JP4481664B2 - Manufacturing method of flat insulated wire - Google Patents

Manufacturing method of flat insulated wire Download PDF

Info

Publication number
JP4481664B2
JP4481664B2 JP2004011864A JP2004011864A JP4481664B2 JP 4481664 B2 JP4481664 B2 JP 4481664B2 JP 2004011864 A JP2004011864 A JP 2004011864A JP 2004011864 A JP2004011864 A JP 2004011864A JP 4481664 B2 JP4481664 B2 JP 4481664B2
Authority
JP
Japan
Prior art keywords
wire
flat
cross
rectangular
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004011864A
Other languages
Japanese (ja)
Other versions
JP2005209378A (en
Inventor
隆広 假屋
裕之 上林
照一 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2004011864A priority Critical patent/JP4481664B2/en
Publication of JP2005209378A publication Critical patent/JP2005209378A/en
Application granted granted Critical
Publication of JP4481664B2 publication Critical patent/JP4481664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、絶縁コイルに使用する平角絶縁導線の製造方法およびその製造方法で作製された平角絶縁導線ならびにそれを使用した絶縁コイルに関するものである。   The present invention relates to a method for producing a flat insulated wire used for an insulated coil, a flat insulated wire produced by the production method, and an insulated coil using the same.

従来より、コイル状に巻回した場合、断面形状が円形の導線(以下、丸線という)より占積率が高く、機器等の小型化が望めるという点で、断面形状が平角状の導線(以下、平角線という)の外周に絶縁層を設けた平角絶縁導線が使用されてきた。   Conventionally, when wound in a coil shape, the cross-sectional shape has a higher space factor than a circular conducting wire (hereinafter referred to as a round wire), and the miniaturization of equipment and the like can be expected. In the following, a rectangular insulated conductor having an insulating layer provided on the outer periphery thereof has been used.

この平角絶縁導線に使用される平角線の製造方法としては、従来技術の伸線加工(特許文献1)、1方向の圧延加工(特許文献2)、スリット加工(特許文献3)、それらを合わせたもの(例えば、特許文献4)などが適用され平角線を作製していた。近年平角線に要求される精度、特にコーナー部分のR(図3の丸印の箇所、R1〜R4)を小さくし、より占積率を向上させることが望まれてきている。   As a manufacturing method of the flat wire used for this flat insulated wire, the prior art wire drawing (Patent Document 1), unidirectional rolling (Patent Document 2), slit processing (Patent Document 3), and combining them (For example, Patent Document 4) is applied to produce a rectangular wire. In recent years, it has been desired to improve the space factor by reducing the accuracy required for rectangular wires, in particular, the corner portion R (circled portions in FIG. 3, R1 to R4).

しかしながら、上記した平角線の製造方法では、コーナー部のRを小さくするには限界があったり、また、煩雑な製造工程を経なければならないという種々の問題が存在していた。まず、伸線加工では、加工中、常に導線に引張荷重が働くため、ダイスのコーナー部にまで十分に加工対象物(導線)が充填しないため、コーナー部のRの小さくするのには限界がある。また、コーナー部のRを小さくするためには、特に細径の場合は、ダイスが多数枚必要となり、工程の煩雑さおよびコスト高となる。   However, the above-described method for manufacturing a rectangular wire has various problems that there is a limit to reducing the corner portion R and that a complicated manufacturing process has to be performed. First, in wire drawing, a tensile load always acts on the lead wire during processing, and the workpiece (conductor) is not sufficiently filled into the corner portion of the die, so there is a limit to reducing R at the corner portion. is there. Further, in order to reduce R at the corner portion, particularly in the case of a small diameter, a large number of dies are required, which increases the complexity of the process and the cost.

1方向の圧延加工では、圧延ロールと接触する側(52a)は平坦に加工されるものの、圧延ロールと接しない側(52b)は、図5のようになり、丸線よりは占積率はある程度向上するものの限界があった。   In the rolling process in one direction, the side (52a) in contact with the rolling roll is processed flat, but the side (52b) not in contact with the rolling roll is as shown in FIG. There was a limit to what could be improved to some extent.

スリット加工では、コーナー部のRは小さくエッジが立つ(コーナ部がほぼ直角)が、スリット加工特有のばりの発生により、後の絶縁層を設ける段階でばりが絶縁層の形成を阻害するので、ばりを除去する工程が必要となり工程が煩雑になり、かつ、ばりのないコーナー部までばり除去の影響が及ぶために結果的にコーナー部がある程度Rを有するようになってしまうという問題があった。   In slit processing, the corner portion R is small and has an edge (the corner portion is almost perpendicular), but due to the occurrence of flash specific to slit processing, the flash inhibits the formation of the insulating layer at the stage of providing the subsequent insulating layer. There is a problem that a process for removing the flash is required, the process becomes complicated, and the effect of the flash removal is exerted even on the corner part without the flash, resulting in the corner part having R to some extent. .

つまり、従来技術では、作製された平角線の導体のコーナー部の角Rを小さくすることには限界があり、また、コーナー部を直角にできるスリット加工においてもばり除去という工程が必要で、かつ、その工程により、ばりのないコーナ部にRを持たせてしまうという問題があった。   In other words, in the prior art, there is a limit to reducing the corner angle R of the conductor of the manufactured flat wire, and the process of removing the flash is necessary in the slit processing that can make the corner portion a right angle, and The process has a problem that R is given to a corner portion without burrs.

特開2002−260461号公報JP 2002-260461 A 特許3151795号公報Japanese Patent No. 3151895 特開2001−291444号公報JP 2001-291444 A 特開2002−307104号公報JP 2002-307104 A

本発明の課題は、上記のような問題点を解決することを課題とし、詳細には、冷間加工後の平角線のコーナー部の角Rが小さく、かつ、ばり除去などの工程を有さない平角線の製造工程を有した平角絶縁導線の製造方法を提供することを課題とする。   An object of the present invention is to solve the above-described problems. Specifically, the corner R of the flat part of the flat wire after cold working is small, and a process such as flash removal is provided. It is an object of the present invention to provide a method of manufacturing a rectangular insulated conductor having a manufacturing process of no rectangular wire.

上記課題は、
(1)対向する2組の圧延ロールによって形成されている断面略四角状の空隙を有するカセットローラーダイスの該空隙に断面形状が円状である銅線を通し、前記圧延ロールで冷間加工させて断面形状が平角状である銅線に加工する加工工程、および前記断面形状が平角状である銅線の外周に電着によって絶縁層を形成させる形成工程を有することを特徴とする平角絶縁導線の製造方法、
(2)前記加工工程の後、さらに四角状の孔を有するダイスによる伸線加工工程を有する(1)に記載の平角絶縁導線の製造方法、
(3)前記断面形状が平角状である銅線の短辺と長辺との比が、1:1〜1:2である(1)または(2)の平角絶縁導線の製造方法、
(4)前記絶縁層がアクリル系水分散樹脂ワニスからなる(1)〜(3)に記載の平角絶縁導線の製造方法、
(5)(1)〜(4)のいずれかに記載の平角絶縁導線の製造方法で作製された平角絶縁導線、
(6)(5)に記載の平角絶縁導線を巻回してなる絶縁コイル、で解決することができる。
The above issues
(1) A copper wire having a circular cross-section is passed through the gap of a cassette roller die having a gap having a substantially square cross section formed by two pairs of rolling rolls facing each other, and is cold-worked by the rolling roll. A rectangular insulated lead wire comprising: a processing step of processing a copper wire having a flat cross-sectional shape; and a forming step of forming an insulating layer by electrodeposition on the outer periphery of the copper wire having a flat cross-sectional shape. Manufacturing method,
(2) After the said process process, the manufacturing method of the flat insulated lead wire as described in (1) which has a wire drawing process process by the die | dye which has a square-shaped hole further,
(3) The method for producing a rectangular insulated lead wire according to (1) or (2), wherein the ratio of the short side to the long side of the copper wire having a flat cross-sectional shape is 1: 1 to 1: 2.
(4) The method for producing a flat insulated wire according to (1) to (3), wherein the insulating layer is made of an acrylic water-dispersed resin varnish
(5) A flat insulated wire produced by the method for producing a flat insulated wire according to any one of (1) to (4),
(6) The problem can be solved by an insulating coil formed by winding the rectangular insulated conductor wire according to (5).

本発明によれば、従来技術のような製造方法で作製される平角線よりもコーナー部のRが小さく、かつ、ばりなどの発生がないので、引続き作製された平角線の外周に絶縁層を形成させても、コーナー部に十分でかつ均一な絶縁皮膜(絶縁層)を形成させることができ、占積率が大きい絶縁コイルの作製が可能となる。   According to the present invention, since the corner portion R is smaller than the rectangular wire produced by the manufacturing method as in the prior art and no flash is generated, an insulating layer is formed on the outer periphery of the produced rectangular wire. Even if formed, a sufficient and uniform insulating film (insulating layer) can be formed in the corner portion, and an insulating coil having a large space factor can be manufactured.

本発明の平角絶縁導体の製造方法を図1を用いて説明する。送り出しボビン1から母線(断面形状が円形の丸線)2を引き出し、ガイドロール3を介して、対向する2組の圧延ローラを有するカセットローラーダイス(以下、CRDという)4に母線2を通して冷間加工する。その後、CRD4によって断面平角状に加工された母線(平角線5)は、ガイドロール6、キャブスタン7を介して巻取りボビン8に巻回される。引続き、巻取りボビン8から平角線5を引出し、洗浄した後(洗浄槽9)、電着槽10、焼付槽11を経て、製品巻取りボビン12に平角絶縁導体13を巻取る。平角絶縁導体13の断面を図4に示す。
または、図示しないが、巻取りボビンに巻取ることなく工程1(母線を平角線へ加工する工程)、工程2(平角線の外周に絶縁層を形成させる工程)を連続して製造し、製品巻取りボビンに平角絶縁導体を巻取る。
The manufacturing method of the flat insulated conductor of this invention is demonstrated using FIG. A bus bar (round wire having a circular cross section) 2 is pulled out from the delivery bobbin 1, and is cold-rolled through the bus bar 2 to a cassette roller die (hereinafter referred to as CRD) 4 having two opposing rolling rollers via a guide roll 3. Process. Thereafter, the bus bar (flat wire 5) processed into a rectangular cross section by the CRD 4 is wound around the winding bobbin 8 via the guide roll 6 and the cabstan 7. Subsequently, the rectangular wire 5 is drawn out from the winding bobbin 8 and cleaned (cleaning tank 9), and then the rectangular insulated conductor 13 is wound around the product winding bobbin 12 through the electrodeposition tank 10 and the baking tank 11. A cross section of the flat insulated conductor 13 is shown in FIG.
Alternatively, although not shown in the drawing, the process 1 (the process of forming the bus bar into a flat wire) and the process 2 (the process of forming an insulating layer on the outer periphery of the flat wire) are continuously manufactured without being wound around the winding bobbin. Wind a flat insulated conductor around the winding bobbin.

本発明に適用される母線2は、公知の材料が適用される。例えば、Cu、Cu合金、Al、Al合金、Ag、Ag合金が適用される、より具体的には、例えば、オーディオ関連の機器に使用される6N−Cu(99.9999%以上の純度のCu)、7N−Cu(99.99999%以上の純度のCu)等が挙げられる。特に純度の高い6N-Cu、7N−Cuのような、非常に高価で柔らかい(断線しやすい)材料(母線)を平角線に加工する場合は、加工時に張力をかけず、不要な材料費、加工費(スリット加工後に行われるばり除去)が要らない点で後述するCRDでの加工が最適である。また、これらの材料から選ばれる母線は、伸線加工と、少なくとも1回以上の焼鈍工程を組合わせて、強度および伸びを調整したものを適用すればよい。   A known material is applied to the bus 2 applied to the present invention. For example, Cu, Cu alloy, Al, Al alloy, Ag, Ag alloy are applied. More specifically, for example, 6N-Cu (Cu having a purity of 99.9999% or more used for audio-related equipment). ), 7N-Cu (Cu with a purity of 99.99999% or more), and the like. When processing extremely expensive and soft (easy to break) materials (buses) such as high purity 6N-Cu and 7N-Cu into flat wires, tension is not applied at the time of processing, unnecessary material costs, Processing by CRD, which will be described later, is optimal in that processing costs (flash removal performed after slit processing) are not required. In addition, the bus selected from these materials may be applied with a combination of wire drawing and at least one annealing step to adjust strength and elongation.

ガイドロール3、6は、後述するCRD4の前後に設けられ、圧延前の母線2の中心とCRD4の形成された断面形状が四角形の空隙部の中心と圧延後の平角線5の中心を同一軸線上に安定して位置づけさせるためのものである。   The guide rolls 3 and 6 are provided before and after the CRD 4 to be described later, and the center of the busbar 2 before rolling, the center of the cross-sectional shape where the CRD 4 is formed are the same axis, and the center of the rectangular wire 5 after rolling This is for stable positioning on the line.

本発明に使用されるCRD4は、図2に示すとおり、対向する2対の圧延ローラ(41、42と43、44)によって形成された空隙部Aを有するものである。ここで母線2は、紙面の裏面より表面に向けて空隙部Aを通過し、丸線から平角線へと冷間加工される。
ここで、空隙部Aは、図2の41cと図2の42cとの距離:距離e)×(図2の43aと図2の44aとの距離:距離f)で算出された面積を指す。空隙間Aの形成は、圧延ローラ41と圧延ローラ43との間隔a(図2の41aと43a間の距離)、圧延ローラ42と圧延ローラ43との間隔b(図2の42aと43a間の距離)、圧延ローラ41と圧延ローラ44との間隔c(図2の41bと44a間の距離)、圧延ローラ42と圧延ローラ44との間隔d(図2の42bと44a間の距離)、圧延ローラ41と圧延ローラ42との距離e(図2の41cと42c間の距離)によって決定される。間隔a、間隔b、間隔cおよび間隔dは、得られる平角線のコーナー部の角Rを小さくするために、0mm〜0.3mmが好ましい。圧延加工後の平角線の短尺側の長さが0.5mm以下の場合は、0mm〜0.1mmであるのがより好ましい。最もコーナ部の角Rを小さくするためには、0.005mm〜0.05mmが最も好ましい。
ここで、平角線の短尺側の長さとは、図3のYの長さを指す。また、平角線の断面形状が正方形である場合は、X、Yのどちらで測定してもよい。
また、距離eは、所望する平角線5の幅(厚さ)によって適宜決定すればよい。
As shown in FIG. 2, the CRD 4 used in the present invention has a gap A formed by two pairs of opposing rolling rollers (41, 42 and 43, 44). Here, the bus 2 passes through the gap A from the back surface to the front surface of the paper, and is cold-worked from a round wire to a flat wire.
Here, the gap A indicates an area calculated by the distance between 41c in FIG. 2 and 42c in FIG. 2: distance e) × (distance between 43a in FIG. 2 and 44a in FIG. 2: distance f). The formation of the air gap A includes a distance a between the rolling roller 41 and the rolling roller 43 (a distance between 41a and 43a in FIG. 2) and a distance b between the rolling roller 42 and the rolling roller 43 (between 42a and 43a in FIG. 2). Distance), distance c between the rolling roller 41 and the rolling roller 44 (distance between 41b and 44a in FIG. 2), distance d between the rolling roller 42 and the rolling roller 44 (distance between 42b and 44a in FIG. 2), rolling It is determined by the distance e between the roller 41 and the rolling roller 42 (the distance between 41c and 42c in FIG. 2). The distance a, the distance b, the distance c, and the distance d are preferably 0 mm to 0.3 mm in order to reduce the angle R of the corner portion of the obtained rectangular wire. When the length on the short side of the flat wire after rolling is 0.5 mm or less, it is more preferably 0 mm to 0.1 mm. In order to make the corner R of the corner most small, 0.005 mm to 0.05 mm is most preferable.
Here, the length on the short side of the rectangular wire indicates the length Y in FIG. Moreover, when the cross-sectional shape of the rectangular wire is a square, measurement may be performed using either X or Y.
The distance e may be determined as appropriate depending on the desired width (thickness) of the flat wire 5.

圧延ロール41、42、43、44の外径は、加工対象の母線2の線径や、加工後の平角線の大きさにより適宜設定すれば良く、具体的には、5mm〜200mmの外径のものが好ましい。圧延ロール41、42間の距離e、圧延ロール43、44間の距離fは、加工前後の丸線、平角線の断面積の大きさにもよるが、0.1mm〜10mmが好ましく。特に小断面積の平角線を加工する場合は、0.1mm〜0.5mmが好ましい。また、eとfとの関係は、e:f=1:1〜1:2が好ましく、得られる平角線の断面形状が真四角(正方形)となり、占積率が最もよくなる点で、1:1〜1:1.2が最も好ましい。圧延ロールの材質は、セラミック、超硬合金、工具鋼、高速度工具鋼等が挙げられるが、経済性の観点で工具鋼が好ましい。
また、個々の圧延ロールは、駆動式、非駆動式であってもよいが、設備が安価であるという点で、非駆動式が好ましい。
The outer diameter of the rolling rolls 41, 42, 43, 44 may be appropriately set depending on the wire diameter of the bus 2 to be processed and the size of the flat wire after processing, specifically, an outer diameter of 5 mm to 200 mm. Are preferred. The distance e between the rolling rolls 41 and 42 and the distance f between the rolling rolls 43 and 44 are preferably 0.1 mm to 10 mm, although depending on the size of the cross-sectional area of the round wire and the flat wire before and after processing. In particular, when processing a rectangular wire having a small cross-sectional area, 0.1 mm to 0.5 mm is preferable. Further, the relationship between e and f is preferably e: f = 1: 1 to 1: 2, and the obtained rectangular wire has a true square (square) cross section, and the space factor is best. Most preferred is 1-1: 1.2. Examples of the material of the rolling roll include ceramic, cemented carbide, tool steel, and high-speed tool steel, but tool steel is preferable from the viewpoint of economy.
Each rolling roll may be a drive type or a non-drive type, but a non-drive type is preferable in that the equipment is inexpensive.

また、加工前の母線2の断面積:Bと加工後の平角線5の断面積:S(図3のX×Yで算出)との関係は、(1)式で算出され、
(加工率(W(%)=100×(B−S)/B)・・・(1)式
Wは、5%≦W≦15%であれば、平角線5のコーナー部のRが、0.05mm〜0.07mmというスリット加工後、ばり除去工程を施して作製される平角線のコーナー部の角Rと同等の寸法を得ることができるので好ましい。
Further, the relationship between the cross-sectional area of the bus bar 2 before processing: B and the cross-sectional area of the rectangular wire 5 after processing: S (calculated by X × Y in FIG. 3) is calculated by the equation (1),
(Processing rate (W (%) = 100 × (B−S) / B) (1) Formula If W is 5% ≦ W ≦ 15%, R at the corner of the flat wire 5 is It is preferable because a dimension equivalent to the corner R of the corner portion of the flat wire produced by performing the flash removal process after the slit processing of 0.05 mm to 0.07 mm can be obtained.

キャプスタン7は、巻取りボビン8に巻回される平角線5を引抜力と巻取る際の巻取りボビン8に発生する遠心力とを調整するために使用されるものであり、特に平角線の短尺側が0.5mm以下の細線を扱う時は、断線防止という点で必要である。キャプスタン7は、公知の装置を適用すればよく、一般的に、キャプスタン7に平角線5を2〜3回巻回した後に巻取りボビン8に巻き取らせればよいし、巻取りボビンには巻き取らないで、連続して後述する電着工程へ進んでもよい。また、ガイドロール6とキャプスタン7の間に、ダイス孔が四角状の伸線ダイス(図示せず)を設けて、CRD4で加工された線の断面形状を整える工程(スキンパス工程)を設けてもよい。スキンパス工程は、スキンパス工程の前後の加工率(%)が、5%〜20%となる範囲で実施すればよく、加工率は(1)式と同様に算出すればよい。   The capstan 7 is used to adjust the drawing force of the flat wire 5 wound around the take-up bobbin 8 and the centrifugal force generated in the take-up bobbin 8 at the time of winding. When handling a thin wire of 0.5 mm or less on the short side, it is necessary to prevent disconnection. A known device may be applied to the capstan 7. Generally, the flat wire 5 may be wound around the capstan 7 two to three times and then wound around the winding bobbin 8. Is not wound up, and may proceed to the electrodeposition process described later. In addition, a step (skin pass step) is provided between the guide roll 6 and the capstan 7 to provide a wire drawing die (not shown) having a square die hole and to adjust the cross-sectional shape of the wire processed by the CRD 4. Also good. The skin pass process may be performed within a range in which the processing rate (%) before and after the skin pass process is 5% to 20%, and the processing rate may be calculated in the same manner as the equation (1).

引続いて、電着工程を説明する。電着工程は、巻取りボビン8に巻回された平角線5(または、巻取りボビンに巻回せず、キャプスタン7から直接引き出された平角線)を洗浄槽9に浸漬させ、平角線表面に付着した、異物、酸化物等を除去する。洗浄手段は公知の方法を適用すれば良く、例えば、超音波洗浄、プラズマ照射、酸洗またはこれらの複合等が適用できる。洗浄することで、平角線5の表面性状がよくなり、電着による絶縁層との密着力が向上する。   Subsequently, the electrodeposition process will be described. In the electrodeposition process, the flat wire 5 wound around the take-up bobbin 8 (or the flat wire drawn directly from the capstan 7 without being wound around the take-up bobbin) is immersed in the cleaning tank 9, and the surface of the flat wire Remove foreign substances, oxides, etc. adhering to the surface. A known method may be applied as the cleaning means, and for example, ultrasonic cleaning, plasma irradiation, pickling, or a combination of these may be applied. By washing, the surface property of the flat wire 5 is improved, and the adhesion with the insulating layer by electrodeposition is improved.

本発明の電着槽10では、平角線5の外周に電着によって絶縁層14を設けるために設けられたものである。一般に導線の外周に絶縁層を設ける手段としては、ディッピング法、電着法等が挙げられるが、コーナー部を有する平角線(特に、コーナー部の角Rが小さい平角線)に対しては、コーナー部への絶縁皮膜形成性が優れている電着法が好ましい。電着材料(電着ワニス)は、公知の材料を適用すれば良いが、具体的には、コーナー部(R1〜R4)の絶縁皮膜厚さ≧平坦部(51a)の絶縁皮膜厚さの関係となる点で、アクリル系水分散樹脂ワニスを適用したものが好ましく、特には、耐熱性が優れているという点で、エポキシ−アクリル系水分散樹脂ワニスが好ましい。この電着ワニスを使用した電着条件は、例えば、特公平07−120491号公報に記載された条件を適用すればよい。
形成される絶縁層の厚さは、平坦部(51a)で1μm〜5μm、より好ましくは、1.5μm〜3μmである。
In the electrodeposition tank 10 of the present invention, the insulating layer 14 is provided on the outer periphery of the flat wire 5 by electrodeposition. In general, means for providing an insulating layer on the outer periphery of the conducting wire include dipping method, electrodeposition method and the like. However, for a rectangular wire having a corner portion (particularly a rectangular wire having a small corner portion angle R), a corner is provided. An electrodeposition method that is excellent in forming an insulating film on the part is preferred. As the electrodeposition material (electrodeposition varnish), a known material may be applied. Specifically, the relation of the insulating film thickness of the corner portions (R1 to R4) ≧ the insulating film thickness of the flat portion (51a). In view of the above, an application of an acrylic water-dispersed resin varnish is preferred, and an epoxy-acrylic water-dispersed resin varnish is particularly preferred from the viewpoint of excellent heat resistance. The electrodeposition conditions using this electrodeposition varnish may be, for example, the conditions described in Japanese Patent Publication No. 07-120491.
The thickness of the insulating layer to be formed is 1 μm to 5 μm, more preferably 1.5 μm to 3 μm at the flat portion (51a).

本発明の焼付槽11では、電着により形成した絶縁皮膜を絶縁層としてするために余剰の溶剤等を除去させるために設けられたものである。例えば、前記した変性アクリル樹脂ワニスを適用した場合は、焼付槽11内の雰囲気温度は、100℃〜700℃が好ましく、より好ましくは、200℃〜450℃である。100℃より低いと、十分な密着力を得ることができず、450℃超えると形成した絶縁層が熱劣化してしまい所望の耐電圧特性が発現しなかったり、製品寿命が短くなる傾向になる。   The baking tank 11 of the present invention is provided to remove excess solvent and the like in order to use an insulating film formed by electrodeposition as an insulating layer. For example, when the above-described modified acrylic resin varnish is applied, the atmosphere temperature in the baking tank 11 is preferably 100 ° C to 700 ° C, more preferably 200 ° C to 450 ° C. If the temperature is lower than 100 ° C., sufficient adhesion cannot be obtained, and if it exceeds 450 ° C., the formed insulating layer is thermally deteriorated and the desired withstand voltage characteristic is not exhibited, or the product life tends to be shortened. .

また、本発明の、平角絶縁導線の製造方法には、電着槽10と焼付槽11の間に余分な電着ワニスを除去する洗浄槽(図示せず)を適宜設けてもよい。焼付け後は、製品巻取りボビン12へ平角絶縁導線13を巻き取ればよいが、絶縁層の外周にさらにコーティング層を形成させる製品に対しては、コーティング層を形成させるための各槽(図示せず)を適宜設定すればよい。   Further, in the method for producing a flat insulated wire of the present invention, a cleaning tank (not shown) for removing excess electrodeposition varnish may be appropriately provided between the electrodeposition tank 10 and the baking tank 11. After baking, the flat insulated wire 13 may be wound around the product winding bobbin 12. However, for products in which a coating layer is further formed on the outer periphery of the insulating layer, each tank (not shown) for forming the coating layer is illustrated. Z)) may be set as appropriate.

作製された平角絶縁導線は13は、所望の長さに切断された後、巻回されて絶縁コイルとして使用される。巻回の種類としては、整列巻、エッジワイズコイル巻、α巻などが挙げられ、使用される態様に適宜あわせればよく、例えば、ボイスコイル、モーターコイル、インダクタコイル等に適用される。中でもボイスコイルに適用する場合は、6N−Cuまたは7N−Cuを適用することで、ノイズの少ないの音を得る点で好ましい。   The produced flat insulated wire 13 is cut to a desired length and then wound to be used as an insulation coil. Examples of the type of winding include aligned winding, edgewise coil winding, α winding, and the like, and may be appropriately matched to the mode to be used. For example, the winding is applied to a voice coil, a motor coil, an inductor coil, and the like. In particular, when applied to a voice coil, it is preferable to apply 6N—Cu or 7N—Cu in terms of obtaining a sound with less noise.

以下、実施例および比較例をもって本発明をより具体的に説明するが、本発明はこれらの記載により何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these descriptions.

表1に示す条件にて、平角線を作製し、引続いて、前記平角線の外周に電着により絶縁層を形成させた。絶縁層を形成させる工程(電着工程)は、実施例、比較例とも同じものを使用した。また、母線は、銅線を使用した。
実施例1:線径が0.494mmの母線をガイドロールを介してCRDの空隙A(0.43mm×0.43mm(圧延ローラ41,42間の距離が0.43mm、圧延ローラ43、44間の距離が0.43mm))に通して冷間加工し、ガイドロール、キャプスタンを介して平角線を作製し、その後、前記平角線の外周に以下の電着工程で絶縁層を形成させて平角絶縁導体を作製した。
実施例2:母線の線径を0.506mmとしたこと以外は、実施例1と同様に平角絶縁導体を作製した。
実施例3:母線の線径を0.510mmとしたこと以外は、実施例1と同様に平角絶縁導体を作製した。
実施例4:線径0.510mmの母線をガイドロールを介してCRDの空隙A(0.45mm×0.45mm(圧延ローラ41,42間の距離が0.45mm、圧延ローラ43、44間の距離が0.45mm))に通して冷間加工し、スキンパスした後(□0.43mmのダイス孔が形成された伸線ダイスに通した後:加工率:8.69%)ガイドロール、キャプスタンを介して、平角線を作製し、実施例1と同じ条件で絶縁層を形成させて平角絶縁導体を作製した。
比較例1:線径0.550mmの母線を□0.43mmのダイス孔が形成された伸線ダイスに通して冷間加工(伸線加工)した以外、実施例1と同様に平角絶縁導体を作製した。
比較例2:厚さ0.44mmの板材より、幅0.43mmずつ切断し(スリット加工)、その後バリ除去工程を施した後、実施例1と同様に平角絶縁導体を作製した。
A flat wire was produced under the conditions shown in Table 1, and then an insulating layer was formed on the outer periphery of the flat wire by electrodeposition. The process for forming the insulating layer (electrodeposition process) was the same as in the examples and comparative examples. Moreover, the copper wire was used for the bus-bar.
Example 1: CRD gap A (0.43 mm × 0.43 mm (distance between rolling rollers 41 and 42 is 0.43 mm, between rolling rollers 43 and 44), with a bus having a wire diameter of 0.494 mm through a guide roll The distance is 0.43 mm)), and a flat wire is produced through a guide roll and a capstan, and then an insulating layer is formed on the outer periphery of the flat wire by the following electrodeposition process. A flat rectangular insulated conductor was produced.
Example 2: A rectangular insulated conductor was produced in the same manner as in Example 1 except that the wire diameter of the busbar was 0.506 mm.
Example 3 A rectangular insulated conductor was produced in the same manner as in Example 1 except that the diameter of the busbar was 0.510 mm.
Example 4 A CRD gap A (0.45 mm × 0.45 mm (the distance between the rolling rollers 41 and 42 is 0.45 mm, between the rolling rollers 43 and 44) through a guide roll through a bus having a wire diameter of 0.510 mm Cold-worked through a distance of 0.45 mm)), skin-passed (□ passed through a wire drawing die with a 0.43 mm die hole formed: processing rate: 8.69%), guide roll, cap A flat wire was prepared through a stun, and an insulating layer was formed under the same conditions as in Example 1 to produce a flat insulated conductor.
Comparative Example 1: A rectangular insulated conductor was formed in the same manner as in Example 1 except that a bus bar having a wire diameter of 0.550 mm was passed through a wire drawing die having a □ 0.43 mm die hole and subjected to cold working (wire drawing). Produced.
Comparative Example 2: After cutting 0.44 mm in width from a plate material having a thickness of 0.44 mm (slit processing) and then performing a burr removing step, a rectangular insulated conductor was produced in the same manner as in Example 1.

(電着工程)
洗浄槽 :有機溶剤、超音波洗浄
電着槽 :エポキシ−アクリル系水分散樹脂ワニス(ワニス温度:25℃)
焼付槽 :大気中、400℃×10分間
(Electrodeposition process)
Cleaning tank: Organic solvent, ultrasonic cleaning electrodeposition tank: Epoxy-acrylic water-dispersed resin varnish (varnish temperature: 25 ° C)
Baking tank: 400 ℃ for 10 minutes in air

Figure 0004481664
Figure 0004481664

(コーナー部の角Rの測定)
図3に示すx、y、X、Yをマイクロスコープ(倍率:100倍)を用いて測定し、コーナ部の角R、作製された平角線の断面積を以下の式にて算出した。
角R(mm)=(x+y)/2
表1には、4コーナー部の平均を作製されたコーナー部の角Rとして記載した。
平角線の断面積S(mm)=X×Y
表1には、上記平角線の断面積Sを用いて、算出した加工率を記載した。
加工率W(%)
=100×(母線の断面積−平角線の断面積))/(母線の断面積)
(Measure corner angle R)
The x, y, X, and Y shown in FIG. 3 were measured using a microscope (magnification: 100 times), and the corner R and the cross-sectional area of the produced rectangular wire were calculated by the following equations.
Angle R (mm) = (x + y) / 2
In Table 1, the average of the four corner portions is shown as the corner corner angle R produced.
Flat wire cross-sectional area S (mm) = X × Y
Table 1 shows the processing rate calculated using the cross-sectional area S of the rectangular wire.
Processing rate W (%)
= 100 x (cross-sectional area of busbar-cross-sectional area of rectangular wire)) / (cross-sectional area of busbar)

本発明は、平角絶縁導体に使用される平角線のコーナ部のRを小さく、かつ、ばり除去などの工程を有さない平角線の製造工程で作製された平角絶縁導線は、占積率に優れた絶縁コイルとして使用することができる。   According to the present invention, the rectangular insulated lead wire produced in the rectangular wire manufacturing process having a small R at the corner portion of the flat wire used for the flat insulated conductor and having no process such as flash removal has an increased space factor. It can be used as an excellent insulating coil.

本発明の平角絶縁導線の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the flat insulated wire of this invention. 本発明に使用するCRDの構造を示す図である。It is a figure which shows the structure of CRD used for this invention. 平角線の断面でコーナー部およびそのR(R1〜R4)を測定箇所を示す図である。It is a figure which shows a corner | angular part and its R (R1-R4) measurement location in the cross section of a flat wire. 本発明の平角絶縁導線の製造方法で作製された平角絶縁電線の断面の一例を示す図である。It is a figure which shows an example of the cross section of the flat insulated wire produced with the manufacturing method of the flat insulated wire of this invention. 従来の1方向の圧延ロールで作製された平角線の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the flat wire produced with the conventional unidirectional rolling roll.

符号の説明Explanation of symbols

1 送り出しボビンから
2 母線
3、6 ガイドロール
4 対向する2組の圧延ローラを有するカセットローラーダイス
41、42、43、44 圧延ローラ
5 平角線
51 平角線の断面
52 1方向の圧延によって作製された平角線の断面
7 キャブスタン
8 巻取りボビン
9 洗浄槽
10 電着槽
11 焼付槽
12 製品巻取りボビン
13 平角絶縁導体
131 導体部
132 絶縁層
A 空隙部
Z 空隙部の近傍
R1、R2、R3、R4 平角線のコーナー部
x、y コーナ部のRを決定するための測定箇所
X、Y 平角線の断面積を決定するための測定箇所




DESCRIPTION OF SYMBOLS 1 Feeding bobbin 2 Bus bar 3, 6 Guide roll 4 Cassette roller dice 41, 42, 43, 44 which has 2 sets of opposing rolling rollers 5 Rolling roller 5 Flat wire 51 Flat wire cross section 52 It was produced by rolling in one direction. Flat section 7 Cabstan 8 Winding bobbin 9 Cleaning tank 10 Electrodeposition tank 11 Baking tank 12 Product winding bobbin 13 Rectangular insulated conductor 131 Conductor 132 Insulating layer A Cavity Z Near the gap R1, R2, R3, R4 Corner part x, y of the rectangular wire Measurement point X, Y for determining the R of the corner part Measurement point for determining the cross-sectional area of the rectangular wire




Claims (6)

対向する2組の圧延ロールによって形成されている断面略四角状の空隙を有するカセットローラーダイスの該空隙に断面形状が円状である銅線を通し、前記圧延ロールで冷間加工させて断面形状が平角状である銅線に加工する加工工程、および前記断面形状が平角状である銅線の外周に電着によって絶縁層を形成させる形成工程を有することを特徴とする平角絶縁導線の製造方法。 A copper wire having a circular cross section is passed through the gap of a cassette roller die having a substantially square gap in cross section formed by two pairs of rolling rolls facing each other, and the cross section is formed by cold working with the rolling roll. A method for producing a rectangular insulated conductor, comprising: a step of processing into a copper wire having a rectangular shape, and a forming step of forming an insulating layer by electrodeposition on the outer periphery of the copper wire having a flat cross-sectional shape. . 前記加工工程の後、さらに四角状の孔を有するダイスによる伸線加工工程を有する請求項1に記載の平角絶縁導線の製造方法。   The manufacturing method of the flat insulated wire of Claim 1 which has a wire drawing process by the die | dye which has a square-shaped hole after the said process further. 前記断面形状が平角状である銅線の短辺と長辺との比が、1:1〜1:2である請求項1または請求項2の平角絶縁導線の製造方法。 The method for producing a rectangular insulated conductor according to claim 1 or 2, wherein a ratio of a short side to a long side of the copper wire having a flat cross-sectional shape is 1: 1 to 1: 2. 前記絶縁層がアクリル系水分散樹脂ワニスからなる請求項1〜3に記載の平角絶縁導線の製造方法。   The method for producing a rectangular insulated conductor according to claim 1, wherein the insulating layer is made of an acrylic water-dispersed resin varnish. 請求項1〜4のいずれかに記載の平角絶縁導線の製造方法で作製された平角絶縁導線。   A flat insulated wire produced by the method for producing a flat insulated wire according to claim 1. 請求項5に記載の平角絶縁導線を巻回してなる絶縁コイル。
An insulating coil formed by winding the flat insulated wire according to claim 5.
JP2004011864A 2004-01-20 2004-01-20 Manufacturing method of flat insulated wire Expired - Lifetime JP4481664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011864A JP4481664B2 (en) 2004-01-20 2004-01-20 Manufacturing method of flat insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011864A JP4481664B2 (en) 2004-01-20 2004-01-20 Manufacturing method of flat insulated wire

Publications (2)

Publication Number Publication Date
JP2005209378A JP2005209378A (en) 2005-08-04
JP4481664B2 true JP4481664B2 (en) 2010-06-16

Family

ID=34898420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011864A Expired - Lifetime JP4481664B2 (en) 2004-01-20 2004-01-20 Manufacturing method of flat insulated wire

Country Status (1)

Country Link
JP (1) JP4481664B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007000364T5 (en) * 2006-02-24 2008-11-27 Mitsubishi Cable Industries, Ltd. Ladder assembly and method of making the same
JP2007227241A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor
JP4740774B2 (en) * 2006-03-15 2011-08-03 株式会社多賀製作所 Winding terminal processing method and apparatus
JP2008041568A (en) * 2006-08-09 2008-02-21 Mitsubishi Cable Ind Ltd Straight angle electric wire having semiconductive layer, and manufacturing method therefor
JP5166766B2 (en) * 2007-04-26 2013-03-21 株式会社オートネットワーク技術研究所 Insulated wire and wire harness
KR100893981B1 (en) * 2007-12-27 2009-04-20 엘에스전선 주식회사 Quadrangle enamel wire and conductor wire of quadrangle enamel wire
JP5137749B2 (en) * 2008-08-28 2013-02-06 古河電気工業株式会社 Insulated wire for winding and method of manufacturing coil
JP5463640B2 (en) * 2008-09-29 2014-04-09 Jfeスチール株式会社 Cold rolling line
JP2010089099A (en) 2008-10-03 2010-04-22 Aisin Seiki Co Ltd Roller die device, method for manufacturing insulator coil, and wire winding apparatus
JP2013117052A (en) * 2011-12-05 2013-06-13 Mitsubishi Cable Ind Ltd Method for manufacturing coated conductive wire
JP6050783B2 (en) * 2014-05-27 2016-12-21 三菱電線工業株式会社 True square conductor wire for coil, true square insulated wire using the conductor wire, and coil using the true square insulated wire
JP2017196628A (en) * 2016-04-25 2017-11-02 住友電工スチールワイヤー株式会社 Manufacturing method of deformed metal wire
ES2901742T3 (en) * 2016-08-11 2022-03-23 D M Benatav Ltd Multi-diameter cable connection
JP7053427B2 (en) * 2018-10-11 2022-04-12 礎電線株式会社 Enamel wire manufacturing method
CN112872085A (en) * 2020-12-25 2021-06-01 松田电工(台山)有限公司 Wire drawing method and device suitable for flat wires of various specifications
JP7394806B2 (en) * 2021-04-28 2023-12-08 三菱電機株式会社 Metal conductor for coils and coils

Also Published As

Publication number Publication date
JP2005209378A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP4481664B2 (en) Manufacturing method of flat insulated wire
JP5607853B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP2020073722A (en) Copper alloy wire and manufacturing method thereof
US9478328B2 (en) High frequency cable, high frequency coil and method for manufacturing high frequency cable
WO2015152166A1 (en) Copper alloy wire material and manufacturing method thereof
US20200075191A1 (en) Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
JP3604337B2 (en) Manufacturing method of insulated wire
JP5588384B2 (en) Flat rectangular insulated wire material for coil and manufacturing method thereof
JP6288433B2 (en) Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method
WO2020034301A1 (en) Method for manufacturing enameled wire having square cross section
JP5617521B2 (en) Method for producing enameled wire using dilute copper alloy material
JP2007035379A (en) Collector substrate for battery
JP5440951B2 (en) Manufacturing method of flat enameled wire and flat enameled wire
JP6798193B2 (en) Insulated wire and its manufacturing method
WO2020034300A1 (en) Method for manufacturing enameled wire having rectangular cross section
JP2510901B2 (en) Method for manufacturing plated rectangular wire
JP7011773B2 (en) Enamel wire and manufacturing method of enamel wire
JP2014116204A (en) Insulated wire and method of producing the same
JP7301930B2 (en) enamelled wire
JP2018040042A (en) Flat insulated wire and manufacturing method of the same
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JP2923597B2 (en) Manufacturing method of fine diameter composite metal plated wire
JP6252363B2 (en) Manufacturing method of laminated material of aluminum material and copper material
EP4135172A1 (en) Method for processing magnetic steel sheet and method for manufacturing motor and motor core
JP5601147B2 (en) Micro speaker voice coil winding and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4481664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term