JP6288433B2 - Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method - Google Patents

Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method Download PDF

Info

Publication number
JP6288433B2
JP6288433B2 JP2014043225A JP2014043225A JP6288433B2 JP 6288433 B2 JP6288433 B2 JP 6288433B2 JP 2014043225 A JP2014043225 A JP 2014043225A JP 2014043225 A JP2014043225 A JP 2014043225A JP 6288433 B2 JP6288433 B2 JP 6288433B2
Authority
JP
Japan
Prior art keywords
copper
wire
coil
sectional area
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014043225A
Other languages
Japanese (ja)
Other versions
JP2015170422A (en
Inventor
大輔 中富
大輔 中富
清高 宇都宮
清高 宇都宮
範明 久保
範明 久保
西川 太一郎
太一郎 西川
亮 丹治
亮 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014043225A priority Critical patent/JP6288433B2/en
Publication of JP2015170422A publication Critical patent/JP2015170422A/en
Application granted granted Critical
Publication of JP6288433B2 publication Critical patent/JP6288433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Description

本発明は、コイルの巻線などに利用される被覆平角線、コイル用巻線の導体などに利用される銅平角線、コイル用巻線の導体などの素材に利用される銅コイル材、銅コイル材の製造方法、及び銅平角線の製造方法に関する。特に、比較的大きな断面積を有する銅平角線の素材に適した銅コイル材、及びこの銅コイル材を生産性よく製造可能な銅コイル材の製造方法に関するものである。   The present invention relates to a coated rectangular wire used for a coil winding, a copper rectangular wire used for a coil winding conductor, a copper coil material used for a material such as a coil winding conductor, copper, etc. The present invention relates to a coil material manufacturing method and a copper rectangular wire manufacturing method. In particular, the present invention relates to a copper coil material suitable for a copper rectangular wire material having a relatively large cross-sectional area, and a copper coil material manufacturing method capable of manufacturing the copper coil material with high productivity.

モーターなどのコイル部品に備えるコイルの巻線には、従来、エナメル線と呼ばれる被覆線が汎用されている。この被覆線は、銅(いわゆる純銅)などからなる金属線を導体とし、この導体の表面にポリアミドイミドなどの樹脂からなる絶縁被覆を備える。上記導体として、断面が円形状の丸線の他、矩形状の平角線が代表的である。平角線を導体とする巻線は、占積率が高いコイルを形成可能なため、小型なことが望まれる自動車用コイル部品の構成材料などに適する。   Conventionally, a coated wire called an enameled wire has been widely used for winding of a coil provided in a coil component such as a motor. This covered wire uses a metal wire made of copper (so-called pure copper) as a conductor, and an insulating coating made of a resin such as polyamideimide is provided on the surface of the conductor. Typical examples of the conductor include a round wire having a circular cross section and a rectangular flat wire. Since the winding using a rectangular wire as a conductor can form a coil with a high space factor, it is suitable as a constituent material of an automotive coil component that is desired to be small.

上記平角線は、代表的には、伸線材に圧延加工(以下、平角加工と呼ぶことがある)を施すことで製造される。具体的には、連続鋳造圧延によって得られた銅荒引線に伸線加工及び熱処理を施した伸線材を素材(母線)とし、この素材に矩形状といった所望の形状に変形するための平角加工を施すことで、上記平角線が得られる(例えば、特許文献1の明細書の段落0041)。連続鋳造圧延によって量産可能である銅荒引線を用いることで、銅平角線の素材となる伸線材の生産性、ひいては銅平角線の生産性を高められる。   The flat wire is typically produced by subjecting a wire drawing material to rolling (hereinafter sometimes referred to as flat processing). Specifically, a wire drawing material obtained by performing wire drawing and heat treatment on a copper roughing wire obtained by continuous casting and rolling is used as a raw material (bus wire), and this material is subjected to flattening to transform it into a desired shape such as a rectangular shape. By applying, the above-mentioned rectangular wire is obtained (for example, paragraph 0041 in the specification of Patent Document 1). By using a copper rough wire that can be mass-produced by continuous casting and rolling, the productivity of a wire drawing material that becomes a material of a copper flat wire, and hence the productivity of a copper flat wire can be increased.

特開2013−052434号公報JP2013-052434A

比較的大きな断面積を有する銅平角線の素材などに適した銅線材であって、伸びが高く、生産性にも優れるものの開発が望まれている。   Development of a copper wire suitable for a copper rectangular wire material having a relatively large cross-sectional area, which has high elongation and excellent productivity is desired.

近年、自動車用バッテリーやモーターなどの高出力化に伴って、これらのコイル部品に用いられるコイル用巻線の導体として、断面積が比較的大きいもの(例えば10mm程度)の需要が高まっている。大断面積の銅平角線を製造するには、より太い素材、即ち大断面積の銅素材(例えば12mm以上)が必要である。しかし、伸線加工と熱処理とを行う従来の製造方法では、伸びに優れる大断面積の銅素材を生産性よく製造することが難しい。銅素材の生産性が悪いことで、ひいては大断面積の銅平角線の生産性も低下する。 In recent years, with the increase in output of automobile batteries and motors, there is an increasing demand for conductors for coil windings used in these coil components having a relatively large cross-sectional area (for example, about 10 mm 2 ). . In order to produce a copper rectangular wire having a large cross-sectional area, a thicker material, that is, a copper material having a large cross-sectional area (for example, 12 mm 2 or more) is required. However, in the conventional manufacturing method in which wire drawing and heat treatment are performed, it is difficult to manufacture a copper material having a large cross-sectional area excellent in elongation with high productivity. Due to the poor productivity of copper material, the productivity of copper cross-sections with large cross-sectional areas is also reduced.

汎用の大きさである銅荒引線(例えば、線径(直径)がφ8mm〜φ9.5mm程度≒断面積が50mm〜70mm程度)を用いると、銅荒引線自体を量産できる上に汎用の伸線装置や連続処理炉などを利用可能である。そのため、上記汎用の大きさの銅荒引線を用いれば、大断面積の伸線材や熱処理材の量産に寄与できる。しかし、この銅荒引線から大断面積の伸線材を得ようとすると、この銅荒引線では断面積が小さいため、この銅荒引線から所定の断面積の伸線材にするまでの伸線加工度を大きくできない。伸線加工度が低いことで、伸線後に伸線材に熱処理を施しても十分に軟化できない。そのため、上記汎用の大きさの銅荒引線を用いて伸線加工を行った場合、完全に軟化されて十分な伸びを有する大断面積の銅素材を量産すること、即ち高い伸びを有し、長尺で、かつ大断面積である銅素材を製造することが難しい。伸びが不十分であると加工性に劣る。加工性に劣る銅素材に平角加工を施すと、形状精度や寸法精度に劣る銅平角線が形成される恐れがあり、銅平角線の歩留まりの低下を招く。ここで、コイルの巻線用導体などに利用される銅平角線は、形状精度や寸法精度の許容範囲が狭く、高い精度が求められる。そのため、銅平角線に用いられる銅素材には、形状不良や寸法不良の発生を低減できるように、十分な加工性を有すること、代表的には伸びに優れることが望まれる。なお、伸線後に熱処理を施していない伸線材(硬材)では、加工性に更に劣り、銅平角線の歩留まりの更なる低下を招く。 Purpose is sized DoAra drawn wire (e.g., wire diameter (diameter) φ8mm~φ9.5mm about ≒ sectional area 50mm 2 ~70mm 2 about) Using, general-purpose on which can mass-produced DoAra wire rods themselves A wire drawing device or a continuous processing furnace can be used. Therefore, if the general-purpose copper roughing wire is used, it can contribute to mass production of a wire with a large cross-sectional area or a heat treatment material. However, when trying to obtain a wire with a large cross-sectional area from this copper rough wire, the cross-sectional area of this copper rough wire is small, so the degree of wire drawing work from this copper wire to a wire with a predetermined cross-sectional area Cannot be increased. Due to the low degree of wire drawing, it cannot be sufficiently softened even if heat treatment is applied to the wire drawing material after wire drawing. Therefore, when wire drawing is performed using the above-described general-purpose copper rough wire, mass production of a copper material having a large cross-sectional area that is completely softened and has sufficient elongation, that is, has high elongation, It is difficult to produce a copper material that is long and has a large cross-sectional area. If the elongation is insufficient, the processability is poor. When flattening is performed on a copper material that is inferior in workability, a copper flattened wire that is inferior in shape accuracy and dimensional accuracy may be formed, and the yield of the copper flattened wire is reduced. Here, a copper rectangular wire used for a coil winding conductor or the like has a narrow allowable range of shape accuracy and dimensional accuracy, and high accuracy is required. Therefore, it is desired that the copper material used for the copper rectangular wire has sufficient workability and typically has excellent elongation so that the occurrence of shape defects and dimensional defects can be reduced. In addition, in the wire drawing material (hard material) which has not performed heat processing after wire drawing, it is further inferior to workability and causes the fall of the yield of a copper flat wire further.

また、伸線加工度が低いと、銅荒引線に存在する欠陥を伸線工程で除去しきれずに伸線材に残存する恐れがある。伸線材に存在する欠陥は、銅平角線に残存し易い。ここで、平角線を被覆線の導体に用いる場合、平角線の表面に割れなどの表面欠陥が存在すると、この割れに起因して、絶縁被覆の形成時に膨れなどの不良が生じ得る。絶縁被覆の膨れ箇所は電気的弱点になることから、上記膨れが存在する被覆線は、所望の耐電圧特性を満たさない恐れがあり、不良品となる。従って、表面性状に劣る銅素材、詳しくは被覆線の歩留まりの低下を招くような表面欠陥を有する銅平角線が製造され得る銅素材も不良となる。   Further, when the degree of wire drawing is low, there is a possibility that defects present in the copper rough drawing wire cannot be completely removed in the wire drawing process and remain in the wire drawing material. Defects present in the wire drawing material tend to remain in the copper rectangular wire. Here, when a flat wire is used as a conductor of a covered wire, if a surface defect such as a crack is present on the surface of the flat wire, a defect such as a bulge may occur due to the crack. Since the swollen part of the insulating coating becomes an electrical weak point, the covered wire in which the swollenness is present may not satisfy a desired withstand voltage characteristic and becomes a defective product. Accordingly, a copper material that is inferior in surface properties, in particular, a copper material that can produce a flat copper wire having a surface defect that causes a decrease in the yield of the covered wire is also defective.

このように汎用の大きさの銅荒引線を用いて、伸線加工及び熱処理を施して大断面積の銅素材を製造すると、長尺材を製造できるものの伸びが不十分であり、更には表面性状の劣化による歩留まりの低下を招き得る。従って、伸びが高く、生産性にも優れる銅素材の開発が望まれる。   When a copper material with a large cross-sectional area is manufactured by performing wire drawing and heat treatment using a general-purpose copper rough drawing wire in this way, a long material can be manufactured, but the elongation is insufficient, and further the surface The yield may be reduced due to deterioration of properties. Therefore, it is desired to develop a copper material having high elongation and excellent productivity.

断面積がより大きい銅荒引線を用いれば、大きな伸線加工度を確保でき、伸線加工及び熱処理を施すことで、高い伸びを有し、表面性状にも優れる大断面積の銅素材が得られる。しかし、この銅素材は、以下の(1)〜(4)の点から生産性が良いとはいえない。
(1)太い銅荒引線は巻癖がつき易く、伸線加工前に巻癖を除去する工程や真直性を高める工程などが別途必要である。
(2)太い銅荒引線では剛性が高く連続して伸線加工を施し難いため、伸線工程での巻替回数が多い。例えば、1パスごとに繰り出しと巻き取りとを行う必要がある。
(3)より太い伸線材を得易いものの、太過ぎると連続処理炉を利用できず、バッチ炉でしか軟化できないことがある。
(4)バッチ炉を用いる場合には比較的短い銅素材しか製造できず、長尺な銅素材ができない。
If copper rough wire with a larger cross-sectional area is used, a large degree of wire drawing work can be secured, and by performing wire drawing and heat treatment, a copper material having a large cross-sectional area that has high elongation and excellent surface properties can be obtained. It is done. However, this copper material cannot be said to have good productivity from the following points (1) to (4).
(1) A thick copper rough wire is easily wrinkled and requires a step of removing the curl and a step of improving straightness before wire drawing.
(2) Since a thick copper rough wire has high rigidity and it is difficult to continuously perform wire drawing, the number of rewinds in the wire drawing process is large. For example, it is necessary to perform feeding and winding for each pass.
(3) Although it is easy to obtain a thicker wire drawing material, if it is too thick, a continuous processing furnace cannot be used, and it may be softened only in a batch furnace.
(4) When a batch furnace is used, only a relatively short copper material can be produced, and a long copper material cannot be produced.

そこで、本発明の目的の一つは、比較的大きな断面積を有する銅平角線の素材に適しており、伸びが高く、生産性にも優れる銅コイル材を提供することにある。また、本発明の他の目的は、大断面の銅平角線の素材に適しており、伸びが高い銅コイル材を生産性よく製造可能な銅コイル材の製造方法を提供することにある。   Accordingly, one object of the present invention is to provide a copper coil material that is suitable for a copper rectangular wire material having a relatively large cross-sectional area, has high elongation, and is excellent in productivity. Another object of the present invention is to provide a method for producing a copper coil material, which is suitable for a material of a copper rectangular wire having a large cross section and can produce a copper coil material having high elongation with high productivity.

本発明の他の目的は、コイル用巻線の導体などに適した銅平角線、この銅平角線を備える被覆平角線、比較的大きな断面積を有する銅平角線を生産性よく製造可能な銅平角線の製造方法を提供することにある。   Another object of the present invention is a copper rectangular wire suitable for a conductor of a coil winding, a coated rectangular wire including the copper rectangular wire, and a copper capable of producing a copper rectangular wire having a relatively large cross-sectional area with high productivity. The object is to provide a method of manufacturing a flat wire.

本発明の銅コイル材は、純銅又は銅合金から構成される銅線材がコイル状に巻き取られてなり、前記銅線材の断面積が12mm以上40mm以下であり、前記銅線材の破断伸びが30%以上であり、質量が100kg以上であり、前記銅線材の表面に潤滑層を備え、圧延加工を施して銅平角線を製造するための素材に用いられる。 The copper coil material of the present invention is obtained by winding a copper wire made of pure copper or a copper alloy into a coil shape, the cross-sectional area of the copper wire is 12 mm 2 or more and 40 mm 2 or less, and the elongation at break of the copper wire is Is 30% or more, and the mass is 100 kg or more. The copper wire is provided with a lubricating layer on the surface thereof, and is used as a material for producing a copper rectangular wire by rolling.

本発明の銅コイル材の製造方法は、連続鋳造圧延材を用意する工程と、前記連続鋳造圧延材にコンフォーム押出を施して銅線材を製造する工程と、前記銅線材の表面に潤滑層を形成した後、コイル状に巻き取って銅コイル材を製造する工程とを備え、前記銅コイル材は、巻き戻した前記銅線材に圧延加工を施して銅平角線を製造するための素材に用いられる。   The method for producing a copper coil material of the present invention includes a step of preparing a continuous cast rolled material, a step of producing a copper wire by subjecting the continuous cast rolled material to conform extrusion, and a lubricating layer on the surface of the copper wire. And forming a copper coil material by winding it into a coil shape. The copper coil material is used as a material for producing a copper rectangular wire by rolling the copper wire material that has been rewound. It is done.

本発明の銅コイル材は、伸びが高く、生産性にも優れる。本発明の銅コイル材の製造方法は、伸びが高い銅コイル材を生産性よく製造できる。   The copper coil material of the present invention has high elongation and excellent productivity. The method for producing a copper coil material of the present invention can produce a copper coil material having high elongation with high productivity.

実施形態の銅コイル材を示す概略斜視図である。It is a schematic perspective view which shows the copper coil material of embodiment. コンフォーム押出装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a conform extrusion apparatus. 実施形態の銅コイル材の製造方法、及び実施形態の銅平角線の製造方法の工程を説明する工程説明図である。It is process explanatory drawing explaining the process of the manufacturing method of the copper coil material of embodiment, and the manufacturing method of the copper flat wire of embodiment.

[本発明の実施の形態の説明]
本発明者らは、比較的大きな断面積を有する銅平角線の素材に適した大断面積の銅素材を量産可能な製造方法を種々検討した。その結果、連続鋳造圧延によって得られた銅荒引線にコンフォーム押出を施すことで、伸線加工及び熱処理を施すことなく、伸びが高く、表面性状にも優れる長尺な銅線材が得られる、との知見を得た。また、この銅線材に圧延加工(平角加工)を施すことで、形状精度や寸法精度に優れる銅平角線が得られる、との知見を得た。
[Description of Embodiment of the Present Invention]
The present inventors have studied various manufacturing methods capable of mass-producing a copper material having a large cross-sectional area suitable for a copper rectangular wire material having a relatively large cross-sectional area. As a result, by subjecting the copper rough drawn wire obtained by continuous casting and rolling to conform extrusion, a long copper wire having high elongation and excellent surface properties can be obtained without performing wire drawing and heat treatment. And gained knowledge. Moreover, the knowledge that the copper flat wire excellent in a shape precision and a dimensional accuracy was obtained by performing a rolling process (flat square process) to this copper wire was acquired.

ここで、コンフォーム押出は、JIS規格における1000系アルミニウムといった純アルミニウムの押出(アルミニウム被覆鋼線、多孔偏心管など)に汎用されている。また、コンフォーム押出は、銅被覆鋼線といった銅被覆に利用されている。   Here, conform extrusion is widely used for extrusion of pure aluminum such as 1000 series aluminum in JIS standard (aluminum-coated steel wire, porous eccentric tube, etc.). Conform extrusion is used for copper coating such as copper-coated steel wire.

コンフォーム押出は、断面円形状の丸線は勿論、種々の外形(例えば、矩形、多角形、楕円など)を有する異形押出材を成形可能である。また、コンフォーム押出は、種々の断面積を有する押出材の量産(長尺な押出材の生産)が可能である。そこで、銅荒引線にコンフォーム押出を施して、大断面積の銅平角線を直接製造することを試みたところ、所定の形状精度や寸法精度から外れた形状不良品や寸法不良品が得られた。この理由は、銅は、純アルミニウムよりも加工性に劣るためと考えられる。そこで、銅荒引線にコンフォーム押出を施し、得られた押出材に圧延加工(平角加工)を施したところ、銅平角線を高精度に形成できた。また、得られた銅平角線に絶縁被覆を施したところ、被覆の膨れが生じ難かった。そして、上記押出材は、高い伸びを有しており、表面性状も優れていた。従って、この押出材は、銅平角線の素材に好適に利用できる、といえる。本発明は、上記知見に基づくものである。最初に本発明の実施形態の内容を列記して説明する。   Conform extrusion can form a profile extrusion material having various external shapes (for example, a rectangle, a polygon, an ellipse, etc.) as well as a circular line having a circular cross section. In addition, conform extrusion enables mass production of extruded materials having various cross-sectional areas (production of long extruded materials). Therefore, we tried to produce copper flat wire with large cross-sectional area directly by subjecting the copper rough wire to conform extrusion, resulting in shape defects and dimension defects that deviated from the specified shape accuracy and dimensional accuracy. It was. This is because copper is inferior in workability to pure aluminum. Therefore, when the copper rough wire was subjected to conform extrusion and the obtained extruded material was subjected to rolling processing (flat angle processing), a copper rectangular wire could be formed with high accuracy. In addition, when the obtained copper rectangular wire was coated with an insulating coating, it was difficult for the coating to swell. And the said extrusion material had high elongation and the surface property was also excellent. Therefore, it can be said that this extruded material can be suitably used for a copper rectangular wire material. The present invention is based on the above findings. First, the contents of the embodiment of the present invention will be listed and described.

(1) 実施形態に係る銅コイル材は、純銅又は銅合金から構成される銅線材がコイル状に巻き取られてなり、圧延加工を施して銅平角線を製造するための素材に用いられる。上記銅線材の断面積が12mm以上40mm以下である。上記銅線材の破断伸びが30%以上である。銅コイル材の質量が100kg以上である。上記銅線材の表面に潤滑層を備える。 (1) The copper coil material according to the embodiment is obtained by winding a copper wire made of pure copper or a copper alloy into a coil shape, and is used as a material for producing a copper rectangular wire by rolling. The cross-sectional area of the copper wire is 12 mm 2 or more and 40 mm 2 or less. The breaking elongation of the copper wire is 30% or more. The mass of the copper coil material is 100 kg or more. A lubricating layer is provided on the surface of the copper wire.

実施形態の銅コイル材は、以下の(A)〜(D)の点から、特に比較的大きな断面積を有する銅平角線(例えば、断面積が10mm程度以上)の素材に好適に利用することができる。特に、実施形態の銅コイル材は、伸びが高く加工性に優れることから上記素材に利用することで、形状精度及び寸法精度に優れる銅平角線を製造できる。
(A)高い伸びを有することから、平角状に変形するための圧延加工(平角加工)の加工性に優れる。
(B)断面積が特定の範囲であって質量が十分に大きいため銅線材が十分に長いといえ、長尺であることから銅平角線を量産できる。
(C)断面積が特定の範囲であることから、大きな断面積を有する銅平角線を形成可能である。
(D)潤滑層を備えることから、潤滑層を、銅線材の巻取時の潤滑材や銅コイル材を巻き戻して繰り出すときの潤滑材に利用できる。また、潤滑層を、巻き戻した銅線材に平角加工を施すときの潤滑材に利用でき、精度よく平角加工を行える。
The copper coil material of the embodiment is suitably used for a material of a copper rectangular wire having a relatively large cross-sectional area (for example, a cross-sectional area of about 10 mm 2 or more) from the following points (A) to (D). be able to. In particular, since the copper coil material of the embodiment has high elongation and excellent workability, a copper rectangular wire excellent in shape accuracy and dimensional accuracy can be produced by using the copper coil material for the material.
(A) Since it has a high elongation, it is excellent in workability of rolling (flattening) for deforming into a flattened shape.
(B) Since the cross-sectional area is in a specific range and the mass is sufficiently large, it can be said that the copper wire is sufficiently long, and the copper rectangular wire can be mass-produced because it is long.
(C) Since the cross-sectional area is in a specific range, a copper rectangular wire having a large cross-sectional area can be formed.
(D) Since the lubricating layer is provided, the lubricating layer can be used as a lubricating material when rewinding and feeding out the lubricating material and the copper coil material when winding the copper wire. In addition, the lubricating layer can be used as a lubricant for flattening the unwound copper wire, and the flattening can be performed with high accuracy.

また、実施形態の銅コイル材は、以下の(a)〜(d)の点から生産性にも優れる。
(a)例えば、連続鋳造圧延材(銅荒引線)にコンフォーム押出を施して得られた長尺な銅線材を巻き取ることで製造できることから、伸線工程及び熱処理工程の双方が不要であり、製造工程数が少ない。
(b)コンフォーム押出を利用することで伸線加工度を考慮する必要がないため、太い銅荒引線を用いなくてもよく、汎用の大きさの銅荒引線を用いることができる。
(c)連続鋳造圧延及びコンフォーム押出を利用することで、長尺材を容易に製造できる。
(d)潤滑層を備えるため、滑り性に優れることから、巻取時に銅線材を巻き取り易く、銅線材にキズなどがつき難い。
Moreover, the copper coil material of the embodiment is excellent in productivity from the following points (a) to (d).
(A) For example, since it can be manufactured by winding a long copper wire obtained by subjecting a continuous cast rolled material (copper rough drawing wire) to conform extrusion, both the wire drawing step and the heat treatment step are unnecessary. The number of manufacturing processes is small.
(B) Since it is not necessary to consider the degree of wire drawing by using conform extrusion, it is not necessary to use a thick copper rough wire, and a general-purpose copper rough wire can be used.
(C) A long material can be easily manufactured by utilizing continuous casting and rolling and conform extrusion.
(D) Since the lubricating layer is provided, the slipperiness is excellent, so that the copper wire is easily wound during winding, and the copper wire is hardly scratched.

実施形態の銅コイル材がコンフォーム押出を経て製造された場合には、以下の点から、表面性状に優れる上に、伸びも更に高くなり易い。更には、伸びだけでなく、強度にも優れる銅コイル材となり易い。この銅コイル材は、圧延加工(平角加工)の加工性に更に優れており、銅平角線の素材、特に大断面積の銅平角線の素材に好適に利用できる。
・押出加工に基づく塑性変形によって表面欠陥がない新生面を形成可能である。
・押出時の動的再結晶化によって微細な結晶粒から構成される加工組織(微細な結晶組織)となる。
・押出時の塑性変形や動的再結晶化によって、割れや破断などの起点となり得る表面欠陥や粗大粒が低減される上に、均一的な大きさの結晶になり易い。
When the copper coil material of the embodiment is manufactured through conform extrusion, the surface properties are excellent and the elongation tends to be further increased from the following points. Furthermore, it is easy to become a copper coil material excellent not only in elongation but also in strength. This copper coil material is further excellent in workability of rolling (flattening), and can be suitably used for a copper flat wire material, particularly a copper flat wire material having a large cross-sectional area.
A new surface free from surface defects can be formed by plastic deformation based on extrusion.
-It becomes a processed structure (fine crystal structure) composed of fine crystal grains by dynamic recrystallization during extrusion.
-Plastic deformation or dynamic recrystallization during extrusion reduces surface defects and coarse grains that can be the starting point of cracks and fractures, and tends to form crystals of uniform size.

(2) 実施形態に係る銅コイル材の一例として、上記銅線材の平均結晶粒径が5μm以上40μm以下である形態が挙げられる。   (2) As an example of the copper coil material according to the embodiment, a form in which the average crystal grain size of the copper wire is 5 μm or more and 40 μm or less can be given.

上記形態は、銅線材が微細な結晶組織から構成されていることで、伸びに優れる上に表面性状にも優れており、圧延加工(平角加工)の加工性に優れる。そのため、上記形態の銅コイル材を銅平角線の素材に用いることで、形状精度や寸法精度に優れる上に表面性状にも優れる銅平角線を生産性よく製造できる。   In the above-mentioned form, the copper wire is composed of a fine crystal structure, so that it is excellent in elongation and surface properties, and is excellent in workability of rolling (flat angle processing). Therefore, by using the copper coil material of the above-described form as a material for a copper flat wire, a copper flat wire having excellent shape accuracy and dimensional accuracy and excellent surface properties can be produced with high productivity.

(3) 実施形態に係る銅コイル材の一例として、上記銅線材の引張強さが230MPa以上である形態が挙げられる。   (3) As an example of the copper coil material according to the embodiment, there is a form in which the tensile strength of the copper wire is 230 MPa or more.

上記形態は、伸びが高い上に強度にも優れることから、圧延加工(平角加工)の加工性に優れる。そのため、上記形態の銅コイル材を銅平角線の素材に用いると、割れや破断などが生じ難く、銅平角線を生産性よく製造できる。   Since the said form is high in elongation and excellent in strength, it is excellent in workability of rolling (flat angle processing). Therefore, when the copper coil material having the above-described form is used as a material for a copper flat wire, cracks and breakage are hardly generated, and a copper flat wire can be manufactured with high productivity.

(4) 実施形態に係る銅平角線は、上記(1)〜(3)のいずれか1つに記載の実施形態の銅コイル材を巻き戻した上記銅線材に圧延加工を施して製造されている。   (4) The copper flat wire according to the embodiment is manufactured by rolling the copper wire material obtained by rewinding the copper coil material according to any one of the above (1) to (3). Yes.

実施形態の銅平角線は、特定の断面積を有する銅コイル材を素材にしているため、比較的大きな断面積(例えば10mm程度以上)を有することができる。また、実施形態の銅平角線は、伸びが高い銅コイル材を素材にしているため、伸びが高い。更に、実施形態の銅平角線は、伸びが高く圧延加工(平角加工)の加工性に優れる実施形態の銅コイル材を素材にしているため、形状精度及び寸法精度にも優れる。加工性に優れることで平角加工の加工時に割れや破断が生じ難く、実施形態の銅平角線は、生産性にも優れる。銅コイル材がコンフォーム押出を経て製造されている場合には、表面性状に優れる銅コイル材を素材にしているため、実施形態の銅平角線は、表面性状にも優れる。このような実施形態の銅平角線は、コイル用巻線の導体などに好適に利用できる。 Since the copper rectangular wire of the embodiment is made of a copper coil material having a specific cross-sectional area, it can have a relatively large cross-sectional area (for example, about 10 mm 2 or more). Moreover, since the copper rectangular wire of embodiment uses the copper coil material with high elongation as a raw material, elongation is high. Furthermore, since the copper rectangular wire of the embodiment is made of the copper coil material of the embodiment having high elongation and excellent workability of rolling (flattening), the shape accuracy and dimensional accuracy are also excellent. Due to the excellent workability, cracks and breaks are less likely to occur during the flat processing, and the copper rectangular wire of the embodiment is also excellent in productivity. When the copper coil material is manufactured through conform extrusion, since the copper coil material having excellent surface properties is used as the material, the copper rectangular wire of the embodiment is also excellent in surface properties. The copper rectangular wire of such an embodiment can be suitably used for a conductor of a coil winding.

(5) 実施形態に係る被覆平角線は、上記実施形態の銅平角線からなる導体と、この導体の表面に形成された絶縁被覆とを備える。   (5) The covered rectangular wire according to the embodiment includes a conductor made of the copper rectangular wire of the above-described embodiment and an insulating coating formed on the surface of the conductor.

実施形態の被覆平角線は、伸びに優れる実施形態の銅平角線を導体に備えることで、巻回などの曲げ加工が行い易く、コイルの巻線などに好適に利用できる。表面性状に優れる実施形態の銅平角線を導体にしている場合には、被覆の形成時に被覆の膨れが生じ難く、実施形態の被覆平角線は、生産性にも優れる。   The coated rectangular wire according to the embodiment includes the copper rectangular wire according to the embodiment excellent in elongation in the conductor, so that bending such as winding can be easily performed, and it can be suitably used for winding the coil. When the copper rectangular wire of the embodiment having excellent surface properties is used as a conductor, the coating does not easily swell when the coating is formed, and the coated rectangular wire of the embodiment is also excellent in productivity.

(6) 実施形態に係る銅コイル材の製造方法は、以下の準備工程と、押出工程と、巻取工程とを備える。
(準備工程)連続鋳造圧延材を用意する工程。
(押出工程)上記連続鋳造圧延材にコンフォーム押出を施して銅線材を製造する工程。
(巻取工程)上記銅線材の表面に潤滑層を形成した後、コイル状に巻き取って銅コイル材を製造する工程。
上記銅コイル材は、巻き戻した上記銅線材に圧延加工を施して銅平角線を製造するための素材に用いられる。
(6) The manufacturing method of the copper coil material which concerns on embodiment is equipped with the following preparatory processes, an extrusion process, and a winding process.
(Preparation process) The process of preparing a continuous cast rolling material.
(Extrusion step) A step of producing a copper wire by subjecting the continuous cast rolled material to conform extrusion.
(Winding process) The process of manufacturing a copper coil material by winding in a coil shape after forming a lubrication layer on the surface of the said copper wire.
The said copper coil material is used for the raw material for giving a rolling process to the said rolled copper wire, and manufacturing a copper flat wire.

実施形態の銅コイル材の製造方法は、以下の(Α)、(Β)の点から、伸びが高く表面性状にも優れる銅コイル材(代表的には上述の実施形態の銅コイル材)を製造することができる。また、実施形態の銅コイル材の製造方法は、以下の(α)〜(ε)の点から、このような銅コイル材を生産性よく製造できる。   The manufacturing method of the copper coil material of the embodiment is a copper coil material (typically the copper coil material of the above-described embodiment) that has high elongation and excellent surface properties in terms of the following (ii) and (ii). Can be manufactured. Moreover, the manufacturing method of the copper coil material of embodiment can manufacture such a copper coil material with high productivity from the following ((alpha))-((epsilon)) point.

(Α) 押出時の動的再結晶化によって、微細で均一的な大きさの結晶粒を形成できる。
(Β) 押出加工に基づく塑性変形によって表面欠陥がない新生面を形成できる。
(Ii) Fine and uniform crystal grains can be formed by dynamic recrystallization during extrusion.
(Ii) A new surface free from surface defects can be formed by plastic deformation based on extrusion.

(α)伸線工程及び熱処理工程の双方が不要であり、製造工程数が少ない。
(β)押出条件を調整することで種々の断面積を有する銅線材を容易に製造可能であるため、連続鋳造圧延材として、太いものは勿論、汎用の大きさのものを用いることができる。
(γ)連続鋳造圧延及びコンフォーム押出のいずれも、長尺材を容易に製造できる。
(δ)連続鋳造圧延材は、動的再結晶化による微細な結晶組織を有しており、コンフォーム押出といった塑性加工の加工性に優れるため、押出時に過負荷になり難く、コンフォーム押出を良好に行える。
(ε)潤滑層を形成することで滑り性に優れるため、巻取時に銅線材を巻き取り易く、銅線材にキズなどをつけ難い。
(Α) Both the wire drawing step and the heat treatment step are unnecessary, and the number of manufacturing steps is small.
(Β) Since a copper wire having various cross-sectional areas can be easily manufactured by adjusting the extrusion conditions, as a continuous cast rolled material, a material having a general size can be used as well as a thick material.
(Γ) Both continuous casting and rolling and conform extrusion can easily produce a long material.
(Δ) The continuously cast rolled material has a fine crystal structure by dynamic recrystallization and is excellent in plastic workability such as conform extrusion, so it is difficult to overload during extrusion, It can be done well.
(Ε) Since the lubricating layer is excellent in slipperiness, it is easy to wind up the copper wire during winding, and it is difficult to scratch the copper wire.

特に、実施形態の銅コイル材の製造方法は、連続鋳造圧延以降に伸線工程及び熱処理工程を行うことなく、破断伸びが30%以上という高い伸びを有する銅コイル材を製造可能な点で、工業的意義が高い。また、実施形態の銅コイル材の製造方法によって製造された銅コイル材は、比較的大きな断面積を有する銅平角線(例えば、断面積が10mm程度以上)の素材に好適に利用することができる。この銅コイル材を巻き戻して銅線材に圧延加工(平角加工)を施すことで銅平角線を容易にかつ高精度に製造できることから、実施形態の銅コイル材の製造方法は、銅平角線の生産性の向上に寄与することができるといえる。 In particular, the copper coil material manufacturing method of the embodiment is capable of manufacturing a copper coil material having a high elongation of 30% or more without breaking the wire drawing step and the heat treatment step after continuous casting and rolling. Industrial significance is high. Moreover, the copper coil material manufactured by the copper coil material manufacturing method of the embodiment can be suitably used for a material of a copper flat wire having a relatively large cross-sectional area (for example, a cross-sectional area of about 10 mm 2 or more). it can. Since a copper flat wire can be easily and highly accurately manufactured by unwinding the copper coil material and subjecting the copper wire material to rolling (rectangular processing), the copper coil material manufacturing method of the embodiment is It can be said that it can contribute to productivity improvement.

(7) 実施形態に係る銅コイル材の製造方法の一例として、上記連続鋳造圧延材の断面積が50mm以上750mm以下であり、上記銅線材の断面積が12mm以上40mm以下である形態が挙げられる。 (7) As an example of the method for producing a copper coil material according to the embodiment, the cross-sectional area of the continuous cast rolled material is 50 mm 2 or more and 750 mm 2 or less, and the cross-sectional area of the copper wire is 12 mm 2 or more and 40 mm 2 or less. A form is mentioned.

上記形態は、連続鋳造圧延材及び銅線材の双方が十分な大きさを有することから、比較的大きな断面積を有する銅平角線(例えば、断面積が10mm程度以上)の素材に好適な銅コイル材を生産性よく製造することができる。 In the above embodiment, since both the continuous cast rolled material and the copper wire have a sufficient size, copper suitable for a material of a copper rectangular wire having a relatively large cross-sectional area (for example, a cross-sectional area of about 10 mm 2 or more). The coil material can be manufactured with high productivity.

(8) 実施形態に係る銅平角線の製造方法は、以下の準備工程と、押出工程と、巻取工程と、圧延工程とを備える。
(準備工程)連続鋳造圧延材を用意する工程。
(押出工程)上記連続鋳造圧延材にコンフォーム押出を施して銅線材を製造する工程。
(巻取工程)上記銅線材の表面に潤滑層を形成した後、コイル状に巻き取って銅コイル材を製造する工程。
(圧延工程)上記銅コイル材を巻き戻し、上記銅線材に圧延加工を施して銅平角線を製造する工程。
(8) The manufacturing method of the copper flat wire which concerns on embodiment is equipped with the following preparatory processes, an extrusion process, a winding process, and a rolling process.
(Preparation process) The process of preparing a continuous cast rolling material.
(Extrusion step) A step of producing a copper wire by subjecting the continuous cast rolled material to conform extrusion.
(Winding process) The process of manufacturing a copper coil material by winding in a coil shape after forming a lubrication layer on the surface of the said copper wire.
(Rolling process) The process which unwinds the said copper coil material, gives a rolling process to the said copper wire, and manufactures a copper flat wire.

実施形態の銅平角線の製造方法は、上述の(Α)、(Β)及び(α)〜(ε)の点から伸びが高く表面性状にも優れる銅コイル材を生産性よく製造でき、この銅コイル材を素材に用いることで、伸びが高く表面性状にも優れる銅平角線を生産性よく製造することができる。特に、実施形態の銅平角線の製造方法では、コンフォーム押出後、銅線材の巻取前に潤滑層を形成することで銅線材を巻き取り易い上に、この潤滑層を上述(D)のように次の圧延加工(平角加工)用の潤滑材として利用できることから、銅平角線の生産性をより高められる。ここで、伸線後に熱処理を施した銅線材では、伸線材に潤滑材を塗布していても、熱処理によってこの潤滑材が焼失する。そのため、熱処理した伸線材を銅平角線の素材に用いると、巻き戻し時や平角加工時の滑り性が不十分なことがある。実施形態の銅平角線の製造方法は、潤滑層によって上記滑り性を高められることから、熱処理した伸線材を銅平角線の素材に用いる場合に比較して、素材(実施形態の銅線材)に平角加工をより高精度に施すことができる。その結果、実施形態の銅平角線の製造方法は、形状不良や寸法不良の発生を抑制して、形状精度及び寸法精度に優れる銅平角線を生産性よく製造できる。   The method for producing a copper rectangular wire according to the embodiment can produce a copper coil material that has high elongation and excellent surface properties from the above points (Α), (Β), and (α) to (ε) with high productivity. By using a copper coil material as a raw material, a copper rectangular wire having high elongation and excellent surface properties can be produced with high productivity. In particular, in the method for producing a copper flat wire according to the embodiment, after the conform extrusion, the lubricating layer is formed before the copper wire is wound, so that the copper wire can be easily wound, and the lubricating layer is formed as described in (D) above. Thus, since it can utilize as a lubrication material for the next rolling process (flat angle process), the productivity of a copper rectangular wire can be improved more. Here, in a copper wire that has been heat-treated after wire drawing, even if a lubricant is applied to the wire-drawn material, the lubricant is burned away by the heat treatment. For this reason, when the heat-treated wire drawing material is used as a copper flat wire material, the slipperiness at the time of unwinding or flat work may be insufficient. Since the manufacturing method of the copper rectangular wire of the embodiment can improve the slipperiness by the lubricating layer, compared with the case where the heat-treated wire drawing material is used for the copper rectangular wire material, the material (copper wire material of the embodiment) is used. Flat angle processing can be performed with higher accuracy. As a result, the method for producing a copper rectangular wire according to the embodiment can produce a copper rectangular wire excellent in shape accuracy and dimensional accuracy with high productivity while suppressing the occurrence of shape failure and dimensional failure.

[本発明の実施形態の詳細]
以下、図面を適宜参照して、本発明の実施の形態をより詳細に説明する。銅コイル材、銅平角線、被覆平角線の順に説明し、次に製造方法を説明する。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings as appropriate. The copper coil material, the copper rectangular wire, and the covered rectangular wire will be described in this order, and then the manufacturing method will be described.

[銅コイル材]
実施形態の銅コイル材1は、図1に示すように長尺な銅線材10がコイル状に巻き取られたものであり、銅平角線の素材に利用される。銅線材10は、その表面に潤滑層12を備える。巻き取られた銅線材10がつくるターン間には、この潤滑層12が介在する。そのため、銅線材10を巻き戻して繰り出すとき、この潤滑層12によって銅線材10が滑り易い、即ち銅コイル材1は滑り性に優れ、繰り出しなどを行い易い。以下、銅コイル材1の主体である銅線材10をまず説明する。
[Copper coil material]
The copper coil material 1 of the embodiment is obtained by winding a long copper wire 10 in a coil shape as shown in FIG. 1 and is used as a material for a copper rectangular wire. The copper wire 10 includes a lubricating layer 12 on the surface thereof. The lubrication layer 12 is interposed between turns formed by the wound copper wire 10. Therefore, when the copper wire 10 is unwound and fed out, the lubricating wire 12 makes the copper wire 10 slip easily, that is, the copper coil material 1 is excellent in slipperiness and is easy to feed out. Hereinafter, the copper wire 10 which is the main body of the copper coil material 1 will be described first.

(組成)
銅線材10の構成材料は、いわゆる純銅、又は銅合金(添加元素を含み、残部がCu及び不可避不純物)とする。純銅は、例えば、無酸素銅(Cu含有量が99.95質量%以上、酸素含有量が0.005質量%以下)、タフピッチ銅(Cu含有量が99.90質量%以上)、リン脱酸銅(例えば、Cu含有量が99.90質量%以上、P含有量0.015質量%未満)などが挙げられる。銅合金の添加元素は、例えば、錫(Sn),ニッケル(Ni),ケイ素(Si),鉄(Fe),リン(P),銀(Ag)及びクロム(Cr)の少なくとも1種の元素が挙げられる。各元素の含有量は、例えば、0.05質量%以上1質量%以下が挙げられ、複数種の添加元素を含む場合には合計含有量は、0.1質量%以上6質量%以下が挙げられる。純銅は、伸びや導電率が高い銅線材10や銅平角線を得易い。銅合金は、強度に優れる銅線材10や銅平角線を得易い。
(composition)
The constituent material of the copper wire 10 is so-called pure copper or a copper alloy (including additive elements, with the balance being Cu and inevitable impurities). Pure copper includes, for example, oxygen-free copper (Cu content is 99.95% by mass or more, oxygen content is 0.005% by mass or less), tough pitch copper (Cu content is 99.90% by mass or more), phosphorus deoxidation Copper (for example, Cu content is 99.90 mass% or more, P content is less than 0.015 mass%), etc. are mentioned. The additive element of the copper alloy is, for example, at least one element of tin (Sn), nickel (Ni), silicon (Si), iron (Fe), phosphorus (P), silver (Ag), and chromium (Cr). Can be mentioned. The content of each element is, for example, 0.05% by mass or more and 1% by mass or less. When a plurality of additive elements are included, the total content is 0.1% by mass or more and 6% by mass or less. It is done. Pure copper is easy to obtain a copper wire 10 or a copper flat wire with high elongation and electrical conductivity. A copper alloy is easy to obtain the copper wire 10 and copper flat wire which are excellent in intensity | strength.

なお、実施形態の銅平角線、実施形態の銅コイル材の製造方法などに用いる連続鋳造圧延材の構成材料も、上述の純銅又は銅合金とする。   In addition, the constituent material of the continuous cast rolling material used for the manufacturing method of the copper rectangular wire of embodiment, the copper coil material of embodiment, etc. is also made into the above-mentioned pure copper or copper alloy.

(組織)
銅線材10は、代表的には、その表面から内部に至る実質的に全域に亘って、微細な結晶によって構成された形態が挙げられる。特に、銅線材10の平均結晶粒径が40μm以下であると、伸びや強度が高くなり易く加工性に優れて好ましい。例えば、この銅線材10に圧延加工(平角加工)を施した場合に銅線材10の全体を均一的に変形させられて割れなども生じ難く、この形態は、長尺な銅平角線を生産性よく製造できる。銅線材10の平均結晶粒径は、小さいほど、伸びに優れ、平角加工の加工性に優れる傾向にあることから、30μm以下、更に20μm以下が好ましい。銅線材10の結晶粒径は、代表的には押出条件によって調整できる。例えば、押出加工度を大きくすると、結晶粒径を小さくし易い。押出加工度を大きくし過ぎると、つまり、押出時の負荷を高め過ぎると、押出し難くなり、銅コイル材1の生産性の低下を招く。従って、銅線材10の平均結晶粒径は、5μm以上が好ましく、平角加工の加工性と押出時の加工性とを考慮すると、7μm以上、更に10μm以上が好ましい。
(Organization)
The copper wire 10 typically has a form constituted by fine crystals over substantially the entire region from the surface to the inside. In particular, it is preferable that the average crystal grain size of the copper wire 10 is 40 μm or less because elongation and strength are likely to be high and workability is excellent. For example, when the copper wire 10 is subjected to rolling (flattening), the entire copper wire 10 is uniformly deformed and hardly breaks, and this form makes it possible to produce long copper flat wires. Can be manufactured well. The smaller the average crystal grain size of the copper wire 10 is, the smaller the average grain size, the better the elongation and the better the workability of flattening. Therefore, it is preferably 30 μm or less, more preferably 20 μm or less. The crystal grain size of the copper wire 10 can typically be adjusted by the extrusion conditions. For example, if the degree of extrusion is increased, the crystal grain size can be easily reduced. If the degree of extrusion is increased too much, that is, if the load during extrusion is increased too much, extrusion becomes difficult and the productivity of the copper coil material 1 is reduced. Accordingly, the average crystal grain size of the copper wire 10 is preferably 5 μm or more, and is preferably 7 μm or more, and more preferably 10 μm or more, considering the workability of flattening and the processability during extrusion.

銅線材10の結晶粒径の測定は、銅線材10をその軸方向に平行な平面で切断した断面、いわゆる縦断面、又は銅線材10をその軸方向に直交する平面で切断した断面、いわゆる横断面をとり、この断面を用いて行う。銅線材10がコンフォーム押出を経て製造された場合には、縦断面でも横断面でも粒状の組織を確認できることから、結晶粒径の測定には、縦断面及び横断面のいずれも用いることができる。測定方法の詳細は後述する。   The crystal grain size of the copper wire 10 is measured by a cross section obtained by cutting the copper wire 10 along a plane parallel to the axial direction, a so-called longitudinal section, or a cross section obtained by cutting the copper wire 10 by a plane perpendicular to the axial direction, so-called transverse. Take a plane and use this section. When the copper wire 10 is manufactured through conform extrusion, a granular structure can be confirmed in both the longitudinal section and the transverse section, and therefore, both the longitudinal section and the transverse section can be used for the measurement of the crystal grain size. . Details of the measurement method will be described later.

(形状)
銅線材10は、製造条件によって種々の外形(断面形状)を有することができる。特に、銅線材10が断面円形状の丸線であると、(1)コンフォーム押出などによって押し出し易く、形状精度や寸法精度に優れるもの、更に表面性状にも優れるものを製造し易い、(2)潤滑層12を均一的な厚さに形成し易い、(3)巻き取り易い、(4)圧延加工(平角加工)を均一的に施し易く、形状精度や寸法精度に優れる平角線を得易い、といった利点を有する。銅線材10がコンフォーム押出を経て製造される場合には、断面矩形状、多角形状、楕円状などに容易に成形可能であるが、上述の利点から丸線が好ましい。
(shape)
The copper wire 10 can have various external shapes (cross-sectional shapes) depending on manufacturing conditions. In particular, when the copper wire 10 is a round wire having a circular cross section, (1) it is easy to extrude by conform extrusion or the like, and it is easy to produce a material that is excellent in shape accuracy and dimensional accuracy, and that is also excellent in surface properties. ) Easy to form the lubricating layer 12 to a uniform thickness, (3) Easy to wind up, (4) Easy to uniformly apply rolling (flattening), easy to obtain a rectangular wire with excellent shape accuracy and dimensional accuracy And so on. When the copper wire 10 is manufactured through conform extrusion, it can be easily formed into a rectangular cross section, a polygonal shape, an elliptical shape, etc., but a round wire is preferable from the above-mentioned advantages.

(断面積)
銅線材10は、製造条件によって種々の大きさを有することができる。実施形態の銅コイル材1は、比較的大断面積を有する銅平角線を製造できるように、銅線材10の断面積がある程度大きいことを特徴の一つとする。具体的には、銅線材10の横断面における断面積が12mm以上40mm以下とする。銅線材10が丸線の場合には、線径(直径)がφ3.9mm以上7.1mm以下程度である。断面積が12mm以上であることで、断面積が10mm程度以上といった大断面積の銅平角線の素材に好適に利用できる。断面積が40mm以下であることで、銅線材10の巻き取り及び繰り出しが容易であり、次の工程に用いる平角加工装置への供給などを行い易い。銅線材10の断面積は、12.5mm以上33.5mm以下(線径ではφ4mm以上6.5mm以下)、更に12.5mm以上28.5mm以下(線径ではφ4mm以上6mm以下)とすることができる。
(Cross sectional area)
The copper wire 10 can have various sizes depending on manufacturing conditions. The copper coil material 1 according to the embodiment is characterized in that the cross-sectional area of the copper wire 10 is large to some extent so that a copper rectangular wire having a relatively large cross-sectional area can be manufactured. Specifically, the cross-sectional area in the cross section of the copper wire 10 is 12 mm 2 or more and 40 mm 2 or less. When the copper wire 10 is a round wire, the wire diameter (diameter) is about 3.9 mm or more and 7.1 mm or less. When the cross-sectional area is 12 mm 2 or more, the cross-sectional area can be suitably used for a copper rectangular wire material having a large cross-sectional area of about 10 mm 2 or more. When the cross-sectional area is 40 mm 2 or less, the copper wire 10 can be easily wound and fed out, and can be easily supplied to a flat-angle machining apparatus used in the next step. Sectional area of the copper wire 10, 12.5 mm 2 or more 33.5 mm 2 or less (6.5 mm or less than φ4mm in wire diameter), further 12.5 mm 2 or more 28.5 mm 2 or less (6mm inclusive φ4mm in wire diameter) It can be.

(質量)
実施形態の銅コイル材1は、銅平角線の素材とすることから、平角加工装置に連続供給して銅平角線を量産できるように長いことが好ましい。銅線材10が長いほど、銅コイル材1の質量が大きくなることから、銅コイル材1の質量は50kg以上が好ましく、実施形態の銅コイル材1では100kg以上とする。銅線材10の組成や断面積の大きさにもよるが、銅コイル材1の質量が100kg以上である場合、銅線材10の長さは例えば350m以上になる。銅コイル材1の質量は、150kg以上(例えば500m以上)、更に200kg以上(例えば700m以上)、更には300kg以上(例えば1000m以上)とすることができる。銅コイル材1の質量の上限は特に設けないが、5000kg以下、更に2000kg以下とすると、汎用の平角加工装置に供給し易かったり、搬送し易かったりすると期待される。
(mass)
Since the copper coil material 1 of the embodiment is a material for a copper rectangular wire, it is preferable that the copper coil material 1 is long so that the copper rectangular wire can be mass-produced by being continuously supplied to a rectangular processing apparatus. Since the mass of the copper coil material 1 increases as the copper wire material 10 becomes longer, the mass of the copper coil material 1 is preferably 50 kg or more. In the copper coil material 1 of the embodiment, the mass is 100 kg or more. Although depending on the composition of the copper wire 10 and the size of the cross-sectional area, when the mass of the copper coil material 1 is 100 kg or more, the length of the copper wire 10 is, for example, 350 m or more. The mass of the copper coil material 1 can be 150 kg or more (for example, 500 m or more), 200 kg or more (for example, 700 m or more), and further 300 kg or more (for example, 1000 m or more). The upper limit of the mass of the copper coil material 1 is not particularly set, but if it is 5000 kg or less, and further 2000 kg or less, it is expected that the copper coil material 1 can be easily supplied to a general-purpose flat-angle machining apparatus or can be conveyed.

(表面性状)
銅線材10は、代表的には鋳造以降に少なくとも一つの塑性加工を経て製造されることで、割れなどの表面欠陥が少なく又は実質的になく表面性状に優れる。例えば、連続鋳造圧延材を用いて製造された場合には、圧延によって、鋳造工程で生じた表面欠陥(ヒケ、表面割れ、ブローホールなど)が除去されたり、動的再結晶化によって微細な結晶組織となったりすることで、表面性状に優れる銅線材10になり易い。特に、銅線材10がコンフォーム押出を経て製造された場合には、押出時に新生面が形成されて、割れなどの表面欠陥が無くなって、表面性状に非常に優れた銅線材10となる。塑性加工などによって、上述のような微細な結晶組織となることでも(例えば、平均結晶粒径が40μm以下)、銅線材10は、表面性状に優れる。
(Surface properties)
The copper wire 10 is typically manufactured through at least one plastic processing after casting, so that it has few or substantially no surface defects such as cracks and is excellent in surface properties. For example, when manufactured using a continuously cast rolled material, surface defects (sink marks, surface cracks, blowholes, etc.) generated in the casting process are removed by rolling, or fine crystals are obtained by dynamic recrystallization. It becomes easy to become the copper wire 10 which is excellent in surface property by becoming a structure | tissue. In particular, when the copper wire 10 is manufactured through conform extrusion, a new surface is formed at the time of extrusion, and surface defects such as cracks are eliminated, so that the copper wire 10 is excellent in surface properties. Even if it becomes a fine crystal structure as described above by plastic working or the like (for example, the average crystal grain size is 40 μm or less), the copper wire 10 is excellent in surface properties.

(機械的特性)
銅線材10は、伸びが高いことを特徴の一つとする。具体的には、銅線材10は、室温における破断伸びが30%以上を満たす。特に、銅線材10がコンフォーム押出を経て製造された場合には、銅線材10の全長に亘って高い伸びを有することができる。即ち、実施形態の銅コイル材10の代表的な形態では、その長手方向の任意の位置について破断伸びを測定した場合に30%以上という高い伸びを有する。銅線材10の組成や製造条件などによっては、室温における破断伸びが35%以上、更に40%以上を満たす形態とすることができる。
(Mechanical properties)
The copper wire 10 is characterized by high elongation. Specifically, the copper wire material 10 has a breaking elongation at room temperature of 30% or more. In particular, when the copper wire 10 is manufactured through conform extrusion, the copper wire 10 can have a high elongation over the entire length of the copper wire 10. That is, in the typical form of the copper coil material 10 of the embodiment, the elongation at break is measured at an arbitrary position in the longitudinal direction, and the elongation is as high as 30% or more. Depending on the composition and manufacturing conditions of the copper wire 10, the elongation at break at room temperature may be 35% or more, and more preferably 40% or more.

銅線材10の一例として、強度にも優れる形態、例えば、室温における引張強さが230MPa以上を満たす形態が挙げられる。銅線材10は、代表的には、上述のように表面性状に優れたり、微細な結晶組織によって構成されていたりすることで、このような高強度材である。銅線材10の組成や製造条件などによっては、室温における引張強さが240MPa以上、更に245MPa以上を満たす形態とすることができる。このように伸びだけでなく強度にも優れる銅線材10を素材にすることで、伸びや強度などの機械的特性に優れる銅平角線が得られる。   As an example of the copper wire 10, a form excellent in strength, for example, a form satisfying a tensile strength at room temperature of 230 MPa or more can be mentioned. The copper wire 10 is typically such a high-strength material because it is excellent in surface properties as described above or is composed of a fine crystal structure. Depending on the composition and manufacturing conditions of the copper wire 10, the tensile strength at room temperature may be 240 MPa or more, and more preferably 245 MPa or more. Thus, by using the copper wire 10 that is excellent not only in elongation but also in strength, a copper rectangular wire that is excellent in mechanical properties such as elongation and strength can be obtained.

(導電率)
銅線材10は、上述のように純銅又は銅合金によって構成されることから、高い導電率を有することができる。銅線材10の組成や製造条件などにもよるが、銅線材10の室温における導電率が、98%IACS以上、更に99%IACS以上、更には100%IACS以上を満たす形態が挙げられる。
(conductivity)
Since the copper wire 10 is comprised by pure copper or a copper alloy as mentioned above, it can have high electrical conductivity. Although it depends on the composition and manufacturing conditions of the copper wire 10, examples include a form in which the electrical conductivity of the copper wire 10 at room temperature satisfies 98% IACS or more, further 99% IACS or more, and further 100% IACS or more.

(潤滑層)
銅線材10は、その表面に潤滑層12を備えることを特徴の一つとする。潤滑層12は、銅線材10を巻き取る前に形成されて、銅線材10の巻取時の滑り性を高める機能、及び銅コイル材1を巻き戻して繰り出すときの滑り性を高める機能を有する。更に潤滑層12は、銅線材10に圧延加工(平角加工)を施すときの滑り性を高めることにも利用できる。潤滑層12は、これらの機能を奏する種々の材料、厚さを選択できる。
(Lubrication layer)
One of the features of the copper wire 10 is that it has a lubricating layer 12 on its surface. The lubricating layer 12 is formed before the copper wire 10 is wound, and has a function of improving the slipperiness when the copper wire 10 is wound and a function of improving the slippery when the copper coil material 1 is unwound and fed out. . Furthermore, the lubricating layer 12 can be used to enhance the slipperiness when the copper wire 10 is subjected to rolling (flat angle processing). The lubricating layer 12 can be selected from various materials and thicknesses that exhibit these functions.

潤滑層12を構成する潤滑材は、例えば、鉱物油、合成油及び植物油などから選択される1種以上の油と表面活性剤との混合物、油脂と石鹸とを主成分としたものなどが挙げられる。具体的には、株式会社日本油剤研究所製のルーブライト(登録商標)、RichardsApex株式会社製の型番Lubro30FM、D.A.Stuart株式会社製の型番WM561などが挙げられる。銅製の線材に利用される公知の潤滑材を利用することができる。   Examples of the lubricant constituting the lubricating layer 12 include a mixture of one or more oils selected from mineral oil, synthetic oil, vegetable oil, and the like, and a surfactant, and those mainly composed of fats and soaps. It is done. Specifically, Lubrite (registered trademark) manufactured by Nippon Oil Research Laboratory Co., Ltd., model number Lubro30FM manufactured by Richards Apex Co., Ltd., D.C. A. Examples include model number WM561 manufactured by Stuart Corporation. A well-known lubricant used for copper wire can be used.

潤滑層12の厚さは、例えば、0.004μm以上0.4μm以下程度が挙げられる。銅線材10の表面における潤滑材の付着量を0.5μg/cm以上50μg/cm以下程度とすることで、上述の範囲の厚さにすることができる。更に潤滑層12の厚さを0.007μm以上0.07μm以下、付着量を0.9μg/cm以上9μg/cm以下とすることができる。潤滑層12が上述の範囲で厚く、付着量が多いと、巻き取り時や繰り出し時の滑り性、圧延加工時の加工性に優れる。潤滑層12が上述の範囲で薄く、付着量が少ないと、保管時や搬送時などで荷崩れなどを防止でき、取扱い易い。潤滑層12の形成方法は後述する。 As for the thickness of the lubricating layer 12, about 0.004 micrometer or more and 0.4 micrometer or less are mentioned, for example. By setting the adhesion amount of the lubricant on the surface of the copper wire 10 to about 0.5 μg / cm 2 or more and 50 μg / cm 2 or less, the thickness can be in the above range. Further more 0.007μm thickness of the lubricating layer 12 0.07 .mu.m or less, deposition amount can be 0.9 [mu] g / cm 2 or more 9 [mu] g / cm 2 or less. When the lubricating layer 12 is thick in the above-mentioned range and has a large amount of adhesion, the slipperiness during winding and unwinding and the workability during rolling are excellent. If the lubricating layer 12 is thin in the above-mentioned range and the amount of adhesion is small, it can be prevented from collapsing during storage or transportation and easy to handle. A method for forming the lubricating layer 12 will be described later.

(用途)
実施形態の銅コイル材1は、銅平角線の素材、詳しくは銅コイル材1を巻き戻して圧延加工(平角加工)を施すことで形成される銅平角線の素材に好適に利用することができる。その他、銅コイル材1は、電線の導体といった種々の導電部材の素材に利用することができる。
(Use)
The copper coil material 1 according to the embodiment can be suitably used as a copper flat wire material, specifically, a copper flat wire material formed by unwinding the copper coil material 1 and subjecting it to a rolling process (flat square processing). it can. In addition, the copper coil material 1 can be used as a material for various conductive members such as conductors of electric wires.

[銅平角線]
実施形態の銅平角線は、上述の実施形態の銅コイル材1(銅線材10)を素材とし、この素材に圧延加工(平角加工)を施して、断面形状を矩形状に成形することで製造されたものである。
[Copper flat wire]
The copper rectangular wire of the embodiment is manufactured by using the copper coil material 1 (copper wire material 10) of the above-described embodiment as a raw material, rolling the raw material (flat rectangular processing), and forming the cross-sectional shape into a rectangular shape. It has been done.

(組織)
実施形態の銅平角線は、上述の製造方法から、銅線材10と同様な組織を有する。即ち、この銅平角線は、代表的には銅線材10と同等程度の微細な結晶組織、又は銅線材10よりも微細な結晶組織によって構成される。
(Organization)
The copper rectangular wire of the embodiment has a structure similar to that of the copper wire 10 from the above-described manufacturing method. That is, this copper rectangular wire is typically configured with a fine crystal structure comparable to the copper wire 10 or a finer crystal structure than the copper wire 10.

(形状)
実施形態の銅平角線は、横断面が矩形状であり、代表的には厚さtに対する幅wの比(w/t)が1超である偏平な形状、つまり厚さよりも幅が広い形状である。上記比(w/t)は適宜選択することができ、1.5以上、更に2以上、更には2.5以上とすることができる。なお、圧延条件によっては、銅平角線を、上記比(w/t)が1である正方形状の角線とすることができる。
(shape)
The copper rectangular wire of the embodiment has a rectangular shape in cross section, typically a flat shape in which the ratio of the width w to the thickness t (w / t) is more than 1, that is, a shape having a width wider than the thickness. It is. The ratio (w / t) can be selected as appropriate, and can be 1.5 or more, further 2 or more, and further 2.5 or more. In addition, depending on rolling conditions, a copper rectangular wire can be made into the square-shaped square wire whose said ratio (w / t) is 1.

(大きさ)
実施形態の銅平角線の断面積、幅w、厚さtは、圧延条件によって容易に変更することができる。特に、実施形態の銅平角線としては、断面積が5mm以上100mm以下程度、厚さtが0.5mm以上5mm以下程度、幅wが1mm以上20mm以下程度、が挙げられる。このような比較的大断面積を有する銅平角線をコイル用巻線の導体に用いることで、高出力のコイルを提供できる。断面積は、10mm程度とすることができる。なお、圧延条件によっては、断面積を実質的に変更することなく、横断面形状(外形)のみを変形可能である。
(size)
The cross-sectional area, width w, and thickness t of the copper rectangular wire of the embodiment can be easily changed depending on the rolling conditions. In particular, as the copper flat wire embodiments, the cross-sectional area extent 5mm 2 or 100 mm 2 or less, the thickness t is much more 5mm or less 0.5 mm, the width w is much more 20mm or less 1 mm, and the like. By using a copper rectangular wire having such a relatively large cross-sectional area as a conductor of a coil winding, a high output coil can be provided. The cross-sectional area can be about 10 mm 2 . Depending on the rolling conditions, only the cross-sectional shape (outer shape) can be deformed without substantially changing the cross-sectional area.

(機械的特性・導電率)
実施形態の銅平角線は、上述の銅線材10に圧延加工(平角加工)といった塑性加工が施されることで、加工硬化によって強度が高められる傾向にある。従って、実施形態の銅平角線として、室温における引張強さが上述の銅線材10よりも高い形態が挙げられる。一方、上述の平角加工に基づく加工歪みによって伸びや導電率が低くなる傾向にある。従って、実施形態の銅平角線として、室温における破断伸び及び導電率の少なくとも一方が上述の銅線材10よりも低い形態が挙げられる。
(Mechanical properties / conductivity)
The copper rectangular wire according to the embodiment tends to be increased in strength by work hardening by subjecting the above-described copper wire 10 to plastic processing such as rolling (flat rectangular processing). Therefore, the copper flat wire of the embodiment includes a form in which the tensile strength at room temperature is higher than that of the copper wire 10 described above. On the other hand, elongation and electrical conductivity tend to be lowered due to processing strain based on the above-described flat processing. Therefore, the copper flat wire of the embodiment includes a form in which at least one of elongation at break and electrical conductivity at room temperature is lower than that of the copper wire 10 described above.

(用途)
実施形態の銅平角線は、伸びや強度に優れて巻回などの作業が行い易いことから、コイル用巻線の導体に好適に利用することができる。実施形態の銅平角線を導体とする場合には、そのまま利用してもよいし(裸線として利用する)、その表面に絶縁被覆を形成した被覆平角線として利用することもできる。その他、銅平角線は、適宜な長さに切断したり、プレス加工などによって所望の形状に変形したりして、種々の導電部材に利用することができる。
(Use)
The copper rectangular wire according to the embodiment is excellent in elongation and strength and can be easily used for a conductor of a coil winding because it can be easily wound. When the copper rectangular wire of the embodiment is used as a conductor, it may be used as it is (used as a bare wire), or may be used as a covered rectangular wire having an insulating coating formed on the surface thereof. In addition, the copper rectangular wire can be used for various conductive members by cutting it into an appropriate length or by deforming it into a desired shape by pressing or the like.

[被覆平角線]
実施形態の被覆平角線は、上述の実施形態の銅平角線20(図3)を導体として備え、この導体の表面に絶縁被覆(図示せず)を更に備える。
[Coated rectangular wire]
The coated rectangular wire of the embodiment includes the copper rectangular wire 20 (FIG. 3) of the above-described embodiment as a conductor, and further includes an insulating coating (not shown) on the surface of the conductor.

(導体)
実施形態の被覆平角線に備える導体は、上述の実施形態の銅平角線の組成、形状及び大きさを実質的に維持する。従って、この導体は、代表的には、断面積が5mm以上100mm以下程度、上述の比(w/t)が1超である偏平な矩形状である。導体の断面積は、10mm程度、厚さは0.5mm以上5mm以下程度、幅は、1mm以上20mm以下程度とすることができる。この導体は、実施形態の銅平角線に加工歪みの除去などを目的とした熱処理を施したものが挙げられる。熱処理を施すことで伸びや導電率を向上することができることから、実施形態の被覆平角線として、室温における破断伸び及び導電率の少なくとも一方が上述の実施形態の銅平角線よりも高い形態が挙げられる。実施形態の被覆平角線は、伸びに優れて巻回などの作業が行い易く、導電性にも優れることから、コイル用巻線に好適に利用することができる。特に、実施形態の被覆平角線が上述の大断面積を有する実施形態の銅平角線を備える場合には、高出力のコイル用巻線に好適に利用することができる。なお、上記熱処理によって結晶粒が若干成長するものの、熱処理前の銅平角線の結晶粒が上述のように微細であれば、熱処理後も微細な結晶組織とすることができる。
(conductor)
The conductor included in the coated rectangular wire of the embodiment substantially maintains the composition, shape, and size of the copper rectangular wire of the above-described embodiment. Therefore, this conductor typically has a flat rectangular shape with a cross-sectional area of about 5 mm 2 or more and 100 mm 2 or less and the above-mentioned ratio (w / t) is more than 1. The cross-sectional area of the conductor can be about 10 mm 2 , the thickness can be about 0.5 mm to 5 mm, and the width can be about 1 mm to 20 mm. As this conductor, the copper rectangular wire of the embodiment is subjected to a heat treatment for the purpose of removing processing strain or the like. Since elongation and electrical conductivity can be improved by applying heat treatment, the coated rectangular wire of the embodiment includes a form in which at least one of elongation at break and electrical conductivity at room temperature is higher than the copper rectangular wire of the above-described embodiment. It is done. The coated rectangular wire of the embodiment is excellent in elongation, easy to perform operations such as winding, and excellent in conductivity, and can be suitably used for coil winding. In particular, when the coated rectangular wire of the embodiment includes the copper rectangular wire of the embodiment having the above-described large cross-sectional area, it can be suitably used for a high-power coil winding. Note that although the crystal grains grow slightly due to the heat treatment, if the crystal grains of the copper rectangular wire before the heat treatment are fine as described above, a fine crystal structure can be obtained even after the heat treatment.

(絶縁被覆)
絶縁被覆の材質は、ポリアミドイミド、ポリイミド、ポリエステルイミド、ポリウレタン、ポリエステルなどの電気絶縁性に優れる樹脂が挙げられる。絶縁被覆の厚さは、所望の耐電圧特性に応じて選択するとよい。例えば、絶縁被覆の厚さは、0.01mm(10μm)以上0.5mm(500μm)以下程度、更には0.02mm(20μm)以上0.1mm(100μm)以下が挙げられる。
(Insulation coating)
Examples of the material for the insulating coating include resins having excellent electrical insulation properties such as polyamideimide, polyimide, polyesterimide, polyurethane, and polyester. The thickness of the insulating coating may be selected according to desired withstand voltage characteristics. For example, the thickness of the insulating coating is about 0.01 mm (10 μm) to 0.5 mm (500 μm), and further 0.02 mm (20 μm) to 0.1 mm (100 μm).

[銅コイル材の製造方法]
実施形態の銅コイル材1は、代表的には、銅素材にコンフォーム押出を施すことで製造することができる。コンフォーム押出を利用することで、(1)長尺な銅線材10を連続して製造できる(量産できる)、(2)高い伸びを有する銅線材10を製造できる、(3)押出時の塑性変形によって新生面を形成して表面性状に優れる銅線材10を製造できる、(4)種々の大きさの銅素材を利用でき、かつ種々の形状、大きさの銅線材10を製造できる(銅素材における大きさの選択の自由度が大きい、銅線材10の形状及び大きさの選択の自由度が大きい)、(5)押出時の動的再結晶化によって結晶粒を微細にして、微細な結晶組織から構成される銅線材10が得られる、といった多数の利点を有する。特に、銅素材として、再結晶組織を有するものを利用することで、銅素材自体が押出加工性に優れることから、形状精度や寸法精度、表面性状に優れる銅線材10を得易い。この形態は、動的再結晶化が可能な加工であるコンフォーム押出を、再結晶組織を有する銅素材に施す点を特徴とする。再結晶組織を有する銅素材として、鋳造材に圧延や伸線、押出、鍛造などの加工を施したものが挙げられる。特に、再結晶組織を有する銅素材として、連続鋳造圧延材を利用すると、銅素材を量産できることから、ひいては銅線材10の生産性の向上に寄与することができる。そこで、実施形態の銅コイル材の製造方法では、銅素材として連続鋳造圧延材を用いることを提案する。以下、実施形態の銅コイル材の製造方法に備える各工程(準備工程、押出工程、巻取工程)を順に説明する。
[Manufacturing method of copper coil material]
The copper coil material 1 of the embodiment can be typically manufactured by subjecting a copper material to conform extrusion. By utilizing conform extrusion, (1) long copper wire 10 can be continuously manufactured (can be mass-produced), (2) copper wire 10 having high elongation can be manufactured, (3) plasticity during extrusion A copper wire 10 having excellent surface properties can be produced by forming a new surface by deformation. (4) Copper materials 10 of various sizes can be used, and copper wires 10 of various shapes and sizes can be produced (in copper materials) (5) The degree of freedom of size selection is large, the degree of freedom of selection of the shape and size of the copper wire 10 is large), (5) The crystal grains are refined by dynamic recrystallization during extrusion, and the fine crystal structure The copper wire 10 composed of the following is obtained. In particular, by using a copper material having a recrystallized structure, the copper material itself is excellent in extrusion processability, so that it is easy to obtain the copper wire 10 having excellent shape accuracy, dimensional accuracy, and surface properties. This form is characterized in that conform extrusion, which is a process capable of dynamic recrystallization, is applied to a copper material having a recrystallized structure. Examples of the copper material having a recrystallized structure include a cast material that has been subjected to processing such as rolling, wire drawing, extrusion, and forging. In particular, when a continuously cast and rolled material is used as the copper material having a recrystallized structure, the copper material can be mass-produced, thereby contributing to an improvement in the productivity of the copper wire 10. Then, in the manufacturing method of the copper coil material of embodiment, it is proposed to use a continuous cast rolling material as a copper material. Hereinafter, each process (a preparation process, an extrusion process, a winding process) with which the manufacturing method of the copper coil material of embodiment is equipped is demonstrated in order.

(準備工程)
この工程では、銅素材となる連続鋳造圧延材100(図3)を用意する。連続鋳造圧延材100は、連続鋳造に引き続いて圧延加工を施すことが可能な設備を利用することで製造可能である。連続鋳造は、例えば、双ベルト方式、ベルトアンドホイール方式、横引鋳造方式などが挙げられる。連続鋳造圧延は、例えば、コンチロッド方式、プロペルチ方式、SCR(Southwire Continuous Rod)方式などが挙げられる。市販の連続鋳造圧延材(銅荒引線)を利用することができる。
(Preparation process)
In this step, a continuous cast rolled material 100 (FIG. 3) that is a copper material is prepared. The continuously cast rolled material 100 can be manufactured by using equipment capable of performing a rolling process subsequent to continuous casting. Examples of the continuous casting include a twin belt method, a belt-and-wheel method, and a horizontal drawing method. Examples of the continuous casting and rolling include a continuous rod method, a propelty method, and an SCR (Southern Continuous Rod) method. Commercially available continuous cast rolled material (copper rough wire) can be used.

連続鋳造圧延材の形状、大きさ(線径、断面積、長さなど)は、適宜選択することができる。連続鋳造圧延材100は、代表的には、断面円形状の丸線が挙げられる。また、連続鋳造圧延材100は、コンフォーム押出後の銅線材10の断面積を12mm以上にできる程度の断面積を有することが好ましい。特に、連続鋳造圧延材100の断面積が50mm以上(丸線の場合には線径換算でφ7.98mm以上程度)であると、断面積が12mm以上の銅線材10を製造可能である上に、汎用装置で製造可能な大きさを含むことから連続鋳造圧延材100の生産性に優れ、ひいては銅線材10の生産性の向上に寄与することができる。連続鋳造圧延材100が大き過ぎると生産性の低下を招くことから、連続鋳造圧延材100の断面積は750mm以下(線径換算でφ30mm以下程度)が好ましい。連続鋳造圧延材100の断面積を700mm以下(線径換算でφ30mm未満程度)、更に365mm以下(線径換算でφ22mm未満程度)、更には270mm以下(線径換算でφ19mm未満程度)とすることができる。連続鋳造圧延材100の断面積を150mm以下(線径換算でφ15mm未満程度)、更に140mm以下(線径換算でφ13.5mm以下程度)とすると、(1)汎用装置で容易に製造可能であり、連続鋳造圧延材の生産性に更に優れて、銅線材10の生産性の更なる向上に寄与することができる、(2)巻癖などがつき難く、圧延加工(平角加工)を施す際に巻癖の除去や直進性を高めるための加工などを省略でき、銅平角線20の生産性の向上に寄与することができる、といった利点を有する。 The shape and size (wire diameter, cross-sectional area, length, etc.) of the continuously cast rolled material can be appropriately selected. The continuous cast rolled material 100 typically includes a round wire having a circular cross section. Moreover, it is preferable that the continuous cast rolled material 100 has a cross-sectional area that can make the cross-sectional area of the copper wire 10 after conform extrusion 12 mm 2 or more. In particular, when the cross-sectional area of the continuously cast rolled material 100 is 50 mm 2 or more (in the case of a round wire, φ 7.98 mm or more in terms of wire diameter), the copper wire 10 having a cross-sectional area of 12 mm 2 or more can be manufactured. In addition, since it includes a size that can be manufactured by a general-purpose device, it is excellent in productivity of the continuously cast rolled material 100 and can contribute to improvement in productivity of the copper wire 10. If the continuous cast rolled material 100 is too large, the productivity is lowered. Therefore, the cross sectional area of the continuous cast rolled material 100 is preferably 750 mm 2 or less (about φ30 mm or less in terms of wire diameter). The cross-sectional area of the continuous casting and rolling material 100 700 mm 2 or less (less than about φ30mm in diameter conversion), further 365 mm 2 or less (less than about φ22mm in diameter equivalent), even 270 mm 2 or less (less than about φ19mm in diameter conversion) It can be. If the cross-sectional area of the continuously cast rolled material 100 is 150 mm 2 or less (less than about φ15 mm in terms of wire diameter) and further 140 mm 2 or less (about φ13.5 mm or less in terms of wire diameter), (1) it can be easily manufactured with a general-purpose device. It is more excellent in productivity of continuously cast rolled material, and can contribute to further improvement in productivity of copper wire 10. (2) It is difficult to curl and is subjected to rolling (flat angle processing). At this time, there is an advantage that the removal of the curl or the processing for improving the straightness can be omitted, and the productivity of the copper rectangular wire 20 can be improved.

(押出工程)
この工程は、用意した銅素材(連続鋳造圧延材100)にコンフォーム押出を施して銅線材10を製造する工程である。コンフォーム押出には、市販のコンフォーム押出装置を利用できる。以下、図2を参照してコンフォーム押出装置及び押出原理を説明する。
(Extrusion process)
This step is a step of manufacturing the copper wire 10 by subjecting the prepared copper material (continuously cast rolled material 100) to conform extrusion. A commercially available conform extrusion apparatus can be used for the conform extrusion. Hereinafter, the conform extrusion apparatus and the extrusion principle will be described with reference to FIG.

コンフォーム押出装置200は、回転可能に支持された円筒状のホイール210と、ホイール210の周方向に設けられて、素材となる線材(ここでは連続鋳造圧延材100)が配置される溝212と、溝212の開口部の一部を覆って蓋として機能するシュー220と、溝212に取り付けられて上記素材を堰き止めるアバットメント232と、堰き止められた材料を押し出すダイス234と、ダイス234を収納するダイチャンバ230とを備える。   The conform extrusion apparatus 200 includes a cylindrical wheel 210 that is rotatably supported, and a groove 212 that is provided in a circumferential direction of the wheel 210 and in which a wire rod (here, the continuous cast rolled material 100) serving as a material is disposed. A shoe 220 that covers a part of the opening of the groove 212 and functions as a lid, an abutment 232 attached to the groove 212 to dam the material, a die 234 for extruding the dammed material, and a die 234 And a die chamber 230 for housing.

回転するホイール210の溝212に、素材である連続鋳造圧延材100を挿入すると、ホイール210と素材との間の摩擦力によって素材が順次引き込まれる。引き込まれた素材がアバットメント232によって堰き止められ、かつ、溝212がシュー220によって閉塞されることによって、押出圧力が発生する。この押出圧力によって、ダイチャンバ230の材料溜まり箇所(アバットメント232とダイス234に囲まれた箇所)に素材が流れ込み、ダイス234によって、この素材を所望の形状に押し出して成形し、押出材(ここでは銅線材10)が製造できる。押出時、ダイス234近傍から屑(バリ)300が生じ得る。   When the continuous cast rolled material 100 as the material is inserted into the groove 212 of the rotating wheel 210, the material is sequentially drawn by the frictional force between the wheel 210 and the material. The drawn material is blocked by the abutment 232, and the groove 212 is closed by the shoe 220, thereby generating an extrusion pressure. The extrusion pressure causes the material to flow into the material reservoir location (the location surrounded by the abutment 232 and the die 234) of the die chamber 230, and the die 234 is used to extrude the material into a desired shape and form the extruded material (here, A copper wire 10) can be produced. During extrusion, waste (burrs) 300 can be generated from the vicinity of the die 234.

押出時、素材は、摩擦熱や変形熱により発熱する。従って、別途、加熱手段を使用しなくても、高温状態(例えば、200℃以上)とすることができる。高温状態となることで、素材の塑性加工性(押出性)を高められる。冷却手段や加熱手段を別途用意して、ダイチャンバ230(ダイス234)の温度を調整することで、所望の押出状態とすることができる。得られた押出材(銅線材10)は、押出時の動的再結晶化と上述の熱とによって再結晶組織となっている。また、再結晶化によって微細な結晶組織を有する銅線材10は、高い伸び(破断伸びが30%以上)を有する上に、表面性状にも優れる。更には、この銅線材10は、強度にも優れる(例えば、引張強さが230MPa以上)。このように高い伸びなどを有する銅線材10をコンフォーム押出後に伸線加工及び軟化処理といった熱処理を別途施すことなく製造できる点で、実施形態の銅コイル材の製造方法は、銅平角線の素材に適した銅コイル材1を生産性によく製造できるといえる。   During extrusion, the material generates heat due to frictional heat and deformation heat. Therefore, a high temperature state (for example, 200 ° C. or higher) can be obtained without using a separate heating means. By being in a high temperature state, the plastic workability (extrudability) of the material can be improved. By separately preparing a cooling means and a heating means and adjusting the temperature of the die chamber 230 (die 234), a desired extruded state can be obtained. The obtained extruded material (copper wire 10) has a recrystallized structure due to dynamic recrystallization during extrusion and the above-described heat. Further, the copper wire 10 having a fine crystal structure by recrystallization has high elongation (breaking elongation of 30% or more) and is excellent in surface properties. Furthermore, this copper wire 10 is also excellent in strength (for example, tensile strength is 230 MPa or more). The copper coil material manufacturing method according to the embodiment is a material for a copper rectangular wire in that the copper wire material 10 having high elongation and the like can be manufactured without performing heat treatment such as wire drawing and softening after the extrusion. It can be said that the copper coil material 1 suitable for the production can be manufactured with good productivity.

コンフォーム押出によって、所望の大きさの銅線材10が得られるように、好ましくは断面積が10mm以上程度の大断面積を有する銅平角線20を製造可能な12mm以上40mm以下の断面積を有する銅線材10が得られるように、ダイス234の大きさなどを選択する。なお、コンフォーム押出では、コンフォーム押出前後における大きさを実質的に変化させないこともできるし、変化させることもできる(押出前の素材に対して、押出材の方が大きいものも押出材の方が小さいものも押出できる)。つまり、コンフォーム押出によって断面積が12mm未満の銅線材や40mm超の銅線材を製造可能である。従って、実施形態の銅コイル材の製造方法は、断面積が12mm未満又は40mm超であり、高い伸びが望まれる銅線材の製造にも利用することができる。 The Conform extrusion, desired as size copper wire 10 can be obtained, preferably the cross-sectional area of 10 mm 2 or more degrees of Dotaira rectangular wire 20 can be manufactured of 12 mm 2 or more 40 mm 2 or less of the cross-sectional with a large cross sectional area The size of the dice 234 is selected so that the copper wire 10 having an area can be obtained. In the conform extrusion, the size before and after the conform extrusion can be substantially unchanged or can be changed (the extruded material is larger than the material before the extrusion. Smaller ones can be extruded). That is, the cross-sectional area by conforming extrusion can be produced with 12 mm 2 of less than copper wire and 40 mm 2 than copper wire. Therefore, the manufacturing method of the copper coil material of the embodiment can be used for manufacturing a copper wire material having a cross-sectional area of less than 12 mm 2 or more than 40 mm 2 and high elongation is desired.

(巻取工程)
この工程は、コンフォーム押出が施された銅線材10の外周に潤滑層12を形成してから巻き取って、銅コイル材1を製造する工程である。潤滑層12の形成方法は、例えば、(1)所定の形状に押し出された銅線材10を巻取前に冷却する場合に、冷却槽内の冷却媒体に潤滑材を添加しておき、銅線材10を冷却槽に浸漬通過させて冷却すると共に潤滑材を付着する方法、(2)巻取機の前に潤滑材の噴霧ノズルや塗布用ブラシ、潤滑材を含むスポンジなどを設けておき、ノズルから潤滑材を噴霧したりブラシやスポンジで撫でたりすることで、巻取機前を通過する銅線材10に潤滑材を付着する方法などが挙げられる。潤滑層12の形成方法には、線材に潤滑材を付着させる公知の方法を利用できる。冷却媒体に対する潤滑材の濃度(添加量)、冷却槽への浸漬時間、噴霧圧力、噴霧時間、銅線材10の走行速度、ブラシなどの押付力などを調整することで、潤滑層12の厚さ(付着量)を調整することができる。銅線材10の巻き取りは、公知の巻取機を利用することができる。銅線材10の表面に潤滑層12を備えることで、巻取時の滑り性に優れて巻き取り易い。銅線材10の断面積が40mm以下であれば、剛性が高過ぎず更に巻き取り易い。
(Winding process)
This step is a step of manufacturing the copper coil material 1 by forming the lubricating layer 12 on the outer periphery of the copper wire 10 that has been subjected to conform extrusion and then winding it. For example, (1) when the copper wire 10 extruded into a predetermined shape is cooled before winding, the lubricant is added to the cooling medium in the cooling tank, and the copper wire is formed. 10 is immersed in a cooling bath to cool and adhere a lubricant, (2) a nozzle for spraying lubricant, a brush for application, a sponge containing lubricant, etc. are provided in front of the winder, and the nozzle For example, a method of adhering the lubricant to the copper wire 10 that passes in front of the winder by spraying the lubricant or boiling with a brush or sponge can be used. As a method for forming the lubricating layer 12, a known method for attaching a lubricating material to a wire can be used. The thickness of the lubricating layer 12 is adjusted by adjusting the concentration (addition amount) of the lubricant to the cooling medium, the immersion time in the cooling tank, the spraying pressure, the spraying time, the traveling speed of the copper wire 10, the pressing force of the brush, etc. (Adhesion amount) can be adjusted. For winding the copper wire 10, a known winder can be used. By providing the lubricating layer 12 on the surface of the copper wire 10, it is excellent in slipperiness during winding and easy to wind. If the cross-sectional area of the copper wire 10 is 40 mm 2 or less, the rigidity is not too high and it is easier to wind.

[銅平角線の製造方法]
実施形態の銅平角線20は、上述の実施形態の銅コイル材1を巻き戻して、銅線材10を断面矩形状に変形するための圧延加工(平角加工)を銅線材10に施すことで製造することができる。そこで、実施形態の銅平角線の製造方法として、図3に示すように、上述の準備工程(連続鋳造圧延材100の用意)、押出工程(銅線材10の作製)、巻取工程(潤滑層12を備える銅線材10を巻き取った銅コイル材の作製)に加えて、圧延工程(銅平角線20の作製)を備えることを提案する。以下、圧延工程を説明し、準備工程、押出工程、巻取工程については既に説明しているため、詳細な説明を省略する。
[Manufacturing method of copper rectangular wire]
The copper flat wire 20 of the embodiment is manufactured by rewinding the copper coil material 1 of the above-described embodiment and subjecting the copper wire material 10 to rolling processing (flat wire processing) for deforming the copper wire material 10 into a rectangular cross section. can do. Then, as shown in FIG. 3, as a manufacturing method of the copper flat wire of embodiment, the above-mentioned preparatory process (preparation of the continuous cast rolling material 100), an extrusion process (preparation of the copper wire 10), a winding process (lubrication layer) It is proposed to include a rolling step (preparation of the copper flat wire 20) in addition to the production of the copper coil material obtained by winding the copper wire material 10 having 12. Hereinafter, the rolling process will be described, and since the preparation process, the extrusion process, and the winding process have already been described, detailed description thereof will be omitted.

(圧延工程)
この工程は、コンフォーム押出を経て製造された銅コイル材1に圧延加工(平角加工)を施して、断面形状を変化させて、銅平角線20を製造する工程である。圧延条件は、所望の厚さ、幅、断面積などを有する銅平角線20が得られるように適宜選択するとよい。コンフォーム押出を経ることで伸びが高い上に、微細な結晶組織を有して加工性に優れる銅線材10を素材とすることで、この圧延工程では、断面積が比較的大きい銅平角線20、具体的には断面積が10mm程度以上の銅平角線20を容易に加工できる。従って、実施形態の銅平角線の製造方法は、上述の大断面積を有する銅平角線20を生産性よく製造できる。
(Rolling process)
This step is a step of manufacturing the copper rectangular wire 20 by subjecting the copper coil material 1 manufactured through conform extrusion to rolling (flattening) and changing the cross-sectional shape. The rolling conditions may be appropriately selected so as to obtain a copper rectangular wire 20 having a desired thickness, width, cross-sectional area, and the like. The copper wire 10 having a relatively large cross-sectional area in this rolling process is obtained by using the copper wire 10 having a high crystallinity and excellent workability as well as high elongation due to conform extrusion. Specifically, the copper rectangular wire 20 having a cross-sectional area of about 10 mm 2 or more can be easily processed. Therefore, the copper rectangular wire manufacturing method of the embodiment can manufacture the copper rectangular wire 20 having the above-described large cross-sectional area with high productivity.

[被覆平角線の製造方法]
実施形態の被覆平角線は、例えば、上述の銅平角線20に熱処理を施して熱処理線材を形成する熱処理工程と、上記熱処理線材を導体とし、この導体の表面に絶縁被覆を形成する被覆工程とを備える製造方法によって製造することができる。
[Method for producing coated rectangular wire]
The coated rectangular wire of the embodiment includes, for example, a heat treatment step in which the above-described copper rectangular wire 20 is heat-treated to form a heat-treated wire, and a coating step in which the heat-treated wire is used as a conductor and an insulating coating is formed on the surface of the conductor. It can manufacture with a manufacturing method provided with.

上記熱処理は、圧延加工(平角加工)によって導入された歪みの除去を主目的とする。歪みの除去によって、上述のように伸びや導電率の向上を図ることができる。熱処理条件は、例えば、加熱温度が100℃以上550℃以下程度、保持時間が0.2秒以上10時間以下程度、が挙げられる。熱処理は、バッチ処理及び連続処理のいずれを利用してもよい。連続処理とすると、長尺な銅平角線20に対して熱処理を連続的に行える上に、保持時間を短くできる。この熱処理を省略することもできる。   The main purpose of the heat treatment is to remove distortion introduced by rolling (flattening). By removing the strain, the elongation and the conductivity can be improved as described above. Examples of the heat treatment conditions include a heating temperature of about 100 ° C. to 550 ° C. and a holding time of about 0.2 seconds to 10 hours. Either a batch process or a continuous process may be used for the heat treatment. When continuous treatment is performed, heat treatment can be continuously performed on the long copper rectangular wire 20, and the holding time can be shortened. This heat treatment can be omitted.

上記絶縁被覆の形成は、例えば、公知のエナメル線の製造に利用されている公知の手法を利用できる。代表的には、導体の表面に絶縁被覆を構成する樹脂を塗布する工程と、上記樹脂が塗布された導体を焼付炉に通して上記樹脂を乾燥・硬化させて焼付する工程とを、絶縁被覆が所定の厚さに達するまで1回又は複数回繰り返すことが挙げられる。   For the formation of the insulating coating, for example, a known technique used for manufacturing a known enameled wire can be used. Typically, the step of applying a resin constituting an insulating coating on the surface of the conductor, and the step of passing the conductor coated with the resin through a baking furnace and drying and curing the resin are baked. May be repeated one or more times until a predetermined thickness is reached.

[試験例1]
純銅からなる線材を種々の条件で作製し、得られた線材の表面性状、組織、機械的特性を調べた。また、この線材から銅平角線を作製し、更にこの銅平角線を導体として備える被覆平角線を作製して、被覆状態を調べた。
[Test Example 1]
A wire made of pure copper was produced under various conditions, and the surface properties, structure, and mechanical properties of the obtained wire were examined. Moreover, the copper flat wire was produced from this wire, and also the covering flat wire provided with this copper flat wire as a conductor was produced, and the covering state was investigated.

原料として、純銅(Cu含有量が99.9質量%以上であるタフピッチ銅)を用意して、溶湯を作製した。作製した溶湯を用いて、コンチロッド方式の連続鋳造圧延によって、表1に示す断面積(mm)及び線径φ(直径、mm)を有する断面円形状の連続鋳造圧延材(銅荒引線)を作製した。 Pure copper (tough pitch copper having a Cu content of 99.9% by mass or more) was prepared as a raw material to prepare a molten metal. Using the produced molten metal, a continuous cast rolling material (copper rough wire) having a circular cross section having a cross-sectional area (mm 2 ) and a wire diameter φ (diameter, mm) shown in Table 1 is obtained by continuous cast rolling of a conti-rod system. Produced.

試料No.1−1〜No.1−4では、線径φ9.5mmの銅荒引線にコンフォーム押出を施して、断面円形状の銅線材(コンフォーム押出材)を100kg(長さ約400m、約250g/m)作製し、コイル状に巻き取った。押出条件は、押出速度を12m/min〜30m/min程度、チャンバ温度を200℃〜300℃程度とした。押出速度(m/min)は、ホイールの回転速度によって調整した。チャンバ温度は、ダイチャンバの近傍に温度調整機構(ここでは冷却手段)を配置し、冷却状態を制御して調整した。ここでは、銅線材の目標線径をφ6mmとして、コンフォーム押出を行った。得られた銅線材の断面積(mm)及び線径φ(直径、mm)を表1に示す。押し出した銅線材をコイル状に巻き取って銅コイル材を作製するにあたり、銅線材の巻取前に、銅線材の表面に市販の潤滑材を付着させて潤滑層を形成し(塗布量:3μg/cm)、潤滑層を備える銅線材を巻き取った。 Sample No. 1-1-No. In 1-4, conform extrusion is performed on a copper rough drawn wire having a wire diameter of 9.5 mm to produce 100 kg of copper wire (conform extruded material) having a circular cross section (length: about 400 m, about 250 g / m), The coil was wound up. The extrusion conditions were an extrusion speed of about 12 m / min to 30 m / min, and a chamber temperature of about 200 ° C. to 300 ° C. The extrusion speed (m / min) was adjusted by the rotational speed of the wheel. The chamber temperature was adjusted by arranging a temperature adjusting mechanism (here, cooling means) in the vicinity of the die chamber and controlling the cooling state. Here, conform extrusion was performed with the target wire diameter of the copper wire set to 6 mm. Table 1 shows the cross-sectional area (mm 2 ) and the wire diameter φ (diameter, mm) of the obtained copper wire. When winding the extruded copper wire into a coil shape to produce a copper coil material, a lubricant layer is formed by attaching a commercially available lubricant to the surface of the copper wire before winding the copper wire (coating amount: 3 μg). / Cm 2 ), a copper wire provided with a lubricating layer was wound up.

試料No.1−101,No.1−102では、線径φ18.5mmの太い銅荒引線を用意した。この太い銅荒引線に伸線加工を施して断面円形状の伸線材(目標線径φ6mm)を作製し、この太い伸線材に熱処理を施して、熱処理が施された伸線材(以下、軟材(太)と呼ぶ)を作製した。軟化処理は、バッチ炉を用いて、240℃×3時間の条件で行った。   Sample No. 1-101, no. In 1-102, a thick copper rough wire having a wire diameter of φ18.5 mm was prepared. The thick copper rough wire is drawn to produce a wire with a circular cross section (target wire diameter φ6 mm). The thick wire is subjected to heat treatment, and the heat treated wire drawing material (hereinafter referred to as soft material). (Referred to as (thick)). The softening process was performed on the conditions of 240 degreeC x 3 hours using the batch furnace.

試料No.1−201,No.1−202では、線径φ8.0mmの銅荒引線を用意した。この銅荒引線に伸線加工を施して断面円形状の伸線材(目標線径φ3.2mm)を作製し、この細い伸線材に熱処理を施して、熱処理が施された伸線材(以下、軟材(細)と呼ぶ)を作製した。軟化処理は、連続処理炉を用いて行い、十分に軟化されるように条件を調整した。   Sample No. 1-201, no. In 1-202, a copper roughing wire having a wire diameter of φ8.0 mm was prepared. The copper rough wire is subjected to wire drawing to produce a wire having a circular cross section (target wire diameter φ3.2 mm). The thin wire is subjected to heat treatment, and the heat-treated wire drawing material (hereinafter referred to as soft wire). A material (referred to as “thin”) was prepared. The softening process was performed using a continuous processing furnace, and the conditions were adjusted so as to be sufficiently softened.

得られた試料No.1−1〜No.1−4の銅線材について、目視による表面観察を行った。その結果を表1に示す。目視確認によって、割れ、しわなどの表面欠陥が実質的に認められない場合を表面性状に優れると評価してGoodと示し、目視確認可能な大きさの割れなどの表面欠陥が認められる場合を表面性状に劣ると評価してBadと示す。表面観察は、作製した100kgの銅線材について、その長手方向の任意の位置から50mを抽出し、この長さ50mの線材を試験片とし、試験片の全長に亘って行った。   The obtained sample No. 1-1-No. About 1-4 copper wire, surface observation by visual observation was performed. The results are shown in Table 1. When the surface defects such as cracks and wrinkles are not substantially recognized by visual confirmation, the surface properties are evaluated as good and the surface defects such as cracks of a size that can be visually confirmed are recognized as good. Evaluated to be inferior in properties and indicated as Bad. The surface observation was performed over the entire length of the test piece by extracting 50 m from an arbitrary position in the longitudinal direction of the produced 100 kg copper wire, using the 50 m long wire as a test piece.

得られた試料No.1−1〜No.1−4の銅線材、試料No.1−101,No.1−102の軟材(太)、試料No.1−201,No.1−202の軟材(細)について、室温における引張強さ(MPa)・破断伸び(%)、縦断面における平均結晶粒径(μm)を調べた。その結果を表1に示す。   The obtained sample No. 1-1-No. 1-4 copper wire, Sample No. 1-101, no. 1-102 softwood (thick), sample no. 1-201, no. The soft material (thin) 1-202 was examined for tensile strength (MPa) at room temperature, elongation at break (%), and average crystal grain size (μm) in the longitudinal section. The results are shown in Table 1.

引張強さ・破断伸びは、JIS Z 2201(1998)に準じて試験片を作製し、市販の引張試験機を用いて測定した。ここでは、標点距離GL=250mmとした。また、ここでは試料ごとに3個の試験片を用意した。各試験片は、作製した銅線材又は軟材について、その長手方向の任意の位置から抜き取って作製した。引張強さ及び破断伸びのいずれについても、3個の試験片の平均値を表1に示す。   Tensile strength and elongation at break were measured using a commercially available tensile tester by preparing a test piece according to JIS Z 2201 (1998). Here, the gauge distance GL = 250 mm. Here, three test pieces were prepared for each sample. Each test piece was produced by extracting the produced copper wire or soft material from an arbitrary position in the longitudinal direction. Table 1 shows the average values of the three test pieces for both tensile strength and elongation at break.

平均結晶粒径は、以下のように測定した。各試料の縦断面をとり、縦断面の任意の位置について光学顕微鏡、又は走査型電子顕微鏡(SEM)で観察し、観察像に試験線を引き、試験線を分断する結晶粒の数を数えた。そして、(試験線の長さ/結晶粒の数)をその断面における結晶粒径とする。ここでは、試験線の長さを3mmとした。また、ここでは各試料について3個の断面をとり、断面ごとに5本の試験線を引き、各試験線に基づく結晶粒径をそれぞれ測定する。3個の断面の平均値、即ち合計15本の試験線に基づく結晶粒径の平均値を表1に示す。   The average crystal grain size was measured as follows. Taking a longitudinal section of each sample, observing an arbitrary position of the longitudinal section with an optical microscope or a scanning electron microscope (SEM), drawing a test line on the observed image, and counting the number of crystal grains that divide the test line. . Then, (the length of the test line / the number of crystal grains) is defined as the crystal grain size in the cross section. Here, the length of the test line was 3 mm. Further, here, three cross sections are taken for each sample, five test lines are drawn for each cross section, and the crystal grain size based on each test line is measured. Table 1 shows an average value of three cross sections, that is, an average value of crystal grain sizes based on a total of 15 test lines.

得られた試料No.1−1〜No.1−4の銅線材、試料No.1−101,No.1−102の軟材(太)、試料No.1−201,No.1−202の軟材(細)に圧延加工(平角加工)を施して銅平角線を作製した。試料No.1−1〜No.1−4の銅線材は、銅コイル材を巻き戻して繰り出し、上述の潤滑層を備える状態で平角加工装置に供給した。銅線材及び軟材(太)を用いてそれぞれ、厚さt:2mm×幅w:5mm、(w/t)=2.5、断面積が10mmの銅平角線を作製した。軟材(細)を用いて、断面積が3mmの銅平角線を作製した。作製した各銅平角線に熱処理を施してから絶縁被覆(ポリイミド、いずれの試料も厚さ70μm)を形成して、上記銅平角線を導体とする被覆平角線を得た。なお、試料No.1−1〜No.1−4,No.1−101,No.1−102の銅平角線に施した熱処理の条件は、400℃×30秒とした。 The obtained sample No. 1-1-No. 1-4 copper wire, Sample No. 1-101, no. 1-102 softwood (thick), sample no. 1-201, no. A copper flat wire was produced by subjecting a soft material (thin) 1-202 to rolling (flattening). Sample No. 1-1-No. The copper wire 1-4 was unwound and fed out of the copper coil material, and was supplied to the flat angle processing apparatus with the lubricating layer described above. Copper rectangular wires having a thickness t: 2 mm × width w: 5 mm, (w / t) = 2.5, and a cross-sectional area of 10 mm 2 were prepared using a copper wire and a soft material (thick), respectively. A copper rectangular wire having a cross-sectional area of 3 mm 2 was produced using a soft material (thin). Each copper flat wire thus produced was subjected to heat treatment, and then an insulation coating (polyimide, each sample had a thickness of 70 μm) was formed to obtain a coated flat wire using the copper flat wire as a conductor. Sample No. 1-1-No. 1-4, no. 1-101, no. The conditions for the heat treatment applied to the copper rectangular wire 1-102 were 400 ° C. × 30 seconds.

作製した各被覆平角線について、市販の探傷装置を用いて、被覆の膨れの発生状態を調べた。その結果を表1に示す。ここでは、被覆形成設備に併設して市販の探傷装置を配置し、長尺な線材(ここでは被覆平角線)を走行させることで、被覆の形成に連続して、傷(膨れ)の発生数をカウントできるようにした(インライン方式を利用した)。   About each produced covering flat wire, the generation | occurrence | production state of the covering swelling was investigated using the commercially available flaw detector. The results are shown in Table 1. Here, by placing a commercially available flaw detector alongside the coating forming facility and running a long wire (in this case, a coated flat wire), the number of occurrences of flaws (swells) in succession to the formation of the coating Can be counted (using an inline method).

Figure 0006288433
Figure 0006288433

表1に示すように連続鋳造圧延材にコンフォーム押出を施して得られた試料No.1−1〜No.1−4の銅線材は、高い伸びを有し、表面性状にも優れることが分かる。詳しくは、これらの銅線材は、破断伸びが30%以上(ここでは40%以上)であり、割れなどの表面欠陥が実質的に存在しておらず、平滑な表面を有する。また、これらの銅線材は、微細な結晶組織で構成されていることが分かる。詳しくは、これらの銅線材は、平均結晶粒径が40μm以下である。また、これらの銅線材は、微細で、かつ均一的な大きさの結晶粒から構成されており、局所的に粗大な結晶粒が実質的に存在していないことを確認している。更に、これらの銅線材は、伸びに加えて強度にも優れることが分かる。詳しくは、これらの銅線材は、引張強さが230MPa以上(ここでは245MPa以上)であり、高強度である。そして、これらの銅線材は、比較的太い銅荒引線に伸線加工を施した後に軟化した試料No.1−101,No.1−102の軟材(太)と同等以上の伸び及び強度を備えることが分かる。   As shown in Table 1, sample Nos. Obtained by subjecting a continuous cast rolled material to conform extrusion. 1-1-No. It can be seen that the 1-4 copper wire has high elongation and excellent surface properties. Specifically, these copper wires have an elongation at break of 30% or more (here, 40% or more), have substantially no surface defects such as cracks, and have a smooth surface. Moreover, it turns out that these copper wire materials are comprised by the fine crystal structure. Specifically, these copper wires have an average crystal grain size of 40 μm or less. In addition, these copper wires are composed of fine and uniform crystal grains, and it has been confirmed that there are substantially no locally coarse crystal grains. Furthermore, it can be seen that these copper wires are excellent in strength in addition to elongation. Specifically, these copper wires have a tensile strength of 230 MPa or more (here, 245 MPa or more) and high strength. And these copper wire materials are sample No. which softened after drawing a comparatively thick copper rough drawing wire. 1-101, no. It can be seen that it has elongation and strength equal to or greater than those of the soft material (thick) 1-102.

また、試料No.1−1〜No.1−4の銅線材に圧延加工(平角加工)を施した場合、圧延時に割れや破断が生じ難い上に、形状精度や寸法精度に優れる銅平角線を得ることができた(寸法誤差±0.005mm)。更に、この銅平角線を用いて作製した被覆平角線(試料No.1−1〜No.1−4)は、表1に示すように、被覆の膨れが生じ難く、膨れ発生率が非常に低いことが分かる。この理由の一つとして、伸びが高く、新生面の形成によって表面性状にも優れる銅線材を銅平角線の素材に用いたことで、平角加工を良好に行えて、平角加工を経た後も表面性状に優れた銅平角線が得られており、表面欠陥に基づく空気溜まりが形成され難かったためと考えられる。また、この理由の一つとして、潤滑層を備える銅線材を銅平角線の素材に用いたことで、潤滑層を平角加工時の潤滑材として利用できて、平角加工を精度よく施せたためと考えられる。なお、試料No.1−1〜No.1−4の銅線材は、潤滑層を備えることで、巻き戻し時や平角加工装置への供給時にも滑り性に優れて、供給などを良好に行えた。   Sample No. 1-1-No. When the rolling process (flattening process) was applied to the copper wire 1-4, it was difficult to crack or break during rolling, and a copper rectangular wire having excellent shape accuracy and dimensional accuracy could be obtained (dimensional error ± 0). .005 mm). Furthermore, as shown in Table 1, the coated rectangular wires (samples No. 1-1 to No. 1-4) produced using this copper rectangular wire are unlikely to swell, and the rate of occurrence of bulging is very high. It turns out that it is low. One reason for this is that a copper wire that has high elongation and excellent surface properties due to the formation of a new surface is used as the material for the copper flat wire. This is considered to be because an excellent copper rectangular wire was obtained, and an air pocket based on surface defects was hardly formed. One of the reasons for this is that the copper wire provided with the lubrication layer was used as the material for the copper flat wire, so that the lubrication layer could be used as a lubricant during flat work and the flat work could be performed accurately. It is done. Sample No. 1-1-No. The copper wire 1-4 was provided with a lubricating layer, so that it was excellent in slipperiness even during rewinding or when supplied to a flat angle processing apparatus, and could be supplied satisfactorily.

このことから、断面積が12mm以上40mm以下であり、破断伸びが30%以上であり、かつ潤滑層を備える試料No.1−1〜No.1−4の銅線材は、断面積が10mm程度といった比較的大きな断面積を有する銅平角線の素材として好適に利用できるといえる。 From this, the cross-sectional area is 12 mm 2 or more and 40 mm 2 or less, the elongation at break is 30% or more, and the sample No. 1-1-No. It can be said that the 1-4 copper wire can be suitably used as a material for a copper rectangular wire having a relatively large cross-sectional area of about 10 mm 2 .

そして、この試験から、連続鋳造圧延材といった銅素材にコンフォーム押出を施すことで、伸びが高く(例えば破断伸びが30%以上)、表面性状にも優れる銅線材(試料No.1−1〜No.1−4)を製造できることが分かる。また、この製造方法は、連続鋳造圧延以降に伸線加工及び熱処理を施すことなく完全に軟化された上記銅線材を製造することができる。従って、この製造方法は、伸線加工及び熱処理を行う試料No.1−101,No.1−102に比較して製造工程数が少なく、上記銅線材を生産性よく製造できることが分かる。特に、この試験では、試料No.1−1〜No.1−4の銅線材の製造に断面積が50mm以上150mm以下という汎用の大きさの連続鋳造圧延材を用いており、連続鋳造圧延材自体も生産性に優れることからも、上記銅線材を生産性よく製造できるといえる。そして、上記銅線材を銅平角線の素材に利用することで銅平角線をも生産性よく製造できるといえる。従って、連続鋳造圧延材といった銅素材にコンフォーム押出を施すという製造方法は、比較的大断面積の銅線平角線の素材に好適な銅線材を生産性よく製造でき、ひいては比較的大断面積の銅平角線を生産性よく製造できるといえる。 And from this test, by subjecting a copper material such as a continuously cast rolled material to conform extrusion, a copper wire (sample No. 1-1 to 1-1) having high elongation (for example, elongation at break of 30% or more) and excellent surface properties. It can be seen that No. 1-4) can be manufactured. Moreover, this manufacturing method can manufacture the said copper wire which was completely softened, without performing a wire drawing process and heat processing after continuous casting rolling. Therefore, this manufacturing method uses the sample No. 1 that performs wire drawing and heat treatment. 1-101, no. It can be seen that the number of manufacturing steps is small compared to 1-102, and the copper wire can be manufactured with high productivity. In particular, in this test, Sample No. 1-1-No. For the production of the copper wire 1-4, a continuous cast rolled material having a general size of 50 mm 2 or more and 150 mm 2 or less is used, and the continuous cast rolled material itself is also excellent in productivity. Can be produced with high productivity. And it can be said that a copper flat wire can also be manufactured with high productivity by using the said copper wire for the raw material of a copper flat wire. Therefore, the manufacturing method of subjecting a copper material such as a continuously cast rolled material to conform extrusion can produce a copper wire suitable for a copper wire flat wire material having a relatively large cross-sectional area with high productivity, and consequently a relatively large cross-sectional area. It can be said that the copper rectangular wire can be manufactured with high productivity.

一方、汎用の大きさの連続鋳造圧延材を用いて伸線加工及び熱処理を行って、破断伸びが30%以上の銅素材を製造しようとすると、試料No.1−201,No.1−202の伸線材(熱処理有り、軟材(細))から明らかなように、断面積が小さいもの(ここでは8mm<12mm)しか得られない。つまり、軟材(細)では、断面積が10mm程度といった比較的大きな断面積を有する銅平角線の素材に利用することができない。 On the other hand, when a copper material having a breaking elongation of 30% or more is manufactured by performing wire drawing and heat treatment using a continuous cast rolled material having a general size, Sample No. 1-201, no. As is clear from the wire drawing material of 1-202 (heat treated, soft material (thin)), only those having a small cross-sectional area (here, 8 mm 2 <12 mm 2 ) can be obtained. That is, the soft material (thin) cannot be used as a material for a copper rectangular wire having a relatively large cross-sectional area of about 10 mm 2 .

他方、太い連続鋳造圧延材を用いた場合には、伸線加工及び熱処理を行っても、破断伸びが30%以上の銅素材(試料No.1−101,No.1−102の伸線材(熱処理有り、軟材(太))が得られる。しかし、この銅素材=軟材(太)は、伸線加工及び熱処理が必須であり、銅素材の生産性に劣る。また、この軟材(太)を用いて被覆線を製造すると、試料No.1−1〜No.1−4よりも被覆の膨れが生じ易いことが分かる。この理由は、伸線加工によって連続鋳造圧延材の表面欠陥などをある程度除去できるものの、新生面が形成される試料No.1−1〜No.1−4の銅線材に比較して欠陥が残存し易くなり、この残存欠陥に起因するキズが平角線に存在したため、と考えられる。   On the other hand, when a thick continuous cast rolled material is used, a copper material having a breaking elongation of 30% or more (drawing materials of sample No. 1-101 and No. 1-102 ( With heat treatment, a soft material (thick) is obtained.However, this copper material = soft material (thick) requires wire drawing and heat treatment and is inferior in copper material productivity. When the coated wire is manufactured using thick), it can be seen that the coating swells more easily than Sample No. 1-1 to No. 1-4. Can be removed to some extent, but defects are likely to remain as compared with the copper wires of Sample No. 1-1 to No. 1-4 on which a new surface is formed, and scratches resulting from these remaining defects are present in the rectangular wire. It is thought to be because.

本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能であり、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、連続鋳造圧延材の組成・形状・断面積、銅線材の組成・形状・断面積・組織(結晶粒径など)、銅平角線の断面積・幅・厚さ、絶縁被覆の構成材料・厚さ、押出条件などを変化することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. The present invention is shown by the scope of claims and is equivalent to the scope of claims. All changes within the meaning and scope are intended to be included. For example, composition / shape / cross-sectional area of continuous cast rolled material, composition / shape / cross-sectional area / structure of copper wire, crystal cross-sectional area / width / thickness of rectangular copper wire, constituent material of insulation coating, Thickness, extrusion conditions, etc. can be changed.

本発明の被覆平角線は、自動車、各種の家庭用電気機器、時計などに利用されるエナメル線などのコイル用巻線、特に高出力化が望まれる自動車用コイル部品の巻線に好適に利用できる。本発明の銅平角線は、上記被覆平角線の導体に好適に利用できる。本発明の銅コイル材は、上記被覆平角線の導体の素材や上記銅平角線の素材に好適に利用できる。本発明の銅コイル材の製造方法は、銅コイル材(例えば、上記本発明の銅コイル材)の製造に好適に利用できる。本発明の銅平角線の製造方法は、銅平角線(例えば、上記本発明の銅平角線)の製造に好適に利用できる。   The coated rectangular wire of the present invention is suitably used for windings of coils such as enameled wires used in automobiles, various household electric appliances, watches, etc., especially windings of automotive coil parts for which high output is desired. it can. The copper rectangular wire of this invention can be utilized suitably for the conductor of the said covered rectangular wire. The copper coil material of the present invention can be suitably used for the conductor material of the above-described coated rectangular wire and the material of the copper rectangular wire. The manufacturing method of the copper coil material of this invention can be utilized suitably for manufacture of a copper coil material (for example, the copper coil material of the said invention). The manufacturing method of the copper flat wire of this invention can be utilized suitably for manufacture of a copper flat wire (for example, the copper flat wire of the said invention).

1 銅コイル材 10 銅線材 12 潤滑層 20 銅平角線
100 連続鋳造圧延材
200 コンフォーム押出装置 210 ホイール 212 溝
220 シュー 230 ダイチャンバ 232 アバットメント
234 ダイス 300 屑(バリ)
DESCRIPTION OF SYMBOLS 1 Copper coil material 10 Copper wire material 12 Lubricating layer 20 Copper flat wire 100 Continuous casting rolling material 200 Conform extrusion apparatus 210 Wheel 212 Groove 220 Shoe 230 Die chamber 232 Abutment 234 Die 300 Scrap (burr)

Claims (7)

純銅又は銅合金から構成される銅線材がコイル状に巻き取られてなり、
前記銅線材の断面積が12mm以上40mm以下であり、
前記銅線材の破断伸びが30%以上であり、
質量が100kg以上であり、
前記銅線材の表面に潤滑層を備え、
圧延加工を施して銅平角線を製造するための素材に用いられる銅コイル材。
A copper wire composed of pure copper or a copper alloy is wound into a coil,
The cross-sectional area of the copper wire is 12 mm 2 or more and 40 mm 2 or less,
The elongation at break of the copper wire is 30% or more,
The mass is 100 kg or more,
A lubricating layer is provided on the surface of the copper wire,
Copper coil material used as a material for rolling to produce copper flat wire.
前記銅線材の平均結晶粒径が5μm以上40μm以下である請求項1に記載の銅コイル材。   The copper coil material according to claim 1, wherein an average crystal grain size of the copper wire is 5 µm or more and 40 µm or less. 前記銅線材の引張強さが230MPa以上である請求項1又は請求項2に記載の銅コイル材。   The copper coil material according to claim 1 or 2, wherein the copper wire has a tensile strength of 230 MPa or more. 連続鋳造圧延材を用意する工程と、
前記連続鋳造圧延材にコンフォーム押出を施して銅線材を製造する工程と、
前記銅線材の表面に潤滑層を形成した後、コイル状に巻き取って銅コイル材を製造する工程とを備え、
前記銅コイル材は、巻き戻した前記銅線材に圧延加工を施して銅平角線を製造するための素材に用いられる銅コイル材の製造方法。
Preparing a continuously cast rolled material;
A step of producing a copper wire by subjecting the continuous cast rolled material to conform extrusion;
Forming a lubricating layer on the surface of the copper wire, and then winding the coil to produce a copper coil material,
The said copper coil material is a manufacturing method of the copper coil material used for the raw material for giving the rolling process to the said copper wire material which wound up, and manufacturing a copper flat wire.
前記連続鋳造圧延材の断面積が50mm以上750mm以下であり、
前記銅線材の断面積が12mm以上40mm以下である請求項に記載の銅コイル材の製造方法。
The cross-sectional area of the continuous cast rolled material is 50 mm 2 or more and 750 mm 2 or less,
The method for producing a copper coil material according to claim 4 , wherein a cross-sectional area of the copper wire is 12 mm 2 or more and 40 mm 2 or less.
連続鋳造圧延材を用意する工程と、
前記連続鋳造圧延材にコンフォーム押出を施して銅線材を製造する工程と、
前記銅線材の表面に潤滑層を形成した後、コイル状に巻き取って銅コイル材を製造する工程と、
前記銅コイル材を巻き戻し、前記銅線材に圧延加工を施して銅平角線を製造する工程とを備える銅平角線の製造方法。
Preparing a continuously cast rolled material;
A step of producing a copper wire by subjecting the continuous cast rolled material to conform extrusion;
After forming a lubricating layer on the surface of the copper wire, a step of winding a coil to produce a copper coil material,
Rewinding the copper coil material, rolling the copper wire material, and producing a copper rectangular wire.
請求項6に記載の銅平角線の製造方法によって製造された銅平角線に熱処理を施す工程と、  Applying a heat treatment to the copper rectangular wire produced by the method for producing a copper rectangular wire according to claim 6;
前記熱処理が施された線材の外周に絶縁被覆を形成する工程とを備える被覆平角線の製造方法。  And a step of forming an insulating coating on the outer periphery of the wire subjected to the heat treatment.
JP2014043225A 2014-03-05 2014-03-05 Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method Active JP6288433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014043225A JP6288433B2 (en) 2014-03-05 2014-03-05 Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014043225A JP6288433B2 (en) 2014-03-05 2014-03-05 Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2015170422A JP2015170422A (en) 2015-09-28
JP6288433B2 true JP6288433B2 (en) 2018-03-07

Family

ID=54203009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043225A Active JP6288433B2 (en) 2014-03-05 2014-03-05 Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method

Country Status (1)

Country Link
JP (1) JP6288433B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006290B2 (en) * 2018-01-17 2022-02-10 日立金属株式会社 Enamel wire manufacturing method
CN110576122A (en) * 2019-09-12 2019-12-17 无锡锡洲电磁线有限公司 flat copper wire flattening device
CN110576069B (en) * 2019-10-17 2024-03-22 大连交通大学 Continuous stirring friction extrusion production method and production device for metal matrix composite material
WO2021193803A1 (en) * 2020-03-25 2021-09-30 株式会社村田製作所 Coil part
WO2023032389A1 (en) * 2021-08-31 2023-03-09 住友電気工業株式会社 Copper alloy wire and manufacturing method of copper alloy wire
WO2023032390A1 (en) * 2021-08-31 2023-03-09 住友電気工業株式会社 Copper alloy wire, covered wire, covered wire with terminal, and method for producing copper alloy wire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532374A (en) * 1976-06-29 1978-01-11 Sumitomo Electric Industries Rectangular wire manufacturing
JPS62161420A (en) * 1986-01-10 1987-07-17 Hitachi Cable Ltd Continuous extruding device
JP4153981B2 (en) * 1998-01-12 2008-09-24 株式会社フジクラ Extrusion method
JP4407866B2 (en) * 2000-12-01 2010-02-03 株式会社フジクラ Copper or copper alloy product extrusion molding apparatus and extrusion molding method using the same
JP5561510B2 (en) * 2009-02-12 2014-07-30 住友電気工業株式会社 Coiled copper or copper alloy coil
JP5652741B2 (en) * 2009-11-24 2015-01-14 住友電気工業株式会社 Copper wire and method for producing the same
JP5732809B2 (en) * 2010-10-20 2015-06-10 日立金属株式会社 Extruded product and manufacturing method thereof
JP6233634B2 (en) * 2012-10-25 2017-11-22 住友電気工業株式会社 Copper wire, copper wire, copper flat wire, coated copper wire, method for producing copper wire, method for producing copper wire, and method for producing copper flat wire

Also Published As

Publication number Publication date
JP2015170422A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP6233634B2 (en) Copper wire, copper wire, copper flat wire, coated copper wire, method for producing copper wire, method for producing copper wire, and method for producing copper flat wire
JP6288433B2 (en) Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method
JP6639908B2 (en) Copper alloy wire and method of manufacturing the same
KR102361777B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, sheathed wire, and terminal-mounted wire
KR102361765B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, sheathed wire, and terminal-mounted wire
US11342094B2 (en) Aluminum alloy wire, aluminum alloy strand wire, covered electrical wire, and terminal-equipped electrical wire
KR102544287B1 (en) Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal
JP6175932B2 (en) Drawing copper wire, drawing copper wire manufacturing method and cable
JP6038447B2 (en) Aluminum alloy wire, method for producing aluminum alloy wire, and magnet coil
JPWO2018211772A1 (en) Electrode wire for wire electrical discharge machining
JP2016193450A (en) Production method of extruded wire material, extruded wire material and conductor for winding
JP2013052434A (en) Method for manufacturing copper stock for wire rod
JP5356974B2 (en) Cast material, manufacturing method thereof, copper wire for magnet wire using the same, magnet wire and manufacturing method thereof
JP6840348B2 (en) Manufacturing method of aluminum alloy wire
JP2012240081A (en) Method of manufacturing copper wire for magnet wire
JP7054077B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
CN113963837B (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and terminal-equipped wire
KR20190062409A (en) Manufacturing method of aluminum alloy wire, working transmission wire and aluminum alloy wire
JP7260267B2 (en) Electrode wire for wire electric discharge machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R150 Certificate of patent or registration of utility model

Ref document number: 6288433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250