを有する音響オリフイスを介して駆動させることを含む請求項20の方法。
  22. 前記駆動させる工程は、処理ガスを、入口領域と、スロートと、前記スロートから前記ガス射出部の出口に向かって直径が大きくなる円錐形の発散セクションとを有する発散ノズルを介して駆動させることを含む請求項20の方法。
  23. ガス射出プレートの動作ポイントが、閾値以下であるかどうかを決定する工程と、閾値以上の動作ポイントに移動するように、少なくとも1つの基板を処理するためパラメータを変更する工程とを更に具備する請求項20の方法。
  24. 動作ポイントが、閾値以下であるかどうかを決定する工程は、処理ガスが複数の成形されたガス射出部を介して駆動されるのに従って、処理ガスの圧力が閾値以下であるか否かを決定することを更に含む請求項23の方法。
  25. 前記コントローラは、式h/Δs≧ARに係るガス射出プレートと、基板の表面との間の距離hを制御することによって基板の処理を制御するように構成される、請求項1の基板を処理するための材料処理システム。
    ここで、Δsは、射出オリフィス間の距離であり、ARは、基板上のフィーチャーのアスペクト比である。
  26. 前記式h/Δs≧ARに係るガス射出プレートと、基板の表面との間の距離hを制御することによって基板の処理を制御することを更に具備する請求項20の方法。
    ここで、Δsは、射出オリフィス間の距離であり、ARは、基板上のフィーチャーのアスペクト比である。
JP2003508816A 2001-06-29 2002-06-20 半導体処理のための方向付けられたガスの射出装置 Expired - Fee Related JP4504012B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30141301P 2001-06-29 2001-06-29
PCT/US2002/016583 WO2003002860A2 (en) 2001-06-29 2002-06-20 Directed gas injection apparatus for semiconductor processing

Publications (2)

Publication Number Publication Date
JP2004531903A JP2004531903A (ja) 2004-10-14
JP4504012B2 true JP4504012B2 (ja) 2010-07-14

Family

ID=23163240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003508816A Expired - Fee Related JP4504012B2 (ja) 2001-06-29 2002-06-20 半導体処理のための方向付けられたガスの射出装置

Country Status (3)

Country Link
JP (1) JP4504012B2 (ja)
AU (1) AU2002352262A1 (ja)
WO (1) WO2003002860A2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083853B2 (en) 2004-05-12 2011-12-27 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276093B1 (ko) * 1992-10-19 2000-12-15 히가시 데쓰로 플라스마 에칭방법
JP3247249B2 (ja) * 1994-05-12 2002-01-15 東京エレクトロン株式会社 プラズマ処理装置
JP3181501B2 (ja) * 1995-10-31 2001-07-03 東京エレクトロン株式会社 処理装置および処理方法
JPH10158842A (ja) * 1996-12-03 1998-06-16 Toshiba Corp 成膜装置
JPH10270418A (ja) * 1997-03-24 1998-10-09 Mitsubishi Electric Corp 半導体製造装置
JP2001525997A (ja) * 1997-05-20 2001-12-11 東京エレクトロン株式会社 処理装置
JP3460522B2 (ja) * 1997-08-08 2003-10-27 松下電器産業株式会社 電子部品のプラズマクリーニング方法
JPH11172443A (ja) * 1997-12-04 1999-06-29 Sony Corp プラズマcvd装置
US6106663A (en) * 1998-06-19 2000-08-22 Lam Research Corporation Semiconductor process chamber electrode
JP2000058510A (ja) * 1998-07-31 2000-02-25 Hitachi Chem Co Ltd プラズマエッチング電極板
JP3695184B2 (ja) * 1998-12-03 2005-09-14 松下電器産業株式会社 プラズマエッチング装置およびプラズマエッチング方法
DE60041341D1 (de) * 1999-08-17 2009-02-26 Tokyo Electron Ltd Gepulstes plasmabehandlungsverfahren und vorrichtung
JP2001102357A (ja) * 1999-09-28 2001-04-13 Mitsubishi Materials Corp プラズマエッチング用電極板およびその製造方法

Also Published As

Publication number Publication date
WO2003002860A3 (en) 2003-03-20
WO2003002860A2 (en) 2003-01-09
AU2002352262A1 (en) 2003-03-03
JP2004531903A (ja) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4559070B2 (ja) 製造システムを動作させる方法および基板処理のための製造システム
US7217336B2 (en) Directed gas injection apparatus for semiconductor processing
JP4763235B2 (ja) プラズマ処理のための装置並びに方法
US4786359A (en) Xenon enhanced plasma etch
US8524331B2 (en) Substrate processing method
JP4698024B2 (ja) 異方性エッチングのための方法と装置
JP4638499B2 (ja) インクジェットプリンタヘッド集積回路を製造する方法
US5877090A (en) Selective plasma etching of silicon nitride in presence of silicon or silicon oxides using mixture of NH3 or SF6 and HBR and N2
JP2006524914A (ja) プラズマ処理システム及び方法
WO1998027581A1 (en) Methods for reducing plasma-induced charging damage
US7507672B1 (en) Plasma etching system and method
WO2020008703A1 (ja) プラズマ処理方法
JP4504012B2 (ja) 半導体処理のための方向付けられたガスの射出装置
US20200118795A1 (en) Showerhead Faceplate Having Flow Apertures Configured for Hollow Cathode Discharge Suppression
JP4171380B2 (ja) エッチング装置およびエッチング方法
US5728261A (en) Magnetically enhanced radio frequency reactive ion etching method and apparatus
US20060043064A1 (en) Plasma processing system and method
US7271104B2 (en) Method for dry etching fluid feed slots in a silicon substrate
US20060113277A1 (en) Micro-fluid ejection head containing reentrant fluid feed slots
Ono et al. RF-plasma-assisted fast atom beam etching
EP0512677B1 (en) Plasma treatment method and apparatus
US5575888A (en) Sidewall passivation by oxidation during refractory-metal plasma etching
JP2002533951A (ja) 誘導結合プラズマ処理システムにおける高アスペクト比サブミクロンコンタクトエッチング工程
US6749763B1 (en) Plasma processing method
JP2008041744A (ja) ドライエッチング方法等

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4504012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees