JP4494676B2 - Machine structural steel with excellent machinability - Google Patents

Machine structural steel with excellent machinability Download PDF

Info

Publication number
JP4494676B2
JP4494676B2 JP2001222249A JP2001222249A JP4494676B2 JP 4494676 B2 JP4494676 B2 JP 4494676B2 JP 2001222249 A JP2001222249 A JP 2001222249A JP 2001222249 A JP2001222249 A JP 2001222249A JP 4494676 B2 JP4494676 B2 JP 4494676B2
Authority
JP
Japan
Prior art keywords
steel
graphitization
machinability
graphite
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001222249A
Other languages
Japanese (ja)
Other versions
JP2003034840A (en
Inventor
雅之 橋村
真 小此木
秀雄 蟹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001222249A priority Critical patent/JP4494676B2/en
Publication of JP2003034840A publication Critical patent/JP2003034840A/en
Application granted granted Critical
Publication of JP4494676B2 publication Critical patent/JP4494676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は被削性および冷間鍛造性に優れた機械構造用鋼に関わる。ここでいう被削性とは切削工具寿命、切削表面粗さおよび切り屑処理性である。
【0002】
【従来の技術】
通常の炭素鋼レベルの炭素量を有する鋼でも炭素を黒鉛化し、フェライト+グラファイトの2相組織とすることで、冷間加工性と被削性が向上することが特開平3−140411号公報などに見られる。しかしそのような組織を実現するためには長時間の焼鈍が必要であり、生産能率とコストの点で問題があった。従って焼鈍時間の短縮が課題であった。
【0003】
切削に関しても切削工具寿命は同一C量で黒鉛を有しない鋼や、軟質の快削鋼に比べて良好である。その理由は切削工具刃先に強固な構成刃先が生成し、それが切削工具の保護膜となるためと考えられる。黒鉛鋼は他の鋼に比べ構成刃先が生成しやすく、その大きさは大きい。しかしこのことは逆に安定した表面創成が困難であり、表面粗さが劣化するという問題を引き起こす。さらに黒鉛鋼は母材が軟質であるため、切り屑も延性に富むので分断されにくく、切り屑処理性に劣る。このようなことから黒鉛鋼はSAE12L14やSUM23に代表される良好な切削工具寿命と表面品質を兼備した従来の低炭快削鋼の代替にはなっていなかった。つまり黒鉛鋼は特に表面品質の点で大きく従来の快削鋼に劣っていた。
【0004】
この表面粗さの改善には鋼を硬質にすることが有効であるが、それは逆に切削工具寿命を低下させることになるので、切削工具寿命と表面品質、切り屑処理性のすべてを兼ね備えることはできなかった。
【0005】
また切り屑処理性についてもMnSの活用やCa等による軟質酸化物等の活用が考えられるが、Mnは黒鉛化を阻害する代表的元素であり、黒鉛鋼のための焼鈍時間が長くなり、実用工業レベルでは実用化できなかった。また黒鉛化焼鈍の時間はAlの添加によって短縮できることが知られているが、Alを添加するとCa等による軟質酸化物が生成しない。さらにはAl添加によって生じるAl23系酸化物は硬質のため、切削工具寿命を低下させる。
【0006】
このように短時間の焼鈍時間で主にフェライト+グラファイトの2相組織とすることが可能で、長い切削工具寿命と高品質の表面品質をした良好な被削性を有する鋼の開発が課題であった。
【0007】
【発明が解決しようとする課題】
本発明は短時間の焼鈍で軟質化するとともに黒鉛を含む組織となって冷間鍛造性に優れ、さらに切削においては切削工具寿命、切削面の表面粗さおよび切り屑の処理性に優れた機械構造用鋼を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明は上記の課題を解決するためになされ、その要旨は
(1) 質量%で、
C:0.3〜2.0%、
Si:0.5〜2.0%、
Mn:0.05〜3.0%、
P:0.001〜0.1%、
S:0.01〜0.7%、
Al:0.001〜0.01%、
N:0.001〜0.006%
を含み、残部はFeおよび不可避的不純物からなり、MnとSの含有比率が質量%で2≦[Mn%]/[S%]≦6かつ鋼中Cが黒鉛として存在する比率(黒鉛率:黒鉛として析出した炭素量/鋼中炭素含有量)が80%を超える組織を有することを特徴とする被削性に優れた機械構造用鋼。
【0009】
(2) さらに質量%で、
Zr:0.0005〜0.004%、
Ca:0.0003〜0.004%、
La:0.0005〜0.002%、
Ce:0.0005〜0.002%、
Mg:0.0005〜0.004%
の1種または2種以上を含むことを特徴とする上記(1)記載の被削性に優れた機械構造用鋼。
【0010】
(3) さらに質量%で、
B:0.0001〜0.006%
を含むことを特徴とする上記(1)または(2)に記載の被削性に優れた機械構造用鋼。
【0011】
(4) さらに質量%で、
Cr:0.05〜0.5%、
Ti:0.005〜0.01%、
V:0.01〜0.1%、
Nb:0.005〜0.04%、
Mo:0.05〜0.5%、
W:0.05〜0.5%
の1種または2種以上を含むことを特徴とする上記(1)〜(3)の内のいずれかに記載の被削性に優れた機械構造用鋼。
【0012】
(5) さらに質量%で、
Pb:0.01〜0.05%、
Bi:0.01〜0.1%、
Te:0.0005〜0.01%、
Se:0.0005〜0.01%、
Sn:0.01〜0.5%
の1種または2種以上を含むことを特徴とする上記(1)〜(4)のいずれかに記載の被削性に優れた機械構造用鋼。
【0013】
(6) さらに質量%で、
Ni:0.05〜3.0%、
Cu:0.1〜3.0%、
Co:0.1〜3.0%
の1種または2種以上を含むことを特徴とする上記(1)〜(5)の内のいずれかに記載の被削性に優れた機械構造用鋼。
【0014】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0015】
まず、本発明で鋼成分を限定した理由を説明する。
【0016】
C含有量は黒鉛量を確保して被削性を向上させるために0.3%以上必要であり、これ未満の場合には黒鉛量が少なく、被削性、特に切削工具寿命延長効果が少ない。また強度が要求される部材に使用する場合には、焼入れ焼き戻しを施して部品としての強度を確保するが、その際の強度はC量に依存するため、強度部材に使用する場合でも0.3%以上の含有量が必要である。また被削性の観点からは黒鉛は刃先近傍での鋼の変形を容易にするとともに、切り屑−母材分離時の破壊起点となる。従ってC量を多くして黒鉛量が多くすることが好ましいが、多すぎると熱間延性が低下し、鋳造や圧延等の製造工程にて割れを生じやすくなる。そのため製造工程における割れを防止するために2.0%を上限とした。
【0017】
Siは鋼中の炭素活量を大きくすることにより、黒鉛化を促進する作用がある。0.5%未満ではその効果が小さいので、その下限値を0.5%とした。また2.0%を超えると、フェライト硬さが大きくなって硬化したり、硬質なSi系酸化物を生成するので工具寿命を損なう。さらに鋼の靭性が損なわれるなどの弊害が顕著となる。そこで上限値を2.0%とした。またSiは黒鉛化率を調整する元素として使用でき、含有量が低いほど焼鈍後の黒鉛化率が小さくなる。
【0018】
Mnは鋼中硫黄をMnSとして固定・分散させるために必要な量およびマトリックスに固溶させて焼入れ後の強度を確保するために必要な量を加算した量が必要であり、その下限値は0.05%である。しかしMn量が大きくなると素地の硬さが大きくなり冷間加工性が低下する上、Mnは黒鉛化阻害元素であり、後述するようにSとの関係を考慮する必要がある。S添加量との関係を考慮する必要があるが、S添加量の上限を考慮するとMn添加量の上限値は3.0%である。これ以上のMn添加は黒鉛化に要する焼鈍時間が長くなり、工業的に成り立たなくなる。また素地の硬さが大きくなり冷間鍛造性を低下させる。
【0019】
Pは鋼中において素地の硬さが大きくなり、冷間加工性が低下するので、その上限を0.1%にしなければならない。一方、表面粗さを必要とする鋼の場合には0.001%未満ではその効果が認められないので0.001%を下限とした。
【0020】
Sは一般に被削性を向上させる元素として知られている。しかし被削性を向上させるにはMnS介在物として存在することが重要で、Sと結合して硫化物を生成するに十分なMnが添加されていることが必要である。S添加量は0.01%未満では被削性向上効果が認められず、0.7%を超えると鋳造や圧延等の製造工程で割れを生じやすくなったり、冷間加工性を低下させたりするので、S添加量を0.01〜0.7%とした。
【0021】
さらにMnおよびSと被削性および黒鉛化挙動との関係を述べる。またその関係をもとに2≦Mn/S≦6と規定した理由を詳しく述べる。
【0022】
鋼にMnおよびSを添加すると、その一部がMnSを生成する。鋼中MnSは切削工具刃先近傍で切り屑生成のための破壊起点となったり、工具すくい面上での潤滑効果により鋼の切削工具寿命を向上させる。一方、黒鉛鋼は黒鉛が変形と破壊の点から被削性を向上させることは前述したとおりである。その黒鉛の介在した切り屑分離では切削工具上に構成刃先を生成しやすくなり、さらに構成刃先が強固に工具と凝着することで工具保護膜となり、構成刃先が実質の刃先となるために切削工具寿命を延長すると考えられる。
【0023】
しかし構成刃先による切削では安定した表面創成が困難であり、表面粗さが劣化し、構成刃先が大きい方が表面粗さが粗い。従って表面粗さの小さな良好な表面を得るためには構成刃先の成長を抑制することが重要で、さらに構成刃先の成長を抑制するためには工具すくい面上の潤滑を大きくすることが重要との結論に至った。そこで研究の結果、構成刃先を制御する手法として黒鉛鋼においても黒鉛とともにMnSを十分に存在させることで切削表面粗さが改善されることを見いだした。
【0024】
MnSを十分に存在させるには、MnとSを多量に添加することが重要であるが、Mn、Sの両者とも黒鉛化阻害元素であることが知られ、MnまたはSを単独で多く添加すると黒鉛化できないことが知られている。
【0025】
しかし研究の結果、MnおよびSを多量に添加しても、そのほとんどをMnSとして鋼中に存在させ、マトリックス中に残存するMnおよびS量を抑制することで黒鉛化を阻害しないことを見いだした。黒鉛鋼の製造工程を考えた場合、MnSは鋳造末期に生成する。そのため添加量を適正に調整することで黒鉛化焼鈍時には添加したMnとSのほとんどをMnSとしておくことが可能であり、黒鉛化を短時間で終了させることが可能である。すなわちMnとSの添加量比率を2≦Mn/S≦6とすることで添加したMnとSのほとんどをMnSとして鋼中に分布させるとともに、黒鉛化を短時間で終了させ、黒鉛とMnSを多量に鋼中に含む鋼を作れることを見いだした。
【0026】
このように鋼中に黒鉛とMnSを分布させることによって、良好な切削工具寿命、切削表面粗さおよび切り屑処理性を達成できることを見いだした。ここで重要なことは通常MnSが存在すると切削工具寿命が向上すると考えられているが、本発明の黒鉛鋼の場合、MnSは工具保護膜である構成刃先の成長を抑制するため、切削工具寿命はむしろ低下する傾向にある。
【0027】
Alは鋼の脱酸元素であり脱酸して圧延時の表面キズを防止するために必要であるが、その添加量が多くなると鋼中で多量のAl23系の酸化物を生成する。しかしAl23は硬質であり、切削工具寿命を低下させる。従ってその上限を0.01%とした。一方Alは黒鉛化促進元素であり、黒鉛化阻害元素であるNをAlNとして固定することで黒鉛化を促進できる。また添加量が微量の場合にはSi、Mn等と複合酸化物を生成して切削工具寿命に対して無害であるため、下限を0.001%とした。
【0028】
Nに関しては窒化物として存在しない固溶窒素はセメンタイト中に溶けこみ、セメンタイトの分解を阻害することから、黒鉛化阻害元素となる。また被削性の観点からも固溶窒素はマトリックスを硬化させるため、切削工具寿命を低下させる。一方、AlN等の窒化物は黒鉛析出核となるため、黒鉛化を促進する。0.006%を超えると固溶窒素が多くなり黒鉛化を阻害し、切削工具寿命を低下させるためこれを上限とした。窒化物を生成する0.001%を下限とした。
【0029】
Zrは酸化物、窒化物、炭化物、硫化物を形成する。それらは析出核として黒鉛化焼鈍時間を短縮する。また窒化物生成時には固溶Nを低減させる。またMnSなどの硫化物の形状を球状化させ、機械的性質の圧延異方性を緩和することができる。さらに焼入れ性も向上させることができる。Zrが0.0005%未満ではその効果が小さく、0.004%を超えるとその効果が飽和するだけでなく、Zr系硫化物、窒化物等も生成し、それらがクラスターを造ることによって機械的性質を損なったり切削工具寿命を低下させたりする。
【0030】
CaはMnSの球状化による圧延異方性の緩和と被削性向上を必要とする場合に有効である。また析出したCa系介在物は黒鉛の析出核として作用する。しかしCaは多量に添加しすぎると硬質な酸化物、硫化物を生じ、被削性や機械的性質を低下させる。従って適正量を添加することが重要である。被削性向上等の効果は0.0003%未満では効果が小さく、0.004%を超えると析出物によって被削性や機械的性質を損なうおそれがあるため、これを上限とした。
【0031】
LaおよびCeはいわゆるREMともよばれ、脱酸効果がある。黒鉛化には酸化物として黒鉛の析出核になるため適度の添加は好ましい。しかし多量の添加では酸化物が硬質化し、切削工具寿命を低下させたり、クラスターを生じて延性を損なうなどの弊害を多く生じる。そこでLaは析出核としての効果が期待できる0.0005%を下限とし、硬質な酸化物によって弊害を生じない0.002%を上限とした。またCeに関しても析出核としての効果が期待できる0.0005%を下限とし、硬質な酸化物によって弊害を生じない0.002%を上限とした。
【0032】
MgはMgOなどの酸化物生成元素であるとともに、硫化物を生成する。MgSはMnSなどと共存することも多い。このような酸化物、硫化物は黒鉛析出核になり、黒鉛の微細分散と焼鈍時間の短縮に有用である。その効果はMg0.0005%未満では認められず、0.004%を超えると酸化物、硫化物を多く生成し、鋼の被削性や機械的性質に悪影響を及ぼす。従ってMg0.0005〜0.004%とした。
【0033】
BはNと反応してオーステナイト結晶粒界にBNとして析出するので黒鉛化を阻害する固溶N低減に役立つ。またBNの結晶構造は黒鉛と同じく六方晶系であり、黒鉛の析出核となる。また固溶Bは焼入れ性を向上させる元素であり、焼入れ性を必要とする場合に添加することが望ましい。その効果は0.0001%未満では認められず、0.006%を超えるとBNを析出させる効果や焼入れ性向上効果が飽和するので上限を0.006%以下とした。
【0034】
Crは焼入れ性向上元素であるが、同時に黒鉛化阻害元素である。そのため焼入れ性向上が必要な場合には0.05%以上の添加を必要とする。しかし多量に添加すると黒鉛化を阻害するので焼鈍時間が長くなるため、0.5%を上限とした。
【0035】
Tiは鋼中でTiNを形成し、オーステナイト粒径を小さくする。黒鉛は旧オーステナイト粒界や析出物という、いわば格子の不均一部に析出する傾向にあり、Tiの炭窒化物は黒鉛の析出核としての役割と、オーステナイト粒径微細化による黒鉛析出核の創出という役割を担う。さらにNを窒化物として固定するために、固溶Nを低減させる。Tiが0.005%未満ではその効果が小さく、0.01%を超えるとその効果が飽和するとともに、多くのTiNが析出して機械的性質を損なう。またTiは炭化物を形成し、セメンタイトを安定化するため、過剰なTi添加は焼鈍による黒鉛化および軟質化を阻害する。そのため上限を0.01%とした。
【0036】
Vは炭窒化物を形成し、オーステナイト粒径微細化と析出核の両面で黒鉛化焼鈍時間を短縮する。また窒化物生成時に黒鉛化を阻害する固溶Nを低減させる。Vが0.01%未満ではその効果が小さく、0.1%を超えるとTiと同様、炭化物を形成し、セメンタイトを安定化するため、過剰なV添加は焼鈍による黒鉛化および軟質化を阻害する。そのため黒鉛化を阻害しない0.1%を上限とした。
【0037】
Nbは炭窒化物を形成し、オーステナイト粒径微細化と析出核の両面で黒鉛化焼鈍時間を短縮する。また窒化物生成時に固溶Nを低減させる。Nbが0.005%未満ではその効果が小さく、0.04%を超えるとその効果が飽和するとともに、多くの未溶解炭化物が残留するために機械的性質を損なう。またTiおよびVと同様、炭化物を形成し、セメンタイトを安定化するため、過剰なNb添加は焼鈍による黒鉛化および軟質化を阻害する。そのため黒鉛化を阻害しない0.04%を上限とした。
【0038】
Moは焼入れ後の強度を増加させるが、0.05%未満ではその効果が小さくいので、0.05%を下限とした。Moは炭化物を生じやすく炭素の活量を低下させる元素で黒鉛化を阻害する元素である。ただし黒鉛化阻害効果はTi、V等よりも小さい。そこで黒鉛化阻害効果が顕著となる0.5%を上限とし、黒鉛の核生成を大きく阻害しない添加量にとどめた。ただし他の焼入れ性向上元素に比べ、黒鉛化阻害の程度が小さいので、焼入れ性を向上させるために指定した範囲内でMo添加量を多くすればよい。
【0039】
Wは焼入れ後の強度を増加させる。炭化物を生成しやすく、炭素の活量を低下させるため、黒鉛化を阻害する。しかし黒鉛化阻害の程度が小さいので焼入れ性を向上させる場合には指定した範囲で添加すればよい。0.05%未満では焼入れ性および焼戻し軟化抵抗の増加に寄与しない。また0.5%を超えて添加すると黒鉛化が阻害させるので0.5%を上限とした。
【0040】
Pbは被削性向上元素である。被削性を必要とする場合には0.01%以上必要であり、0.05%を超えると黒鉛化を阻害するとともに圧延きずなどの製造上の問題を生じるため、これを上限とした。
【0041】
Biは被削性向上に有効で、0.01%未満ではその効果が小さく、0.1%以上ではその効果が飽和するのでこれを上限とした。
【0042】
Teは被削性向上元素であるとともいに、MnSの球状化による圧延異方性の緩和に役立つ。0.0005%未満では効果が小さく、0.01%を超えると黒鉛化阻害や圧延きずなどの問題を引き起こすので、これを上限とした。
【0043】
Seは被削性向上に有効で、0.0005%未満ではその効果が小さく、0.01%以上ではその効果が飽和するのでこれを上限とした。
【0044】
Snは鋼を脆化させるために切り屑処理性向上に効果がある。しかし黒鉛化を阻害する元素であり、0.01%未満では効果が無く、0.5%を超えると黒鉛化阻害効果が顕著になる。そこでSn添加量を0.01〜0.5%と規定した。
【0045】
Niは黒鉛化挙動にほとんど影響せず、黒鉛化を阻害させずに焼入れ性や耐食性を向上させることができる。またCuを添加する場合には熱間延性を確保するために添加しても製造工程における割れの発生等を抑制できる。0.05%未満ではその効果が小さいので下限を0.05%とした。しかしマトリックスを硬化させることにくわえて延性が増すために、切削においては切削工具寿命と切り屑処理性を劣化させる。3.0%以上では特にその効果が顕著なため、上限を3.0%とした。
【0046】
Cuは黒鉛化挙動にほとんど影響せず耐食性の向上に効果がある。0.1%未満ではその効果が認められず、3.0%以上では鋳造、圧延等の製造工程で粒界を劣化させ、割れを生じ強卯になるので、これを上限とした。
【0047】
Coは高温強度を向上させるとともに黒鉛化を促進させる効果がある。0.1%未満ではその効果は認められない。添加量が3.0%を超えると高温強度や延性の向上のための工具寿命低下が顕著になるのでこれを上限とした。
【0048】
鋼中Cは大部分がセメンタイトまたは黒鉛として存在するが、黒鉛は劈開性を有するので容易に変形できる。マトリックスが軟質であれば冷間鍛造性に優れ、切削時には内部潤滑剤と破壊起点の両方の機能から被削性を向上させる。黒鉛化率に関しては焼鈍後に次式で示される黒鉛化率を求める。
黒鉛化率(%)=(鋼中黒鉛含有量/鋼の炭素含有量)×100
ここで、炭素含有量および黒鉛含有量は化学分析により定量分析結果である。この黒鉛化率が80%以下では黒鉛化率が不十分であり、軟質化していないだけでなく、黒鉛の有する切削切り屑分離特性等の被削性向上メカニズムが機能しなくなる。そこで黒鉛化率の下限を80%を超えるものとした。この結果、従来鋼ではセメンタイトとして強度に寄与していたCの大半が黒鉛として鋼中に存在するため、軟質化し、ビッカース硬さではHV140程度かそれ以下となる。
【0049】
【実施例】
表1、表2に示す化学成分を有する鋼を溶製し、750〜850℃でφ50mmに圧延した。比較例を含む一部の試験片については1200℃以上で鍛造した。圧延材はC量が0.5%以下のものに関しては圧延直後に800〜900℃からオンライン水冷装置によって水冷した。またその他の実施例に関しては空冷した。このように冷却した熱処理材を再度690℃に加熱し、24時間焼鈍した。
【0050】
黒鉛化が進行するに従って硬度が低下する。表には690℃によって24時間焼鈍後のビッカース硬度を表記した。
【0051】
【表1】

Figure 0004494676
【0052】
【表2】
Figure 0004494676
【0053】
切削試験はφ5mmの高速度鋼ドリルによる孔あけ加工で、切削条件は切削速度を変化させ、工具寿命1000mm以上となるドリル周速度いわゆるVL1000(m/min)を被削性の指標として用いた。なお送り量は0.33mm/revで不水溶性油を用いた湿式切削である。
【0054】
さらに切削表面粗さを評価するため、被削材を回転させ、工具を半径方向にのみ送ることで丸棒に溝加工を施す切削、いわゆるプランジ切削加工を行った。その概要は図1に示す。切削条件は切削速度80m/min、工具送り0.05mm/revで、2.5s切削後、工具を引き抜き6s間空転させる操作を1サイクルとし、切削により次々と溝が丸棒表面に創成されるので、その100サイクル目の溝底の切削表面粗さを測定した。表面粗さはJISB0601に準拠した十点平均粗さRzを用いた。
【0055】
また1200℃まで加熱して900℃まで放冷して据え込み鍛造したときの割れの有無を目視によって判定した。熱間における据え込み試験片はφ20mm×30mmで熱電対を取り付けてあり、高周波により1200℃まで加熱し、加熱終了後鍛造用平面ダイス上で900℃まで温度が下がるのを待ってひずみ80%で据え込み鍛造を行った。ここでひずみとは下記式(1)で定義される、いわゆる公称ひずみである。
【0056】
ε=(H0−H)/H0 ・ ・ ・ (1)
ここでε:ひずみ、H0:変形前の試験片高さ、H:変形後の試験片高さである。
【0057】
表中にはその判定結果を○×によって示し、×は外周部に大きな割れが生じ不適と判定された例である。
【0058】
表1および2中の化学成分に関する網がけは本発明の規定外の部分であり、評価結果(硬さ、ドリル被削性、切削表面粗さ、熱間延性割れ有無)の網がけはその結果生じた不適である。実施例108には従来の硫黄快削鋼SUM23を比較のために示した。
【0059】
発明例と比較例の比較が示すように、Si、N、Mn/S、Cr、Ti、V、Pb等の規定が本発明の規定から外れると黒鉛化が遅れ、24時間の焼鈍では未だ硬質のため、工具寿命の点で大きく劣る。これらを発明例と同様の硬度にするにはさらに長時間の焼鈍が必要となる。このように所定時間で軟質化できなかった比較例に関しては切削表面粗さや熱間延性に関して評価しなかった。
【0060】
さらにAl、Zr、La、Ce等の規定が本発明と異なると、鋼中に生成される酸化物が硬質であったり、窒化物、硫化物等のクラスターを生じることから、24時間程度の焼鈍で軟質化は可能であるものの、ドリル被削性のような工具寿命はやはり発明例に大きく劣る。
【0061】
切削表面粗さの点では適度のS添加が重要である。実施例37および89に見られるようなS添加量を抑制して軟質化の焼鈍温度短縮を図ると、表面粗さの点で劣る。
【0062】
しかし表面粗さの改善を目的としてSを添加した場合でもMn/Sが規定外の場合には黒鉛化が遅れ、24時間程度の焼鈍では軟質化できない。このことは切削性能だけでなく冷間鍛造性に劣ることを意味する。図2にMn/Sと24時間焼鈍後の硬さの関係を示す。Mn/S>6の場合、すなわちMnが過剰な場合、焼鈍時間24時間ではHV140以下への軟質化は達成できず、軟質化するにはかなりの焼鈍時間延長が必要になる。またMn/S<2の場合、すなわちSが過剰な場合も同様に焼鈍時間24時間ではHV140以下への軟質化は達成できず、軟質化するにはかなりの焼鈍時間延長が必要になる。さらにSが過剰な場合には熱間延性も極端に低下させ、割れが発生し、鋳造、圧延時の割れ発生の原因となる。このようにS添加によって高性能化を図るにはMn/Sが非常に重要であることがわかる。
【0063】
【発明の効果】
本発明の鋼はMnSと黒鉛の効果により優れた切削工具寿命と高品質の切削表面粗さの兼備を可能にした。さらにMn/Sを適正にすることで軟質化の焼鈍時間を短縮でき、容易に良好な被削性、冷間鍛造性を得ることができる。さらに熱間延性にも優れるため、実工程での製造が容易になり、従来より高性能な快削鋼を供することができる。
【図面の簡単な説明】
【図1】プランジ切削方法を示す図である。
【図2】Mn/Sと24時間焼鈍後の硬さの関係を示す図である。
【符号の説明】
1 切削工具
2 切削面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machine structural steel excellent in machinability and cold forgeability. The machinability here refers to cutting tool life, cutting surface roughness, and chip disposal.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 3-140411 discloses that even a steel having a carbon amount at a normal carbon steel level graphitizes carbon to form a ferrite + graphite two-phase structure, thereby improving cold workability and machinability. Seen in. However, in order to realize such a structure, annealing for a long time is necessary, and there are problems in terms of production efficiency and cost. Therefore, shortening the annealing time has been a problem.
[0003]
Regarding cutting, the cutting tool life is better than steel with the same C content and no graphite or soft free-cutting steel. The reason is considered to be that a strong component cutting edge is generated at the cutting tool cutting edge, which becomes a protective film of the cutting tool. Compared to other steels, graphite steel is easier to produce a cutting edge and its size is large. However, this causes a problem that it is difficult to create a stable surface and the surface roughness is deteriorated. Further, since graphite steel has a soft base material, chips are also highly ductile and therefore difficult to be cut, resulting in poor chip disposal. For this reason, graphite steel has not been a substitute for conventional low-carbon free-cutting steel that combines good cutting tool life and surface quality, such as SAE12L14 and SUM23. In other words, graphite steel is greatly inferior to conventional free-cutting steel, particularly in terms of surface quality.
[0004]
To improve the surface roughness, it is effective to harden the steel, but it will reduce the cutting tool life, so it has both cutting tool life, surface quality and chip disposal. I couldn't.
[0005]
As for chip disposal, it is conceivable to use MnS or soft oxides such as Ca, but Mn is a typical element that inhibits graphitization, and the annealing time for graphite steel becomes longer, making it practical. It could not be put into practical use at the industrial level. Further, it is known that the graphitization annealing time can be shortened by adding Al, but when Al is added, a soft oxide such as Ca is not generated. Furthermore, since the Al 2 O 3 oxide generated by the addition of Al is hard, it reduces the cutting tool life.
[0006]
Thus, the development of steel with good machinability with a long cutting tool life and high surface quality that can be mainly made of ferrite + graphite two-phase structure in a short annealing time. there were.
[0007]
[Problems to be solved by the invention]
The present invention is a machine that is softened by annealing in a short time and has a structure containing graphite and is excellent in cold forgeability. Further, in cutting, it is a machine with excellent cutting tool life, surface roughness of the cutting surface and chip disposability. It is intended to provide structural steel.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is (1) mass%,
C: 0.3 to 2.0%,
Si: 0.5 to 2.0%,
Mn: 0.05 to 3.0%
P: 0.001 to 0.1%,
S: 0.01-0.7%,
Al: 0.001 to 0.01%
N: 0.001 to 0.006%
The balance consists of Fe and inevitable impurities, and the content ratio of Mn and S is 2 ≦ [Mn%] / [S%] ≦ 6 and the ratio of C in the steel as graphite (graphite ratio: A machine structural steel excellent in machinability, characterized by having a structure in which the amount of carbon precipitated as graphite / the carbon content in the steel exceeds 80%.
[0009]
(2) Furthermore, in mass%,
Zr: 0.0005 to 0.004%,
Ca: 0.0003 to 0.004%,
La: 0.0005 to 0.002%,
Ce: 0.0005 to 0.002%,
Mg: 0.0005 to 0.004%
The machine structural steel having excellent machinability according to the above (1), comprising one or more of the above.
[0010]
(3) Furthermore, in mass%,
B: 0.0001 to 0.006%
The machine structural steel excellent in machinability according to the above (1) or (2), characterized by comprising
[0011]
(4) Furthermore, in mass%,
Cr: 0.05 to 0.5%,
Ti: 0.005-0.01%,
V: 0.01 to 0.1%
Nb: 0.005 to 0.04%,
Mo: 0.05-0.5%
W: 0.05-0.5%
1 or 2 types or more of said (1)-(3) characterized by the above-mentioned in machinability steel excellent in machinability characterized by the above-mentioned.
[0012]
(5) Furthermore, in mass%,
Pb: 0.01 to 0.05%,
Bi: 0.01 to 0.1%
Te: 0.0005 to 0.01%,
Se: 0.0005 to 0.01%,
Sn: 0.01-0.5%
The machine structural steel having excellent machinability according to any one of the above (1) to (4), comprising one or more of the above.
[0013]
(6) Furthermore, in mass%,
Ni: 0.05-3.0%,
Cu: 0.1 to 3.0%,
Co: 0.1-3.0%
The machine structural steel having excellent machinability according to any one of the above (1) to (5), comprising one or more of the above.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0015]
First, the reason why the steel components are limited in the present invention will be described.
[0016]
The C content is required to be 0.3% or more in order to secure the graphite amount and improve the machinability. When the C content is less than this, the graphite amount is small, and the machinability, particularly the cutting tool life extension effect is small. . In addition, when used for a member that requires strength, quenching and tempering are performed to ensure the strength as a part. However, since the strength at that time depends on the amount of C, even when used for a strength member, the strength is 0. A content of 3% or more is necessary. From the viewpoint of machinability, graphite facilitates deformation of the steel in the vicinity of the cutting edge, and also serves as a starting point for fracture during chip-base material separation. Therefore, it is preferable to increase the amount of graphite by increasing the amount of C. However, if the amount is too large, the hot ductility is lowered, and cracking is likely to occur in a manufacturing process such as casting or rolling. Therefore, 2.0% was made the upper limit to prevent cracks in the manufacturing process.
[0017]
Si has the effect of promoting graphitization by increasing the carbon activity in the steel. If less than 0.5%, the effect is small, so the lower limit was set to 0.5%. On the other hand, if it exceeds 2.0%, the hardness of the ferrite is increased and hardened, or a hard Si-based oxide is produced, so that the tool life is impaired. Furthermore, harmful effects such as loss of the toughness of steel become remarkable. Therefore, the upper limit is set to 2.0%. Si can be used as an element for adjusting the graphitization rate, and the lower the content, the smaller the graphitization rate after annealing.
[0018]
Mn requires an amount required to fix and disperse sulfur in steel as MnS, and an amount obtained by adding a necessary amount to ensure strength after quenching by solid solution in the matrix, and its lower limit is 0. .05%. However, as the amount of Mn increases, the hardness of the substrate increases and cold workability decreases, and Mn is a graphitization-inhibiting element, and it is necessary to consider the relationship with S as described later. Although it is necessary to consider the relationship with the S addition amount, considering the upper limit of the S addition amount, the upper limit value of the Mn addition amount is 3.0%. When Mn is added more than this, the annealing time required for graphitization becomes longer, and it is not industrially feasible. Moreover, the hardness of the substrate is increased and the cold forgeability is lowered.
[0019]
P increases the hardness of the substrate in the steel and decreases the cold workability, so the upper limit must be 0.1%. On the other hand, in the case of steel requiring surface roughness, if less than 0.001%, the effect is not recognized, so 0.001% was made the lower limit.
[0020]
S is generally known as an element that improves machinability. However, in order to improve machinability, it is important to exist as MnS inclusions, and it is necessary to add Mn enough to combine with S to produce sulfide. If the amount of S added is less than 0.01%, the machinability improving effect is not recognized. If it exceeds 0.7%, cracks are likely to occur in the manufacturing process such as casting and rolling, and cold workability is reduced. Therefore, the amount of S added is set to 0.01 to 0.7%.
[0021]
Further, the relationship between Mn and S, machinability and graphitization behavior will be described. The reason why it is defined as 2 ≦ Mn / S ≦ 6 based on the relationship will be described in detail.
[0022]
When Mn and S are added to the steel, some of them produce MnS. MnS in steel serves as a fracture starting point for chip generation in the vicinity of the cutting tool cutting edge, and improves the cutting tool life of steel by a lubricating effect on the tool rake face. On the other hand, as described above, graphite steel improves machinability in terms of deformation and fracture. The graphite-containing chip separation makes it easy to generate a component edge on the cutting tool, and the component edge firmly adheres to the tool to form a tool protection film, and the component edge becomes a substantial edge. It is thought to extend the tool life.
[0023]
However, it is difficult to create a stable surface by cutting with the constituent cutting edge, the surface roughness is deteriorated, and the larger the constituent cutting edge is, the rougher the surface roughness is. Therefore, in order to obtain a good surface with a small surface roughness, it is important to suppress the growth of the constituent cutting edges, and in order to further suppress the growth of the constituent cutting edges, it is important to increase the lubrication on the tool rake face. The conclusion was reached. As a result of the research, it was found that the cutting surface roughness was improved by making MnS sufficiently present together with graphite in the graphite steel as a method for controlling the constituent cutting edges.
[0024]
In order to make MnS sufficiently present, it is important to add a large amount of Mn and S. However, it is known that both Mn and S are graphitization inhibiting elements. It is known that it cannot be graphitized.
[0025]
However, as a result of research, even when a large amount of Mn and S was added, it was found that most of them existed in the steel as MnS, and the graphitization was not inhibited by suppressing the amount of Mn and S remaining in the matrix. . When considering the manufacturing process of graphite steel, MnS is produced at the end of casting. Therefore, by adjusting the addition amount appropriately, most of Mn and S added during graphitization annealing can be made MnS, and graphitization can be completed in a short time. That is, most of the added Mn and S are distributed in the steel as MnS by setting the ratio of addition amount of Mn and S to 2 ≦ Mn / S ≦ 6, and the graphitization is completed in a short time. I found that I can make a large amount of steel.
[0026]
Thus, it has been found that by distributing graphite and MnS in steel, it is possible to achieve good cutting tool life, cutting surface roughness and chip disposal. What is important here is that it is considered that the life of the cutting tool is usually improved when MnS is present. However, in the case of the graphite steel of the present invention, MnS suppresses the growth of the component cutting edge which is a tool protective film. Rather tend to decline.
[0027]
Al is a deoxidizing element for steel and is necessary to deoxidize and prevent surface scratches during rolling. However, when the amount added is increased, a large amount of Al 2 O 3 oxide is produced in the steel. . However, Al 2 O 3 is hard and reduces the cutting tool life. Therefore, the upper limit was made 0.01%. On the other hand, Al is a graphitization promoting element, and graphitization can be promoted by fixing N, which is a graphitization inhibiting element, as AlN. In addition, when the addition amount is very small, a composite oxide is formed with Si, Mn, etc. and is harmless to the cutting tool life, so the lower limit was made 0.001%.
[0028]
Regarding N, solute nitrogen that does not exist as a nitride dissolves in cementite and inhibits the decomposition of cementite, so that it becomes a graphitization inhibiting element. In addition, from the viewpoint of machinability, solute nitrogen hardens the matrix, thereby reducing the cutting tool life. On the other hand, nitrides such as AlN serve as graphite precipitation nuclei and promote graphitization. If it exceeds 0.006%, the amount of dissolved nitrogen increases to inhibit graphitization, and the cutting tool life is shortened. The lower limit was 0.001% for forming nitride.
[0029]
Zr forms oxides, nitrides, carbides and sulfides. They reduce the graphitization annealing time as precipitation nuclei. Further, the solute N is reduced during the formation of nitride. Moreover, the shape of sulfides such as MnS can be spheroidized and the rolling anisotropy of mechanical properties can be relaxed. Furthermore, hardenability can also be improved. If Zr is less than 0.0005%, the effect is small, and if it exceeds 0.004%, the effect is not only saturated, but also Zr-based sulfides, nitrides, etc. are generated and mechanically formed by forming clusters. The properties are impaired and the cutting tool life is shortened.
[0030]
Ca is effective when it is necessary to reduce rolling anisotropy and improve machinability by spheroidizing MnS. The precipitated Ca-based inclusions act as graphite precipitation nuclei. However, if Ca is added in a large amount, hard oxides and sulfides are formed, and machinability and mechanical properties are deteriorated. Therefore, it is important to add an appropriate amount. The effect of improving the machinability is small if it is less than 0.0003%, and if it exceeds 0.004%, there is a possibility that the machinability and mechanical properties may be impaired by precipitates, so this was made the upper limit.
[0031]
La and Ce are also called so-called REM and have a deoxidizing effect. Appropriate addition is preferable for graphitization because it becomes a precipitation nucleus of graphite as an oxide. However, if added in a large amount, the oxide becomes hard, which causes many adverse effects such as shortening of the cutting tool life and loss of ductility by forming clusters. Therefore, La has a lower limit of 0.0005% at which the effect as precipitation nuclei can be expected, and an upper limit of 0.002% at which no harmful effects are caused by hard oxides. Regarding Ce, the lower limit was set to 0.0005% at which an effect as a precipitation nucleus can be expected, and the upper limit was set to 0.002% at which no harmful effect is caused by a hard oxide.
[0032]
Mg is an oxide-generating element such as MgO and generates sulfide. MgS often coexists with MnS or the like. Such oxides and sulfides become graphite precipitation nuclei and are useful for finely dispersing graphite and shortening the annealing time. The effect is not recognized when Mg is less than 0.0005%, and when it exceeds 0.004%, a large amount of oxides and sulfides are generated, which adversely affects the machinability and mechanical properties of steel. Therefore, Mg is set to 0.0005 to 0.004%.
[0033]
Since B reacts with N and precipitates as BN at the austenite grain boundary, it helps to reduce solute N which inhibits graphitization. The crystal structure of BN is a hexagonal system similar to that of graphite, and becomes a precipitation nucleus of graphite. Solid solution B is an element that improves hardenability, and it is desirable to add it when hardenability is required. The effect is not recognized if it is less than 0.0001%, and if it exceeds 0.006%, the effect of precipitating BN and the effect of improving hardenability are saturated, so the upper limit was made 0.006% or less.
[0034]
Cr is an element that improves hardenability, but at the same time is an element that inhibits graphitization. Therefore, when improvement of hardenability is required, addition of 0.05% or more is required. However, if added in a large amount, the graphitization is inhibited, so the annealing time becomes long, so 0.5% was made the upper limit.
[0035]
Ti forms TiN in the steel and reduces the austenite grain size. Graphite tends to precipitate in the former austenite grain boundaries and precipitates, in other words, in the heterogeneous part of the lattice, and Ti carbonitride plays a role as graphite precipitation nuclei and creates graphite precipitation nuclei by refining the austenite grain size. To play a role. Further, in order to fix N as a nitride, solid solution N is reduced. If Ti is less than 0.005%, the effect is small, and if it exceeds 0.01%, the effect is saturated and a large amount of TiN precipitates to impair mechanical properties. Further, Ti forms carbides and stabilizes cementite, so excessive addition of Ti inhibits graphitization and softening due to annealing. Therefore, the upper limit was made 0.01%.
[0036]
V forms carbonitride and shortens the graphitization annealing time on both sides of the austenite grain size refinement and precipitation nuclei. Moreover, the solid solution N which inhibits graphitization at the time of nitride production is reduced. When V is less than 0.01%, the effect is small, and when it exceeds 0.1%, carbide is formed and cementite is stabilized like Ti, so excessive addition of V inhibits graphitization and softening due to annealing. To do. Therefore, the upper limit is set to 0.1% which does not inhibit graphitization.
[0037]
Nb forms carbonitrides and shortens the graphitization annealing time on both the austenite grain size refinement and precipitation nuclei. Further, the solid solution N is reduced when the nitride is formed. If Nb is less than 0.005%, the effect is small, and if it exceeds 0.04%, the effect is saturated, and many undissolved carbides remain, and mechanical properties are impaired. Further, like Ti and V, carbides are formed and cementite is stabilized, so excessive Nb addition inhibits graphitization and softening by annealing. Therefore, the upper limit is set to 0.04% which does not inhibit graphitization.
[0038]
Mo increases the strength after quenching, but if less than 0.05%, the effect is small, so 0.05% was made the lower limit. Mo is an element that easily forms carbides and decreases the activity of carbon, and is an element that inhibits graphitization. However, the graphitization inhibitory effect is smaller than Ti, V and the like. Therefore, the upper limit is set to 0.5% at which the graphitization inhibitory effect becomes significant, and the addition amount is not limited so as not to significantly inhibit the nucleation of graphite. However, since the degree of inhibition of graphitization is small compared to other hardenability improving elements, the Mo addition amount may be increased within a specified range in order to improve hardenability.
[0039]
W increases the strength after quenching. It is easy to produce carbides and lowers the carbon activity, thus inhibiting graphitization. However, since the degree of graphitization inhibition is small, when the hardenability is improved, it may be added within the specified range. If it is less than 0.05%, it does not contribute to an increase in hardenability and temper softening resistance. Further, if added over 0.5%, graphitization is inhibited, so 0.5% was made the upper limit.
[0040]
Pb is a machinability improving element. When machinability is required, it is necessary to be 0.01% or more. If it exceeds 0.05%, graphitization is inhibited and production problems such as rolling flaws occur, so this was made the upper limit.
[0041]
Bi is effective for improving the machinability, and if it is less than 0.01%, the effect is small, and if it is 0.1% or more, the effect is saturated.
[0042]
Te is an element that improves machinability and helps to mitigate rolling anisotropy by spheroidizing MnS. If it is less than 0.0005%, the effect is small, and if it exceeds 0.01%, problems such as graphitization inhibition and rolling flaws are caused, so this was made the upper limit.
[0043]
Se is effective in improving the machinability, and its effect is small when it is less than 0.0005%, and the effect is saturated when it is 0.01% or more.
[0044]
Sn is effective in improving chip disposal because it embrittles steel. However, it is an element that inhibits graphitization, and if it is less than 0.01%, there is no effect, and if it exceeds 0.5%, the graphitization inhibition effect becomes significant. Therefore, the Sn addition amount is defined as 0.01 to 0.5%.
[0045]
Ni hardly affects graphitization behavior, and can improve hardenability and corrosion resistance without inhibiting graphitization. Further, when Cu is added, cracks and the like in the manufacturing process can be suppressed even if Cu is added to ensure hot ductility. If less than 0.05%, the effect is small, so the lower limit was made 0.05%. However, since the ductility increases in addition to hardening the matrix, cutting tool life and chip disposal are deteriorated in cutting. The effect is particularly remarkable at 3.0% or more, so the upper limit was made 3.0%.
[0046]
Cu has little effect on graphitization behavior and is effective in improving corrosion resistance. If it is less than 0.1%, the effect is not recognized, and if it is 3.0% or more, the grain boundary is deteriorated in the manufacturing process such as casting and rolling, and cracks are formed and become strong.
[0047]
Co has the effect of improving high temperature strength and promoting graphitization. If it is less than 0.1%, the effect is not recognized. When the addition amount exceeds 3.0%, the tool life for improving the high-temperature strength and ductility becomes remarkable, so this was made the upper limit.
[0048]
Most of C in steel exists as cementite or graphite, but graphite has a cleavage property and can be easily deformed. If the matrix is soft, it is excellent in cold forgeability and improves machinability from the functions of both the internal lubricant and the fracture starting point during cutting. Regarding the graphitization rate, the graphitization rate represented by the following formula is obtained after annealing.
Graphitization rate (%) = (graphite content in steel / carbon content of steel) × 100
Here, the carbon content and the graphite content are quantitative analysis results by chemical analysis. If the graphitization rate is 80% or less, the graphitization rate is not sufficient and not softened, and the machinability improving mechanism such as cutting chip separation characteristics of graphite does not function. Therefore, the lower limit of the graphitization rate is set to exceed 80%. As a result, most of the C that has contributed to the strength as cementite in the conventional steel is present in the steel as graphite, so it softens, and the Vickers hardness is about HV140 or less.
[0049]
【Example】
Steels having chemical components shown in Tables 1 and 2 were melted and rolled to Φ50 mm at 750 to 850 ° C. Some test pieces including comparative examples were forged at 1200 ° C. or higher. As for the rolled material, the C content of 0.5% or less was water-cooled from 800 to 900 ° C. by an on-line water cooling device immediately after rolling. Other examples were air-cooled. The heat-treated material thus cooled was again heated to 690 ° C. and annealed for 24 hours.
[0050]
Hardness decreases as graphitization proceeds. The table shows the Vickers hardness after annealing for 24 hours at 690 ° C.
[0051]
[Table 1]
Figure 0004494676
[0052]
[Table 2]
Figure 0004494676
[0053]
The cutting test was drilling with a high-speed steel drill of φ5 mm, and the cutting conditions were such that the cutting speed was changed, and the drill peripheral speed at which the tool life was 1000 mm or more, so-called VL1000 (m / min) was used as an index of machinability. The feed amount is 0.33 mm / rev and wet cutting using water-insoluble oil.
[0054]
Further, in order to evaluate the cutting surface roughness, the work material was rotated, and cutting in which a round bar was grooved by sending the tool only in the radial direction, so-called plunge cutting, was performed. The outline is shown in FIG. Cutting conditions are a cutting speed of 80 m / min, a tool feed of 0.05 mm / rev, and after 2.5 s cutting, the operation of drawing out the tool and idling for 6 s is one cycle, and grooves are successively created on the surface of the round bar by cutting. Therefore, the cutting surface roughness of the groove bottom at the 100th cycle was measured. As the surface roughness, ten-point average roughness Rz based on JISB0601 was used.
[0055]
Moreover, the presence or absence of the crack when heating to 1200 degreeC and standing to cool to 900 degreeC and carrying out upset forging was judged by visual observation. The hot upset test piece is φ20mm × 30mm and has a thermocouple attached, heated to 1200 ° C by high frequency, waited for the temperature to drop to 900 ° C on the flat die for forging, and strain was 80%. Upset forging was performed. Here, the strain is a so-called nominal strain defined by the following formula (1).
[0056]
ε = (H 0 −H) / H 0 (1)
Here, ε: strain, H 0 : test piece height before deformation, H: test piece height after deformation.
[0057]
In the table, the determination result is indicated by ○ ×, where × is an example in which a large crack occurs in the outer peripheral portion and is determined to be inappropriate.
[0058]
The netting relating to the chemical components in Tables 1 and 2 is a part not specified in the present invention, and the netting of the evaluation results (hardness, drill machinability, cutting surface roughness, hot ductility crack presence / absence) is the result. Inadequate resulting. Example 108 shows a conventional sulfur free-cutting steel SUM23 for comparison.
[0059]
As the comparison between the inventive example and the comparative example shows, graphitization is delayed when the specifications of Si, N, Mn / S, Cr, Ti, V, Pb, etc. deviate from the specifications of the present invention, and still hard after 24 hours of annealing. Therefore, it is greatly inferior in terms of tool life. In order to obtain the same hardness as in the invention examples, it is necessary to perform annealing for a longer time. Thus, the comparative example which could not be softened in a predetermined time was not evaluated with respect to cutting surface roughness and hot ductility.
[0060]
Furthermore, if the specifications of Al, Zr, La, Ce, etc. are different from those of the present invention, the oxide produced in the steel is hard, or a cluster of nitride, sulfide, etc. is produced, so annealing for about 24 hours. However, the tool life such as drill machinability is still inferior to that of the invention example.
[0061]
Appropriate addition of S is important in terms of cutting surface roughness. When the amount of S added as in Examples 37 and 89 is suppressed to reduce the annealing temperature for softening, the surface roughness is inferior.
[0062]
However, even when S is added for the purpose of improving the surface roughness, if Mn / S is not specified, graphitization is delayed, and it cannot be softened by annealing for about 24 hours. This means that not only cutting performance but also cold forgeability is inferior. FIG. 2 shows the relationship between Mn / S and the hardness after 24-hour annealing. In the case of Mn / S> 6, that is, when Mn is excessive, softening to HV140 or less cannot be achieved with an annealing time of 24 hours, and considerable annealing time extension is required for softening. Similarly, when Mn / S <2, that is, when S is excessive, softening to HV140 or less cannot be achieved with an annealing time of 24 hours, and considerable annealing time extension is required for softening. Further, when S is excessive, the hot ductility is also extremely reduced, cracks are generated, which causes cracks during casting and rolling. Thus, it can be seen that Mn / S is very important for improving the performance by adding S.
[0063]
【The invention's effect】
The steel of the present invention can combine excellent cutting tool life and high quality cutting surface roughness due to the effects of MnS and graphite. Furthermore, by making Mn / S appropriate, the annealing time for softening can be shortened, and good machinability and cold forgeability can be easily obtained. Furthermore, since it is excellent also in hot ductility, manufacture in an actual process becomes easy and can provide free-cutting steel with higher performance than before.
[Brief description of the drawings]
FIG. 1 is a diagram showing a plunge cutting method.
FIG. 2 is a diagram showing a relationship between Mn / S and hardness after 24 hours annealing.
[Explanation of symbols]
1 Cutting tool 2 Cutting surface

Claims (6)

質量%で、
C:0.3〜2.0%、
Si:0.5〜2.0%、
Mn:0.05〜3.0%、
P:0.001〜0.1%、
S:0.01〜0.7%、
Al:0.001〜0.01%、
N:0.001〜0.006%
を含み、残部はFeおよび不可避的不純物からなり、MnとSの含有比率が質量%で2≦[Mn%]/[S%]≦6かつ鋼中Cが黒鉛として存在する比率(黒鉛率:黒鉛として析出した炭素量/鋼中炭素含有量)が80%を超える組織を有することを特徴とする被削性に優れた機械構造用鋼。
% By mass
C: 0.3 to 2.0%,
Si: 0.5 to 2.0%,
Mn: 0.05 to 3.0%
P: 0.001 to 0.1%,
S: 0.01-0.7%,
Al: 0.001 to 0.01%
N: 0.001 to 0.006%
The balance consists of Fe and inevitable impurities, and the content ratio of Mn and S is 2 ≦ [Mn%] / [S%] ≦ 6 and the ratio of C in the steel as graphite (graphite ratio: A machine structural steel excellent in machinability, characterized by having a structure in which the amount of carbon precipitated as graphite / the carbon content in the steel exceeds 80%.
さらに質量%で、
Zr:0.0005〜0.004%、
Ca:0.0003〜0.004%、
La:0.0005〜0.002%、
Ce:0.0005〜0.002%、
Mg:0.0005〜0.004%
の1種または2種以上を含むことを特徴とする請求項1記載の被削性に優れた機械構造用鋼。
In addition,
Zr: 0.0005 to 0.004%,
Ca: 0.0003 to 0.004%,
La: 0.0005 to 0.002%,
Ce: 0.0005 to 0.002%,
Mg: 0.0005 to 0.004%
The steel for machine structure excellent in machinability according to claim 1, comprising one or more of the following.
さらに質量%で、
B:0.0001〜0.006%
を含むことを特徴とする請求項1または2に記載の被削性に優れた機械構造用鋼。
In addition,
B: 0.0001 to 0.006%
The steel for machine structure excellent in machinability of Claim 1 or 2 characterized by the above-mentioned.
さらに質量%で、
Cr:0.05〜0.5%、
Ti:0.005〜0.01%、
V:0.01〜0.1%、
Nb:0.005〜0.04%、
Mo:0.05〜0.5%、
W:0.05〜0.5%
の1種または2種以上を含むことを特徴とする請求項1〜3の内のいずれかに記載の被削性に優れた機械構造用鋼。
In addition,
Cr: 0.05 to 0.5%,
Ti: 0.005-0.01%,
V: 0.01 to 0.1%
Nb: 0.005 to 0.04%,
Mo: 0.05-0.5%
W: 0.05-0.5%
The machine structural steel excellent in machinability according to any one of claims 1 to 3, wherein one or more of the above are included.
さらに質量%で、
Pb:0.01〜0.05%、
Bi:0.01〜0.1%、
Te:0.0005〜0.01%、
Se:0.0005〜0.01%、
Sn:0.01〜0.5%
の1種または2種以上を含むことを特徴とする請求項1〜4のいずれかに記載の被削性に優れた機械構造用鋼。
In addition,
Pb: 0.01 to 0.05%,
Bi: 0.01 to 0.1%
Te: 0.0005 to 0.01%,
Se: 0.0005 to 0.01%,
Sn: 0.01-0.5%
The machine structural steel excellent in machinability according to any one of claims 1 to 4, comprising one or more of the following.
さらに質量%で、
Ni:0.05〜3.0%、
Cu:0.1〜3.0%、
Co:0.1〜3.0%
の1種または2種以上を含むことを特徴とする請求項1〜5の内のいずれかに記載の被削性に優れた機械構造用鋼。
In addition,
Ni: 0.05-3.0%,
Cu: 0.1 to 3.0%,
Co: 0.1-3.0%
The steel for machine structure excellent in machinability in any one of Claims 1-5 characterized by including 1 type, or 2 or more types of these.
JP2001222249A 2001-07-23 2001-07-23 Machine structural steel with excellent machinability Expired - Lifetime JP4494676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222249A JP4494676B2 (en) 2001-07-23 2001-07-23 Machine structural steel with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222249A JP4494676B2 (en) 2001-07-23 2001-07-23 Machine structural steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2003034840A JP2003034840A (en) 2003-02-07
JP4494676B2 true JP4494676B2 (en) 2010-06-30

Family

ID=19055758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222249A Expired - Lifetime JP4494676B2 (en) 2001-07-23 2001-07-23 Machine structural steel with excellent machinability

Country Status (1)

Country Link
JP (1) JP4494676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545846B1 (en) 2015-04-28 2015-08-20 고려제강 주식회사 Pre- stressed concrete steel strand with superior resistance against hydrogen delayed fracture and method for producing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052036A1 (en) * 2009-11-05 2011-05-12 Buderus Edelstahl Band Gmbh Lead-free free-cutting steel
KR101657790B1 (en) * 2014-12-09 2016-09-20 주식회사 포스코 Steel material for graphitization and graphite steel with excellent machinability and cold forging characteristic
KR101657792B1 (en) * 2014-12-11 2016-09-20 주식회사 포스코 Steel material for graphitization and graphite steel with excellent machinability
KR101674826B1 (en) * 2015-09-07 2016-11-10 주식회사 포스코 Graphite steel having excellent machinability, coercivity and iron-loss characteristics and method for manufacturing thereof
CN107245650A (en) * 2017-06-29 2017-10-13 扬中市第蝶阀厂有限公司 A kind of coal bunker liner plate for avoiding coal cinder from being bonded and preparation method thereof
JP7320251B2 (en) * 2019-08-02 2023-08-03 新報国マテリアル株式会社 austenitic stainless steel castings
KR20230089718A (en) * 2021-12-14 2023-06-21 주식회사 포스코 Calcium-containing graphite steel with excellent cuttability and method for manufacturing the same
KR20230090393A (en) * 2021-12-14 2023-06-22 주식회사 포스코 Calcium-containing graphite steel wire rode, graphite steel wire, and graphite steel, methods for manufacturing and cutting the same
KR20230089717A (en) * 2021-12-14 2023-06-21 주식회사 포스코 Graphite steel wire rode, graphite steel wire, and graphite steel for tv pem nut part, methods for manufacturing and cutting the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157621A (en) * 1974-11-18 1976-05-20 Nippon Steel Corp Reikantanzosei nosugureta kokuenkaisakuko
JP2000119801A (en) * 1998-08-11 2000-04-25 Kobe Steel Ltd Graphitic steel excellent in machinability
JP2003034841A (en) * 2001-07-23 2003-02-07 Nippon Steel Corp Steel for machine structure superior in machinability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157621A (en) * 1974-11-18 1976-05-20 Nippon Steel Corp Reikantanzosei nosugureta kokuenkaisakuko
JP2000119801A (en) * 1998-08-11 2000-04-25 Kobe Steel Ltd Graphitic steel excellent in machinability
JP2003034841A (en) * 2001-07-23 2003-02-07 Nippon Steel Corp Steel for machine structure superior in machinability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545846B1 (en) 2015-04-28 2015-08-20 고려제강 주식회사 Pre- stressed concrete steel strand with superior resistance against hydrogen delayed fracture and method for producing the same

Also Published As

Publication number Publication date
JP2003034840A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
JP4568362B2 (en) Machine structural steel with excellent machinability and strength characteristics
JP4295314B2 (en) Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts
JP5135918B2 (en) Martensitic free-cutting stainless steel
EP1236809B1 (en) High-hardness martensitic stainless steel excellent in corrosion resistance
JP4267260B2 (en) Steel with excellent machinability
JP5076683B2 (en) High toughness high speed tool steel
KR20060047819A (en) Cold work tool steel
JPWO2009057731A1 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP5655366B2 (en) Bainite steel
JP2007289979A (en) Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot
JP4494676B2 (en) Machine structural steel with excellent machinability
JPH11246939A (en) Cold forging steel
JP5376302B2 (en) Die steel with excellent machinability
JP4502519B2 (en) Martensitic free-cutting stainless steel
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP2007231337A (en) Hot rolled steel sheet and steel component
JP2007204794A (en) Steel component
JPH0925539A (en) Free cutting non-heat treated steel excellent in strength and toughness
KR100368540B1 (en) A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof
JP2005336553A (en) Hot tool steel
JP5050515B2 (en) Non-tempered steel containing V for crankshaft
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP4038457B2 (en) Hot forged non-tempered steel for induction hardening
JP3764274B2 (en) Free-cutting hot-worked steel material and rough profile, manufacturing methods thereof, free-cutting hot-worked product, and manufacturing method thereof
WO2013027676A1 (en) Untempered steel for hot forging having excellent machinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R151 Written notification of patent or utility model registration

Ref document number: 4494676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350