JP2003034841A - Steel for machine structure superior in machinability - Google Patents

Steel for machine structure superior in machinability

Info

Publication number
JP2003034841A
JP2003034841A JP2001222254A JP2001222254A JP2003034841A JP 2003034841 A JP2003034841 A JP 2003034841A JP 2001222254 A JP2001222254 A JP 2001222254A JP 2001222254 A JP2001222254 A JP 2001222254A JP 2003034841 A JP2003034841 A JP 2003034841A
Authority
JP
Japan
Prior art keywords
steel
graphite
cutting
graphitization
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001222254A
Other languages
Japanese (ja)
Other versions
JP4002411B2 (en
Inventor
Makoto Okonogi
真 小此木
Masayuki Hashimura
雅之 橋村
Hideo Kanisawa
秀雄 蟹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001222254A priority Critical patent/JP4002411B2/en
Publication of JP2003034841A publication Critical patent/JP2003034841A/en
Application granted granted Critical
Publication of JP4002411B2 publication Critical patent/JP4002411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a graphite steel for imparting the prolonged life to a cutting tool and improved roughness to a machined surface. SOLUTION: The steel for a machine structure superior in machinability is characterized by including 1.0-2.0% C, 0.5-2.0% Si, 0.1-2.0% Mn, 0.001-0.1% P, 0.1-0.7% S, 0.001-0.05% Al, 0.0001-0.02% N, and 0.0001-0.009% Mg, having a metal structure consisting of ferrite, graphite and cementite, and having a graphitization rate exceeding 80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は切削や冷間鍛造で成
形し、自動車や産業機械などの部品として使用する機械
構造用鋼に関わり、特にセメンタイトを黒鉛化すること
で冷間加工性を向上した黒鉛鋼に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for machine structural use which is formed by cutting or cold forging and is used as a part for automobiles, industrial machines, etc., and particularly cold workability is improved by graphitizing cementite. It is related to graphite steel.

【0002】[0002]

【従来の技術】中炭素鋼の組織をフェライトと黒鉛の組
織にすることにより冷間鍛造性及び切削性が向上するこ
とは従来から知られており、黒鉛による切削性の向上
は、層間結合力が弱い結晶構造をもつことから潤滑性に
優れること、あるいは黒鉛がチップブレーカーとして機
能するためと考えられ、その技術は特開昭49−678
16号公報に開示されている。しかしながら、この方法
では切削工具寿命はPb快削鋼並に向上するものの、工
具と被削材の間に形成される構成刃先が大きく成長する
ことにより切削面の表面粗さが粗くなる問題が残されて
いる。
2. Description of the Related Art It has been conventionally known that cold forgeability and machinability are improved by changing the structure of medium carbon steel to the structure of ferrite and graphite. Is considered to be excellent in lubricity because it has a weak crystal structure, or because graphite functions as a chip breaker. The technique is disclosed in JP-A-49-678.
No. 16 publication. However, with this method, the cutting tool life is improved to the same level as Pb free-cutting steel, but there is a problem that the surface roughness of the cutting surface becomes rough due to the large growth of the constituent cutting edge formed between the tool and the work material. Has been done.

【0003】切削面粗さを改善する手段として特開平6
−212352号公報では工具と被削材の界面に潤滑性
に優れたPb、Bi、MnS、MnTe、MnSeなど
の被膜を形成させることで工具とフェライトの凝着を防
止し構成刃先の生成を抑制できることが開示されてい
る。しかし、PbやBi、Sの多量添加は著しく黒鉛化
を阻害し、黒鉛化のための焼鈍時間を延長しなくてはな
らず、製造コストが増加する問題が残されている。
As a means for improving the roughness of the cutting surface, Japanese Patent Laid-Open No. 6-242242
In JP-A-212352, by forming a film of Pb, Bi, MnS, MnTe, MnSe having excellent lubricity on the interface between the tool and the work material, the adhesion of the tool and the ferrite is prevented and the formation of the constituent cutting edge is suppressed. It is disclosed that this can be done. However, the addition of a large amount of Pb, Bi, and S significantly hinders graphitization, and the annealing time for graphitization must be extended, which leaves a problem that the manufacturing cost increases.

【0004】一方、黒鉛の析出を促進する手段として特
開平2−111842号公報では、BNを黒鉛の析出核
として利用することが有効であり、この結果、黒鉛粒径
は約5〜10μm程度に微細化することが開示されてい
る。しかし、本発明者らの調査によると、この方法では
黒鉛粒径は微細化されているものの黒鉛間の最大距離は
100μm程度あり黒鉛分散は不均一である。この原因
は、BNはオーステナイト粒界やMnS上に析出するた
め、熱間圧延方向に伸長化したMnS上にBNが列状に
析出したり、旧オーステナイト界に沿って編み目状にB
Nが析出した結果、黒鉛も列状や網目状に析出し不均一
分散になると推定できる。更に、BNを黒鉛析出核に利
用するにはBN析出のための熱処理が必要となり熱処理
工程が増加し製造コストが上昇する。制御圧延によりB
Nの析出処理を圧延中に行うことも想定できるが、精密
な温度管理が必要となる等、製造工程が制約される課題
が残されている。またBNの利用では黒鉛粒径が微細化
しても黒鉛の不均一分散が原因で切削面粗さが改善しな
い問題が残されている。
On the other hand, as a means for accelerating the precipitation of graphite, it is effective to use BN as a precipitation nucleus of graphite in Japanese Patent Laid-Open No. 2-111842, and as a result, the particle size of graphite is about 5 to 10 μm. Miniaturization is disclosed. However, according to the investigation by the present inventors, in this method, although the graphite particle size is reduced, the maximum distance between graphite particles is about 100 μm, and the graphite dispersion is not uniform. This is because BN precipitates on austenite grain boundaries and MnS, so that BN precipitates on MnS stretched in the hot rolling direction in a row, or along the old austenite boundary in a B-shaped pattern.
It can be presumed that, as a result of N precipitation, graphite also precipitates in rows and meshes and becomes non-uniformly dispersed. Further, in order to use BN as graphite precipitation nuclei, a heat treatment for BN precipitation is required, which increases the heat treatment process and increases the manufacturing cost. B by controlled rolling
Although it is possible to envisage performing the N precipitation treatment during rolling, there remains a problem that the manufacturing process is restricted, such as requiring precise temperature control. Further, in the use of BN, there remains a problem that the cutting surface roughness is not improved due to the non-uniform dispersion of graphite even if the particle size of graphite is reduced.

【0005】また特開平7−3390号公報ではZrの
添加によりZrNが黒鉛化を阻害する固溶Nを低減する
と共に黒鉛析出核として機能し黒鉛が微細化することが
開示されている。更に、特開平10−140281号公
報ではCaとZrの複合添加によりこれらの複合硫化物
を生成し、BNの析出核として機能した結果、黒鉛が微
細化し5〜10hの焼鈍で黒鉛化率が70%になること
が開示されている。しかし、これらの従来方法ではZr
の炭窒化物あるいはZrの硫化物を生成するために、約
0.01〜0.2wt.%のZrの多量添加が必要であ
る。このため10μmを超える粗大なZr(CN)やZ
rS等の析出物が生成し、疲労強度や靭性などの機械的
特性を劣化させたり、粗大なZr(CN)が工具の摩耗
を促進し工具寿命が劣化する問題が残されている。
Further, Japanese Patent Application Laid-Open No. 7-3390 discloses that the addition of Zr reduces the amount of solid solution N which ZrN inhibits graphitization and also functions as a graphite precipitation nucleus to make the graphite finer. Further, in Japanese Patent Application Laid-Open No. 10-140281, these composite sulfides are produced by the composite addition of Ca and Zr, and function as precipitation nuclei of BN. % Is disclosed. However, in these conventional methods, Zr
0.01 wt.% To 0.2 wt. % Addition of large amount of Zr is required. Therefore, coarse Zr (CN) or Z exceeding 10 μm
There remains a problem that precipitates such as rS are generated and mechanical properties such as fatigue strength and toughness are deteriorated, or coarse Zr (CN) accelerates tool wear and tool life is deteriorated.

【0006】[0006]

【発明が解決しようとする課題】本発明は機械構造用鋼
として切削工具寿命に優れると共に、切削表面粗さも優
れた黒鉛鋼を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a graphite steel having excellent cutting tool life and excellent cutting surface roughness as steel for machine structure.

【0007】[0007]

【課題を解決するための手段】本発明者らは黒鉛鋼の炭
素含有量を1.0%以上とし、かつS量を0.1%以
上、Mgを添加することで、短時間の焼鈍による軟質化
と切削工具寿命と切削面粗さの両立が可能となることを
見出した。被削性の改善機構は、黒鉛とフェライトの二
相構造により適度に構成刃先が成長し工具摩耗を抑制す
ると共に、高C、高S化により潤滑性が向上したことに
加えて黒鉛サイズの微細化により、構成刃先の成長が適
度に抑制された結果、工具と被削材の間の過剰な隙間を
防止し切削表面粗さが改善したと考えられる。
Means for Solving the Problems The present inventors set a carbon content of graphite steel to 1.0% or more and an S content of 0.1% or more, and added Mg, whereby a short-time annealing was performed. It was found that it is possible to achieve both softening, cutting tool life and cutting surface roughness. The machinability improvement mechanism is that the two-phase structure of graphite and ferrite allows the constituent cutting edge to grow moderately and suppresses tool wear. In addition to improving the lubricity by increasing C and S, the fineness of graphite size It is considered that, as a result of the fact that the growth of the constituent cutting edges was moderately suppressed by this, an excessive gap between the tool and the work material was prevented and the cutting surface roughness was improved.

【0008】炭素含有量が1.0%を超える鋼では、セ
メンタイトを黒鉛化した際に黒鉛粒径が粗大化し、高周
波焼入れ特性、冷間鍛造性、あるいは部品の疲労特性を
劣化させる。黒鉛粗大化の原因は、黒鉛体積率が多いこ
とに加え、高炭素化により溶鋼中の酸素濃度が低下し、
黒鉛の析出核となるAl23等の酸化物が減少したこと
によると考えられる。一方、S含有量が0.1%を超え
る鋼は黒鉛化時間を著しく長時間化する。MnSなどの
硫化物として析出していないSが黒鉛化を著しく阻害し
ていると考えられる。またS含有量が増加すると硫化物
が粗大化し硫化物をサイトに析出する黒鉛も粗大化し、
冷間鍛造性や疲労特性を劣化させると共に、高周波焼入
れ後に粗大な黒鉛の分解が不十分なため、マルテンサイ
トとフェライトの混在した組織となり、熱処理後の疲労
特性を顕著に劣化させる。
In steel having a carbon content of more than 1.0%, the grain size of graphite becomes coarse when graphitizing cementite, which deteriorates induction hardening characteristics, cold forgeability, or fatigue characteristics of parts. The cause of graphite coarsening is that, in addition to the high graphite volume ratio, the oxygen concentration in the molten steel decreases due to high carbonization,
It is considered that this is because the oxides such as Al 2 O 3 that become the precipitation nuclei of graphite decreased. On the other hand, steel having an S content exceeding 0.1% remarkably prolongs the graphitization time. It is considered that S that is not precipitated as a sulfide such as MnS significantly hinders graphitization. Further, when the S content increases, the sulfide becomes coarse, and the graphite that precipitates sulfide at the site also becomes coarse,
Cold forgeability and fatigue properties are deteriorated, and since coarse graphite is not sufficiently decomposed after induction hardening, a structure in which martensite and ferrite are mixed is formed, and fatigue properties after heat treatment are significantly deteriorated.

【0009】本発明者らは、鋼にMgを微量添加するこ
とにより、1.0%を超える高炭素鋼で、かつSを0.
1%以上含有してもMg系の酸化物が微細分散し、それ
らを析出核にして黒鉛が均一に、かつ微細に分散し、黒
鉛化時間も著しく短縮化することを見出した。
The inventors of the present invention added a trace amount of Mg to the steel to obtain a high carbon steel having a carbon content of more than 1.0% and an S content of 0.
It has been found that even if the content is 1% or more, Mg-based oxides are finely dispersed, graphite is uniformly and finely dispersed by using them as precipitation nuclei, and the graphitization time is significantly shortened.

【0010】Mgの添加により生成する酸化物の形態は
MgOあるいはMgAl24が主体であるがMg−Si
系、Mg−Ti系の酸化物も存在する。更にMgの添加
によりMgを含有しない酸化物、例えばAl23、Ti
23なども微細化する効果を有する。またこれらの酸化
物を核に析出するMnSなどの硫化物も顕著な微細化が
認められる。酸化物や硫化物、あるいはこれらの複合介
在物は黒鉛の析出サイトとして機能するため、Mg添加
によりこれらの酸化物や硫化物を微細分散させた鋼材
は、焼鈍処理を行うことでこれらの酸化物や硫化物を核
として黒鉛が微細析出する。また酸化物や硫化物はBN
などの炭窒化物と異なり溶鋼中あるいは纈P相域で析出
するため組織の影響を受けずに均一分散させることがで
きる。
The form of the oxide formed by the addition of Mg is mainly MgO or MgAl 2 O 4 , but Mg-Si
There are also system-based and Mg-Ti-based oxides. Furthermore, by adding Mg, an oxide containing no Mg, such as Al 2 O 3 or Ti
2 O 3 and the like also have the effect of miniaturization. Further, sulfides such as MnS that precipitate these oxides in the nucleus also show remarkable miniaturization. Oxides and sulfides, or composite inclusions of these, function as precipitation sites for graphite. Therefore, steel materials in which these oxides and sulfides are finely dispersed by adding Mg can be treated by annealing to obtain these oxides. Finely precipitates graphite with sulfides and nuclei as cores. Also, oxides and sulfides are BN
Unlike carbonitrides such as the above, it precipitates in molten steel or in the P-phase region of the final zone, so that it can be dispersed uniformly without being affected by the structure.

【0011】更に黒鉛の析出サイトが多量分散すること
により黒鉛化速度が増加し黒鉛化に要する焼鈍時間も短
縮化できる。本発明者は以上のような知見に基づき従来
困難であった高Cかつ高Sの鋼でも短時間で黒鉛化が可
能であり、冷間鍛造性や疲労特性の劣化の原因となる粗
大黒鉛の生成を防止した被削性に優れた機械構造用鋼を
得るに至った。
Further, by dispersing a large amount of graphite precipitation sites, the graphitization rate is increased and the annealing time required for graphitization can be shortened. Based on the above knowledge, the present inventor can graphitize high-C and high-S steels, which has been difficult in the past, in a short time, and causes the deterioration of cold forgeability and fatigue properties of coarse graphite. We have obtained a steel for machine structural use that has excellent machinability and that is prevented from forming.

【0012】本発明の要旨は以下の通りである。The gist of the present invention is as follows.

【0013】(1) 質量%で、C:1.0〜2.0
%、Si:0.5〜2.0%、Mn:0.1〜2.0
%、P:0.001〜0.1%、S:0.1〜0.5% Al:0.001〜0.05%、N:0.0001〜
0.02%、Mg:0.0001〜0.009%を含有
し、金属組織がフェライト、黒鉛、及びセメンタイトか
らなり、黒鉛化率が80%を超えることを特徴とする被
削性に優れた機械構造用鋼。
(1) C: 1.0 to 2.0 in mass%
%, Si: 0.5 to 2.0%, Mn: 0.1 to 2.0
%, P: 0.001-0.1%, S: 0.1-0.5% Al: 0.001-0.05%, N: 0.0001-
0.02%, Mg: 0.0001 to 0.009%, the metal structure consisted of ferrite, graphite, and cementite, and the graphitization rate was more than 80%, which was excellent in machinability. Steel for machine structure.

【0014】(2) 質量%で、Mo:0.01〜0.
5%、Cr:0.01〜0.7%、Ni:0.05〜3
%、Co:0.05〜3%、Cu:0.05〜3%、
B:0.0001〜0.01%の1種または2種以上を
更に含有することを特徴とする上記(1)記載の機械構
造用鋼。
(2) Mo: 0.01-0.
5%, Cr: 0.01 to 0.7%, Ni: 0.05 to 3
%, Co: 0.05-3%, Cu: 0.05-3%,
B: 0.0001 to 0.01% of 1 type or 2 types or more are further contained, The steel for machine structures of the said (1) characterized by the above-mentioned.

【0015】(3) 質量%で、Zr:0.0005〜
0.02%、Ca:0.0001〜0.005%の1種
または2種を更に含有することを特徴とする(1)また
は(2)記載の機械構造用鋼。
(3) Zr: 0.0005-by mass%
0.02%, Ca: 0.0001 to 0.005% of 1 type or 2 types is further contained, The steel for machine structures of (1) or (2) characterized by the above-mentioned.

【0016】(4) 質量%で、Ti:0.001〜
0.05%、Nb:0.005〜0.08%、V :
0.005〜0.2%の1種または2種以上を更に含有
することを特徴とする(1)乃至(3)の内のいずれか
に記載の機械構造用鋼。
(4) Ti: 0.001 to 0.001 by mass%
0.05%, Nb: 0.005-0.08%, V:
The steel for machine structural use according to any one of (1) to (3), further containing 0.005 to 0.2% of one kind or two or more kinds.

【0017】(5) 質量%で、Pb:0.01〜0.
05%、Bi:0.01〜0.05%、Sn:0.05
〜0.2%、Te:0.002〜0.02%、Se:
0.002〜0.02%の1種または2種以上を更に含
有することを特徴とする(1)乃至(4)の内のいずれ
かに記載の機械構造用鋼。
(5) Pb: 0.01 to 0.
05%, Bi: 0.01 to 0.05%, Sn: 0.05
~ 0.2%, Te: 0.002-0.02%, Se:
The steel for machine structural use according to any one of (1) to (4), further containing 0.002 to 0.02% of one kind or two or more kinds.

【0018】[0018]

【発明の実施の形態】本発明の機械構造用鋼の化学成分
を限定した理由を以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The reason for limiting the chemical composition of the steel for mechanical structure of the present invention will be explained below.

【0019】Cは黒鉛を生成し切削工具寿命を向上させ
る。工具寿命改善に必要な黒鉛量を十分確保するためそ
の下限値を1.0%とした。上限は連続鋳造の際の熱間
延性を確保するために2.0%とした。
C forms graphite and improves the cutting tool life. The lower limit was set to 1.0% in order to secure a sufficient amount of graphite necessary for improving the tool life. The upper limit was 2.0% in order to ensure hot ductility during continuous casting.

【0020】Siは黒鉛化を促進する有力な元素の一つ
である。短時間の焼鈍処理により十分な黒鉛を析出させ
て高い黒鉛化率とするためにはSiを添加することが必
要であり、その下限値は0.5%である。ただしSi含
有量が増大するとフェライト相が固溶硬化し冷間加工性
の劣化を招くので、上限値を2.0%とした。
Si is one of the powerful elements that promotes graphitization. It is necessary to add Si in order to precipitate a sufficient amount of graphite by a short-time annealing treatment so as to obtain a high graphitization rate, and the lower limit value thereof is 0.5%. However, if the Si content increases, the ferrite phase undergoes solid solution hardening and causes deterioration of cold workability, so the upper limit was made 2.0%.

【0021】MnはSと結合してMnS、あるいはマト
リックス中に固溶Mnとして存在する。MnSは単独あ
るいは複合介在物を形成し黒鉛の生成サイトとなると共
に、潤滑性を向上し切削面粗さを改善する。十分なMn
S量を確保するしためその下限値を0.1%とした。た
だし固溶Mn量が大きくなると黒鉛化を著しく阻害する
ので上限値は2.0%とした。
Mn is combined with S and exists as MnS, or solid solution Mn in the matrix. MnS forms a single or complex inclusion to serve as a graphite generation site, and improves lubricity and cut surface roughness. Sufficient Mn
In order to secure the amount of S, the lower limit value was set to 0.1%. However, when the amount of solute Mn becomes large, graphitization is significantly hindered, so the upper limit was made 2.0%.

【0022】Pは鋼中で粒界偏析や中心偏析を起こし靭
性劣化の原因となるので少ないことが望ましいが、被削
性の観点からは切削面の粗さを改善するため、表面粗さ
を必要とする鋼の場合には適量を添加する。その含有量
は、0.001%未満ではその効果が認められないので
0.001%を下限とした。また、0.1%を超えると
靭性が劣化し、圧延中にも割れを生じたりするため、
0.1%を上限とした。
Since P causes grain boundary segregation or center segregation in steel and causes deterioration of toughness, it is desirable that P is small, but from the viewpoint of machinability, the surface roughness is improved in order to improve the roughness of the cut surface. In case of required steel, an appropriate amount is added. If the content is less than 0.001%, the effect is not recognized, so 0.001% was made the lower limit. Further, if over 0.1%, the toughness deteriorates and cracks may occur during rolling,
The upper limit was 0.1%.

【0023】SはMn、MgあるいはCu等の合金元素
と反応して硫化物として存在する。これらの硫化物は黒
鉛の核生成サイトとして機能すると共に、潤滑性を向上
し切削面粗さを改善する。ただし0.1%未満では十分
な量の硫化物が確保できず、またS量が多すぎると熱間
延性を劣化させるため上限値を0.7%とした。
S reacts with alloy elements such as Mn, Mg or Cu and exists as a sulfide. These sulfides function as nucleation sites for graphite, improve lubricity, and improve cut surface roughness. However, if it is less than 0.1%, a sufficient amount of sulfide cannot be secured, and if the amount of S is too large, the hot ductility deteriorates, so the upper limit was made 0.7%.

【0024】AlはOと結合して酸化物、あるいはNと
結合してAlNを形成する。AlNは結晶粒の細粒化に
有効であり、焼入れ焼戻し後の靭性を向上させる。0.
001%未満ではAlNの量が不十分で細粒化効果が現
れず、0.05%を超えるとAl脱酸が支配的になりM
gの効果が飽和する。
Al combines with O to form an oxide or N to form AlN. AlN is effective for making the crystal grains finer and improves the toughness after quenching and tempering. 0.
If it is less than 001%, the amount of AlN is insufficient and the grain refining effect does not appear. If it exceeds 0.05%, Al deoxidation becomes dominant and M
The effect of g is saturated.

【0025】NはAlやTiと結合してAlNやTiN
を生成し、結晶粒の細粒化に有効であり、加工性を向上
させる。0.0001%未満では効果がなく、0.02
%を超えて添加しても効果が飽和するばかりでなく黒鉛
化を著しく阻害する。
N combines with Al or Ti to form AlN or TiN
Is generated, which is effective for making crystal grains finer and improves workability. Less than 0.0001% has no effect, 0.02
If it is added in excess of%, not only the effect will be saturated but also graphitization will be significantly impaired.

【0026】Mgは酸化物MgOやMgAl24を形成
し、これらは単独あるいは硫化物との複合介在物を生成
し黒鉛の析出サイトとして機能する。0.0001%未
満では効果が少なく、0.009%以上含有させるには
製鋼コストが増加する。またMgの添加は黒鉛粒の微細
化に効果があり、たとえ黒鉛化率が同じであっても微細
分散している方が高周波焼入れ等の性能に優れる。即ち
高周波焼入れのように短時間加熱による硬化処理におい
て、均一な表面硬化層を形成させるためには短時間に黒
鉛が鋼中に固溶、拡散しなければならない。そのため短
い拡散距離で表面一帯に均一にCを拡散できるように黒
鉛を微細分散させることが非常に有効である。この点で
Mgは非常に有効な元素である。
Mg forms oxides MgO and MgAl 2 O 4, which either alone or form complex inclusions with sulfides and function as precipitation sites for graphite. If it is less than 0.0001%, the effect is small, and if it is contained 0.009% or more, the steelmaking cost increases. Further, the addition of Mg is effective for refining the graphite particles, and even if the graphitization rate is the same, finely dispersed particles are superior in performance such as induction hardening. That is, in hardening treatment by heating for a short time such as induction hardening, graphite must be solid-dissolved and diffused in steel in a short time in order to form a uniform surface hardened layer. Therefore, it is very effective to finely disperse graphite so that C can be uniformly diffused over the entire surface with a short diffusion distance. In this respect, Mg is a very effective element.

【0027】Moは焼入性を確保するために添加され
る。焼入性の効果を十分得るために、添加量の下限値を
0.01%とした。また0.5%を超えて添加するとフ
ェライト地の硬さが上昇し冷間加工性が損なわれると共
に黒鉛化を阻害する。
Mo is added to ensure hardenability. In order to sufficiently obtain the effect of hardenability, the lower limit value of the addition amount is set to 0.01%. If added in excess of 0.5%, the hardness of the ferrite base increases, cold workability is impaired, and graphitization is hindered.

【0028】Crは焼入性を確保するために添加され
る。焼入性の効果を十分得るために添加量の下限値を
0.01%とした。また0.7%を超えて添加すると著
しく黒鉛化を阻害する。
Cr is added to ensure hardenability. The lower limit of the addition amount was set to 0.01% in order to sufficiently obtain the effect of hardenability. If it is added in an amount exceeding 0.7%, graphitization is significantly hindered.

【0029】Ni、Co、Cuはセメンタイトを不安定
化させ黒鉛化を促進させると共に、焼入性を高め強度を
確保するのに効果的である。0.05%未満では効果が
不十分であり、また3%を超えて添加しても効果は飽和
する共に経済的に極めて不利となる。
Ni, Co, and Cu are effective in destabilizing cementite to promote graphitization, and at the same time, enhance hardenability and secure strength. If it is less than 0.05%, the effect is insufficient, and if it is added in excess of 3%, the effect is saturated and it is extremely economically disadvantageous.

【0030】Bは焼入れ性の向上を目的に添加する。効
果を得るには0.0001%以上を添加しなければなら
ない。ただし0.01%を超えて添加すると黒鉛化を阻
害すると共に、B化合物が粒界に析出し破壊靭性を劣化
させる。
B is added for the purpose of improving hardenability. To obtain the effect, 0.0001% or more must be added. However, if added in excess of 0.01%, the graphitization is inhibited, and the B compound precipitates at the grain boundaries to deteriorate the fracture toughness.

【0031】ZrはCaOやTi23などの酸化物やM
nSなどの硫化物を微細分散化させる。これらの酸化物
や硫化物は黒鉛の析出サイトとして有効に機能し黒鉛の
微細分散化及び短時間黒鉛化に有効である。ただし、Z
rの添加量が0.0005%未満ではこれらの効果が認
められず、0.02%を超えて添加すると粗大な(Z
r、X)SやZr(CN)を形成し、Zrによる酸化物
の微細化効果が減少するだけでなく破壊特性を劣化させ
る。
Zr is an oxide such as CaO or Ti 2 O 3 or M
Finely disperse sulfides such as nS. These oxides and sulfides effectively function as graphite precipitation sites and are effective for finely dispersing graphite and short-time graphitization. However, Z
If the added amount of r is less than 0.0005%, these effects are not observed, and if added in excess of 0.02%, coarse (Z
r, X) S and Zr (CN) are formed, and not only the effect of reducing the size of the oxide due to Zr is reduced but also the fracture characteristics are deteriorated.

【0032】CaはCaO、あるいはCaSを形成す
る。CaOやCaSは単独あるいはMnSとの複合体を
形成し黒鉛の析出サイトとして機能すると共に切削面粗
さを改善する。0.0001%未満では効果は少なく、
0.005%を超えて添加するとCa脱酸が支配的とな
り粗大なCaOが形成され疲労特性を劣化させる。
Ca forms CaO or CaS. CaO or CaS alone or in the form of a complex with MnS functions as a precipitation site for graphite and improves the roughness of the cutting surface. If less than 0.0001%, the effect is small,
If added in excess of 0.005%, Ca deoxidization becomes dominant and coarse CaO is formed to deteriorate fatigue properties.

【0033】Tiは酸化物Ti23や炭窒化物TiNあ
るいはTiCを形成する。炭窒化物はピンニング粒子と
して機能しオーステナイト粒の成長を抑制する効果があ
り破壊靭性値を向上させる。0.001%未満では黒鉛
微細化あるいは結晶粒細粒化の効果は小さく、また0.
05%を超えて添加すると逆に靭性が劣化する。
Ti forms oxides Ti 2 O 3 and carbonitrides TiN or TiC. The carbonitride functions as pinning particles, has an effect of suppressing the growth of austenite particles, and improves the fracture toughness value. If it is less than 0.001%, the effect of refining graphite or refining the crystal grains is small.
On the contrary, if added in excess of 05%, the toughness deteriorates.

【0034】NbはNbCあるいはNbNを形成し、ピ
ンニング粒子として機能しオーステナイト粒の成長を抑
制する効果があり破壊靭性値を向上させる。0.005
%未満では結晶粒細粒化の効果は小さく、また0.08
%を超えて添加すると逆に靭性が劣化する。
Nb forms NbC or NbN, functions as pinning particles, has the effect of suppressing the growth of austenite grains, and improves the fracture toughness value. 0.005
%, The effect of grain refinement is small, and 0.08
On the other hand, if added in excess of%, the toughness deteriorates.

【0035】VはVCあるいはVNを形成し、ピンニン
グ粒子として機能しオーステナイト粒の成長を抑制する
効果があり破壊靭性値を向上させる。0.005%未満
では結晶粒細粒化の効果は小さく、また0.2%を超え
て添加すると逆に靭性が劣化する。
V forms VC or VN, functions as pinning particles, has the effect of suppressing the growth of austenite grains, and improves the fracture toughness value. If it is less than 0.005%, the effect of grain refinement is small, and if it exceeds 0.2%, the toughness deteriorates.

【0036】Pb、Biは工具と被削材の界面において
凝着を抑制する作用があるので、切削仕上げ面粗さを顕
著に改善するが、0.01%未満ではその効果が認めら
れず、0.05%を超えると黒鉛化を著しく阻害するた
め上限を0.05%とした。
Pb and Bi have the effect of suppressing the adhesion at the interface between the tool and the work material, and therefore significantly improve the roughness of the finished surface by cutting, but if it is less than 0.01%, the effect is not recognized. If it exceeds 0.05%, graphitization is significantly hindered, so the upper limit was made 0.05%.

【0037】SnもPb、Biと同様に仕上げ面粗さを
改善する効果がある。0.05%未満では効果が少な
く、0.2%を超えると効果が飽和する。
Similar to Pb and Bi, Sn also has the effect of improving the finished surface roughness. If it is less than 0.05%, the effect is small, and if it exceeds 0.2%, the effect is saturated.

【0038】Te、Seも同様に切削仕上げ面を改善す
る効果がある。0.002%未満では効果が小さく、
0.02%を超えると熱間加工性が低下する。
Similarly, Te and Se also have the effect of improving the cut finish surface. If less than 0.002%, the effect is small,
If it exceeds 0.02%, the hot workability deteriorates.

【0039】黒鉛化率とは下記の式(1)で定義される
ものである。 黒鉛化率(%)=(鋼中黒鉛含有量/鋼の炭素含有量) ・ ・ ・(1)
The graphitization rate is defined by the following equation (1). Graphitization rate (%) = (graphite content in steel / carbon content in steel) ··· (1)

【0040】黒鉛化率に関しては鋼中Cが黒鉛化すると
黒鉛のもつ変形に対する潤滑、易変形特性が発揮できる
ため、切削工具寿命が向上する。その黒鉛の効果は80
%以上で顕著なため、これを下限とした。また黒鉛化率
が不足すると硬質でこの点からも黒鉛化率によって工具
寿命に差が生じる。そして、黒鉛率化率80%を超える
黒鉛化を行うことにより、フェライト、黒鉛及びセメン
タイトからなる金属組織が得られる。
Regarding the graphitization rate, when C in the steel is graphitized, lubrication against deformation of graphite and the easily deformable property can be exhibited, so that the cutting tool life is improved. The effect of graphite is 80
This is the lower limit because it is remarkable at more than%. Further, if the graphitization rate is insufficient, it is hard, and from this point also the tool life varies depending on the graphitization rate. Then, by performing graphitization in which the graphitization rate exceeds 80%, a metal structure composed of ferrite, graphite and cementite is obtained.

【0041】[0041]

【実施例】表1の化学成分の鋼を要請、分塊圧延−圧延
−オフライン焼鈍によりφ10mmの鋼線材を作成し
た。
Example A steel wire rod having a diameter of 10 mm was prepared by requesting a steel having the chemical composition shown in Table 1 and performing slab rolling-rolling-offline annealing.

【0042】[0042]

【表1】 [Table 1]

【0043】なお、鋼12は比較例であり、従来の硫黄
快削鋼なので熱間圧延ままサンプルで評価した。熱間圧
延条件は800〜900℃で圧延し、冷却した。その
後、焼鈍炉により690℃で保定した。黒鉛化による軟
化特性や黒鉛粒径は前組織の作り込み条件によって異な
るので、圧延終了後の冷却方法は空冷、オンライン
水冷の2種類を作成した。空冷ではフェライトパーラ
イト主体の前組織を生成させ、オンライン水冷では圧
延直後に水槽に投入することで、マルテンサイトまたは
ベイナイトが焼鈍前組織となる。
Steel 12 is a comparative example, and since it is a conventional sulfur free-cutting steel, the sample was evaluated as hot-rolled. The hot rolling conditions were rolling at 800 to 900 ° C. and cooling. Then, it hold | maintained at 690 degreeC with the annealing furnace. Since the softening characteristics and the graphite particle size due to graphitization differ depending on the conditions for forming the previous structure, two cooling methods were used after the completion of rolling: air cooling and online water cooling. In air cooling, a pre-structure mainly composed of ferrite pearlite is generated, and in online water-cooling, martensite or bainite becomes a pre-annealed structure by introducing the structure into a water tank immediately after rolling.

【0044】被削性試験結果、焼鈍軟化特性及び高周波
焼入れ特性を表2に示す。
Table 2 shows the results of the machinability test, the annealing softening characteristics and the induction hardening characteristics.

【0045】[0045]

【表2】 [Table 2]

【0046】被削性の評価には前処理:空冷、690
℃にて24時間焼鈍後のサンプルを用いた。また軟化特
性や高周波焼入れ特性に関しては顕著に鋼種間の差が見
られるように前処理:水冷、690℃での焼鈍サンプ
ルを用いた。軟化特性は黒鉛化率90%までの焼鈍時
間、黒鉛化焼鈍後の黒鉛平均粒径で評価した。
Pretreatment for evaluation of machinability: air cooling, 690
A sample after annealing at 24 ° C. for 24 hours was used. In addition, pretreatment: water cooling, an annealing sample at 690 ° C. was used so that a remarkable difference between the steel types can be seen regarding the softening property and the induction hardening property. The softening characteristics were evaluated by the annealing time up to a graphitization rate of 90% and the average particle size of graphite after the graphitization annealing.

【0047】被削性の評価にはドリル寿命(VL100
0)と切削面粗さ(Rz)で評価した。ここでドリル寿
命を示す指標VL1000とは累積穴深さ1000mm
まで穿孔可能な最大のドリル周速のことで、この値が大
きいほど高速で切削可能であり、被削性に優れることを
意味する。ドリルはφ5mmのストレートドリルを用
い、送り0.33mm/rev、水溶性切削油を用いて
ドリル周速を変化させてドリル折損までの累積穿孔深さ
を測定し、それをもとにVL1000を求めた。
For the evaluation of machinability, drill life (VL100
0) and the cutting surface roughness (Rz). Here, the index VL1000 indicating the drill life is a cumulative hole depth of 1000 mm.
It is the maximum drilling peripheral speed that can be drilled up to, and the larger this value is, the faster the cutting is possible and the better the machinability. Use a φ5 mm straight drill as the drill, feed 0.33 mm / rev, and change the drill peripheral speed using water-soluble cutting oil to measure the cumulative drilling depth until drill breakage, and calculate VL1000 based on that. It was

【0048】更に各サンプルの性能差が顕著になるよう
に前処理:水冷とした場合の焼鈍時間と黒鉛化後の黒
鉛粒径、高周波焼入れ特性を評価した。
Further, pretreatment was carried out so that the difference in performance between the samples became remarkable: annealing time in the case of water cooling, graphite particle size after graphitization, and induction hardening characteristics were evaluated.

【0049】切削表面粗さはプランジ切削したときの切
削表面を蝕針式粗さ計で測定し、JIS B0601に
準拠した十点平均粗さRzで評価した。図1に切削方法
を示す。切削条件は切削工具1を用いて切削速度80m
/min、工具送り0.05mm/revで、2.5s切
削後、工具を引き抜き6s間空転させる操作を1サイク
ルとし、切削により次々と溝が丸棒表面に創成されるの
で、その100サイクル目の溝底の切削面2の切削表面
粗さを測定した。切削面粗さはプランジ切削用高速度工
具SKH57を用いて、切削速度80m/min、送り
0.05m/revで表面粗さRzを評価した。
The cutting surface roughness was obtained by measuring the cutting surface after plunge cutting with an erosion probe type roughness meter and evaluating it with a ten-point average roughness Rz in accordance with JIS B0601. FIG. 1 shows a cutting method. The cutting condition is 80m using the cutting tool 1.
/ min, tool feed 0.05 mm / rev, after 2.5 s cutting, pulling out the tool and idling for 6 s is one cycle, and grooves are created one after another by cutting, so the 100th cycle The cutting surface roughness of the cutting surface 2 at the groove bottom was measured. The cutting surface roughness was evaluated by using a plunge cutting high speed tool SKH57 at a cutting speed of 80 m / min and a feed of 0.05 m / rev.

【0050】黒鉛化率90%までの焼鈍時間は、熱間圧
延材を690℃の焼鈍炉に種々の時間保持し次式で示さ
れる黒鉛化率を求め、黒鉛化率が90%に達する焼鈍時
間とした。
The annealing time up to a graphitization rate of 90% is obtained by holding the hot-rolled material in an annealing furnace at 690 ° C. for various times and obtaining the graphitization rate represented by the following equation. It was time.

【0051】黒鉛化率(%)=(鋼中黒鉛含有量/鋼の炭
素含有量)×100 ここで、炭素含有量及び黒鉛含有量は化学分析により定
量した。黒鉛の平均粒径及び最大粒径はSEMの反射電
子線を利用した画像解析システムを利用して総視野0.
25mm2を測定することで評価した。
Graphitization rate (%) = (graphite content in steel / carbon content in steel) × 100 Here, the carbon content and the graphite content were quantified by chemical analysis. The average particle size and the maximum particle size of the graphite are 0.
It was evaluated by measuring 25 mm 2 .

【0052】また高周波焼入れ特性は、黒鉛析出状態の
鋼を直径8mmに旋削した丸棒を用いて、1000℃で
3秒間の加熱条件で行った。その後、丸棒表層から1〜
3mmの範囲を円周方向に硬さ試験と光学顕微鏡観察を
行った。円周方向の硬度差が100(Hv)以上ある場
合、もしくは焼入れ組織にフェライトが存在する場合は
高周波焼入れ性が不良と判定した。
Further, the induction hardening characteristics were performed by using a round bar obtained by turning a steel in a graphite precipitation state into a diameter of 8 mm and heating it at 1000 ° C. for 3 seconds. After that, from the surface of the round bar,
A hardness test and an optical microscope observation were performed in the circumferential direction in a range of 3 mm. When the hardness difference in the circumferential direction is 100 (Hv) or more, or when the hardened structure contains ferrite, the induction hardenability was determined to be poor.

【0053】図2にC量と被削性VL1000の関係を
示す。硫黄快削鋼SUM23のVL1000は92m/
minであり、本発明鋼のVL1000はいずれの鋼種
でも硫黄快削鋼と同等以上の工具寿命である。Sが比較
的多く添加されている場合にはC量が少ないとVL10
00が小さく、SUM23のレベルには到達していなか
った。またMgを添加しなかったサンプルに関しては前
処理を空冷とした場合、24時間の焼鈍では十分に軟質
化しなかったため、ドリル工具寿命に劣った。
FIG. 2 shows the relationship between the C content and the machinability VL1000. VL1000 of sulfur free cutting steel SUM23 is 92m /
VL1000 of the present invention steel has a tool life equal to or longer than that of the sulfur free-cutting steel regardless of the type of steel. If a relatively large amount of S is added and the amount of C is small, VL10
00 was small and did not reach the level of SUM23. Further, with respect to the sample to which Mg was not added, when the pretreatment was air cooling, the sample was not softened sufficiently by annealing for 24 hours, so that the drill tool life was inferior.

【0054】図3にプランジ切削の表面粗さに及ぼすS
量の影響を示す。S量が多い方が表面粗さに優れ、S>
0.1%でSUM23よりも良好な表面粗さとなる。な
おドリル寿命に劣る実施例のサンプルに関してはプラン
ジ切削は実施しなかった。
FIG. 3 shows the effect of S on the surface roughness of plunge cutting.
The effect of quantity is shown. The larger the amount of S, the better the surface roughness, and S>
A surface roughness of 0.1% is better than that of SUM23. Plunge cutting was not performed on the samples of the examples having a poor drill life.

【0055】更に表1の成分の鋼に関して、水冷によ
って前組織を作成したサンプルの軟化に必要な焼鈍時間
と黒鉛化後の黒鉛粒径、高周波焼入れ特性の評価結果で
は、Mg添加は軟化に必要な焼鈍時間の短縮と黒鉛粒径
の微細化に大きな効果があった。更にMg添加材は微細
化したため、高周波焼入れ時の硬化層ばらつきも小さ
く、良好な効果層が得られた。
Further, regarding the steels having the components shown in Table 1, the annealing time required for softening the sample having the pre-structured structure by water cooling, the graphite particle size after graphitization, and the result of the evaluation of the induction hardening characteristics indicate that Mg addition is necessary for softening. It has a great effect on shortening the annealing time and reducing the grain size of graphite. Further, since the Mg-added material was miniaturized, the variation in the hardened layer during induction hardening was small and a good effect layer was obtained.

【0056】更に表3に化学成分に関して同様の評価を
行った。
Further, in Table 3, the same evaluation was carried out regarding the chemical components.

【0057】[0057]

【表3】 [Table 3]

【0058】その結果を表4及び図4、図5に示す。The results are shown in Table 4 and FIGS.

【0059】[0059]

【表4】 [Table 4]

【0060】サンプルの製造方法及び評価項目は表1の
サンプルと同様である。図4にC量とVL1000との
関係を示す。S量が本発明の範囲である0.1〜0.7
%の鋼ではC量の増大に伴いVL1000が増加する傾
向を示すが、Mg含有量が異なる鋼は黒鉛化不足のため
硬度が高くVL1000も低い値である。一方切削面粗
さは、C量の図5に示すようにC量の増加に伴い減少す
る。S量が0.1%に満たない鋼種はいずれも硫黄快削
鋼の表面粗さに達していない。S量が0.1〜0.5%
の範囲とすることでRzは更に減少し、C量が本発明の
範囲の1.0%以上となる鋼種は硫黄快削鋼SUM23
と同等以上の切削面粗さである。即ち、C、S及びMg
の範囲を本発明の範囲とすることで、工具寿命と切削面
粗さのいずれも硫黄快削鋼と同等以上にすることが可能
となる。
The sample manufacturing method and evaluation items are the same as those of the sample in Table 1. FIG. 4 shows the relationship between the C amount and VL1000. S amount is within the range of the present invention: 0.1 to 0.7
% Steel, the VL1000 tends to increase as the C content increases, but the steels having different Mg contents have high hardness and low VL1000 due to insufficient graphitization. On the other hand, the cutting surface roughness decreases as the C content increases as shown in FIG. None of the steel types in which the S content is less than 0.1% has reached the surface roughness of the sulfur free-cutting steel. S amount is 0.1-0.5%
Rz is further reduced by setting the range to be, and the steel type in which the C content is 1.0% or more of the range of the present invention is the sulfur free-cutting steel SUM23.
The cutting surface roughness is equal to or higher than. That is, C, S and Mg
By setting the above range as the range of the present invention, both the tool life and the cutting surface roughness can be made equal to or higher than those of the sulfur free cutting steel.

【0061】表4に示したように本発明鋼の請求範囲を
満足する鋼13〜27は、いずれも水冷の場合、13
時間以下の焼鈍時間で黒鉛化率90%に達している。一
方Mgの範囲が本発明と異なる鋼28〜36はいずれも
20時間以上の焼鈍が必要である。特にS含有量が0.
1%を超える鋼29、30〜32、34、35は29時
間以上の焼鈍時間を要する。更に黒鉛の最大粒径は比較
例がいずれも4μmを超えるのに対し本発明鋼の黒鉛の
最大粒径は4μm以下であり著しく微細化している。ま
た高周波焼入れ特性は黒鉛粒径の影響を受け、微細な黒
鉛粒を有するサンプルでは均一に硬化したが、粗大な黒
鉛粒のものはばらつきが大きく不適と判定された。
As shown in Table 4, steels 13 to 27 satisfying the claims of the steel of the present invention are all 13 when water-cooled.
The graphitization rate reaches 90% in the annealing time of less than or equal to the time. On the other hand, all of the steels 28 to 36 having different Mg ranges from those of the present invention require annealing for 20 hours or more. Especially when the S content is 0.
Steels 29, 30 to 32, 34 and 35 exceeding 1% require annealing time of 29 hours or more. Further, the maximum particle size of graphite exceeds 4 μm in all the comparative examples, whereas the maximum particle size of graphite of the steel of the present invention is 4 μm or less, which is extremely fine. Further, the induction hardening characteristics were affected by the graphite particle size, and the sample having fine graphite particles was uniformly hardened, but the coarse graphite particles had large variations and were judged to be unsuitable.

【0062】本請求範囲を満たす鋼は切削工具寿命と切
削面粗さの両面において硫黄快削鋼以上の特性を示し、
被削性が優れ、かつ高周波焼入れ性も優れている。
Steel satisfying the present claims shows the characteristics of sulfur free-cutting steel and above in terms of both cutting tool life and cutting surface roughness.
It has excellent machinability and induction hardenability.

【0063】[0063]

【発明の効果】本発明によれば、黒鉛が微細分散し、切
削工具寿命と切削仕上げ面粗さに優れた黒鉛鋼を低コス
トで提供することが可能であり、産業上の効果は極めて
顕著なるものがある。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a graphite steel in which graphite is finely dispersed and which is excellent in cutting tool life and cutting finish surface roughness at a low cost, and the industrial effect is extremely remarkable. There is something.

【図面の簡単な説明】[Brief description of drawings]

【図1】プランジ切削方法を示す図である。FIG. 1 is a diagram showing a plunge cutting method.

【図2】工具寿命に及ぼすC量の影響を示す図である。FIG. 2 is a diagram showing the influence of the amount of C on the tool life.

【図3】表面粗さに及ぼすS量の影響を示す図である。FIG. 3 is a diagram showing the influence of the amount of S on the surface roughness.

【図4】C含有量とドリル寿命VL1000の関係を示
す図である。
FIG. 4 is a diagram showing the relationship between C content and drill life VL1000.

【図5】C含有量と切削面粗さRzの関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between a C content and a cutting surface roughness Rz.

【符号の説明】[Explanation of symbols]

1 切削工具 2 切削面 1 cutting tool 2 cutting surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蟹澤 秀雄 室蘭市仲町12番地 新日本製鐵株式会社室 蘭製鐵所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideo Kanizawa             12 Nakamachi, Muroran-shi Nippon Steel Corporation Muro             Orchid Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:1.0〜2.0%、S
i:0.5〜2.0%、Mn:0.1〜2.0%、P:
0.001〜0.1%、S:0.1〜0.7%Al:
0.001〜0.05%、N:0.0001〜0.02
%、Mg:0.0001〜0.009%を含有し、金属
組織がフェライト、黒鉛、及びセメンタイトからなり、
黒鉛化率が80%を超えることを特徴とする被削性に優
れた機械構造用鋼。
1. In mass%, C: 1.0 to 2.0%, S
i: 0.5 to 2.0%, Mn: 0.1 to 2.0%, P:
0.001-0.1%, S: 0.1-0.7% Al:
0.001-0.05%, N: 0.0001-0.02
%, Mg: 0.0001 to 0.009%, and the metal structure consists of ferrite, graphite, and cementite,
A steel for machine structural use with excellent machinability characterized by a graphitization rate of over 80%.
【請求項2】 質量%で、Mo:0.01〜0.5%、
Cr:0.01〜0.7%、Ni:0.05〜3%、C
o:0.05〜3%、Cu:0.05〜3%、B:0.
0001〜0.01%の1種または2種以上を更に含有
することを特徴とする請求項1記載の機械構造用鋼。
2. In mass%, Mo: 0.01 to 0.5%,
Cr: 0.01-0.7%, Ni: 0.05-3%, C
o: 0.05-3%, Cu: 0.05-3%, B: 0.
The steel for machine structural use according to claim 1, further comprising one or more of 0001 to 0.01%.
【請求項3】 質量%で、Zr:0.0005〜0.0
2%、Ca:0.0001〜0.005%の1種または
2種を更に含有することを特徴とする請求項1または2
記載の機械構造用鋼。
3. Zr: 0.0005 to 0.0 in mass%
2%, Ca: 0.0001-0.005% 1 type or 2 types are further contained, The 1 or 2 characterized by the above-mentioned.
Machine structural steel as described.
【請求項4】 質量%で、Ti:0.001〜0.05
%、Nb:0.005〜0.08%、V :0.005
〜0.2%、の1種または2種以上を更に含有すること
を特徴とする請求項1乃至3の内のいずれかに記載の機
械構造用鋼。
4. Ti: 0.001-0.05 by mass%
%, Nb: 0.005 to 0.08%, V: 0.005
The steel for machine structural use according to any one of claims 1 to 3, further containing one or more of 0.1 to 0.2%.
【請求項5】 質量%でPb:0.01〜0.05%、
Bi:0.01〜0.05%、Sn:0.05〜0.2
%、Te:0.002〜0.02%、Se:0.002
〜0.02%の1種または2種以上を更に含有すること
を特徴とする請求項1乃至4の内のいずれかに記載の機
械構造用鋼。
5. Pb: 0.01-0.05% by mass%,
Bi: 0.01 to 0.05%, Sn: 0.05 to 0.2
%, Te: 0.002-0.02%, Se: 0.002
The steel for machine structural use according to any one of claims 1 to 4, further containing 0.02% of one kind or two or more kinds.
JP2001222254A 2001-07-23 2001-07-23 Machine structural steel with excellent machinability Expired - Fee Related JP4002411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222254A JP4002411B2 (en) 2001-07-23 2001-07-23 Machine structural steel with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222254A JP4002411B2 (en) 2001-07-23 2001-07-23 Machine structural steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2003034841A true JP2003034841A (en) 2003-02-07
JP4002411B2 JP4002411B2 (en) 2007-10-31

Family

ID=19055761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222254A Expired - Fee Related JP4002411B2 (en) 2001-07-23 2001-07-23 Machine structural steel with excellent machinability

Country Status (1)

Country Link
JP (1) JP4002411B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034840A (en) * 2001-07-23 2003-02-07 Nippon Steel Corp Steel for machine structure superior in machinability
CN105671441A (en) * 2014-12-09 2016-06-15 Posco公司 Steel material for graphitization and graphite steel with excellent machinability and cold forging characteristic
CN107747024A (en) * 2017-10-31 2018-03-02 桂林加宏汽车修理有限公司 A kind of high-temperature steel alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034840A (en) * 2001-07-23 2003-02-07 Nippon Steel Corp Steel for machine structure superior in machinability
JP4494676B2 (en) * 2001-07-23 2010-06-30 新日本製鐵株式会社 Machine structural steel with excellent machinability
CN105671441A (en) * 2014-12-09 2016-06-15 Posco公司 Steel material for graphitization and graphite steel with excellent machinability and cold forging characteristic
CN105671441B (en) * 2014-12-09 2018-08-17 Posco公司 It is graphitized steel for heat treatment material and machinability and the excellent graphitic steel of forging
CN107747024A (en) * 2017-10-31 2018-03-02 桂林加宏汽车修理有限公司 A kind of high-temperature steel alloy

Also Published As

Publication number Publication date
JP4002411B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP5114689B2 (en) Case-hardened steel and method for producing the same
WO2010116555A1 (en) Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
JP4964063B2 (en) Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
WO2008091214A1 (en) Lead free free-cutting steel and its use
JP4384592B2 (en) Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability
JPH11246939A (en) Cold forging steel
JP6399213B2 (en) Case-hardened steel parts
KR100210867B1 (en) Steel material containing fine graphite particles uniformly dispersed therein and having excellent cold workability machinability and hardenability and method of manufacturing the same
JP2004176176A (en) Steel superior in machinability
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP4528363B1 (en) Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
JP4600988B2 (en) High carbon steel plate with excellent machinability
JP4002411B2 (en) Machine structural steel with excellent machinability
JP4768117B2 (en) Steel and machine parts with excellent machinability and cold workability
JP7464832B2 (en) Bolts and bolt steel
JP4213948B2 (en) Steel with excellent machinability
JP2989766B2 (en) Case hardened steel with excellent fatigue properties and machinability
JP7220750B1 (en) Hot work tool steel with excellent high-temperature strength and toughness
JP3898880B2 (en) Machine structural steel with excellent cold workability
JP3299034B2 (en) Machine structural steel with excellent cold forgeability, machinability, mechanical properties after quenching and tempering, and fatigue strength properties
TW201843317A (en) Cement steel component and steel material having excellent stability of rolling fatigue life, and method for manufacturing same
KR100605724B1 (en) Steel for manufacturing graphite steel having good graphitizing property
JP2002194483A (en) Steel for machine structure
JP3898959B2 (en) Free-cutting steel
JPH06145890A (en) High strength and high toughness free cutting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4002411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees