JP4503952B2 - In-reactor position measurement device - Google Patents

In-reactor position measurement device Download PDF

Info

Publication number
JP4503952B2
JP4503952B2 JP2003288983A JP2003288983A JP4503952B2 JP 4503952 B2 JP4503952 B2 JP 4503952B2 JP 2003288983 A JP2003288983 A JP 2003288983A JP 2003288983 A JP2003288983 A JP 2003288983A JP 4503952 B2 JP4503952 B2 JP 4503952B2
Authority
JP
Japan
Prior art keywords
receiver
reactor
drive mechanism
control rod
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003288983A
Other languages
Japanese (ja)
Other versions
JP2005055398A (en
Inventor
智之 伊藤
光明 島村
元比古 木村
康弘 湯口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003288983A priority Critical patent/JP4503952B2/en
Publication of JP2005055398A publication Critical patent/JP2005055398A/en
Application granted granted Critical
Publication of JP4503952B2 publication Critical patent/JP4503952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置の位置を測定する原子炉内位置測定装置に関する。   The present invention is arranged inside a nuclear reactor pressure vessel, and measures the position of a mobile inspection device that inspects and inspects the weld lines of the inner and outer walls of the reactor pressure vessel and reactor internals. The present invention relates to a position measuring device.

この種従来の原子炉内位置測定装置として、以下に述べる第1の音波による測定する音波測定方式及び第2のカメラによる測定するカメラ測定方式がある。この内の第1の音波測定方式は、炉内構造物などの内外壁の溶接線の点検や検査を行う検査装置例えば自走式ロボットに、設置された炉内の所望の位置例えばジェットポンプに設置された送波器(ピンガ)と、炉内構造物などの内外壁の溶接線の点検や検査を行う検査装置例えば自走式ロボットの複数に、それぞれ設置され、送波器からの音波を受波する受波器(ハイドロホン)と、送波器から発振した音波が受波器まで到達する時間を計算する信号処理器を備えている(例えば、特許文献1参照)。   As this kind of conventional in-reactor position measuring apparatus, there are a sound wave measuring method for measuring with a first sound wave and a camera measuring method for measuring with a second camera as described below. Among these, the first sound wave measuring method is used for an inspection device such as a self-propelled robot for inspecting and inspecting the weld line of the inner and outer walls of a furnace internal structure or the like, for a desired position in the installed furnace such as a jet pump. Installed on multiple installed transmitters (pingers) and multiple inspection devices, such as self-propelled robots, for inspecting and inspecting weld lines on the inner and outer walls of furnace structures, etc. A receiver (hydrophone) for receiving a wave and a signal processor for calculating the time required for a sound wave oscillated from the transmitter to reach the receiver are provided (for example, see Patent Document 1).

また、カメラ測定方式は、原子炉炉底部の制御棒案内管に設置されるロボットに搭載され、視野に位置測定対象を捉えるカメラと、カメラから得られた映像を信号処理する信号処理器を備えている。この場合には、ロボット搭載のカメラからの映像から現在位置を推定し、または外部からカメラを目視し、その映像から現在位置を測定するものである。
特開平9−61513号公報
The camera measurement method is mounted on a robot installed in the control rod guide tube at the bottom of the reactor, and includes a camera that captures the position measurement object in the field of view and a signal processor that processes the video obtained from the camera. ing. In this case, the current position is estimated from the video from the camera mounted on the robot, or the camera is viewed from the outside and the current position is measured from the video.
Japanese Patent Laid-Open No. 9-61513

前述のカメラ測定方式は、カメラ装置を原子炉底部に設置することは、カメラ装置の位置決めを精度高く行う必要があり、そのため原子炉内位置測定装置の寸法が大きくなるという問題点がある。   The above-described camera measurement method has a problem that the installation of the camera device at the bottom of the reactor requires the positioning of the camera device with high accuracy, and therefore the size of the in-reactor position measurement device increases.

また、前述した音波測定方式では、検査装置例えば自走式ロボットの受波器が受信した受信信号を受波器から地上に送る必要があり、そのためにはロボットには信号を地上に送るために、ケーブル等の耐ノイズ性を高くする必要がある。ロボットのケーブルの多くは運動性確保のため特殊なものを使用しており、耐ノイズ性を高くするためには、ケーブルのシールドを多くするなどの処置が必要となり、これはケーブルの剛性を高め、ロボットの運動性能を悪化させることになる。   In the above-described sound wave measurement method, it is necessary to send the reception signal received by the receiver of the inspection device, for example, a self-propelled robot, from the receiver to the ground. It is necessary to increase the noise resistance of cables and the like. Many robot cables use special ones to ensure mobility, and in order to increase noise resistance, measures such as increasing the cable shield are required, which increases the rigidity of the cable. This will worsen the robot's motor performance.

本発明は、このような問題点を改善するためなされたもので、装置全体の寸法が大きくなるのを防ぐことができ、また検査装置からの音波を出力するために、信号取込みを考慮する必要がなく、通常のケーブルで音波を出力することが可能な原子炉内位置測定装置を提供することを目的とする。   The present invention has been made to remedy such problems, and can prevent the overall size of the apparatus from becoming large, and it is necessary to consider signal acquisition in order to output sound waves from the inspection apparatus. It is an object of the present invention to provide an in-reactor position measuring apparatus capable of outputting sound waves with a normal cable.

前記目的を達成するため、請求項1に対応する発明は、原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置に取り付けられ、音波を発振する送波器と、
前記原子炉圧力容器の内部であって、炉心の周囲に配設されかつ該炉心を冷却するための複数のジェットポンプと、
前記各ジェットポンプのうちの少なくとも2個の下端開口部に、受波器設置治具により取付け、前記送波器からの音波を検出する少なくとも2個の受波器と、
前記送波器からの音波が前記各受波器に到達するまでの到達時間をそれぞれ測定し、該測定時間と前記受波器間の距離を用いて三角測量の原理により前記検査装置の位置を演算する演算器と、
を具備し、
前記受波器設置治具は、ヒンジと、前記ヒンジにその一端を各々同じ角度で均等に開閉可能に支持し、その他端を各々前記ジェットポンプの下端開口部に接触させる複数の開閉アームとを備え、前記各開閉アームの中心に前記受波器の一つを設置することで、前記各
受波器を前記ジェットポンプの下端開口部の中心に位置決めされるようにした原子炉内位置測定装置である。
前記目的を達成するため、請求項2に対応する発明は、原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置に取り付けられ、音波を発振する送波器と、
前記原子炉圧力容器の内部であって、炉心の周囲に配設されかつ該炉心を冷却するための複数のジェットポンプと、
前記各ジェットポンプのうちの少なくとも2個の下端開口部に、受波器設置治具により取付け、前記送波器からの音波を検出する少なくとも2個の受波器と、
前記送波器からの音波が前記各受波器に到達するまでの到達時間をそれぞれ測定し、該測定時間と前記受波器間の距離を用いて三角測量の原理により前記検査装置の位置を演算する演算器と、
を具備し、
前記受波器設置治具は、ヒンジと、前記ヒンジにその一端を各々同じ角度で均等に開閉可能に支持し、その他端を各々前記ジェットポンプの下端開口部に接触させる複数の開閉アームとを備え、前記各開閉アームの他端に前記受波器の全てをそれぞれ設置し、前記受波器の全てが前記ジェットポンプの一つの下端開口部の中心に対して点対称の位置となるようにしたことを特徴とする原子炉内位置測定装置である。
前記目的を達成するため、請求項3に対応する発明は、
原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置に取り付けられ、音波を発振する送波器と、
前記原子炉圧力容器の内部の炉下部であって、制御棒駆動機構を収納する制御棒駆動機構ハウジングに、受波器設置治具により取付け、前記送波器からの音波を検出する少なくとも2個の受波器と、
前記送波器からの音波が前記各受波器に到達するまでの到達時間をそれぞれ測定し、該測定時間と前記受波器間の距離を用いて三角測量の原理により前記検査装置の位置を演算する演算器と、
を具備し、
前記受波器設置治具は、前記制御棒駆動機構ハウジングの最上部の穴に取り合う制御棒駆動機構設置部を備え、前記制御棒駆動機構設置部に前記受波器を取付ける原子炉内位置測定装置。
前記目的を達成するため、請求項4に対応する発明は、
原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置に取り付けられ、音波を発振する送波器と、
前記原子炉圧力容器の内部の炉下部であって、制御棒駆動機構を収納する制御棒駆動機構ハウジングに、受波器設置治具により取付け、前記送波器からの音波を検出する少なくとも2個の受波器と、
前記送波器からの音波が前記各受波器に到達するまでの到達時間をそれぞれ測定し、該測定時間と前記受波器間の距離を用いて三角測量の原理により前記検査装置の位置を演算する演算器と、
を具備し、
前記受波器設置治具は前記制御棒駆動機構を収納する制御棒駆動機構ハウジングの上端に、前記受波器を固定設置可能な制御棒駆動機構設置部を備え、前記制御棒駆動機構設置部の上部に有する複数の展開リンクの先端側に、前記各受波器を設置し、前記前記制御棒駆動機構ハウジングの上端の中心に対して点対称の位置に前記各受波器を設置するようにした原子炉内位置測定装置である。
In order to achieve the above-mentioned object, the invention corresponding to claim 1 is provided inside the reactor pressure vessel, and moves to inspect and inspect the weld lines of the inner and outer walls of the reactor pressure vessel and the reactor internal structure. A transmitter that is attached to an inspection device of the type and oscillates, and
A plurality of jet pumps disposed within and around the reactor pressure vessel for cooling the reactor core;
At least two wave receivers that are attached to at least two lower end openings of each of the jet pumps by a wave receiver installation jig and detect sound waves from the wave transmitters;
The arrival time until the sound wave from the transmitter reaches each receiver is measured, and the position of the inspection device is determined by the principle of triangulation using the distance between the measurement time and the receiver. A computing unit for computing,
Comprising
The receiver installation jig includes a hinge and a plurality of opening and closing arms that support one end of the hinge on the hinge so as to be equally openable and closable at the same angle, and that respectively contact the other end with the lower end opening of the jet pump. An in-reactor position measuring device that is positioned at the center of the lower end opening of the jet pump by installing one of the receivers at the center of the open / close arm. It is.
In order to achieve the above-mentioned object, the invention corresponding to claim 2 is provided inside the reactor pressure vessel, and moves to inspect and inspect the weld lines of the inner and outer walls of the reactor pressure vessel and the reactor internal structure. A transmitter that is attached to an inspection device of the type and oscillates, and
A plurality of jet pumps disposed within and around the reactor pressure vessel for cooling the reactor core;
At least two wave receivers that are attached to at least two lower end openings of each of the jet pumps by a wave receiver installation jig and detect sound waves from the wave transmitters;
The arrival time until the sound wave from the transmitter reaches each receiver is measured, and the position of the inspection device is determined by the principle of triangulation using the distance between the measurement time and the receiver. A computing unit for computing,
Comprising
The receiver installation jig includes a hinge and a plurality of opening and closing arms that support one end of the hinge on the hinge so as to be equally openable and closable at the same angle, and that respectively contact the other end with the lower end opening of the jet pump. wherein the all of the receivers to the other end of each closing arm installed respectively, so that all of the receivers is the one position of point symmetry with respect to the center of the lower end opening of the jet pump This is an in-reactor position measuring apparatus characterized by the above.
In order to achieve the object, the invention corresponding to claim 3 is
A transmitter installed inside a reactor pressure vessel and attached to a mobile inspection device for inspecting and inspecting the weld lines of the inner and outer walls of the reactor pressure vessel and reactor internal structure, ,
At least two detectors that are attached to a control rod drive mechanism housing that houses a control rod drive mechanism by a receiver installation jig and that detect sound waves from the transmitter, at the bottom of the reactor pressure vessel. Receivers,
The arrival time until the sound wave from the transmitter reaches each receiver is measured, and the position of the inspection device is determined by the principle of triangulation using the distance between the measurement time and the receiver. A computing unit for computing,
Comprising
The receiver installation jig includes a control rod drive mechanism installation portion that engages with the uppermost hole of the control rod drive mechanism housing, and measures the position in the reactor where the receiver is attached to the control rod drive mechanism installation portion. apparatus.
In order to achieve the object, the invention corresponding to claim 4 is
A transmitter installed inside a reactor pressure vessel and attached to a mobile inspection device for inspecting and inspecting the weld lines of the inner and outer walls of the reactor pressure vessel and reactor internal structure, ,
At least two detectors that are attached to a control rod drive mechanism housing that houses a control rod drive mechanism by a receiver installation jig and that detect sound waves from the transmitter, at the bottom of the reactor pressure vessel. Receivers,
The arrival time until the sound wave from the transmitter reaches each receiver is measured, and the position of the inspection device is determined by the principle of triangulation using the distance between the measurement time and the receiver. A computing unit for computing,
Comprising
The receiver installation jig includes a control rod drive mechanism installation section capable of fixedly installing the receiver on an upper end of a control rod drive mechanism housing that houses the control rod drive mechanism, and the control rod drive mechanism installation section. The receivers are installed on the front end side of a plurality of deployment links at the top of the control unit, and the receivers are installed at positions symmetrical with respect to the center of the upper end of the control rod drive mechanism housing. The in-reactor position measuring apparatus.

本発明によれば、装置全体の寸法が大きくなるのを防ぐことができ、また検査装置からの音波を出力するために、信号取込みを考慮する必要がなく、通常のケーブルで音波を出力することが可能な原子炉内位置測定装置を提供することができる。   According to the present invention, it is possible to prevent the overall size of the apparatus from becoming large, and in order to output sound waves from the inspection apparatus, there is no need to consider signal acquisition, and sound waves are output using a normal cable. It is possible to provide an in-reactor position measurement apparatus capable of

以下、本発明の実施形態について図面を参照して説明するが、始めに図1及び図2により、本発明の概要について説明する。原子炉圧力容器1は、概略図示しない炉心部と、炉下部と、炉底部からなり、圧力容器1内部には炉内構造物が形成されている。図1及び図2は、このうちの炉下部と、炉底部のみを示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, an outline of the present invention will be described with reference to FIGS. 1 and 2. The reactor pressure vessel 1 includes a core portion, a lower portion of the reactor, and a bottom portion of the reactor, which are not schematically shown, and a reactor internal structure is formed inside the pressure vessel 1. FIG.1 and FIG.2 has shown only the furnace lower part and the furnace bottom part of these.

炉内構造物は、内部タンクを形成するシュラウド3、複数の制御棒案内管22が連結されかつこれらの横方向の支持をする炉心支持板21、図示しない上部格子板からなっている。シュラウド3は、上部胴3a、中間部胴3b及び下部胴3cの3段胴からなり、下部胴3cは、圧力容器1と一体に作られたシュラウドサポート9に溶接構造で支持されている。圧力容器1とシュラウド3とのアニュラス空間には、炉心部を冷却する複数のジェットポンプ2が設置されている。   The in-furnace structure includes a shroud 3 forming an internal tank, a core support plate 21 to which a plurality of control rod guide tubes 22 are connected and supporting these in the lateral direction, and an upper lattice plate (not shown). The shroud 3 includes a three-stage body including an upper body 3a, an intermediate body 3b, and a lower body 3c. The lower body 3c is supported by a shroud support 9 formed integrally with the pressure vessel 1 by a welding structure. In the annulus space between the pressure vessel 1 and the shroud 3, a plurality of jet pumps 2 for cooling the core portion are installed.

このような構成の圧力容器1内壁やシュラウド3の内外壁の溶接線の目視検査や探傷試験検査を行う場合には、検査対象や検査個所に応じて専用の検査装置7例えば自走式ロボットを設置し、これらにより溶接線の検査ができるように構成されている。   When performing visual inspection or flaw detection test inspection of the weld line on the inner wall of the pressure vessel 1 and the inner and outer walls of the shroud 3 having such a configuration, a dedicated inspection device 7 such as a self-propelled robot is provided depending on the inspection object and the inspection location. Installed and configured to allow inspection of weld lines.

検査装置7には、所定周波数の音波を発振する送波器(ピンガ)4が取付けられている。そして、圧力容器1の内部であって、炉心支持板21より下の高さの所望の位置例えば2個のジェットポンプ2の下端開口部例えば円錐状に広がっている部分であるディフューザに、それぞれ受波器設置治具10により受波器(ハイドロホン)5を取付けるようにしたものである。そして、各受波器5は、例えば地上側の原子炉圧力容器外部の建物に設置され図示しない制御装置例えばマイコンチップからなる演算器に対してそれぞれ電気的に接続され、この演算器は送波器4からの音波が各受波器5に到達するまでの到達時間を測定し、この測定時間と、各受波器5間の距離(これは受波器5の設置する位置例えばジェットポンプ2の下端開口部の位置が予め判っているので、その距離)を用いて三角測量の原理により検査装置7の位置を演算する。 A transmitter (pinger) 4 that oscillates a sound wave having a predetermined frequency is attached to the inspection device 7. Then, it is received by a diffuser which is the inside of the pressure vessel 1 and at a desired position below the core support plate 21, for example, the lower end opening of the two jet pumps 2, for example, a conical portion. A wave receiver (hydrophone) 5 is attached by a wave installation jig 10. Each receiver 5 is electrically connected to a control device (not shown) such as a microcomputer chip installed in a building outside the reactor pressure vessel on the ground side, for example. The arrival time until the sound wave from the receiver 4 reaches each receiver 5 is measured, and this measurement time and the distance between each receiver 5 (this is the position where the receiver 5 is installed, for example, the jet pump 2 The position of the inspection apparatus 7 is calculated by the principle of triangulation using the distance).

ここで、演算器の処理内容例について説明する。(1)音波信号の取込を行う。これは、取込開始は送波器4が音波を出力した時間を0とする。(2)取込開始時間と取込ゲインの補正を行う。このことは、遅く計測された音波は、音源から遠いことを意味し、また、音源から遠ければ音波の音圧が下がる、これは時間の関数なので補正をおこなう。(3)−1音波到達時間の測定を測定を行う。具体的には、予め決めた閾値以上の音圧が検出された時間を測定する。(3)−2または(3)−1とは別に音波到達時間の測定を行う。具体的には、予め出力した音波の形状と同じ波形が検出された時間を測定する。この場合の時間の測定は、音波を出力した時間0からカウンタをスタートさせ,そのカウンタにより測定する。(4)−1 2点以上で測定した音波到達時間から検査装置7の位置を計算する。(4)−2 または(3)−1とは別に深度の計測値を考慮して検査装置7の位置を計算する。   Here, an example of processing contents of the computing unit will be described. (1) A sound wave signal is taken in. This means that the time when the transmitter 4 outputs a sound wave is set to 0 at the start of capturing. (2) Correct the acquisition start time and the acquisition gain. This means that the sound wave measured late is far from the sound source, and if it is far from the sound source, the sound pressure of the sound wave is lowered. Since this is a function of time, correction is performed. (3) -1 Measure the arrival time of sound waves. Specifically, the time when a sound pressure equal to or higher than a predetermined threshold is detected is measured. The sound wave arrival time is measured separately from (3) -2 or (3) -1. Specifically, the time when the same waveform as the shape of the sound wave output in advance is detected is measured. In this case, the time is measured by starting the counter from time 0 when the sound wave is output and using the counter. (4) -1 The position of the inspection device 7 is calculated from the sound wave arrival times measured at two or more points. In addition to (4) -2 or (3) -1, the position of the inspection apparatus 7 is calculated in consideration of the measured depth value.

このように構成されている本発明の第1の実施形態によれば、検査装置7に送波器4が取付けられ、この送波器4からの音波を受波する受波器5がジェットポンプ2の下端開口部に設置されているので、原子炉炉下部にある障害物がある領域に検査装置7が位置している場合であっても検査装置7の位置を測定できる。また、第1の実施形態によれば、従来のカメラ測定方式での問題点である、装置全体の寸法が大きくなるのを防ぐことができ、また検査装置からの音波を出力するために、信号取込みを考慮する必要がなく、通常のケーブルで音波を出力することが可能な原子炉内位置測定装置を提供することができる。   According to the first embodiment of the present invention configured as described above, the wave transmitter 4 is attached to the inspection device 7, and the wave receiver 5 that receives the sound wave from the wave transmitter 4 is a jet pump. 2, the position of the inspection device 7 can be measured even when the inspection device 7 is located in an area where there is an obstacle at the lower part of the reactor. In addition, according to the first embodiment, it is possible to prevent an increase in the overall size of the apparatus, which is a problem in the conventional camera measurement method, and to output a sound wave from the inspection apparatus, It is possible to provide an in-reactor position measurement apparatus that can output sound waves with a normal cable without considering the uptake.

図3及び図4並びに図5は、本発明の第2の実施形態である図1及び図2の受波器設置治具10の具体的構成を説明するための図であり、これは吊りワイヤ11、連結具12、ヒンジ13、開閉アーム14、補助アーム15、支持具16からなっている。具体的には、吊りワイヤ11の下端部に連結具12の上部が連結され、連結具12の周面には3個のヒンジ13が取付けられ、この各ヒンジ13にはそれぞれ3本の開閉アーム14が取付けられ、連結具12の下部には例えば円筒状の支持具16が取付けられ、支持具16の外周面の軸方向長さの中央位置には3本の補助アーム15の一端がそれぞれ回転自在に支持され、補助アーム15の他端が開閉アーム14にそれぞれ回転自在に支持されている。この結果、受波器5を支持具16に取付けた状態の受波器設置治具10が設置されるジェットポンプ2の下端開口部の大きさ(所定範囲内)に応じて各開閉アーム14の開閉角度が均等で且つ自由に変更可能になっている。   3, 4, and 5 are diagrams for explaining a specific configuration of the receiver installation jig 10 of FIGS. 1 and 2, which is the second embodiment of the present invention, which is a hanging wire. 11, a connector 12, a hinge 13, an opening / closing arm 14, an auxiliary arm 15, and a support 16. Specifically, the upper portion of the connecting tool 12 is connected to the lower end of the hanging wire 11, and three hinges 13 are attached to the peripheral surface of the connecting tool 12, and each hinge 13 has three open / close arms. 14 is attached, for example, a cylindrical support 16 is attached to the lower part of the connector 12, and one end of each of the three auxiliary arms 15 rotates at the center position of the axial length of the outer peripheral surface of the support 16. The other end of the auxiliary arm 15 is rotatably supported by the opening / closing arm 14. As a result, each of the open / close arms 14 is set according to the size (within a predetermined range) of the lower end opening of the jet pump 2 where the receiver installation jig 10 with the receiver 5 attached to the support 16 is installed. The opening and closing angles are uniform and can be freely changed.

以上述べた図3〜図5に示す実施形態によれば、検査装置7に取付けられた送波器4から発生した音波は、ジェットポンプ2に取付けられた受波器5で検出され、送波器4からの受波器5までの音波の到達時間を測定し、これを三角測量の原理により距離求めることで、送波器4の位置及び検査装置7の位置を検出することが可能となる。また、本実施形態によれば受波器5をジェットポンプ2及び炉内構造物に対して正確に位置固定可能であるので、音波の位置計測時の炉内構造物に対する位置決め精度を向上させることができ、送波器4から発振した音波により送波器4または検査装置7の位置を正確に位置測定可能である。   According to the embodiment shown in FIGS. 3 to 5 described above, the sound wave generated from the wave transmitter 4 attached to the inspection device 7 is detected by the wave receiver 5 attached to the jet pump 2 and transmitted. It is possible to detect the position of the transmitter 4 and the position of the inspection device 7 by measuring the arrival time of the sound wave from the generator 4 to the receiver 5 and obtaining the distance based on the principle of triangulation. . Further, according to the present embodiment, the position of the wave receiver 5 can be accurately fixed with respect to the jet pump 2 and the in-furnace structure, so that the positioning accuracy with respect to the in-furnace structure at the time of measuring the position of the sound wave is improved. The position of the transmitter 4 or the inspection device 7 can be accurately measured by the sound wave oscillated from the transmitter 4.

図6及び図7並びに図8は、本発明の第3の実施形態である図1及び図2の受波器設置治具10の具体的構成を説明するための図であり、前述の第2の実施形態と異なる点は、3本の開閉アーム14の先端にそれぞれ受波器5a、5b、5cが取付けられており、これに伴って支持具16には何も取付けられていない点である。これ以外の構成は、前述の第2の実施形態と同一である。   6, 7, and 8 are diagrams for explaining a specific configuration of the receiver installation jig 10 of FIGS. 1 and 2 that is the third embodiment of the present invention. The difference from the embodiment is that the receivers 5a, 5b, and 5c are attached to the tips of the three open / close arms 14, respectively, and accordingly, nothing is attached to the support tool 16. . Other configurations are the same as those of the second embodiment described above.

このように受波器5a、5b、5cを設置することにより、1組の受波器設置治具10により複数の位置での音波の検出が可能となるため、1組の受波器設置治具10によりシュラウドサポート(バッフルプレート)9の下及び炉底部での送波器4及び検査装置7の位置検出が可能となる。   By installing the receivers 5a, 5b, and 5c in this way, it becomes possible to detect sound waves at a plurality of positions by the set of receiver installation jigs 10, and thus a set of receiver installation treatments. The tool 10 makes it possible to detect the position of the transmitter 4 and the inspection device 7 below the shroud support (baffle plate) 9 and at the bottom of the furnace.

第3の実施形態によれば、受波器設置治具10受波器設置治具10により複数の受波器5a、5b、5cをジェットポンプ2及び炉内構造物に対して正確な位置で固定可能であるので、音波の位置計測時の炉内構造物に対する位置決め精度を向上させることができる。また複数の受波器5を1つの受波器設置治具10で固定可能であるので、炉内構造物に受波器5を設置する回数が少なくなり、装置設置時間が短縮可能である。   According to the third embodiment, the receiver installation jig 10 receives the plurality of receivers 5a, 5b, and 5c at an accurate position with respect to the jet pump 2 and the in-furnace structure. Since it is fixable, the positioning accuracy with respect to the in-furnace structure at the time of measuring the position of the sound wave can be improved. In addition, since a plurality of receivers 5 can be fixed with one receiver installation jig 10, the number of installations of the receivers 5 in the in-furnace structure is reduced, and the apparatus installation time can be shortened.

図9〜図11及び図15並びに図16は、本発明の第4の実施形態の受波器設置治具10を説明するための図及び原子炉位置測定装置を説明するための図である。受波器設置治具10は、以下のように構成されている。すなわち、吊下げワイヤ11により本体中心部であるガード25が支持され、ガード25で保護されるように受波器5が構成されている。受波器5の最下端部にはCRDハウジング27の最上部の穴に取り合うためのCRD設置部26が取付けられている。   FIGS. 9 to 11 and FIGS. 15 and 16 are views for explaining a receiver installation jig 10 according to a fourth embodiment of the present invention and for explaining a reactor position measuring apparatus. The receiver installation jig 10 is configured as follows. That is, the receiver 5 is configured so that the guard 25 that is the center of the main body is supported by the hanging wire 11 and is protected by the guard 25. A CRD installation portion 26 for attaching to the uppermost hole of the CRD housing 27 is attached to the lowermost end portion of the receiver 5.

このような構成において、CRDハウジング27の最上部の穴と受波器設置治具10のCRDハウジング設置部26が取り合うことで、CRDハウジング27に設置される。受波器設置治具10を炉底部CRDハウジング27の最上部に複数設置し、検査装置7に取付けられた送波器4から発振した音波を検出する。受波器設置治具10はCRDハウジング27を基準に設置可能であるため、設置の際の位置決め精度が高い。そのため検出された送波器4及び検査装置7の位置精度を高くすることが可能となる。   In such a configuration, the uppermost hole of the CRD housing 27 and the CRD housing installation part 26 of the receiver installation jig 10 are installed to be installed in the CRD housing 27. A plurality of receiver installation jigs 10 are installed on the uppermost part of the furnace bottom CRD housing 27 to detect sound waves oscillated from the transmitter 4 attached to the inspection device 7. Since the receiver installation jig 10 can be installed on the basis of the CRD housing 27, the positioning accuracy at the time of installation is high. For this reason, the positional accuracy of the detected transmitter 4 and inspection device 7 can be increased.

図12〜図14は、本発明の第5の実施形態の受波器設置治具10を説明するための図及び原子炉位置測定装置を説明するための図である。本実施形態では、CRDハウジング27に設置する受波器設置治具10に複数の受波器5a、5b、5cを取付けるられるように構成したものである。具体的には、複数の受波器5a、5b、5cはそれぞれ展開リンク29に取付けられる。受波器設置治具10の最下部にはCRDハウジング27に設置するためのCRD設置部26が取付けられる。また受波器設置治具10全体は吊下げワイヤ11により上部から吊り下ろされ、設置される。   FIGS. 12-14 is a figure for demonstrating the receiver installation jig | tool 10 of the 5th Embodiment of this invention, and a figure for demonstrating the reactor position measuring apparatus. In the present embodiment, a plurality of receivers 5 a, 5 b, 5 c are configured to be attached to the receiver installation jig 10 installed in the CRD housing 27. Specifically, the plurality of receivers 5a, 5b, and 5c are attached to the deployment link 29, respectively. A CRD installation portion 26 for installation in the CRD housing 27 is attached to the lowermost part of the receiver installation jig 10. The entire receiver installation jig 10 is suspended from the upper part by the suspension wire 11 and installed.

図15及び図16は、本発明の第6の実施形態を説明するための図である。前述した実施形態のうち、1つの受波器設置治具10に例えば3個の受波器5a、5b、5cをそれぞれ取付ける実施形態では、受波器の設置方位角について何等言及していないが、用途によっては何等かの手法により、各受波器5a、5b、5cの設置方位角を検出することが要望されることがある。この場合には、図15及び図16に示すように角度検出用送波器20を、炉内の既知の位置例えばジェットポンプ2のうちの1つの下端開口部に設け,角度検出用受波器を設けず、各受波器5a、5b、5cの設置方位角を検出できるように構成したものである。   15 and 16 are diagrams for explaining a sixth embodiment of the present invention. In the embodiment described above, in the embodiment in which, for example, three receivers 5a, 5b, and 5c are attached to one receiver installation jig 10, no reference is made to the installation azimuth angle of the receiver. Depending on the application, it may be desired to detect the installation azimuth angle of each of the receivers 5a, 5b, and 5c by some method. In this case, as shown in FIGS. 15 and 16, the angle detection transmitter 20 is provided at a known position in the furnace, for example, at the lower end opening of one of the jet pumps 2, and the angle detection receiver is provided. The installation azimuth angle of each of the receivers 5a, 5b, and 5c can be detected.

このように構成することにより、受波器設置治具10の設置個数を少なくでき、この結果炉内の受波器設置治具10の設置作業に伴う作業時間を短縮することが可能となる。   With this configuration, the number of installed receiver installation jigs 10 can be reduced, and as a result, the work time associated with the installation work of the receiver installation jigs 10 in the furnace can be shortened.

次に本発明に係る原子炉内位置測定装置の第7の実施形態では、送波器4が発振する音波の周波数は、音波が伝播される際の障害物がない所では50kHz以上となるように構成したものである。この周波数範囲は、実験結果から得られた値である。   Next, in the seventh embodiment of the in-reactor position measurement apparatus according to the present invention, the frequency of the sound wave oscillated by the transmitter 4 is 50 kHz or more in a place where there is no obstacle when the sound wave is propagated. It is configured. This frequency range is a value obtained from experimental results.

第7の実施形態によれば、原子炉圧力容器1の炉底部にある制御棒駆動機構ハウジング(CRDハウジング)27の直径及びハウジング27とハウジング27の間隔は約150mmであることから、構造物による音波の反射の影響が少ないため、音波の検出を正確に行うことができる。   According to the seventh embodiment, the diameter of the control rod drive mechanism housing (CRD housing) 27 at the bottom of the reactor pressure vessel 1 and the distance between the housing 27 and the housing 27 are about 150 mm. Since the influence of the reflection of the sound wave is small, the sound wave can be detected accurately.

本発明に係る原子炉内位置測定装置の第8の実施形態では、音波が伝播される際の障害物が存在する所における送波器4から発振する音波の周波数を以下に述べるように可変として構成したものである。すなわち、送波器4から発振する音波の周波数は、音波が伝播される際の障害物が存在する所では基準周波数5〜80kHzに対して±20%の範囲内で可変にすること、または複数の周波数を使用するように構成したものである。この周波数範囲は、実験結果から得られた値である。これは、前述した実施形態のいずれにも適用できることは言うまでもない。   In the eighth embodiment of the in-reactor position measurement apparatus according to the present invention, the frequency of the sound wave oscillated from the transmitter 4 at the place where the obstacle when the sound wave is propagated is made variable as described below. It is composed. That is, the frequency of the sound wave oscillated from the transmitter 4 can be varied within a range of ± 20% with respect to the reference frequency of 5 to 80 kHz in the presence of an obstacle when the sound wave is propagated, or plural The frequency is configured to be used. This frequency range is a value obtained from experimental results. It goes without saying that this can be applied to any of the embodiments described above.

第8の実施形態によれば、特に原子炉炉底部において、林立する制御棒駆動機構ハウジング(CRDハウジング)27による音波の反射と、干渉の影響がある場合においても、前述のように周波数を変化させることにより、音波の干渉の状態を変化させることが可能となるため、音波の到達時間を正確に測定することが可能となる。   According to the eighth embodiment, particularly at the bottom of the reactor, the frequency is changed as described above even when there is an influence of reflection and interference of sound waves by the control rod drive mechanism housing (CRD housing) 27 that stands. By doing so, it becomes possible to change the state of interference of sound waves, so that it is possible to accurately measure the arrival time of sound waves.

図17は、本発明の第9の実施形態を説明するための図であり、受波器5の設置された方位角を目視可能なカメラ23及び炉内構造物との相対距離を測定するためのレーザグリッド(レーザマーカ)24を、それぞれ前述したジェットポンプ2の下端開口部に設置した受波器設置治具10に横向きに設けた実施形態である。   FIG. 17 is a view for explaining a ninth embodiment of the present invention, in order to measure the relative distance between the camera 23 and the in-furnace structure in which the azimuth angle where the receiver 5 is installed can be visually observed. The laser grid (laser marker) 24 is provided in the horizontal direction on the receiver installation jig 10 installed at the lower end opening of the jet pump 2 described above.

このように構成された第9の実施形態において、受波器設置治具10は複数の受波器5をジェットポンプ2に対して位置固定する作用をもつ。また、レーザグリッド24は炉内構造物またはシュラウド3にレーザを照射する。カメラ23はレーザグリッド24により照射された位置を検出することで、複数の受波器5とジェットポンプ2の位置関係を正確に検出する。   In the ninth embodiment configured as described above, the receiver installation jig 10 has a function of fixing the positions of the plurality of receivers 5 with respect to the jet pump 2. The laser grid 24 irradiates the in-furnace structure or the shroud 3 with laser. The camera 23 detects the position irradiated by the laser grid 24 to accurately detect the positional relationship between the plurality of receivers 5 and the jet pump 2.

第9の実施形態によれば、受波器設置治具10により複数の受波器5をジェットポンプ2及び炉内構造物に対して正確な位置で固定可能であるので、音波の位置計測時の炉内構造物に対する位置決め精度を向上させることができる。また複数の受波器5を1つの受波器設置治具10で固定可能であるので、原子炉に受波器5を設置する時間が短縮可能である。   According to the ninth embodiment, since the plurality of receivers 5 can be fixed to the jet pump 2 and the in-furnace structure at accurate positions by the receiver installation jig 10, The positioning accuracy with respect to the in-furnace structure can be improved. Further, since a plurality of receivers 5 can be fixed by one receiver installation jig 10, the time for installing the receivers 5 in the nuclear reactor can be shortened.

前述の実施形態の検査装置7は、自走式のもの、又はハンドリング式のいずれかであってもよい。   The inspection device 7 of the above-described embodiment may be either a self-propelled type or a handling type.

本発明の原子炉内位置測定装置の第1の実施形態を説明するための一部を断面した斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view which carried out the cross section for a part for describing 1st Embodiment of the in-reactor position measuring apparatus of this invention. 図1の正面図。The front view of FIG. 本発明の第2の実施形態である図1及び図2の受波器設置治具10の具体的構成を説明するための斜視図。The perspective view for demonstrating the specific structure of the receiver installation jig | tool 10 of FIG.1 and FIG.2 which is the 2nd Embodiment of this invention. 図3の受波器設置治具10を原子炉とシュラウドの間に設置した状態を示す正断面図。FIG. 4 is a front sectional view showing a state in which the receiver installation jig 10 of FIG. 3 is installed between a nuclear reactor and a shroud. 図3の受波器設置治具10を原子炉とシュラウドの間に設置した状態を示す平断面図。FIG. 4 is a cross-sectional plan view showing a state where the receiver installation jig 10 of FIG. 3 is installed between a nuclear reactor and a shroud. 本発明の第3の実施形態である受波器設置治具10の具体的構成を説明するための斜視図。The perspective view for demonstrating the specific structure of the receiver installation jig | tool 10 which is the 3rd Embodiment of this invention. 図6の受波器設置治具10を原子炉とシュラウドの間に設置した状態を示す一部を断面した斜視図。FIG. 7 is a perspective view, partially in section, showing a state where the receiver installation jig 10 of FIG. 6 is installed between a nuclear reactor and a shroud. 図7の受波器設置治具10を原子炉とシュラウドの間に設置した状態を示す平断面図。FIG. 8 is a cross-sectional plan view showing a state where the receiver installation jig 10 of FIG. 7 is installed between a nuclear reactor and a shroud. 本発明の第4の実施形態である受波器設置治具10の具体的構成を説明するための斜視図。The perspective view for demonstrating the specific structure of the receiver installation jig | tool 10 which is the 4th Embodiment of this invention. 図9の受波器設置治具10をCRDハウジングに設置した状態を示す正断面図。FIG. 10 is a front sectional view showing a state where the receiver installation jig 10 of FIG. 9 is installed in a CRD housing. 図9の受波器設置治具10をCRDハウジングに設置した状態を示す斜視図。The perspective view which shows the state which installed the receiver installation jig | tool 10 of FIG. 9 in the CRD housing. 本発明の第5の実施形態である受波器設置治具10の具体的構成を説明するための斜視図。The perspective view for demonstrating the specific structure of the receiver installation jig | tool 10 which is the 5th Embodiment of this invention. 図12の受波器設置治具10をCRDハウジングに設置した状態を示す正断面図。FIG. 13 is a front sectional view showing a state in which the receiver installation jig 10 of FIG. 12 is installed in a CRD housing. 図12の受波器設置治具10をCRDハウジングに設置した状態を示す斜視図。The perspective view which shows the state which installed the receiver installation jig | tool 10 of FIG. 12 in the CRD housing. 本発明の原子炉内位置測定装置の第6の実施形態を説明するための一部を断面した斜視図。FIG. 10 is a perspective view, partly in section, for explaining a sixth embodiment of the in-reactor position measuring apparatus of the present invention. 図15の正面図。The front view of FIG. 本発明の原子炉内位置測定装置の第9の実施形態を説明するための一部を示した斜視図。The perspective view which showed a part for describing 9th Embodiment of the in-reactor position measuring apparatus of this invention.

符号の説明Explanation of symbols

1…原子炉圧力容器、2…ジェットポンプ、3…シュラウド、3a…上部胴、3b…中間部胴、3c…下部胴、4…送波器、5、5a、5b、5c…受波器、7…検査装置、9…シュラウドサポート、10…受波器設置治具、11…吊りワイヤ、12…連結具、13…ヒンジ、14…開閉アーム、15…補助アーム、16…支持具、20…角度検出用送波器、21…炉心支持板、22…制御棒案内管、23…カメラ、24…レーザグリッド、25…ガード、26…CRDハウジング設置部、27…制御棒駆動機構ハウジング(CRDハウジング)、29…展開リンク。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Jet pump, 3 ... Shroud, 3a ... Upper trunk, 3b ... Middle trunk, 3c ... Lower trunk, 4 ... Transmitter 5, 5a, 5b, 5c ... Receiver DESCRIPTION OF SYMBOLS 7 ... Inspection apparatus, 9 ... Shroud support, 10 ... Receiver installation jig, 11 ... Hanging wire, 12 ... Connecting tool, 13 ... Hinge, 14 ... Opening / closing arm, 15 ... Auxiliary arm, 16 ... Supporting tool, 20 ... Angle detection transmitter, 21 ... core support plate, 22 ... control rod guide tube, 23 ... camera, 24 ... laser grid, 25 ... guard, 26 ... CRD housing installation part, 27 ... control rod drive mechanism housing (CRD housing) ), 29 ... Expand link.

Claims (7)

原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置に取り付けられ、音波を発振する送波器と、
前記原子炉圧力容器の内部であって、炉心の周囲に配設されかつ該炉心を冷却するための複数のジェットポンプと、
前記各ジェットポンプのうちの少なくとも2個の下端開口部に、受波器設置治具により取付け、前記送波器からの音波を検出する少なくとも2個の受波器と、
前記送波器からの音波が前記各受波器に到達するまでの到達時間をそれぞれ測定し、該測定時間と前記受波器間の距離を用いて三角測量の原理により前記検査装置の位置を演算する演算器と、
を具備し、
前記受波器設置治具は、ヒンジと、前記ヒンジにその一端を各々同じ角度で均等に開閉可能に支持し、その他端を各々前記ジェットポンプの下端開口部に接触させる複数の開閉アームとを備え、前記各開閉アームの中心に前記受波器の一つを設置することで、前記各
受波器を前記ジェットポンプの下端開口部の中心に位置決めされるようにしたことを特徴とする原子炉内位置測定装置。
A transmitter installed inside a reactor pressure vessel and attached to a mobile inspection device for inspecting and inspecting the weld lines of the inner and outer walls of the reactor pressure vessel and reactor internal structure, ,
A plurality of jet pumps disposed within and around the reactor pressure vessel for cooling the reactor core;
At least two wave receivers that are attached to at least two lower end openings of each of the jet pumps by a wave receiver installation jig and detect sound waves from the wave transmitters;
The arrival time until the sound wave from the transmitter reaches each receiver is measured, and the position of the inspection device is determined by the principle of triangulation using the distance between the measurement time and the receiver. A computing unit for computing,
Comprising
The receiver installation jig includes a hinge and a plurality of opening and closing arms that support one end of the hinge on the hinge so as to be equally openable and closable at the same angle, and that respectively contact the other end with the lower end opening of the jet pump. An atom that is positioned at the center of the lower end opening of the jet pump by installing one of the receivers at the center of each of the open / close arms. In-furnace position measurement device.
原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置に取り付けられ、音波を発振する送波器と、
前記原子炉圧力容器の内部であって、炉心の周囲に配設されかつ該炉心を冷却するための複数のジェットポンプと、
前記各ジェットポンプのうちの少なくとも2個の下端開口部に、受波器設置治具により取付け、前記送波器からの音波を検出する少なくとも2個の受波器と、
前記送波器からの音波が前記各受波器に到達するまでの到達時間をそれぞれ測定し、該測定時間と前記受波器間の距離を用いて三角測量の原理により前記検査装置の位置を演算する演算器と、
を具備し、
前記受波器設置治具は、ヒンジと、前記ヒンジにその一端を各々同じ角度で均等に開閉可能に支持し、その他端を各々前記ジェットポンプの下端開口部に接触させる複数の開閉アームとを備え、前記各開閉アームの他端に前記受波器の全てをそれぞれ設置し、前記受波器の全てが前記ジェットポンプの一つの下端開口部の中心に対して点対称の位置となるようにしたことを特徴とする原子炉内位置測定装置。
A transmitter installed inside a reactor pressure vessel and attached to a mobile inspection device for inspecting and inspecting the weld lines of the inner and outer walls of the reactor pressure vessel and reactor internal structure, ,
A plurality of jet pumps disposed within and around the reactor pressure vessel for cooling the reactor core;
At least two wave receivers that are attached to at least two lower end openings of each of the jet pumps by a wave receiver installation jig and detect sound waves from the wave transmitters;
The arrival time until the sound wave from the transmitter reaches each receiver is measured, and the position of the inspection device is determined by the principle of triangulation using the distance between the measurement time and the receiver. A computing unit for computing,
Comprising
The receiver installation jig includes a hinge and a plurality of opening and closing arms that support one end of the hinge on the hinge so as to be equally openable and closable at the same angle, and that respectively contact the other end with the lower end opening of the jet pump. wherein the all of the receivers to the other end of each closing arm installed respectively, so that all of the receivers is the one position of point symmetry with respect to the center of the lower end opening of the jet pump An in-reactor position measuring device characterized by that.
原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置に取り付けられ、音波を発振する送波器と、
前記原子炉圧力容器の内部の炉下部であって、制御棒駆動機構を収納する制御棒駆動機構ハウジングに、受波器設置治具により取付け、前記送波器からの音波を検出する少なくとも2個の受波器と、
前記送波器からの音波が前記各受波器に到達するまでの到達時間をそれぞれ測定し、該測定時間と前記受波器間の距離を用いて三角測量の原理により前記検査装置の位置を演算する演算器と、
を具備し、
前記受波器設置治具は、前記制御棒駆動機構ハウジングの最上部の穴に取り合う制御棒駆動機構設置部を備え、前記制御棒駆動機構設置部に前記受波器を取付けることを特徴とする原子炉内位置測定装置。
A transmitter installed inside a reactor pressure vessel and attached to a mobile inspection device for inspecting and inspecting the weld lines of the inner and outer walls of the reactor pressure vessel and reactor internal structure, ,
At least two detectors that are attached to a control rod drive mechanism housing that houses a control rod drive mechanism by a receiver installation jig and that detect sound waves from the transmitter, at the bottom of the reactor pressure vessel. Receivers,
The arrival time until the sound wave from the transmitter reaches each receiver is measured, and the position of the inspection device is determined by the principle of triangulation using the distance between the measurement time and the receiver. A computing unit for computing,
Comprising
The receiver installation jig includes a control rod drive mechanism installation portion that engages with the uppermost hole of the control rod drive mechanism housing, and the receiver is attached to the control rod drive mechanism installation portion. In-reactor position measurement device.
原子炉圧力容器の内部に配設され、原子炉圧力容器や炉内構造物等の内外壁の溶接線の点検や検査を行う移動式の検査装置に取り付けられ、音波を発振する送波器と、
前記原子炉圧力容器の内部の炉下部であって、制御棒駆動機構を収納する制御棒駆動機構ハウジングに、受波器設置治具により取付け、前記送波器からの音波を検出する少なくとも2個の受波器と、
前記送波器からの音波が前記各受波器に到達するまでの到達時間をそれぞれ測定し、該測定時間と前記受波器間の距離を用いて三角測量の原理により前記検査装置の位置を演算する演算器と、
を具備し、
前記受波器設置治具は前記制御棒駆動機構を収納する制御棒駆動機構ハウジングの上端に、前記受波器を固定設置可能な制御棒駆動機構設置部を備え、前記制御棒駆動機構設置部の上部に有する複数の展開リンクの先端側に、前記各受波器を設置し、前記前記制御棒駆動機構ハウジングの上端の中心に対して点対称の位置に前記各受波器を設置するようにしたことを特徴とする原子炉内位置測定装置。
A transmitter installed inside a reactor pressure vessel and attached to a mobile inspection device for inspecting and inspecting the weld lines of the inner and outer walls of the reactor pressure vessel and reactor internal structure, ,
At least two detectors that are attached to a control rod drive mechanism housing that houses a control rod drive mechanism by a receiver installation jig and that detect sound waves from the transmitter, at the bottom of the reactor pressure vessel. Receivers,
The arrival time until the sound wave from the transmitter reaches each receiver is measured, and the position of the inspection device is determined by the principle of triangulation using the distance between the measurement time and the receiver. A computing unit for computing,
Comprising
The receiver installation jig includes a control rod drive mechanism installation section capable of fixedly installing the receiver on an upper end of a control rod drive mechanism housing that houses the control rod drive mechanism, and the control rod drive mechanism installation section. The receivers are installed on the front end side of a plurality of deployment links at the top of the control unit, and the receivers are installed at positions symmetrical with respect to the center of the upper end of the control rod drive mechanism housing. An in-reactor position measuring device characterized by the above.
前記ジェットポンプのうちの位置が既知である1つの下端開口部に、角度検出用送波器を設置し、これにより前記受波器設置治具に取付けられている前記複数の受波器の設置方位角を検出可能に構成したことを特徴とする請求項2記載の原子炉内位置測定装置。   Installation of the plurality of receivers installed in the receiver installation jig by installing an angle detection transmitter in one lower end opening of the jet pump whose position is known The in-reactor position measuring apparatus according to claim 2, wherein the azimuth angle is detectable. 前記制御棒駆動機構ハウジングのうちの位置が既知である1つの上端に、角度検出用送波器を設置し、これにより前記受波器設置治具に取付けられている前記複数の受波器の設置方位角を検出可能に構成したことを特徴とする請求項4記載の原子炉内位置測定装置。   An angle detection transmitter is installed at the upper end of one of the control rod drive mechanism housings whose position is known, and thereby the plurality of receivers attached to the receiver installation jig. 5. The in-reactor position measuring apparatus according to claim 4, wherein the installation azimuth angle can be detected. 前記受波器の設置された方位角を目視可能なカメラ及び前記炉内構造物との相対距離を測定するためのレーザグリッドを、前記受波器設置治具に設けたことを特徴とする請求項2記載の原子炉内位置測定装置。   The receiver installation jig is provided with a camera capable of visually observing the azimuth angle at which the receiver is installed and a laser grid for measuring a relative distance from the in-furnace structure. Item 3. The in-reactor position measuring apparatus according to item 2.
JP2003288983A 2003-08-07 2003-08-07 In-reactor position measurement device Expired - Fee Related JP4503952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288983A JP4503952B2 (en) 2003-08-07 2003-08-07 In-reactor position measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288983A JP4503952B2 (en) 2003-08-07 2003-08-07 In-reactor position measurement device

Publications (2)

Publication Number Publication Date
JP2005055398A JP2005055398A (en) 2005-03-03
JP4503952B2 true JP4503952B2 (en) 2010-07-14

Family

ID=34367460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288983A Expired - Fee Related JP4503952B2 (en) 2003-08-07 2003-08-07 In-reactor position measurement device

Country Status (1)

Country Link
JP (1) JP4503952B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984497B2 (en) * 2005-11-10 2012-07-25 株式会社日立製作所 Underwater inspection device
JP5044199B2 (en) * 2006-11-20 2012-10-10 株式会社東芝 Control device and control method for underwater remote control device
JP5064554B2 (en) * 2010-12-10 2012-10-31 日立Geニュークリア・エナジー株式会社 Inspection device and inspection method for welds in reactor pressure vessel

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195888A (en) * 1975-01-13 1976-08-23
JPS60102580A (en) * 1983-11-10 1985-06-06 Ishikawajima Harima Heavy Ind Co Ltd Position detecting apparatus of running unit
JPS60146166A (en) * 1984-01-11 1985-08-01 Hitachi Ltd Location of sound source position
JPS62164117A (en) * 1986-01-16 1987-07-20 Mitsubishi Electric Corp Operating method for mobile inspecting device
JPS62266480A (en) * 1986-05-14 1987-11-19 Taisei Corp System for measuring distance with ultrasonic wave and transmitter therefor
JPH01174910A (en) * 1987-12-29 1989-07-11 Fujitsu Ltd Three-dimensional pointing system
JPH01163810U (en) * 1988-05-06 1989-11-15
JPH0346586A (en) * 1989-07-13 1991-02-27 Sakura Sokki Kk Ultrasonic distance measuring device
JPH06137850A (en) * 1992-10-30 1994-05-20 Res Dev Corp Of Japan Three-dimensional position and attitude measuring device and measuring method for robot by ultrasonic wave
JPH06265338A (en) * 1993-03-10 1994-09-20 Ngk Insulators Ltd Accident sound source point standardizing apparatus
JPH08239089A (en) * 1995-03-03 1996-09-17 Kawasaki Heavy Ind Ltd Underwater obstacle detector
JPH08304546A (en) * 1995-04-28 1996-11-22 Mitsubishi Heavy Ind Ltd Optical underwater length-measuring equipment
JPH0961513A (en) * 1995-08-30 1997-03-07 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for detecting position in water
JPH0996672A (en) * 1995-09-29 1997-04-08 Sukuuea:Kk Method and system for generating three-dimensional positional data
JPH09210974A (en) * 1996-01-26 1997-08-15 Siemens Ag Locating method for solid propagation sound generating position in pressure vessel to be monitored in power plant
JPH1019854A (en) * 1996-06-28 1998-01-23 Ishikawajima Harima Heavy Ind Co Ltd Self-traveling type flaw detector
JP2000214124A (en) * 1999-01-25 2000-08-04 Hitachi Ltd Potential-difference-method terminal for defect detection and defect detecting apparatus
JP2001141873A (en) * 1999-11-16 2001-05-25 Toshiba Corp Device for inspecting inside reactor
JP2001296386A (en) * 2000-04-14 2001-10-26 Toshiba Corp Inspection, repair and maintenance device for shroud support

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444874A (en) * 1987-08-13 1989-02-17 Matsushita Electric Works Ltd Position detecting system

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195888A (en) * 1975-01-13 1976-08-23
JPS60102580A (en) * 1983-11-10 1985-06-06 Ishikawajima Harima Heavy Ind Co Ltd Position detecting apparatus of running unit
JPS60146166A (en) * 1984-01-11 1985-08-01 Hitachi Ltd Location of sound source position
JPS62164117A (en) * 1986-01-16 1987-07-20 Mitsubishi Electric Corp Operating method for mobile inspecting device
JPS62266480A (en) * 1986-05-14 1987-11-19 Taisei Corp System for measuring distance with ultrasonic wave and transmitter therefor
JPH01174910A (en) * 1987-12-29 1989-07-11 Fujitsu Ltd Three-dimensional pointing system
JPH01163810U (en) * 1988-05-06 1989-11-15
JPH0346586A (en) * 1989-07-13 1991-02-27 Sakura Sokki Kk Ultrasonic distance measuring device
JPH06137850A (en) * 1992-10-30 1994-05-20 Res Dev Corp Of Japan Three-dimensional position and attitude measuring device and measuring method for robot by ultrasonic wave
JPH06265338A (en) * 1993-03-10 1994-09-20 Ngk Insulators Ltd Accident sound source point standardizing apparatus
JPH08239089A (en) * 1995-03-03 1996-09-17 Kawasaki Heavy Ind Ltd Underwater obstacle detector
JPH08304546A (en) * 1995-04-28 1996-11-22 Mitsubishi Heavy Ind Ltd Optical underwater length-measuring equipment
JPH0961513A (en) * 1995-08-30 1997-03-07 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for detecting position in water
JPH0996672A (en) * 1995-09-29 1997-04-08 Sukuuea:Kk Method and system for generating three-dimensional positional data
JPH09210974A (en) * 1996-01-26 1997-08-15 Siemens Ag Locating method for solid propagation sound generating position in pressure vessel to be monitored in power plant
JPH1019854A (en) * 1996-06-28 1998-01-23 Ishikawajima Harima Heavy Ind Co Ltd Self-traveling type flaw detector
JP2000214124A (en) * 1999-01-25 2000-08-04 Hitachi Ltd Potential-difference-method terminal for defect detection and defect detecting apparatus
JP2001141873A (en) * 1999-11-16 2001-05-25 Toshiba Corp Device for inspecting inside reactor
JP2001296386A (en) * 2000-04-14 2001-10-26 Toshiba Corp Inspection, repair and maintenance device for shroud support

Also Published As

Publication number Publication date
JP2005055398A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
EP3084419B1 (en) Improved ultrasound inspection
EP2875380B1 (en) Structure monitoring
US9146331B2 (en) Underwater measurement system
KR101468033B1 (en) Submarine power cable failure point detecting system using underwater acoustic signal
UA80557C2 (en) Method for inspecting welds by means of electromagnetic acoustic transducers
CN206696236U (en) The ultrasonic detection device of small diameter tube outside weld sliding block angle welding
JP5172625B2 (en) Piping inspection device and piping inspection method
KR20180095049A (en) Apparatus for controlling and measuring welding defects on a cylindrical wall and a method for implementing the same
JP4503952B2 (en) In-reactor position measurement device
JP2011021974A (en) System and method for detecting damage of concrete pole using natural vibration mode
EP2108950B1 (en) Method and system for acoustic imaging
JP4871656B2 (en) Ultrasonic probe and ultrasonic flaw detector
WO2014169183A2 (en) Conical utrasonic probe
JP5020285B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP2018205091A (en) Ultrasonic flaw detection device and inspection method using ultrasonic wave
KR20060039593A (en) Sag monitoring apparatus for overhead transmission line
EA017013B1 (en) Means for pipe control, displacement device for use thereof and method therefor
JP2004226230A (en) Ultrasound flaw detector
KR20170109770A (en) Underwater vehicle health monitoring method and system using self noise and self-generated sonar signal
CN216160857U (en) Underwater cable and typical metal target simulation device
CN216160856U (en) Seabed buries typical target analogue means
Hoek et al. Acoustic localisation of partial discharge in power transformers
JP6799982B2 (en) Abnormality detection method and abnormality detection device for linear body, and jig used for abnormality detection device for linear body
KR102367670B1 (en) System for measuring 3-axis electric field with self-diagnosis function
KR102367673B1 (en) Device for measuring 3-axis electric field with self-diagnosis function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees