JP6798193B2 - Insulated wire and its manufacturing method - Google Patents

Insulated wire and its manufacturing method Download PDF

Info

Publication number
JP6798193B2
JP6798193B2 JP2016166045A JP2016166045A JP6798193B2 JP 6798193 B2 JP6798193 B2 JP 6798193B2 JP 2016166045 A JP2016166045 A JP 2016166045A JP 2016166045 A JP2016166045 A JP 2016166045A JP 6798193 B2 JP6798193 B2 JP 6798193B2
Authority
JP
Japan
Prior art keywords
flat conductor
mass ppm
less
concentration
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016166045A
Other languages
Japanese (ja)
Other versions
JP2018032596A (en
Inventor
黒田 洋光
洋光 黒田
秦 昌平
昌平 秦
辻 隆之
隆之 辻
啓輔 藤戸
啓輔 藤戸
一真 黒木
一真 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016166045A priority Critical patent/JP6798193B2/en
Publication of JP2018032596A publication Critical patent/JP2018032596A/en
Application granted granted Critical
Publication of JP6798193B2 publication Critical patent/JP6798193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、絶縁電線およびその製造方法に関する。 The present invention relates to an insulated electric wire and a method for manufacturing the same.

回転電機(モータ)や変圧器などの電気機器にはコイルが組み込まれている。コイルは、導体の外周上に絶縁被覆が形成された絶縁電線を巻回されて形成されている。絶縁電線は、樹脂成分を有機溶媒に溶解させた絶縁塗料を導体の外周上に塗布・焼付する方法や、溶融させた樹脂を導体の外周上に押し出す方法、またはこれらの方法を併用することにより、導体の外周上に絶縁被覆を形成して作製される。 Coil is built into electric equipment such as rotary electric machines (motors) and transformers. The coil is formed by winding an insulated electric wire having an insulating coating formed on the outer circumference of a conductor. Insulated electric wires can be made by applying and baking an insulating paint in which a resin component is dissolved in an organic solvent on the outer periphery of a conductor, extruding the melted resin onto the outer periphery of a conductor, or by using these methods in combination. , It is manufactured by forming an insulating coating on the outer periphery of a conductor.

近年、自動車などに使用されるモータには高容量化や小型化が求められており、そのモータに組み込まれるコイルには占積率(コイルの断面積に占める導体の断面積の比率)や放熱性の向上が求められている。 In recent years, motors used in automobiles and the like have been required to have higher capacity and smaller size, and the coil incorporated in the motor has a space factor (ratio of the cross-sectional area of the conductor to the cross-sectional area of the coil) and heat dissipation. Improvement of sex is required.

そこで、コイルを形成する絶縁電線としては断面が矩形状の平角導体を用いた平角線が用いられるようになっている(例えば、特許文献1を参照)。平角線を用いてコイルを作製する場合、平角線を幅方向に曲げてエッジワイズ加工を施し、巻回することによりコイルを作製することになる。 Therefore, as the insulated wire forming the coil, a flat wire using a flat conductor having a rectangular cross section has been used (see, for example, Patent Document 1). When a coil is manufactured using a flat wire, the coil is manufactured by bending the flat wire in the width direction, performing edgewise processing, and winding the coil.

特開2002−203438号公報JP-A-2002-203438

平角線においては、コイルの占積率および放熱性をさらに向上させるため、厚さに対して幅がより大きな高アスペクト比の平角導体を用いることが検討されている。 For the flat wire, in order to further improve the space factor and heat dissipation of the coil, it is considered to use a flat conductor having a higher aspect ratio with a larger width than the thickness.

しかしながら、エッジワイズ加工は平角線を曲げにくい幅方向に曲げ加工を行うため、平角導体のアスペクト比が大きくなり幅が広くなるほど、小さい曲げ半径で巻回してコイルを作製することが困難となる。またコイルを作製したとしても、コイルの外周側で曲げ歪が大きくなるため、平角導体や絶縁被覆の表面に割れが生じたりして所望の絶縁性を確保することが困難となる。そのため、これらがモータの高容量化や小型化を実現するうえでの制約事項になるおそれがある。 However, since edgewise processing is performed in the width direction in which the flat wire is difficult to bend, it becomes difficult to wind the coil with a small bending radius as the aspect ratio of the flat conductor becomes larger and the width becomes wider. Further, even if the coil is manufactured, the bending strain becomes large on the outer peripheral side of the coil, so that the surface of the flat conductor or the insulating coating is cracked, and it becomes difficult to secure the desired insulating property. Therefore, these may become restrictions in realizing high capacity and miniaturization of the motor.

本発明は、上記課題に鑑みて成されたものであり、アスペクト比が大きく幅広でありながらも、エッジワイズ加工を施したときに割れにくい絶縁電線を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an insulated electric wire having a large aspect ratio and a wide width, which is hard to break when edgewise processed.

本発明の一態様によれば、
銅材料からなる断面が矩形状の平角導体と、前記平角導体の外周上に設けられ熱硬化性樹脂から形成される絶縁被覆と、を備え、
前記平角導体は、厚さに対する幅の比率が10以上であり、
前記銅材料は、チタン濃度が5mass ppm以上55mass ppm以下、硫黄濃度が3mass ppm以上12mass ppm以下、酸素濃度が2mass ppm以
上30mass ppm以下、残部が銅と不可避不純物からなり、前記酸素濃度に対する
前記チタン濃度の比率が2.0以上4.0以下である、絶縁電線が提供される。
According to one aspect of the invention
A flat conductor made of a copper material having a rectangular cross section and an insulating coating provided on the outer periphery of the flat conductor and formed of a thermosetting resin are provided.
The flat conductor has a width ratio to a thickness of 10 or more.
The copper material has a titanium concentration of 5 mass ppm or more and 55 mass ppm or less, a sulfur concentration of 3 mass ppm or more and 12 mass ppm or less, an oxygen concentration of 2 mass ppm or more and 30 mass ppm or less, and the balance is copper and unavoidable impurities. An insulated wire having a concentration ratio of 2.0 or more and 4.0 or less is provided.

本発明の他の態様によれば、
銅材料からなる銅合金線を圧延し、断面が矩形状の平角導体を形成する圧延工程と、
前記平角導体を加熱する加熱工程と、
加熱した前記平角導体の外周上を熱硬化性樹脂から形成される絶縁被覆で被覆する被覆工程と、を有し、
前記銅材料は、チタン濃度が5mass ppm以上55mass ppm以下、硫黄濃度が3mass ppm以上12mass ppm以下、酸素濃度が2mass ppm以
上30mass ppm以下、残部が銅と不可避不純物からなり、前記酸素濃度に対する
前記チタン濃度の比率が2.0以上4.0以下であり、
前記圧延工程では、前記平角導体の厚さに対する幅の比率が10以上となるように前記銅合金線を圧延する、絶縁電線の製造方法が提供される。
According to another aspect of the invention
A rolling process in which a copper alloy wire made of a copper material is rolled to form a flat conductor having a rectangular cross section.
A heating step for heating the flat conductor and
It has a coating step of coating the outer periphery of the heated flat conductor with an insulating coating formed of a thermosetting resin.
The copper material has a titanium concentration of 5 mass ppm or more and 55 mass ppm or less, a sulfur concentration of 3 mass ppm or more and 12 mass ppm or less, an oxygen concentration of 2 mass ppm or more and 30 mass ppm or less, and the balance is copper and unavoidable impurities. The concentration ratio is 2.0 or more and 4.0 or less,
In the rolling step, a method for manufacturing an insulated electric wire is provided in which the copper alloy wire is rolled so that the ratio of the width to the thickness of the flat conductor is 10 or more.

本発明によれば、アスペクト比が大きく幅広でありながらも、エッジワイズ加工を施したときに割れにくい絶縁電線が得られる。 According to the present invention, it is possible to obtain an insulated wire having a large aspect ratio and a wide width, which is hard to break when edgewise processed.

本発明の一実施形態に係る絶縁電線の長さ方向に垂直な断面図である。It is sectional drawing perpendicular to the length direction of the insulated wire which concerns on one Embodiment of this invention. 本発明の一実施形態に係る絶縁電線を用いて作製されたコイルの斜視図である。It is a perspective view of the coil manufactured using the insulated wire which concerns on one Embodiment of this invention.

以下に、本発明の一実施形態に係る絶縁電線について図面を参照しながら説明する。図1は、本発明の一実施形態に係る絶縁電線の長さ方向に垂直な断面図である。図2は、本発明の一実施形態に係る絶縁電線を用いて作製されたコイルの斜視図である。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 The insulated wire according to the embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view perpendicular to the length direction of the insulated wire according to the embodiment of the present invention. FIG. 2 is a perspective view of a coil manufactured by using the insulated wire according to the embodiment of the present invention. The numerical range represented by using "~" in the present specification means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.

本実施形態の絶縁電線1は、図1に示すように、平角導体11と絶縁被覆12とを備えて構成され、図2に示すように幅方向に曲げてエッジワイズ加工されることでコイル2に形成されるものである。 As shown in FIG. 1, the insulated wire 1 of the present embodiment is configured to include a flat conductor 11 and an insulating coating 12, and is bent in the width direction and edgewise processed as shown in FIG. It is formed in.

平角導体11は、銅材料からなる銅合金線、例えば断面が円形状の円形導体を、断面が矩形状となるように圧延し、厚さに対して幅が大きくなるように形成した導体である。本実施形態では、厚さに対する幅の比率(以下、アスペクト比ともいう)が10以上となるように形成されている。 The flat conductor 11 is a conductor formed by rolling a copper alloy wire made of a copper material, for example, a circular conductor having a circular cross section so as to have a rectangular cross section, so that the width becomes larger with respect to the thickness. .. In the present embodiment, the width ratio to the thickness (hereinafter, also referred to as an aspect ratio) is formed to be 10 or more.

従来の絶縁電線では、コイルにおける占積率や放熱性をさらに向上させるため平角導体をアスペクト比が10以上となるように幅広に構成する場合、円形導体を矩形状に圧延するときの応力を高くする必要があり、高い応力の圧延によって平角導体の表面に傷が生じることがある。平角導体の表面に傷があると、絶縁被覆の形成時に絶縁被覆にボイド等の欠陥が生じやすくなり、絶縁電線をコイルに加工した際に絶縁被覆が割れることがある。また、従来の絶縁電線をエッジワイズ加工してコイルを形成する場合、コイルの外周側で曲げ歪が大きくなり、平角導体や絶縁被覆の表面に割れが生じるおそれがある。この課題を解決する方法について本発明者らが検討したところ、平角導体11を構成する銅材料、つまり平角導体11を形成するために用いる円形導体を構成する銅材料について、不純物である硫黄(S)や酸素(O)の濃度を小さくするとともに、チタン(Ti)を微量配合して酸素濃度に対するチタン濃度の比率を所定範囲とするとよいことが見出された。具体
的には、銅材料は、チタン濃度が5mass ppm以上55mass ppm以下、硫黄濃度が3mass ppm以上12mass ppm以下、酸素濃度が2mass ppm
以上30mass ppm以下、残部が銅と不可避不純物からなり、酸素濃度に対するチ
タン濃度の比率が2.0以上4.0以下である。
In the conventional insulated wire, when the flat conductor is widely configured so that the aspect ratio is 10 or more in order to further improve the space factor and heat dissipation in the coil, the stress when rolling the circular conductor into a rectangular shape is increased. The high stress rolling can cause scratches on the surface of the flat conductor. If the surface of the flat conductor is scratched, defects such as voids are likely to occur in the insulating coating when the insulating coating is formed, and the insulating coating may be cracked when the insulated wire is processed into a coil. Further, when the conventional insulated wire is edgewise processed to form a coil, bending strain becomes large on the outer peripheral side of the coil, and there is a possibility that the surface of the flat conductor or the insulating coating may be cracked. As a result of studies by the present inventors on a method for solving this problem, the copper material constituting the flat conductor 11, that is, the copper material constituting the circular conductor used for forming the flat conductor 11, is an impurity sulfur (S). ) And oxygen (O) should be reduced, and a small amount of titanium (Ti) should be added to keep the ratio of the titanium concentration to the oxygen concentration within a predetermined range. Specifically, the copper material has a titanium concentration of 5 mass ppm or more and 55 mass ppm or less, a sulfur concentration of 3 mass ppm or more and 12 mass ppm or less, and an oxygen concentration of 2 mass ppm or less.
It is 30 mass ppm or less, the balance is composed of copper and unavoidable impurities, and the ratio of titanium concentration to oxygen concentration is 2.0 or more and 4.0 or less.

このような銅材料は、銅の純度が無酸素銅(OFC)と同程度の純度(4N:99.99%以上)であるが、Tiを所定量含むことで、より純度の高い高純度銅(6N:99.9999%以上)と同程度の半軟化温度を有する。具体的には、この銅材料は、半軟化温度が150℃以下(例えば130℃程度)であり、OFCの半軟化温度(220℃程度)よりも低い半軟化温度を有し、高純度銅の半軟化温度(130℃程度)と同程度の半軟化温度を有する。この銅材料によれば、再結晶化のために焼鈍するときの加熱温度を低くすることができるので、再結晶化のときの加熱による銅結晶粒の粗大化を抑制することが可能となり、OFC等と比べて同じ加熱温度であればより柔らかくすることが可能になる。なお、半軟化温度とは、鋳造圧延材を冷問加工した2.6mm硬銅線を100〜500℃のソルトバス中に浸漬させて1時間の加熱を行なった後、常温で引張強さを測定し、加熱前の引張強さの値と1時間後の引張強さの値との中間の値まで引張強さが低下する加熱温度である。 Such a copper material has a purity similar to that of oxygen-free copper (OFC) (4N: 99.99% or more), but by containing a predetermined amount of Ti, high-purity copper with higher purity It has a semi-softening temperature similar to (6N: 99.9999% or more). Specifically, this copper material has a semi-softening temperature of 150 ° C. or lower (for example, about 130 ° C.), a semi-softening temperature lower than the OFC semi-softening temperature (about 220 ° C.), and is made of high-purity copper. It has a semi-softening temperature similar to the semi-softening temperature (about 130 ° C.). According to this copper material, the heating temperature at the time of annealing for recrystallization can be lowered, so that it becomes possible to suppress the coarsening of copper crystal grains due to heating at the time of recrystallization, and OFC. If the heating temperature is the same, it can be made softer. The semi-softening temperature is defined as the tensile strength at room temperature after a 2.6 mm hard copper wire obtained by cold-working a cast and rolled material is immersed in a salt bath at 100 to 500 ° C. and heated for 1 hour. It is a heating temperature at which the tensile strength drops to a value intermediate between the value of the tensile strength before heating and the value of the tensile strength after 1 hour.

また、この銅材料は、加工性を向上させるために半軟化温度以上の高温度(例えば500℃)で加熱(焼鈍)した場合であっても、OFCや高純度銅と比べて、伸び率を高く、かつ0.2%耐力を低くすることができる。OFCなどでは、高温度での焼鈍により銅の結晶粒が粗大化し粗大な結晶組織が形成されてしまい、これによって伸び率や0.2%耐力が損なわれてしまう。これに対して、本実施形態の銅材料は、Tiを含むことによって、高温度で焼鈍したとしても銅の結晶粒の粗大化が抑制され、微細結晶組織を維持できるので、伸び率を高く、かつ0.2%耐力を低く維持することが可能となる。したがって、本実施形態の銅材料から形成される円形導体は伸び率が高く、かつ0.2%耐力が低いため、圧延する時の応力を軽減でき、平角導体11表面の傷を抑制することができる。しかも、圧延されて形成された平角導体11は、伸び率が高く、かつ0.2%耐力が低い銅材料から形成されているため、絶縁電線1をエッジワイズ加工したときに曲げ歪によって割れにくくなる。 Further, this copper material has a higher elongation rate than OFC or high-purity copper even when heated (annealed) at a high temperature (for example, 500 ° C.) higher than the semi-softening temperature in order to improve processability. It can be high and the yield strength can be lowered by 0.2%. In OFC and the like, the copper crystal grains are coarsened by annealing at a high temperature to form a coarse crystal structure, which impairs the elongation rate and 0.2% proof stress. On the other hand, since the copper material of the present embodiment contains Ti, coarsening of copper crystal grains is suppressed even when annealed at a high temperature, and a fine crystal structure can be maintained, so that the elongation rate is high. Moreover, it is possible to maintain a low 0.2% proof stress. Therefore, since the circular conductor formed from the copper material of the present embodiment has a high elongation rate and a low proof stress of 0.2%, stress during rolling can be reduced and scratches on the surface of the flat conductor 11 can be suppressed. it can. Moreover, since the flat conductor 11 formed by rolling is made of a copper material having a high elongation rate and a low proof stress of 0.2%, it is difficult to crack due to bending strain when the insulated wire 1 is edgewise processed. Become.

平角導体11を形成するための円形導体を構成する銅材料は、圧延したときに平角導体11表面での傷を抑制する観点からは、伸び率が25%以上であることが好ましく、また0.2%耐力が80MPa以下であることが好ましく、70MPa以下であることがより好ましい。このような銅材料を円形導体に用いることで、平角導体11を構成する銅材料の伸び率および0.2%耐力を上記範囲に調整することができ、絶縁電線1をエッジワイズ加工によりコイルに形成したときの割れを抑制することができる。なお、伸び率は、引張り試験片の初期の標点距離をL0、破断後の同距離をLとするとき、次の式で表せるものである。伸び率={(L−L0)/L0}×100[%])である。0.2%耐力は、応力−ひずみ曲線において、荷重を除荷したとき0.2%の塑性ひずみを生じさせる応力のことである。 The copper material constituting the circular conductor for forming the flat conductor 11 preferably has an elongation rate of 25% or more from the viewpoint of suppressing scratches on the surface of the flat conductor 11 when rolled. The 2% proof stress is preferably 80 MPa or less, and more preferably 70 MPa or less. By using such a copper material for a circular conductor, the elongation rate and 0.2% proof stress of the copper material constituting the flat conductor 11 can be adjusted within the above ranges, and the insulated wire 1 is made into a coil by edgewise processing. It is possible to suppress cracking when it is formed. The elongation rate can be expressed by the following equation, where L0 is the initial reference point distance of the tensile test piece and L is the same distance after fracture. Elongation rate = {(L-L0) / L0} x 100 [%]). The 0.2% proof stress is the stress that causes 0.2% plastic strain when the load is unloaded on the stress-strain curve.

このように、本実施形態の平角導体11は、上記銅材料から形成されることで、高温度で焼鈍したときに伸び率を高く、かつ0.2%耐力を低くできる一方で、微細結晶組織を維持することができる。微細結晶組織では、加工歪(曲げ歪など)が分散されやすく、割れが生じにくくなる。すなわち、平角導体11は、焼鈍により、柔軟で伸びやすく、加工歪で割れにくくなる。そのため、絶縁電線1をエッジワイズ加工してコイル2を作製したときに、平角導体11での曲げ歪による割れを抑制することができる。一方、OFCなどからなる導体は、高温度の焼鈍により結晶粒が粗大化して結晶組織が粗大となるので、伸びが低下するとともに脆くなる。しかも、銅の結晶粒が粗大となり結晶組織が粗大となる
ことでエッジワイズ加工したときの伸びが不均一となる。そのため、OFCなどからなる導体では曲げ歪による割れが生じやすい。
As described above, since the flat conductor 11 of the present embodiment is formed from the copper material, it can have a high elongation rate and a low 0.2% proof stress when annealed at a high temperature, while having a fine crystal structure. Can be maintained. In the fine crystal structure, processing strain (bending strain, etc.) is easily dispersed, and cracks are less likely to occur. That is, the flat conductor 11 is flexible and easily stretched by annealing, and is less likely to crack due to processing strain. Therefore, when the insulated wire 1 is edgewise processed to produce the coil 2, cracking due to bending strain in the flat conductor 11 can be suppressed. On the other hand, a conductor made of OFC or the like becomes brittle as the elongation decreases because the crystal grains become coarse and the crystal structure becomes coarse due to annealing at a high temperature. Moreover, the copper crystal grains become coarse and the crystal structure becomes coarse, so that the elongation at the time of edgewise processing becomes non-uniform. Therefore, a conductor made of OFC or the like is likely to be cracked due to bending strain.

平角導体11のアスペクト比は、コイル2の占積率や放熱性の観点からは大きいほど好ましい。本実施形態では、平角導体11を上記銅材料で形成しているので、アスペクト比を10以上、好ましくは20以上としても、絶縁電線1をエッジワイズ加工したときの割れを抑制することができる。なお、上限値は特に限定されないが、絶縁電線1をエッジワイズ加工するときの加工性の観点から30以下であることが好ましく、25以下であることがより好ましい。 The aspect ratio of the flat conductor 11 is preferably larger from the viewpoint of the space factor of the coil 2 and the heat dissipation. In the present embodiment, since the flat conductor 11 is formed of the copper material, even if the aspect ratio is 10 or more, preferably 20 or more, cracking when the insulated wire 1 is edgewise processed can be suppressed. Although the upper limit value is not particularly limited, it is preferably 30 or less, and more preferably 25 or less, from the viewpoint of workability when the insulated wire 1 is edgewise processed.

平角導体11の厚さおよび幅は、アスペクト比が所定の範囲内であれば特に限定されないが、厚さは、例えば0.5mm〜1.0mmとするとよく、幅は、例えば5mm〜25mmとするとよい。 The thickness and width of the flat conductor 11 are not particularly limited as long as the aspect ratio is within a predetermined range, but the thickness may be, for example, 0.5 mm to 1.0 mm, and the width may be, for example, 5 mm to 25 mm. Good.

絶縁被覆12は平角導体11の外周上に設けられている。絶縁被覆12は熱硬化性樹脂から形成され、例えば、ポリイミド、ポリアミドイミドおよびポリエステルイミドの少なくとも1つから形成されることが好ましい。例えば、絶縁被覆12は、樹脂成分を有機溶媒に溶解させた樹脂塗料を平角導体11の外周上に塗布し焼付けることによって形成することができる。 The insulating coating 12 is provided on the outer periphery of the flat conductor 11. The insulating coating 12 is formed of a thermosetting resin, preferably from at least one of polyimide, polyamide-imide and polyesterimide, for example. For example, the insulating coating 12 can be formed by applying a resin coating material in which a resin component is dissolved in an organic solvent on the outer periphery of a flat conductor 11 and baking the coating.

絶縁被覆12の厚さは、特に限定されず、絶縁電線1に求められる電気特性に応じて適宜変更するとよい。 The thickness of the insulating coating 12 is not particularly limited, and may be appropriately changed according to the electrical characteristics required for the insulated wire 1.

次に、上述した絶縁電線1を製造する方法について説明する。本実施形態の製造方法は、準備工程、圧延工程、加熱工程および被覆工程を有する。 Next, the method of manufacturing the above-mentioned insulated wire 1 will be described. The manufacturing method of the present embodiment includes a preparation step, a rolling step, a heating step, and a coating step.

まず、準備工程では、銅合金線として、チタン濃度が5mass ppm以上55ma
ss ppm以下、硫黄濃度が3mass ppm以上12mass ppm以下、酸素濃
度が2mass ppm以上30mass ppm以下、残部が銅と不可避不純物からなり、酸素濃度に対するチタン濃度の比率が2.0以上4.0以下である銅材料からなる円形導体を準備する。円形導体としては、例えば、上記銅材料からなる荒引線を伸線により細径化したものを用いることができる。この円形導体は、後述の圧延工程での圧延の応力を軽減する観点からは、所定の組成を有するとともに、伸び率が25%以上、0.2%耐力が80MPa以下である銅材料から形成されることが好ましい。
First, in the preparation process, the titanium concentration of the copper alloy wire is 5 mass ppm or more and 55 ma.
ss ppm or less, sulfur concentration 3 mass ppm or more and 12 mass ppm or less, oxygen concentration 2 mass ppm or more and 30 mass ppm or less, the balance is composed of copper and unavoidable impurities, and the ratio of titanium concentration to oxygen concentration is 2.0 or more and 4.0 or less. Prepare a circular conductor made of a copper material. As the circular conductor, for example, a rough drawn wire made of the copper material whose diameter is reduced by drawing can be used. From the viewpoint of reducing the rolling stress in the rolling process described later, this circular conductor is formed of a copper material having a predetermined composition, an elongation rate of 25% or more, and a 0.2% proof stress of 80 MPa or less. Is preferable.

続いて、圧延工程では、円形導体を断面が矩形状となるように圧延する。このとき、矩形状の長辺の長さが短辺の長さに対して10倍以上となるように圧延する。これにより、断面が矩形状でアスペクト比が10以上である平角導体11を得る。 Subsequently, in the rolling step, the circular conductor is rolled so that the cross section has a rectangular shape. At this time, rolling is performed so that the length of the long side of the rectangular shape is 10 times or more the length of the short side. As a result, a flat conductor 11 having a rectangular cross section and an aspect ratio of 10 or more is obtained.

続いて、加熱工程では、平角導体11を加熱する。これにより平角導体11を焼鈍し圧延工程で平角導体11に生じた加工歪を除去して再結晶化することで、伸び率を高くし、かつ0.2%耐力を低くする。平角導体11を構成する銅材料は、上述した通り、S濃度およびO濃度が低く、かつTi濃度がO濃度に対して所定の比率となっている。そのため、平角導体11を加熱したときに、平角導体11を構成する銅材料における結晶粒の粗大化を抑制することができる。これにより、平角導体11の伸び率および0.2%耐力を損なうことなく、加工歪を除去して再結晶化することができる。 Subsequently, in the heating step, the flat conductor 11 is heated. As a result, the flat conductor 11 is annealed to remove the processing strain generated in the flat conductor 11 in the rolling process and recrystallized, thereby increasing the elongation rate and lowering the 0.2% proof stress. As described above, the copper material constituting the flat conductor 11 has a low S concentration and an O concentration, and the Ti concentration has a predetermined ratio with respect to the O concentration. Therefore, when the flat conductor 11 is heated, it is possible to suppress the coarsening of crystal grains in the copper material constituting the flat conductor 11. As a result, processing strain can be removed and recrystallization can be performed without impairing the elongation rate and 0.2% proof stress of the flat conductor 11.

加熱工程での加熱条件は、平角導体11を構成する銅材料の伸び率が25%以上、かつ0.2%耐力が80MPa以下となるように適宜変更することが好ましい。例えば、加熱温度を400℃〜600℃、加熱時間を30秒〜120秒とするとよい。 The heating conditions in the heating step are preferably changed as appropriate so that the elongation rate of the copper material constituting the flat conductor 11 is 25% or more and the 0.2% proof stress is 80 MPa or less. For example, the heating temperature may be 400 ° C. to 600 ° C. and the heating time may be 30 seconds to 120 seconds.

続いて、被覆工程では、加熱工程後の平角導体11の外周に、樹脂成分を有機溶媒に溶解させた樹脂塗料を塗布し焼付けることにより、絶縁被覆12を形成する。樹脂塗料としてはポリイミド塗料、ポリアミドイミド塗料およびポリエステルイミド塗料を用いるとよく、絶縁被覆12をポリイミド、ポリアミドイミドおよびポリエステルイミドの少なくとも1つで形成することが好ましい。 Subsequently, in the coating step, the insulating coating 12 is formed by applying and baking a resin coating material in which a resin component is dissolved in an organic solvent on the outer periphery of the flat conductor 11 after the heating step. As the resin coating material, a polyimide coating material, a polyamide-imide coating material and a polyesterimide coating material may be used, and it is preferable that the insulating coating 12 is formed of at least one of polyimide, polyamide-imide and polyesterimide.

以上により、本実施形態の絶縁電線1を製造する。 From the above, the insulated wire 1 of the present embodiment is manufactured.

本実施形態の絶縁電線1では、平角導体11を、S濃度およびO濃度が低く、かつO濃度に対するTi濃度の比率が2.0〜4.0である銅材料で形成するとともに、そのアスペクト比を10以上としている。銅材料を所定の組成とすることで半軟化温度を低くすることができ、平角導体11を低温度で焼鈍させることが可能となる。平角導体11では、低温度で焼鈍することにより、伸び率を高くするとともに0.2%耐力を低くする一方で、銅の結晶粒が粗大化することを抑制して微細結晶組織を維持することができる。すなわち、平角導体11を柔軟で伸びやすく、加工歪(曲げ歪など)で割れにくくすることができる。これにより、アスペクト比が10以上と幅広な平角導体11を備える絶縁電線1をエッジワイズ加工した場合であっても、平角導体11や絶縁被覆12での割れを抑制することができる。したがって、絶縁電線1をエッジワイズ加工して作製されるコイル2は、占積率および放熱性が高く、また平角導体11や絶縁被覆12に割れがなく絶縁性を確保することができる。 In the insulated wire 1 of the present embodiment, the flat conductor 11 is formed of a copper material having a low S concentration and an O concentration and a ratio of the Ti concentration to the O concentration of 2.0 to 4.0, and its aspect ratio thereof. Is 10 or more. By setting the copper material to a predetermined composition, the semi-softening temperature can be lowered, and the flat conductor 11 can be annealed at a low temperature. The flat conductor 11 is annealed at a low temperature to increase the elongation rate and reduce the 0.2% proof stress, while suppressing the coarsening of copper crystal grains to maintain a fine crystal structure. Can be done. That is, the flat conductor 11 is flexible and easily stretchable, and can be made hard to crack due to processing strain (bending strain, etc.). As a result, even when the insulated wire 1 having the flat conductor 11 having a wide aspect ratio of 10 or more is edgewise processed, cracking in the flat conductor 11 and the insulating coating 12 can be suppressed. Therefore, the coil 2 produced by edgewise processing the insulated wire 1 has a high space factor and heat dissipation, and the flat conductor 11 and the insulating coating 12 are not cracked to ensure the insulating property.

次に、本発明について実施例に基づき、さらに詳細に説明するが、本発明はこれらの実施例に限定されない。 Next, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

<絶縁電線の作製>
(実施例1)
まず、平角導体を形成するための銅合金線として、下記表1に示す組成を有する断面が円形状の円形導体を準備した。この円形導体を圧延機を用いて断面が矩形状となるように圧延し、幅が6mm、厚さが0.6mmであって厚さに対する幅の比率(アスペクト比)が10である平角導体を作製した。その後、作製した平角導体を温度550℃で加熱して焼鈍した。そして、焼鈍した平角導体の外周にポリイミド塗料を塗布し焼付けることにより、厚さ50μmの絶縁被覆を形成した。これにより、実施例1の絶縁電線を得た。
<Manufacturing of insulated wires>
(Example 1)
First, as a copper alloy wire for forming a flat conductor, a circular conductor having a composition shown in Table 1 below and having a circular cross section was prepared. This circular conductor is rolled using a rolling mill so that the cross section has a rectangular shape, and a flat conductor having a width of 6 mm, a thickness of 0.6 mm, and a width ratio (aspect ratio) of 10 to the thickness is obtained. Made. Then, the produced flat conductor was heated at a temperature of 550 ° C. and annealed. Then, a polyimide paint was applied to the outer periphery of the annealed flat conductor and baked to form an insulating coating having a thickness of 50 μm. As a result, the insulated wire of Example 1 was obtained.

Figure 0006798193
Figure 0006798193

(実施例2〜4、比較例1〜4)
実施例2〜4および比較例1〜4では、平角導体におけるTi濃度/O濃度の比率や平角導体の幅、厚さおよびアスペクト比を表1に示すようにそれぞれ変更した以外は、実施例1と同様に絶縁電線を作製した。
(Examples 2 to 4, Comparative Examples 1 to 4)
In Examples 2 to 4 and Comparative Examples 1 to 4, the ratio of Ti concentration / O concentration in the flat conductor and the width, thickness and aspect ratio of the flat conductor were changed as shown in Table 1, except that Example 1 An insulated wire was produced in the same manner as in the above.

<評価方法>
作製した各絶縁電線を以下の方法により評価した。
<Evaluation method>
Each insulated wire produced was evaluated by the following method.

(エッジワイズ曲げ)
所定の外径を有する丸棒を準備し、この丸棒の外周に直交するように絶縁電線をエッジ面で接触させ、一平面内に保ちながら丸棒に接触させた絶縁電線の中央部をエッジワイズに180°曲げた。このとき、180°に曲げた絶縁電線の絶縁被覆に平角導体が露出して亀裂が生じているかを目視で観察した。本実施例では、平角導体の幅をdとしたときに、丸棒の径を4dとして絶縁電線をエッジワイズに曲げ、平角導体や絶縁被覆に亀裂などの欠陥が生じなければ加工性に優れるものと判断して○、丸棒の径を3dとしてエッジワイズに曲げ、亀裂などの欠陥が生じなければ加工性により優れるものと判断して◎、それ以外の場合は加工性に劣るものと判断して×とした。
(Edgewise bending)
A round bar having a predetermined outer diameter is prepared, the insulated wire is brought into contact with the edge surface so as to be orthogonal to the outer circumference of the round bar, and the central portion of the insulated wire brought into contact with the round bar while being kept in one plane is edged. Bent 180 ° wisely. At this time, it was visually observed whether the flat conductor was exposed and cracked in the insulating coating of the insulated wire bent at 180 °. In this embodiment, when the width of the flat conductor is d, the diameter of the round bar is 4d, the insulated wire is bent edgewise, and the flat conductor and the insulating coating are excellent in workability if there are no defects such as cracks. Judging that ○, bending the round bar edgewise with a diameter of 3d, if no defects such as cracks occur, it is judged to be superior in workability ◎, otherwise it is judged to be inferior in workability. It was marked as x.

(伸び率)
試験片として圧延する前の円形導体を別途準備し、標点距離(L0)を250mm、引っ張り速度を100mm/min以下として引っ張り試験を行い、破断後の試験片を突合せして標点距離(L)を求め、次の式で伸び率を算出した。伸び率={(L−L0)/L0}×100[%])である。
(Growth rate)
A circular conductor before rolling is separately prepared as a test piece, a tensile test is performed with a gauge point distance (L0) of 250 mm and a tensile speed of 100 mm / min or less, and the test pieces after fracture are butted against each other to perform a gauge point distance (L). ) Was calculated, and the elongation rate was calculated by the following formula. Elongation rate = {(L-L0) / L0} x 100 [%]).

(0.2%耐力)
試験片として圧延する前の円形導体を別途準備し、伸び率と同様の引っ張り試験を行い、応力−ひずみ曲線において、ひずみ軸の0.2%、応力0(ゼロ)の点から、弾性係数に平行に線を引いて応力―ひずみ曲線との交点の応力を0.2%耐力として求めた。
(0.2% proof stress)
A circular conductor before rolling is prepared separately as a test piece, and a tensile test similar to the elongation rate is performed. In the stress-strain curve, 0.2% of the strain axis and 0 (zero) stress are used to obtain the elastic modulus. A line was drawn in parallel and the stress at the intersection with the stress-strain curve was calculated as 0.2% proof stress.

<評価結果>
評価結果を表1に示す。
表1に示すように、実施例1〜4では、占積率および放熱性を高めるために平角導体のアスペクト比を10以上としているが、平角導体におけるS濃度およびO濃度を低くし、かつTi濃度/O濃度の比率を2.0〜4.0の範囲内とすることによって、エッジワイズ加工で割れが生じないようにできることが確認された。特に、実施例2〜4では、アスペクト比を20以上と高くしているが、平角導体を所定の組成とすることによってエッジワイズ加工で割れが生じないようにできることが確認された。エッジワイズ加工による割れを抑制できた理由は、平角導体の銅材料に微量のTiを含有させたことで、焼鈍したときに結晶粒が粗大化することを抑制し、銅の微細結晶組織を維持できたためと考えられる。
<Evaluation result>
The evaluation results are shown in Table 1.
As shown in Table 1, in Examples 1 to 4, the aspect ratio of the flat conductor is set to 10 or more in order to increase the space factor and the heat dissipation, but the S concentration and the O concentration in the flat conductor are lowered and Ti. It was confirmed that by setting the concentration / O concentration ratio within the range of 2.0 to 4.0, cracking can be prevented by edgewise processing. In particular, in Examples 2 to 4, the aspect ratio is as high as 20 or more, but it was confirmed that the edgewise processing can prevent cracks from occurring by setting the flat conductor to a predetermined composition. The reason why cracking due to edgewise processing could be suppressed is that the copper material of the flat conductor contained a small amount of Ti, which suppressed the coarsening of crystal grains when annealed and maintained the fine crystal structure of copper. It is thought that it was possible.

これに対して、比較例1〜4では、平角導体におけるTi濃度/O濃度の比率を2.0〜4.0の範囲から外れるようにしたため、平角導体の半軟化温度が高く、焼鈍温度を高くする必要があった。そのため、比較例1〜4では、高温度での焼鈍により結晶粒が粗大化してしまい、エッジワイズ加工による割れが生じやすくなることが確認された。 On the other hand, in Comparative Examples 1 to 4, since the Ti concentration / O concentration ratio in the flat conductor was set to be out of the range of 2.0 to 4.0, the semi-softening temperature of the flat conductor was high and the annealing temperature was set. I had to make it higher. Therefore, in Comparative Examples 1 to 4, it was confirmed that the crystal grains were coarsened by annealing at a high temperature, and cracks due to edgewise processing were likely to occur.

以上のように、本発明では、平角導体を形成する銅材料にTi濃度/O濃度の比率が2.0〜4.0となるように微量のTiを含有させることで、平角導体のアスペクト比を大きくした場合であってもエッジワイズ加工による曲げ歪を抑制できることが確認された。 As described above, in the present invention, the aspect ratio of the flat conductor is formed by adding a small amount of Ti so that the Ti concentration / O concentration ratio is 2.0 to 4.0 in the copper material forming the flat conductor. It was confirmed that bending distortion due to edgewise processing can be suppressed even when the value is increased.

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferable Aspect of the Present Invention>
Hereinafter, preferred embodiments of the present invention will be added.

[付記1]
本発明の一態様によれば、
銅材料からなる断面が矩形状の平角導体と、前記平角導体の外周上に設けられ熱硬化性樹脂から形成される絶縁被覆と、を備え、
前記平角導体は、厚さに対する幅の比率が10以上であり、
前記銅材料は、チタン濃度が5mass ppm以上55mass ppm以下、硫黄濃度が3mass ppm以上12mass ppm以下、酸素濃度が2mass ppm以
上30mass ppm以下、残部が銅と不可避不純物からなり、前記酸素濃度に対する
前記チタン濃度の比率が2.0以上4.0以下である、絶縁電線が提供される。
[Appendix 1]
According to one aspect of the invention
A flat conductor made of a copper material having a rectangular cross section and an insulating coating provided on the outer periphery of the flat conductor and formed of a thermosetting resin are provided.
The flat conductor has a width ratio to a thickness of 10 or more.
The copper material has a titanium concentration of 5 mass ppm or more and 55 mass ppm or less, a sulfur concentration of 3 mass ppm or more and 12 mass ppm or less, an oxygen concentration of 2 mass ppm or more and 30 mass ppm or less, and the balance is copper and unavoidable impurities. An insulated wire having a concentration ratio of 2.0 or more and 4.0 or less is provided.

[付記2]
付記1の絶縁電線において、好ましくは、
前記銅材料は半軟化温度が150℃以下である。
[Appendix 2]
In the insulated wire of Appendix 1, preferably
The copper material has a semi-softening temperature of 150 ° C. or lower.

[付記3]
付記1又は2の絶縁電線において、好ましくは、
前記熱硬化性樹脂がポリイミド、ポリアミドイミドおよびポリエステルイミドの少なくとも1つである。
[Appendix 3]
In the insulated wire of Appendix 1 or 2, preferably
The thermosetting resin is at least one of polyimide, polyamide-imide and polyesterimide.

[付記4]
本発明の他の態様によれば、
銅材料からなる銅合金線を圧延し、断面が矩形状の平角導体を形成する圧延工程と、
前記平角導体を加熱する加熱工程と、
加熱した前記平角導体の外周上を熱硬化性樹脂から形成される絶縁被覆で被覆する被覆工程と、を有し、
前記銅材料は、チタン濃度が5mass ppm以上55mass ppm以下、硫黄濃度が3mass ppm以上12mass ppm以下、酸素濃度が2mass ppm以
上30mass ppm以下、残部が銅と不可避不純物からなり、前記酸素濃度に対する
前記チタン濃度の比率が2.0以上4.0以下であり、
前記圧延工程では、前記平角導体の厚さに対する幅の比率が10以上となるように前記銅合金線を圧延する、絶縁電線の製造方法が提供される。
[付記5]
付記4の絶縁電線の製造方法において、好ましくは、
前記銅材料は、伸び率が25%以上であり、かつ0.2%耐力が55MPa以下である。
[Appendix 4]
According to another aspect of the invention
A rolling process in which a copper alloy wire made of a copper material is rolled to form a flat conductor having a rectangular cross section.
A heating step for heating the flat conductor and
It has a coating step of coating the outer periphery of the heated flat conductor with an insulating coating formed of a thermosetting resin.
The copper material has a titanium concentration of 5 mass ppm or more and 55 mass ppm or less, a sulfur concentration of 3 mass ppm or more and 12 mass ppm or less, an oxygen concentration of 2 mass ppm or more and 30 mass ppm or less, and the balance is copper and unavoidable impurities. The concentration ratio is 2.0 or more and 4.0 or less,
In the rolling step, a method for manufacturing an insulated electric wire is provided in which the copper alloy wire is rolled so that the ratio of the width to the thickness of the flat conductor is 10 or more.
[Appendix 5]
In the method for manufacturing an insulated wire of Appendix 4, preferably
The copper material has an elongation rate of 25% or more and a 0.2% proof stress of 55 MPa or less.

1 絶縁電線
2 コイル
11 平角導体
12 絶縁被覆
1 Insulated wire 2 Coil 11 Flat conductor 12 Insulated coating

Claims (4)

銅材料からなる断面が矩形状の平角導体と、前記平角導体の外周上に設けられ熱硬化性樹脂から形成される絶縁被覆と、を備え、
前記平角導体は、厚さに対する幅の比率が10以上であり、
前記銅材料は、チタン濃度が26mass ppm以上40mass ppm以下、硫黄濃度が3mass ppm以上mass ppm以下、酸素濃度が10mass ppm以上13mass ppm以下、残部が銅と不可避不純物からなり、前記酸素濃度に対する前記チタン濃度の比率が2.0以上4.0以下であり、伸び率が25%以上、0.2%耐力が80MPa以下である、絶縁電線。
A flat conductor made of a copper material having a rectangular cross section and an insulating coating provided on the outer periphery of the flat conductor and formed of a thermosetting resin are provided.
The flat conductor has a width ratio to a thickness of 10 or more.
The copper material has a titanium concentration of 26 mass ppm or more and 40 mass ppm or less, a sulfur concentration of 3 mass ppm or more and 4 mass ppm or less, an oxygen concentration of 10 mass ppm or more and 13 mass ppm or less, and the balance consisting of copper and unavoidable impurities. An insulated wire having a ratio of the titanium concentration to an oxygen concentration of 2.0 or more and 4.0 or less , an elongation rate of 25% or more, and a 0.2% withstand power of 80 MPa or less .
前記銅材料は半軟化温度が150℃以下である、請求項1に記載の絶縁電線。 The insulated wire according to claim 1, wherein the copper material has a semi-softening temperature of 150 ° C. or lower. 前記熱硬化性樹脂がポリイミド、ポリアミドイミドおよびポリエステルイミドの少なくとも1つである、請求項1又は2に記載の絶縁電線。 The insulated wire according to claim 1 or 2, wherein the thermosetting resin is at least one of polyimide, polyamide-imide, and polyesterimide. 銅材料からなる銅合金線を圧延し、断面が矩形状の平角導体を形成する圧延工程と、
前記平角導体を400℃〜600℃の加熱温度で30秒〜120秒加熱する加熱工程と、
加熱した前記平角導体の外周上を熱硬化性樹脂から形成される絶縁被覆で被覆する被覆工程と、を有し、
前記銅材料は、チタン濃度が26mass ppm以上40mass ppm以下、硫黄濃度が3mass ppm以上mass ppm以下、酸素濃度が10mass ppm以上13mass ppm以下、残部が銅と不可避不純物からなり、前記酸素濃度に対する前記チタン濃度の比率が2.0以上4.0以下であり、伸び率が25%以上、0.2%耐力が80MPa以下であり
前記圧延工程では、前記平角導体の厚さに対する幅の比率が10以上となるように前記銅合金線を圧延する、絶縁電線の製造方法。
A rolling process in which a copper alloy wire made of a copper material is rolled to form a flat conductor having a rectangular cross section.
A heating step of heating the flat conductor at a heating temperature of 400 ° C. to 600 ° C. for 30 seconds to 120 seconds , and
It has a coating step of coating the outer periphery of the heated flat conductor with an insulating coating formed of a thermosetting resin.
The copper material has a titanium concentration of 26 mass ppm or more and 40 mass ppm or less, a sulfur concentration of 3 mass ppm or more and 4 mass ppm or less, an oxygen concentration of 10 mass ppm or more and 13 mass ppm or less, and the balance is copper and unavoidable impurities. The ratio of the titanium concentration to the oxygen concentration is 2.0 or more and 4.0 or less, the elongation rate is 25% or more, the 0.2% strength is 80 MPa or less, and in the rolling step, the width with respect to the thickness of the flat conductor. A method for manufacturing an insulated electric wire, in which the copper alloy wire is rolled so that the ratio of
JP2016166045A 2016-08-26 2016-08-26 Insulated wire and its manufacturing method Active JP6798193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166045A JP6798193B2 (en) 2016-08-26 2016-08-26 Insulated wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166045A JP6798193B2 (en) 2016-08-26 2016-08-26 Insulated wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018032596A JP2018032596A (en) 2018-03-01
JP6798193B2 true JP6798193B2 (en) 2020-12-09

Family

ID=61303682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166045A Active JP6798193B2 (en) 2016-08-26 2016-08-26 Insulated wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6798193B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6516117B1 (en) 2018-03-02 2019-05-22 日立金属株式会社 Insulated wire, coil
JP7302278B2 (en) * 2019-05-20 2023-07-04 株式会社プロテリアル Coil and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709296B2 (en) * 2009-04-17 2011-06-22 日立電線株式会社 Method for manufacturing diluted copper alloy material
JP5609564B2 (en) * 2010-11-10 2014-10-22 日立金属株式会社 Manufacturing method of molten solder plating wire
JP5652369B2 (en) * 2010-10-20 2015-01-14 日立金属株式会社 Solar cell conductor
JP5549528B2 (en) * 2010-10-20 2014-07-16 日立金属株式会社 Glass wound copper wire and method for producing glass wound copper wire
JP5601146B2 (en) * 2010-10-20 2014-10-08 日立金属株式会社 Winding for speaker voice coil and manufacturing method thereof
JP5499330B2 (en) * 2010-10-20 2014-05-21 日立金属株式会社 Solar cell bus bar
JP5588384B2 (en) * 2011-03-17 2014-09-10 三菱伸銅株式会社 Flat rectangular insulated wire material for coil and manufacturing method thereof
JP2013041762A (en) * 2011-08-17 2013-02-28 Hitachi Cable Ltd Horizontal winding using thin copper alloy material
JP5726157B2 (en) * 2012-11-29 2015-05-27 三菱電線工業株式会社 Rectangular electric wire for coil, method for manufacturing the same, and coil using the same

Also Published As

Publication number Publication date
JP2018032596A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5760544B2 (en) Soft dilute copper alloy wire, soft dilute copper alloy stranded wire, insulated wire, coaxial cable and composite cable using them
JP5077416B2 (en) Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cables, coaxial cables and composite cables using these
KR101613914B1 (en) Cu-Mg-P-BASED COPPER ALLOY SHEET HAVING EXCELLENT FATIGUE RESISTANCE CHARACTERISTIC AND METHOD OF PRODUCING THE SAME
WO2013031279A1 (en) Cu-ni-si alloy and method for manufacturing same
JP6240424B2 (en) Method for producing Al alloy conductive wire
WO2016199564A1 (en) Aluminum alloy wire, aluminum alloy twisted wire, covered wire and wiring harness
JP6196435B2 (en) Titanium copper and method for producing the same
JP5039862B1 (en) Corson alloy and manufacturing method thereof
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP6238135B2 (en) Copper wire and method for manufacturing the same
WO2012124732A1 (en) Cu-Ni-Si ALLOY WIRE HAVING EXCELLENT BENDABILITY
JP5534610B2 (en) Cu-Co-Si alloy strip
WO2013018399A1 (en) Highly bendable cu-co-si alloy wire
JP6798193B2 (en) Insulated wire and its manufacturing method
JP2014136833A (en) Soft thin copper alloy insulated twisted wire
JP2014173097A (en) Aluminum alloy wire, aluminum alloy stranded wire, insulation wire and wire harness
JP6214126B2 (en) Titanium copper and method for producing the same, as well as copper products and electronic device parts using titanium copper
JP6729218B2 (en) Method for manufacturing rectangular insulated wire
JP5534241B2 (en) Aluminum alloy wire and manufacturing method thereof
JP6247812B2 (en) Titanium copper and method for producing the same
JP5510879B2 (en) Wire conductor and wire
JP6635732B2 (en) Method for manufacturing aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using the same
JP7302278B2 (en) Coil and its manufacturing method
JP7080174B2 (en) Manufacturing method of aluminum alloy wire, overhead power transmission line, and aluminum alloy wire
WO2013121620A1 (en) Corson alloy and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6798193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350