JP4479270B2 - Manufacturing method of electrode wire for wire electric discharge machining - Google Patents

Manufacturing method of electrode wire for wire electric discharge machining Download PDF

Info

Publication number
JP4479270B2
JP4479270B2 JP2004044860A JP2004044860A JP4479270B2 JP 4479270 B2 JP4479270 B2 JP 4479270B2 JP 2004044860 A JP2004044860 A JP 2004044860A JP 2004044860 A JP2004044860 A JP 2004044860A JP 4479270 B2 JP4479270 B2 JP 4479270B2
Authority
JP
Japan
Prior art keywords
wire
diameter
heat treatment
layer
electrode wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004044860A
Other languages
Japanese (ja)
Other versions
JP2005230992A (en
Inventor
洋光 黒田
国明 紀本
勝憲 沢畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004044860A priority Critical patent/JP4479270B2/en
Publication of JP2005230992A publication Critical patent/JP2005230992A/en
Application granted granted Critical
Publication of JP4479270B2 publication Critical patent/JP4479270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Metal Extraction Processes (AREA)

Description

本発明は、ワイヤ放電加工に用いる電極線の製造方法に係り、放電加工速度が速い電極線を高い生産性で製造できるワイヤ放電加工用電極線の製造方法に関する。   The present invention relates to a method of manufacturing an electrode wire used for wire electric discharge machining, and more particularly to a method of manufacturing an electrode wire for wire electric discharge machining that can manufacture an electrode wire having a high electric discharge machining speed with high productivity.

ワイヤ放電加工用電極線として、Cu−Zn合金を用いたものが活用されている。この種の電極線は、放電特性が優れているため、放電加工における加工速度が速い、加工精度が高いという利点があると共に、コストが低いという利点もある。   An electrode wire using a Cu—Zn alloy is used as an electrode wire for wire electric discharge machining. Since this type of electrode wire has excellent discharge characteristics, there are advantages that the machining speed in electric discharge machining is high and machining accuracy is high, and that the cost is low.

従来、この種の電極線として、32〜36重量%のZnを含む単一合金(Cu−35重量%Zn合金、即ち65/35黄銅線)が使用されてきた。しかし、この電極線は、放電加工速度が遅いため、近年重視されるようになった放電加工速度の高さを満足できない。   Conventionally, a single alloy containing 32 to 36 wt% Zn (Cu-35 wt% Zn alloy, ie, 65/35 brass wire) has been used as this type of electrode wire. However, since this electrode wire has a low electric discharge machining speed, it cannot satisfy the high electric discharge machining speed that has become important in recent years.

そこで、特許文献1では、Cu又はCu合金からなる心材の外周にZn層を被覆する第1被覆ステップと、このZn層の外周に低Zn濃度のCu−Zn層を被覆して被覆線材を形成する第2被覆ステップと、この被覆線材を縮径加工する縮径ステップ(このステップは省いてもよい)と、この被覆線材に熱処理を施すことで前記Zn層中のZnを前記Cu−Zn層に拡散させて高Zn濃度のCu−Zn拡散層を形成する熱処理ステップと、この被覆線材を縮径加工することにより、所望の線径の電極線を得る最終的縮径ステップとを行ってワイヤ放電加工用電極線を製造することを提案している。   Therefore, in Patent Document 1, a first coating step in which a Zn layer is coated on the outer periphery of a core material made of Cu or Cu alloy, and a coated wire is formed by coating a Cu-Zn layer having a low Zn concentration on the outer periphery of the Zn layer. A second covering step, a diameter reducing step for reducing the diameter of the coated wire (this step may be omitted), and heat-treating the coated wire to change the Zn in the Zn layer to the Cu-Zn layer. The wire is subjected to a heat treatment step for forming a Cu-Zn diffusion layer having a high Zn concentration by diffusing into a wire, and a final reduction step to obtain an electrode wire having a desired wire diameter by reducing the diameter of the coated wire. It has been proposed to produce an electrode wire for electric discharge machining.

なお、縮径加工は伸線加工と同義である。   Note that diameter reduction is synonymous with wire drawing.

特開2002−172529号公報JP 2002-172529 A

しかしながら、特許文献1のワイヤ放電加工用電極線は、熱処理ステップで得られたCu−Zn拡散層におけるZn濃度が38〜50重量%と高濃度であるため、最終的縮径ステップにおける伸線加工性が低い(伸線させにくい或いは断線が生じる)。このため、電極線製造における生産性が著しく劣る。   However, the electrode wire for wire electric discharge machining in Patent Document 1 has a high Zn concentration of 38 to 50% by weight in the Cu—Zn diffusion layer obtained in the heat treatment step. The property is low (it is difficult to draw or breakage). For this reason, productivity in electrode wire production is extremely inferior.

そこで、本発明の目的は、上記課題を解決し、放電加工速度が速い電極線を高い生産性で製造できるワイヤ放電加工用電極線の製造方法を提供することにある。   Then, the objective of this invention is providing the manufacturing method of the electrode wire for wire electrical discharge machining which solves the said subject and can manufacture an electrode wire with high electrical discharge machining speed with high productivity.

上記目的を達成するために本発明の製造方法は、Cu又はCu合金からなる心材の外周にZn層を被覆する第1被覆ステップと、このZn層の外周に低Zn濃度のCu−Zn層を被覆して被覆線材を形成する第2被覆ステップと、この被覆線材を縮径加工する第1縮径ステップと、この被覆線材に500〜700℃で1〜5時間の熱処理を施すことで前記Zn層中のZnを前記Cu−Zn層に拡散させて高Zn濃度のCu−Zn拡散層を形成する第1熱処理ステップと、この被覆線材を縮径加工する第2縮径ステップと、熱処理後の被覆線材に450℃で0.5〜2時間の熱処理を施すことで被覆線材を軟化させる第2熱処理ステップと、この被覆線材を縮径加工することにより、被覆線材に所望の引っ張り強さを与える第3縮径ステップとを有するものである。 In order to achieve the above object, the manufacturing method of the present invention includes a first coating step of coating a Zn layer on the outer periphery of a core material made of Cu or a Cu alloy, and a low Zn concentration Cu—Zn layer on the outer periphery of the Zn layer. A second coating step for coating to form a coated wire, a first diameter reducing step for reducing the diameter of the coated wire , and heat-treating the coated wire at 500 to 700 ° C. for 1 to 5 hours, the Zn A first heat treatment step for diffusing Zn in the layer into the Cu-Zn layer to form a Cu-Zn diffusion layer having a high Zn concentration, a second diameter reduction step for reducing the diameter of the coated wire, and a post-heat treatment step A second heat treatment step for softening the coated wire by subjecting the coated wire to a heat treatment at 450 ° C. for 0.5 to 2 hours, and reducing the diameter of the coated wire, thereby giving the coated wire a desired tensile strength. A third diameter reduction step and Those having.

第1縮径ステップは、Cu−Zn層の加工度が50〜80%となるように縮径加工を行ってもよい。   In the first diameter reduction step, the diameter reduction processing may be performed so that the processing degree of the Cu—Zn layer is 50 to 80%.

第1熱処理ステップは、500〜700℃で1〜5時間の熱処理を施してもよい。   In the first heat treatment step, heat treatment may be performed at 500 to 700 ° C. for 1 to 5 hours.

第2縮径ステップは、Cu−Zn拡散層の加工度が50〜80%となるように縮径加工を行ってもよい。   In the second diameter reduction step, the diameter reduction processing may be performed so that the processing degree of the Cu—Zn diffusion layer is 50 to 80%.

第3縮径ステップは、Cu−Zn拡散層の加工度が70〜98%となるように縮径加工を行ってもよい。   In the third diameter reducing step, the diameter reducing process may be performed so that the degree of processing of the Cu—Zn diffusion layer becomes 70 to 98%.

第1被覆ステップは、前記心材の外周にZnテープを縦添えすることによりZn層を被覆し、第2被覆ステップは、前記Zn層の外周にCu−Znテープを縦添えしてもよい。   In the first coating step, a Zn layer may be coated by vertically attaching a Zn tape to the outer periphery of the core material, and in the second coating step, a Cu—Zn tape may be vertically applied to the outer periphery of the Zn layer.

前記心材は、Cu−0.02〜0.2重量%Zr合金、Cu−0.15〜0.25重量%Sn−0.15〜0.25重量%In合金、Cu−0.15〜0.70重量%Sn合金、Cu−0.10〜0.70重量%In合金、Cu−5〜30重量%Zn合金、Cu−5〜30重量%Zn合金にZr,Cr,Si,Mg,Al,Fe,P,Ni,Ag,Snのいずれか1種以上の添加物を添加した合金のうちいずれかの合金であってもよい。   The core material is Cu-0.02-0.2 wt% Zr alloy, Cu-0.15-0.25 wt% Sn-0.15-0.25 wt% In alloy, Cu-0.15-0 .70 wt% Sn alloy, Cu-0.10 to 0.70 wt% In alloy, Cu-5 to 30 wt% Zn alloy, Cu-5 to 30 wt% Zn alloy with Zr, Cr, Si, Mg, Al , Fe, P, Ni, Ag, Sn may be any alloy among the alloys to which one or more additives are added.

第1熱処理ステップは、当該熱処理後にCu−Zn拡散層におけるZn濃度が38〜50重量%であってもよい。   In the first heat treatment step, the Zn concentration in the Cu—Zn diffusion layer may be 38 to 50 wt% after the heat treatment.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)高い放電加工速度を有する電極線を製造できる。良好な伸線加工性を有する
(2)電極線を高い生産性で製造できる。
(1) An electrode wire having a high electric discharge machining speed can be manufactured. (2) The electrode wire can be manufactured with high productivity.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1及び図2に、本発明に係るワイヤ放電加工用電極線の製造方法における製造途中の被覆線材を示す。図1に示されるように、被覆線材1は、Cu又はCu合金からなる心材2の外周にZn層3を被覆し、さらに、このZn層3の外周に低Zn濃度のCu−Zn層4を被覆したものである。一方、図2に示されるように、電極線5は、Cu又はCu合金からなる心材2の外周に高Zn濃度のCu−Zn拡散層6を形成したものである。Cu−Zn拡散層6は、Zn層3とCu−Zn層4とを熱処理することによって形成されたものである。   FIG.1 and FIG.2 shows the covering wire in the middle of manufacture in the manufacturing method of the electrode wire for wire electric discharge machining which concerns on this invention. As shown in FIG. 1, the coated wire 1 has a Zn layer 3 coated on the outer periphery of a core material 2 made of Cu or a Cu alloy, and a low Zn concentration Cu—Zn layer 4 is coated on the outer periphery of the Zn layer 3. It is coated. On the other hand, as shown in FIG. 2, the electrode wire 5 is formed by forming a Cu—Zn diffusion layer 6 having a high Zn concentration on the outer periphery of the core material 2 made of Cu or Cu alloy. The Cu—Zn diffusion layer 6 is formed by heat treating the Zn layer 3 and the Cu—Zn layer 4.

本発明の製造方法は、特許文献1に記載の製造方法に新たなステップを加えると共に、各ステップを適切に行うための諸条件を設定したものである。   In the manufacturing method of the present invention, new steps are added to the manufacturing method described in Patent Document 1, and various conditions for appropriately performing each step are set.

以下、本発明の製造方法の各工程における詳細を工程の実施順に説明する。   Hereinafter, the details in each step of the production method of the present invention will be described in the order of execution of the steps.

まず最初に、心材2の外周にZn層3を被覆する第1被覆ステップを行う。   First, a first coating step for coating the outer periphery of the core material 2 with the Zn layer 3 is performed.

心材2には、Cu単体又はCu合金を用いる。そのCu合金には、Cu−0.02〜0.2重量%Zr合金、又はCu−0.15〜0.25重量%Sn−0.15〜0.25重量%In合金、又はCu−0.15〜0.70重量%Sn合金、又はCu−0.10〜0.70重量%In合金、又はCu−5〜30重量%Zn合金、又はCu−5〜30重量%Zn合金にZr,Cr,Si,Mg,Al,Fe,P,Ni,Ag,Snのいずれか1種以上の添加物を添加した合金を用いるとよい。これらの合金は、導電性が良く、耐熱性も高いので、放電加工において電極線の性能を高めるのに有効である。   For the core material 2, Cu alone or Cu alloy is used. The Cu alloy includes a Cu-0.02-0.2 wt% Zr alloy, or a Cu-0.15-0.25 wt% Sn-0.15-0.25 wt% In alloy, or a Cu-0 .15 to 0.70 wt% Sn alloy, or Cu-0.10 to 0.70 wt% In alloy, or Cu-5 to 30 wt% Zn alloy, or Cu-5 to 30 wt% Zn alloy An alloy to which one or more additives of Cr, Si, Mg, Al, Fe, P, Ni, Ag, and Sn are added may be used. Since these alloys have good conductivity and high heat resistance, they are effective in improving the performance of electrode wires in electric discharge machining.

Zn層3にはZn単体からなるZnテープを用いると良い。このZnテープを心材2の外周に縦添えすることでZn層3を被覆することになる。Znテープを用いる利点は後に述べる。   For the Zn layer 3, it is preferable to use a Zn tape made of Zn alone. The Zn layer 3 is covered by vertically attaching the Zn tape to the outer periphery of the core material 2. Advantages of using the Zn tape will be described later.

次に、Zn層3の外周にCu−Zn層4を被覆して被覆線材1を形成する第2被覆ステップを行う。   Next, the 2nd coating step which coat | covers the Cu-Zn layer 4 on the outer periphery of the Zn layer 3, and forms the covering wire 1 is performed.

Cu−Zn層4には、低Zn濃度のCu−Zn合金を用いる。ここで、低Zn濃度のCu−Zn合金とは、後述するCu−Zn拡散層6よりもZn濃度が低いものであり、例えば、Cu−33〜37重量%Znのことを言う。   For the Cu—Zn layer 4, a low Zn concentration Cu—Zn alloy is used. Here, the low Zn concentration Cu—Zn alloy is one having a Zn concentration lower than the Cu—Zn diffusion layer 6 described later, and refers to, for example, Cu-33 to 37 wt% Zn.

Cu−Zn層4には、Cu−Zn合金からなるCu−Znテープを用いると良い。このCu−ZnテープをZn層3の外周に縦添えし、そのCu−Znテープの突き合わせ部同士を溶接して繋ぐことでCu−Zn層4を被覆することになる。Cu−Znテープを用いると、Znテープを縦添え被覆して行う第1被覆ステップと、その際Znテープの突き合わせ部(Znテープの幅方向両側端)同士を溶接して繋ぐ第1閉じ合わせステップとCu−Znテープを縦添え被覆して行う第2被覆ステップと、その際Cu−Znテープの突き合わせ部(Cu−Znテープの幅方向両側端)同士を溶接して繋ぐ第2閉じ合わせステップとを連続的に行うことができ、製造コストが低減される。   For the Cu—Zn layer 4, a Cu—Zn tape made of a Cu—Zn alloy may be used. This Cu—Zn tape is vertically attached to the outer periphery of the Zn layer 3, and the butted portions of the Cu—Zn tape are welded together to cover the Cu—Zn layer 4. When using a Cu-Zn tape, a first covering step is performed by vertically covering the Zn tape, and a first closing step of welding and joining the butted portions of the Zn tape (both ends in the width direction of the Zn tape). And a second covering step in which the Cu-Zn tape butting portions (both ends in the width direction of the Cu-Zn tape) are welded and joined together, Can be performed continuously, and the manufacturing cost is reduced.

次に、この被覆線材1を縮径加工する第1縮径ステップを行う。   Next, a first diameter reduction step for reducing the diameter of the coated wire 1 is performed.

この第1縮径ステップでは、Cu−Zn層4の加工度が50〜80%となるように縮径加工を行う。これにより、被覆線材1の伸線性を損なうことなく、心材2とZn層3との間の界面及びZn層3とCu−Zn層4との間の界面をよく密着させることができる。もし、加工度が50%未満では上記界面の密着性の向上が図れず、その結果、後の縮径加工における伸線性が低下する。また、もし、加工度が80%より大であると、Cu−Zn層4が加工硬化して後の縮径加工における伸線性が低下する。   In this first diameter reduction step, diameter reduction processing is performed so that the degree of processing of the Cu—Zn layer 4 is 50 to 80%. Thereby, the interface between the core material 2 and the Zn layer 3 and the interface between the Zn layer 3 and the Cu—Zn layer 4 can be well adhered without impairing the drawability of the coated wire 1. If the degree of processing is less than 50%, the adhesion at the interface cannot be improved, and as a result, the drawability in the subsequent diameter reduction processing is lowered. Moreover, if the degree of work is greater than 80%, the Cu—Zn layer 4 is work-hardened, and the drawability in the subsequent diameter reduction work is lowered.

なお、加工度とは、加工前の径から加工後の径を差し引いた値を加工前の径で割った数値のことである。例えば、1の径の被覆線材1を0.2の径まで縮径加工すると加工度は80%である。   The degree of processing is a numerical value obtained by subtracting the diameter after processing from the diameter before processing and dividing by the diameter before processing. For example, when the diameter of the coated wire 1 having a diameter of 1 is reduced to a diameter of 0.2, the degree of processing is 80%.

次に、この被覆線材1に熱処理を施す第1熱処理ステップを行う。   Next, the 1st heat treatment step which heat-processes this covered wire 1 is performed.

この第1熱処理ステップでは、図1の被覆線材1に500〜700℃で1〜5時間の熱処理を施すことでZn層3中のZnをCu−Zn層4に拡散させ、図2のように、高Zn濃度のCu−Zn拡散層6を形成する。つまり、心材2の外周に高Zn濃度のCu−Zn拡散層6を形成した電極線5が得られる。ここで、高Zn濃度とは、38〜50重量%のことを言う。もし、熱処理温度が500℃未満であったり、熱処理時間が1時間未満であったりすると、Znの拡散が十分でなく、伸線性が低下する。また、もし、熱処理温度が700℃より大であったり、熱処理時間が時間より大であったりすると、Znの拡散の進行が過度になり、Cu−Zn拡散層6のZn濃度が所望よりも低下してしまう。
In this first heat treatment step, the coated wire 1 in FIG. 1 is subjected to heat treatment at 500 to 700 ° C. for 1 to 5 hours to diffuse Zn in the Zn layer 3 into the Cu—Zn layer 4 as shown in FIG. Then, a Cu-Zn diffusion layer 6 having a high Zn concentration is formed. That is, the electrode wire 5 in which the high Zn concentration Cu—Zn diffusion layer 6 is formed on the outer periphery of the core material 2 is obtained. Here, the high Zn concentration means 38 to 50% by weight. If the heat treatment temperature is less than 500 ° C. or the heat treatment time is less than 1 hour, Zn is not sufficiently diffused and the drawability is lowered. Further, if the heat treatment temperature is higher than 700 ° C. or the heat treatment time is longer than 5 hours, the Zn diffusion proceeds excessively, and the Zn concentration of the Cu—Zn diffusion layer 6 is higher than desired. It will decline.

ここでCu−Zn拡散層6のZn濃度が低下する理由は、熱処理の過程において、被覆線材1におけるCu−Zn層4の表面からZnが蒸発してしまったり、心材2のCu成分がCu−Zn拡散層6に拡散するためである。   Here, the reason why the Zn concentration of the Cu—Zn diffusion layer 6 is decreased is that Zn is evaporated from the surface of the Cu—Zn layer 4 in the coated wire 1 or the Cu component of the core material 2 is Cu— in the course of the heat treatment. This is to diffuse into the Zn diffusion layer 6.

次に、この電極線5を縮径加工する第2縮径ステップを行う。   Next, a second diameter reducing step for reducing the diameter of the electrode wire 5 is performed.

この第2縮径ステップでは、Cu−Zn拡散層6の加工度が50〜80%となるように縮径加工を行う。これにより、Cu−Zn拡散層6と心材2との間の界面をよく密着させることができる。もし、加工度が50%未満では上記界面の密着性の向上が図れず、その結果、後の縮径加工における伸線性が低下する。また、もし、加工度が80%より大であると、Cu−Zn拡散層6が加工硬化して後の縮径加工における伸線性が低下する。   In this second diameter reduction step, the diameter reduction processing is performed so that the degree of processing of the Cu—Zn diffusion layer 6 is 50 to 80%. Thereby, the interface between the Cu—Zn diffusion layer 6 and the core material 2 can be closely adhered. If the degree of processing is less than 50%, the adhesion at the interface cannot be improved, and as a result, the drawability in the subsequent diameter reduction processing is lowered. Further, if the degree of work is greater than 80%, the Cu—Zn diffusion layer 6 is work-hardened and the drawability in the subsequent diameter reduction work is lowered.

次に、この電極線5に熱処理を施す第2熱処理ステップを行う。   Next, a second heat treatment step for heat treating the electrode wire 5 is performed.

この第2熱処理ステップでは、図2の電極線5に400〜500℃で0.5〜2時間の熱処理を施すことで、Znの再拡散を促すことなく電極線5に適切な伸線性を与える程度に電極線5を軟化させる。もし、熱処理温度が400℃未満であったり、熱処理時間が0.5時間未満であったりすると、電極線5を軟化させることができず、次の第3縮径ステップでの伸線性が低下する。また、もし、熱処理温度が500℃より大であったり、熱処理時間が2時間より大であったりすると、Znの再拡散が進行してしまい、Cu−Zn拡散層6のZn濃度が所望よりも低下してしまう。Cu−Zn拡散層6のZn濃度が所望よりも低下してしまうと、その電極線を使用して行う放電加工速度が低下してしまう。   In this second heat treatment step, the electrode wire 5 in FIG. 2 is subjected to a heat treatment at 400 to 500 ° C. for 0.5 to 2 hours, thereby giving the electrode wire 5 an appropriate wire drawing property without promoting Zn re-diffusion. The electrode wire 5 is softened to the extent. If the heat treatment temperature is less than 400 ° C. or the heat treatment time is less than 0.5 hour, the electrode wire 5 cannot be softened and the drawability at the next third diameter reduction step is lowered. . If the heat treatment temperature is higher than 500 ° C. or the heat treatment time is longer than 2 hours, Zn re-diffusion proceeds, and the Zn concentration of the Cu—Zn diffusion layer 6 is higher than desired. It will decline. If the Zn concentration of the Cu—Zn diffusion layer 6 is lower than desired, the electrical discharge machining speed using the electrode wire is reduced.

次に、この電極線5を縮径加工する第3縮径ステップを行う。   Next, a third diameter reducing step for reducing the diameter of the electrode wire 5 is performed.

この第3縮径ステップでは、Cu−Zn拡散層6の加工度が70〜98%となるように縮径加工を行う。これにより、電極線5に所望の引っ張り強さを与えることができる。もし、加工度が70%未満では所望の引っ張り強さを得ることができない。また、もし、加工度が98%より大であると、Cu−Zn拡散層6が加工限界を超えてしまい、この第3縮径ステップでの伸線加工時に断線が発生するようになる。 In this third diameter reduction step, the diameter reduction processing is performed so that the processing degree of the Cu—Zn diffusion layer 6 becomes 70 to 98%. Thereby, desired tensile strength can be given to the electrode wire 5. If the degree of processing is less than 70%, the desired tensile strength cannot be obtained. If the degree of processing is greater than 98 %, the Cu—Zn diffusion layer 6 exceeds the processing limit, and disconnection occurs at the time of wire drawing in the third diameter reduction step.

ここで電極線5に所望の引っ張り強さをもたせる理由は、ワイヤ放電加工を行う際に、ワイヤ放電加工用電極線に張力をかけながら放電加工を行うためで、もし、そのときに所望の引っ張り強さがないと、ワイヤ放電加工中にワイヤ放電加工用電極線が断線してしまう。   Here, the reason why the electrode wire 5 has a desired tensile strength is that when performing the electric discharge machining, the electric discharge machining is performed while applying tension to the wire electric discharge machining electrode wire. Without strength, the wire electric discharge machining electrode wire is broken during wire electric discharge machining.

第3縮径ステップでは、仕上がり外径が0.1〜0.4mmの電極線が得られるように縮径加工を行う。   In the third diameter reduction step, diameter reduction processing is performed so as to obtain an electrode wire having a finished outer diameter of 0.1 to 0.4 mm.

以上の製造工程を経て製造されたワイヤ放電加工用電極線は、Cu−Zn拡散層6のZn濃度が高いため放電加工速度が高い。また、このワイヤ放電加工用電極線は、製造中における伸線加工性が良好であるため生産効率が高く、よって低コストで製造が可能となる。つまり、本発明により安価なワイヤ放電加工用電極線を提供することができる。   The wire electric discharge machining electrode wire manufactured through the above manufacturing steps has a high electric discharge machining speed because the Zn concentration of the Cu—Zn diffusion layer 6 is high. In addition, this wire electric discharge machining electrode wire has good drawing workability during production and therefore has high production efficiency, and thus can be produced at low cost. That is, the present invention can provide an inexpensive wire electric discharge machining electrode wire.

なお、第1熱処理ステップにおいて、当該熱処理後にCu−Zn拡散層6におけるZn濃度が38〜50重量%となるようにしたのは、電極線5の伸線性を損なうことなく、電極線5に所望の高Zn濃度を持たせるためである。もし、Cu−Zn拡散層6のZn濃度が38重量%未満であるとその電極線を使用して放電加工をするときの加工速度が低下してしまう。また、もし、Cu−Zn拡散層6のZn濃度が50重量%より大であると、伸線加工性が著しく低下してしまう。   In the first heat treatment step, the Zn concentration in the Cu—Zn diffusion layer 6 after the heat treatment is set to 38 to 50% by weight as desired for the electrode wire 5 without impairing the drawability of the electrode wire 5. This is to provide a high Zn concentration. If the Zn concentration of the Cu—Zn diffusion layer 6 is less than 38% by weight, the processing speed when performing electrical discharge machining using the electrode wire is lowered. Further, if the Zn concentration of the Cu—Zn diffusion layer 6 is larger than 50% by weight, the wire drawing workability is remarkably lowered.

また、背景技術では、熱処理ステップ後のZn濃度が38〜50重量%と高濃度であるため、最終的縮径ステップでの伸線加工性が低かったが、本発明では第1熱処理ステップでZn濃度を38〜50重量%にしても、その後、第2熱処理ステップにおいて軟化を図っているので、第3縮径ステップで高い伸線加工性を得ることができる。   In the background art, the Zn concentration after the heat treatment step is as high as 38 to 50% by weight, so that the wire drawing workability in the final diameter reduction step is low. Even if the concentration is 38 to 50% by weight, since the softening is subsequently achieved in the second heat treatment step, high wire drawing workability can be obtained in the third diameter reduction step.

本発明の効果を明らかにするために、本発明で製造した電極線(実施例)とそれ以外の電極線(比較例及び従来例)を種々の観点から比較した。まず、各電極線の製造方法及び諸条件を明確にしておく。   In order to clarify the effects of the present invention, the electrode wires (Examples) manufactured according to the present invention were compared with other electrode wires (Comparative Examples and Conventional Examples) from various viewpoints. First, the manufacturing method and various conditions of each electrode wire are clarified.

(実施例1)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×2時間の熱処理を施してCu−45重量%Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
Example 1
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat-treated at 600 ° C. for 2 hours to form a Cu-45 wt% Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to a cold drawing process with a working degree of 65%, followed by a heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

(実施例2)
心材2として直径が4.0mmのCu−0.16重量%Zr合金線を用いる。その他は実施例1と同様にして線径が0.25mmの電極線を製造する。
(Example 2)
As the core material 2, a Cu-0.16 wt% Zr alloy wire having a diameter of 4.0 mm is used. Otherwise, an electrode wire having a wire diameter of 0.25 mm is manufactured in the same manner as in Example 1.

(実施例3)
心材2として直径が4.0mmのCu−10重量%Zn合金線を用いる。その他は実施例1と同様にして線径が0.25mmの電極線を製造する。
(Example 3)
A Cu-10 wt% Zn alloy wire having a diameter of 4.0 mm is used as the core material 2. Otherwise, an electrode wire having a wire diameter of 0.25 mm is manufactured in the same manner as in Example 1.

(実施例4)
心材2として直径が4.0mmのCu−0.3重量%Sn合金線を用いる。その他は実施例1と同様にして線径が0.25mmの電極線を製造する。
Example 4
As the core material 2, a Cu-0.3 wt% Sn alloy wire having a diameter of 4.0 mm is used. Otherwise, an electrode wire having a wire diameter of 0.25 mm is manufactured in the same manner as in Example 1.

なお、これらの実施例においては心材2としてCu合金を用いているが、本発明はこれに限られるものではなく、心材2としてCu単体を用いても良い。   In these examples, a Cu alloy is used as the core material 2, but the present invention is not limited to this, and Cu alone may be used as the core material 2.

(比較例1)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、400℃×4時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 1)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat-treated at 400 ° C. for 4 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to a cold drawing process with a working degree of 65%, followed by a heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例1は、第1熱処理ステップの条件が400℃×4時間である以外は実施例1と同様である。よって、第1熱処理ステップにおける熱処理温度が本発明の条件に不足である。   That is, Comparative Example 1 is the same as Example 1 except that the condition of the first heat treatment step is 400 ° C. × 4 hours. Therefore, the heat treatment temperature in the first heat treatment step is insufficient for the conditions of the present invention.

(比較例2)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×0.5時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 2)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat treated at 600 ° C. for 0.5 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to a cold drawing process with a working degree of 65%, followed by a heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例2は、第1熱処理ステップの条件が600℃×0.5時間である以外は実施例1と同様である。よって、第1熱処理ステップにおける熱処理時間が本発明の条件に不足である。   That is, Comparative Example 2 is the same as Example 1 except that the condition of the first heat treatment step is 600 ° C. × 0.5 hours. Therefore, the heat treatment time in the first heat treatment step is insufficient for the conditions of the present invention.

(比較例3)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×6時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 3)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat-treated at 600 ° C. for 6 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to a cold drawing process with a working degree of 65%, followed by a heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例3は、第1熱処理ステップの条件が600℃×6時間である以外は実施例1と同様である。よって、第1熱処理ステップにおける熱処理時間が本発明の条件を越えている。   That is, Comparative Example 3 is the same as Example 1 except that the condition of the first heat treatment step is 600 ° C. × 6 hours. Therefore, the heat treatment time in the first heat treatment step exceeds the conditions of the present invention.

(比較例4)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、800℃×4時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 4)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat-treated at 800 ° C. for 4 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to cold drawing at a workability of 65%, and then heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a workability of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例4は、第1熱処理ステップの条件が800℃×4時間である以外は実施例1と同様である。よって、第1熱処理ステップにおける熱処理温度が本発明の条件を越えている。   That is, Comparative Example 4 is the same as Example 1 except that the condition of the first heat treatment step is 800 ° C. × 4 hours. Therefore, the heat treatment temperature in the first heat treatment step exceeds the conditions of the present invention.

(比較例5)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×2時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度40%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 5)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat treated at 600 ° C. for 2 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to cold drawing at a working degree of 40%, and then heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例5は、第2縮径ステップの条件が加工度40%である以外は実施例1と同様である。よって、第2縮径ステップにおける加工度が本発明の条件に不足である。   That is, Comparative Example 5 is the same as Example 1 except that the condition of the second diameter reduction step is a processing degree of 40%. Therefore, the degree of processing in the second diameter reduction step is insufficient for the conditions of the present invention.

(比較例6)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×2時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度90%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 6)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat treated at 600 ° C. for 2 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to cold drawing with a workability of 90% and then heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例5は、第2縮径ステップの条件が加工度90%である以外は実施例1と同様である。よって、第2縮径ステップにおける加工度が本発明の条件を越えている。   That is, Comparative Example 5 is the same as Example 1 except that the condition of the second diameter reduction step is a processing degree of 90%. Therefore, the degree of processing in the second diameter reduction step exceeds the condition of the present invention.

(比較例7)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×2時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、300℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 7)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat treated at 600 ° C. for 2 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to cold drawing with a processing degree of 65%, and then heat treatment at 300 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例7は、第2熱処理ステップの条件が300℃×1時間である以外は実施例1と同様である。よって、第2熱処理ステップにおける熱処理温度が本発明の条件に不足である。   That is, Comparative Example 7 is the same as Example 1 except that the condition of the second heat treatment step is 300 ° C. × 1 hour. Therefore, the heat treatment temperature in the second heat treatment step is insufficient for the conditions of the present invention.

(比較例8)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×2時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、600℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度90%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 8)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat treated at 600 ° C. for 2 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to cold drawing with a workability of 65% and then heat treatment at 600 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 90% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例8は、第2熱処理ステップの条件が600℃×1時間である以外は実施例1と同様である。よって、第2熱処理ステップにおける熱処理温度が本発明の条件を越えている。   That is, Comparative Example 8 is the same as Example 1 except that the condition of the second heat treatment step is 600 ° C. × 1 hour. Therefore, the heat treatment temperature in the second heat treatment step exceeds the condition of the present invention.

(比較例9)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×2時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度65%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 9)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat treated at 600 ° C. for 2 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to a cold drawing process with a working degree of 65%, followed by a heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 65% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例9は、第3縮径ステップの条件が加工度65%である以外は実施例1と同様である。よって、第3縮径ステップにおける加工度が本発明の条件に不足である。   That is, Comparative Example 9 is the same as Example 1 except that the condition of the third diameter reduction step is a processing degree of 65%. Therefore, the degree of processing in the third diameter reduction step is insufficient for the conditions of the present invention.

(比較例10)
心材2として直径が4.0mmのCu−0.19重量%Sn−0.2重量%In合金線を用い、厚さ0.2mm、幅13mmのZnテープを縦添えし、その上に厚さ0.50mmのCu−Znテープ(Cu−35重量%Zn)を縦添えし、突き合わせ部を溶接して直径が5.4mmの被覆線材1を形成する。この被覆線材1に加工度60%の冷間伸線加工を施した後、600℃×2時間の熱処理を施してCu−45Zn拡散層6を形成して電極線5を形成する。この電極線5に加工度65%の冷間伸線加工を施した後、450℃×1時間の熱処理を施す。最後に、この電極線5を複数の伸線ダイスに通して加工度99%で縮径加工を施し、線径が0.25mmの電極線を製造する。
(Comparative Example 10)
A Cu-0.19 wt% Sn-0.2 wt% In alloy wire having a diameter of 4.0 mm is used as the core material 2, and a thickness of 0.2 mm and a width of 13 mm of Zn tape is vertically attached to the core material 2. A coated wire 1 having a diameter of 5.4 mm is formed by vertically attaching a Cu-Zn tape (Cu-35 wt% Zn) of 0.50 mm and welding the butted portions. The coated wire 1 is subjected to cold drawing at a workability of 60%, and then heat treated at 600 ° C. for 2 hours to form the Cu-45Zn diffusion layer 6 to form the electrode wire 5. The electrode wire 5 is subjected to a cold drawing process with a working degree of 65%, followed by a heat treatment at 450 ° C. for 1 hour. Finally, the electrode wire 5 is passed through a plurality of wire drawing dies and subjected to diameter reduction processing at a processing degree of 99% to produce an electrode wire having a wire diameter of 0.25 mm.

つまり、比較例9は、第3縮径ステップの条件が加工度99%である以外は実施例1と同様である。よって、第3縮径ステップにおける加工度が本発明の条件を越えている。   That is, Comparative Example 9 is the same as Example 1 except that the condition of the third diameter reduction step is a working degree of 99%. Therefore, the degree of processing in the third diameter reduction step exceeds the condition of the present invention.

(従来例1)
Cu−35Zn合金線のみからなり、線径が0.25mmの電極線を製造する。
(Conventional example 1)
An electrode wire having only a Cu-35Zn alloy wire and having a wire diameter of 0.25 mm is manufactured.

Figure 0004479270
Figure 0004479270

表1は、各例の電極線の製造方法及び諸条件と評価をまとめたものである。すなわち、表1は、左から、各例の番号、心材の組成、拡散熱処理条件(第1熱処理ステップの条件)、中間伸線の加工度(第2縮径ステップの条件)、熱処理条件(第2熱処理ステップの条件)、最終伸線加工度(第3縮径ステップの条件)、伸線加工性、放電加工速度の欄となっている。   Table 1 summarizes the manufacturing method, conditions and evaluation of the electrode wire of each example. That is, from the left, Table 1 shows the number of each example, the composition of the core material, the diffusion heat treatment conditions (conditions of the first heat treatment step), the degree of processing of intermediate wire drawing (conditions of the second diameter reduction step), the heat treatment conditions (first 2 heat treatment step conditions), final wire drawing degree (third diameter reducing step condition), wire drawing workability, electric discharge machining speed.

評価のうち、伸線加工性については、所定のサイズに伸線加工する際に計測される、1回断線するまでの伸線重量(kg/回)で評価した。   Among the evaluations, the wire drawing workability was evaluated by the wire drawing weight (kg / time) until the wire was broken once, which was measured when wire drawing was performed to a predetermined size.

この、伸線重量は、被覆線材1或いは電極線5を所定の伸線前の径から所定の目標の径に伸線加工する際に計測される量であり、伸線したトータルの製品重量をその間の断線回数で割った値である。よって、伸線重量は、断線1回あたりの製品重量を表す。伸線重量が大きい方が伸線加工性に優れているといえる。表1では、各例の電極線の伸線重量を三段階評価した。すなわち100kg/回以上ならば丸(良好)という評価、50〜100kg/回ならば三角(普通)という評価、50kg以下ならばバツ(不可)という評価を与えた。   The wire drawing weight is an amount measured when the coated wire 1 or the electrode wire 5 is drawn from a diameter before a predetermined drawing to a predetermined target diameter. The value divided by the number of disconnections during that time. Accordingly, the wire drawing weight represents the product weight per disconnection. It can be said that the wire drawing weight is superior in wire drawing workability. In Table 1, the drawing weight of the electrode wire of each example was evaluated in three stages. That is, an evaluation of round (good) was given if it was 100 kg / time or more, an evaluation of triangle (ordinary) if it was 50 to 100 kg / time, and an evaluation of bad (impossible) if it was 50 kg or less.

放電加工速度については、各例における放電加工速度を測定し、その測定結果を従来例1を1.0としたときの指数で示した。この指数は、各例における放電加工速度を従来例1における放電加工速度で割って計算され、大きい方が優れている。ただし、伸線重量の評価が不可だったものは放電加工速度を測定しなかった。   Regarding the electric discharge machining speed, the electric discharge machining speed in each example was measured, and the measurement result was shown as an index when the conventional example 1 was set to 1.0. This index is calculated by dividing the electric discharge machining speed in each example by the electric discharge machining speed in Conventional Example 1, and the larger one is superior. However, the electrical discharge machining speed was not measured for the case where the wire weight could not be evaluated.

さて、表1によれば、実施例1〜4の電極線は、従来例1よりも30〜40ポイント高い放電加工速度を有することがわかる。また、実施例1〜4の電極線は、従来例1と同様に良好な伸線加工性を有することがわかる。   Now, according to Table 1, it can be seen that the electrode wires of Examples 1 to 4 have an electrical discharge machining speed 30 to 40 points higher than that of Conventional Example 1. Moreover, it turns out that the electrode wire of Examples 1-4 has favorable wire drawing workability similarly to the prior art example 1. FIG.

これに対し、比較例1は、拡散温度(第1熱処理ステップにおける熱処理温度)が低いために、Znが拡散しきれず、その結果、第3縮径ステップにおける伸線加工性が著しく低下してしまい、放電加工に供することができなかった。   On the other hand, in Comparative Example 1, since the diffusion temperature (heat treatment temperature in the first heat treatment step) is low, Zn cannot be diffused, and as a result, the wire drawing workability in the third diameter reduction step is significantly reduced. , Could not be subjected to electric discharge machining.

比較例2は、拡散時間(第1熱処理ステップにおける熱処理時間)が短いために、Znが均一に拡散せず、その結果、第3縮径ステップにおける伸線加工性が著しく低下してしまい、放電加工に供することができなかった。   In Comparative Example 2, since the diffusion time (the heat treatment time in the first heat treatment step) is short, Zn does not diffuse uniformly, and as a result, the wire drawing workability in the third diameter reduction step is remarkably deteriorated. Could not be processed.

比較例3は拡散時間が長く、また、比較例4は拡散温度が高いために、いずれもCu−Zn拡散層6のZn濃度が所望よりも低下してしまい、放電加工速度に大きな向上が認められない。   Since Comparative Example 3 has a long diffusion time and Comparative Example 4 has a high diffusion temperature, the Zn concentration of the Cu—Zn diffusion layer 6 is lower than desired in all cases, and a great improvement in the electric discharge machining speed is recognized. I can't.

比較例5〜10は、中間伸線の加工度(第2縮径ステップの条件)、熱処理条件(第2熱処理ステップの条件)、最終伸線加工度(第3縮径ステップの条件)が適正でないために、伸線時に断線が生じたり、放電加工速度に大きな向上が認められない。   In Comparative Examples 5 to 10, the degree of intermediate wire drawing (second reduction step condition), heat treatment condition (second heat treatment step condition), and final wire drawing degree (third diameter reduction step condition) are appropriate. Therefore, no breakage occurs at the time of wire drawing, and no significant improvement is observed in the electric discharge machining speed.

以上の評価から、本発明は、放電加工速度の速い電極線を高い生産性(低コスト)で製造する効果があると結論できる。   From the above evaluation, it can be concluded that the present invention has an effect of producing an electrode wire having a high electric discharge machining speed with high productivity (low cost).

本発明の一実施形態を示す製造途中の被覆線材の断面図である。It is sectional drawing of the covering wire in the middle of manufacture which shows one Embodiment of this invention. 本発明の一実施形態を示す製造途中の被覆線材及び完成品の電極線の断面図である。It is sectional drawing of the covering wire in the middle of manufacture which shows one Embodiment of this invention, and the electrode wire of a finished product.

符号の説明Explanation of symbols

1 被覆線材
2 伸線
3 Zn層
4 Cu−Zn層
5 電極線
6 Cu−Zn拡散層
DESCRIPTION OF SYMBOLS 1 Coated wire 2 Wire drawing 3 Zn layer 4 Cu-Zn layer 5 Electrode wire 6 Cu-Zn diffusion layer

Claims (7)

Cu又はCu合金からなる心材の外周にZn層を被覆する第1被覆ステップと、このZn層の外周に低Zn濃度のCu−Zn層を被覆して被覆線材を形成する第2被覆ステップと、この被覆線材を縮径加工する第1縮径ステップと、この被覆線材に500〜700℃で1〜5時間の熱処理を施すことで前記Zn層中のZnを前記Cu−Zn層に拡散させて高Zn濃度のCu−Zn拡散層を形成する第1熱処理ステップと、この被覆線材を縮径加工する第2縮径ステップと、熱処理後の被覆線材に450℃で0.5〜2時間の熱処理を施すことで被覆線材を軟化させる第2熱処理ステップと、この被覆線材を縮径加工することにより、被覆線材に所望の引っ張り強さを与える第3縮径ステップとを有することを特徴とするワイヤ放電加工用電極線の製造方法。 A first coating step of coating a Zn layer on the outer periphery of a core material made of Cu or Cu alloy, and a second coating step of forming a coated wire by coating a low Zn concentration Cu-Zn layer on the outer periphery of the Zn layer; A first diameter reducing step for reducing the diameter of the coated wire , and heat treatment at 500 to 700 ° C. for 1 to 5 hours to diffuse Zn in the Zn layer into the Cu—Zn layer. A first heat treatment step for forming a Cu-Zn diffusion layer having a high Zn concentration, a second diameter reduction step for reducing the diameter of the coated wire, and a heat treatment for 0.5 to 2 hours at 450 ° C. on the coated wire after the heat treatment A wire comprising: a second heat treatment step for softening the coated wire by applying a wire; and a third diameter reducing step for imparting a desired tensile strength to the coated wire by reducing the diameter of the coated wire. Electrode for electrical discharge machining The method of production. 第1縮径ステップは、Cu−Zn層の加工度が50〜80%となるように縮径加工を行うことを特徴とする請求項1記載のワイヤ放電加工用電極線の製造方法。   2. The method of manufacturing an electrode wire for wire electric discharge machining according to claim 1, wherein in the first diameter reduction step, the diameter reduction processing is performed so that the degree of processing of the Cu—Zn layer is 50 to 80%. 第2縮径ステップは、Cu−Zn拡散層の加工度が50〜80%となるように縮径加工を行うことを特徴とする請求項1または2に記載のワイヤ放電加工用電極線の製造方法。 3. The method of manufacturing an electrode wire for wire electric discharge machining according to claim 1, wherein the second diameter reduction step performs diameter reduction processing so that a degree of processing of the Cu—Zn diffusion layer is 50 to 80%. Method. 第3縮径ステップは、Cu−Zn拡散層の加工度が70〜98%となるように縮径加工を行うことを特徴とする請求項1〜いずれか記載のワイヤ放電加工用電極線の製造方法。 4. The wire electric discharge machining electrode wire according to claim 1, wherein in the third diameter reduction step, the diameter reduction processing is performed so that the processing degree of the Cu—Zn diffusion layer is 70 to 98%. Production method. 第1被覆ステップは、前記心材の外周にZnテープを縦添えすることによりZn層を被覆し、第2被覆ステップは、前記Zn層の外周にCu−Znテープを縦添えすることを特徴とする請求項1〜いずれか記載のワイヤ放電加工用電極線の製造方法。 In the first covering step, a Zn layer is coated by vertically attaching a Zn tape to the outer periphery of the core material, and in the second covering step, a Cu-Zn tape is vertically attached to the outer periphery of the Zn layer. The manufacturing method of the electrode wire for wire electric discharge machining in any one of Claims 1-4 . 前記心材は、Cu−0.10〜0.70重量%In合金であることを特徴とする請求項1〜いずれか記載のワイヤ放電加工用電極線の製造方法。 The said core material is Cu-0.10-0.70weight% In alloy , The manufacturing method of the electrode wire for wire electric discharge machining in any one of Claims 1-5 characterized by the above-mentioned. 第1熱処理ステップは、当該熱処理後にCu−Zn拡散層におけるZn濃度が38〜50重量%であることを特徴とする請求項1〜いずれか記載のワイヤ放電加工用電極線の製造方法。 The method of manufacturing an electrode wire for wire electric discharge machining according to any one of claims 1 to 6 , wherein the first heat treatment step has a Zn concentration in the Cu-Zn diffusion layer of 38 to 50 wt% after the heat treatment.
JP2004044860A 2004-02-20 2004-02-20 Manufacturing method of electrode wire for wire electric discharge machining Expired - Fee Related JP4479270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044860A JP4479270B2 (en) 2004-02-20 2004-02-20 Manufacturing method of electrode wire for wire electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044860A JP4479270B2 (en) 2004-02-20 2004-02-20 Manufacturing method of electrode wire for wire electric discharge machining

Publications (2)

Publication Number Publication Date
JP2005230992A JP2005230992A (en) 2005-09-02
JP4479270B2 true JP4479270B2 (en) 2010-06-09

Family

ID=35014457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044860A Expired - Fee Related JP4479270B2 (en) 2004-02-20 2004-02-20 Manufacturing method of electrode wire for wire electric discharge machining

Country Status (1)

Country Link
JP (1) JP4479270B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931028B2 (en) 2010-02-02 2012-05-16 沖電線株式会社 Electrode wire for wire electric discharge machining, method for producing the same, and electric discharge machining method using the electrode wire
KR20200049183A (en) 2018-10-31 2020-05-08 주식회사 풍국 Electric discharge machining wire electrode and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005230992A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP6201815B2 (en) Method for producing copper alloy stranded wire
JPWO2002071563A1 (en) Power distribution assembly
KR101486028B1 (en) Electrode wire for electrical discharge machining
JP2001025813A (en) Manufacture of titanium fiber or titanium alloy fiber
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP3389612B2 (en) Electrode wire for wire cut electric discharge machining
JP4479270B2 (en) Manufacturing method of electrode wire for wire electric discharge machining
JP5442294B2 (en) Wire conductor manufacturing method, and wire conductor and insulated wire
JP5497321B2 (en) Compressed stranded conductor, method for producing the same, and insulated wire
JP5443744B2 (en) Electric wire conductor manufacturing method and electric wire conductor
JP5744649B2 (en) Conductor wire
JPH0259109A (en) Manufacture of very fine titanium wire
JP2001269820A (en) Method of manufacturing electrode wire for wire electric discharge machining
JP3855681B2 (en) Manufacturing method of electrode wire for wire electric discharge machining
JPH11320269A (en) Electric discharge machining electrode wire
JP3948166B2 (en) Electrode wire for electric discharge machining
JP2007186736A (en) Method for manufacturing metallic wire, metallic cord for reinforcing rubber product, and vehicle tire
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JP6023901B2 (en) Electric wire or cable, wire harness, and aluminum alloy strand manufacturing method
JPS5952231B2 (en) Manufacturing method for electronic component lead material with good hedging processability
JP3520767B2 (en) Method of manufacturing electrode wire for electric discharge machining
JP2004141999A (en) Electrode wire for electrical discharge machining and its manufacturing method
JP2004181596A (en) Method of manufacture of electrode wire for wire electric discharge machining
JP2001087835A (en) PRODUCTION OF beta TITANIUM ALLOY FINE WIRE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees