JP5744649B2 - Conductor wire - Google Patents

Conductor wire Download PDF

Info

Publication number
JP5744649B2
JP5744649B2 JP2011149081A JP2011149081A JP5744649B2 JP 5744649 B2 JP5744649 B2 JP 5744649B2 JP 2011149081 A JP2011149081 A JP 2011149081A JP 2011149081 A JP2011149081 A JP 2011149081A JP 5744649 B2 JP5744649 B2 JP 5744649B2
Authority
JP
Japan
Prior art keywords
conductor
wire
conductor wire
surface layer
stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011149081A
Other languages
Japanese (ja)
Other versions
JP2013016383A (en
Inventor
芦田 哲哉
哲哉 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2011149081A priority Critical patent/JP5744649B2/en
Publication of JP2013016383A publication Critical patent/JP2013016383A/en
Application granted granted Critical
Publication of JP5744649B2 publication Critical patent/JP5744649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導体線及びその製造方法、並びにそれを用いた撚線導体、絶縁電線、溶接構造及び溶接方法に関する。   The present invention relates to a conductor wire and a manufacturing method thereof, and a stranded conductor, an insulated wire, a welded structure, and a welding method using the conductor wire.

自動車に配索されるワイヤーハーネスでは、一対の絶縁電線のそれぞれについて中間部分または端末部の被覆を剥いで撚線導体を露出させ、それらを超音波溶接により溶接してスプライス部を形成することが行われる(例えば特許文献1参照)。   In a wire harness routed in an automobile, the intermediate portion or the terminal portion of each of the pair of insulated wires may be peeled to expose the stranded conductors and welded by ultrasonic welding to form a splice portion. (For example, refer to Patent Document 1).

特開2009−1167号公報JP 2009-1167 A

排ガス低減や燃費向上を目的とした自動車の軽量化が進められており、そのため自動車に搭載される各部品に対して軽量化及び小型化が求められている。その中でワイヤーハーネスも例外ではなく、軽量化のための電線の細径化が進んできている。   The weight reduction of automobiles for the purpose of reducing exhaust gas and improving fuel efficiency has been promoted, and therefore, there is a demand for weight reduction and miniaturization of each component mounted on the automobile. Among them, wire harnesses are no exception, and the diameter of electric wires has been reduced for weight reduction.

ところで、従来、自動車用の電線では、主に軟銅からなる導体線を同心撚りした撚線導体が用いられていたが、電線の細径化に伴う強度不足による車載時や配索時の断線が懸念されることから、現在では、銅合金等の硬質材(強度向上材を含む)からなる導体線が採用されている。   By the way, in the past, a stranded wire conductor in which a conductor wire mainly made of soft copper was concentrically twisted was used in an electric wire for an automobile. However, disconnection at the time of in-vehicle or wiring due to insufficient strength due to the diameter reduction of the wire. Because of concern, at present, a conductor wire made of a hard material (including a strength improving material) such as a copper alloy is employed.

ところが、ワイヤーハーネスの組立においてはスプライス部を形成する中間ジョイントが採用されているが、硬質材からなる導体線を用いた細径化した電線を、軟銅からなる導体線を用いた一般電線に超音波溶接でジョイントする場合、溶接強度が不十分であり、また、バラツキが大きいという問題がある。   However, in the assembly of wire harnesses, intermediate joints that form splices are used. However, a thin wire using a conductor wire made of a hard material is replaced with a general wire using a conductor wire made of soft copper. When jointing by sonic welding, there is a problem that welding strength is insufficient and variation is large.

本発明の課題は、高く且つ安定な溶接強度を得ることができる導体線を提供することである。   The subject of this invention is providing the conductor wire which can obtain the high and stable welding strength.

本発明の導体線は、タフピッチ銅又は無酸素銅からなると共に、表面に平均厚さが20nm以下である酸化膜が形成されており、引張強さが350MPa以上で、且つ表面から中心に向かって2.0μm以下の外層部のビッカース硬さの表面から中心に向かって5.0μm以上の内層部のビッカース硬さに対する比が1.05以下である外径0.08〜0.26mmのものである。 The conductor wire of the present invention is made of tough pitch copper or oxygen-free copper , and an oxide film having an average thickness of 20 nm or less is formed on the surface, the tensile strength is 350 MPa or more, and from the surface toward the center. From the surface of the Vickers hardness of the outer layer portion of 2.0 μm or less toward the center, the ratio of the inner layer portion of 5.0 μm or more to the Vickers hardness is 1.05 or less and the outer diameter is 0.08 to 0.26 mm. is there.

本発明の導体線の製造方法は、導体線材料の表面層を除去する表面層除去加工を施すものである。   The method for producing a conductor wire of the present invention performs a surface layer removing process for removing the surface layer of the conductor wire material.

本発明の撚線導体は、本発明の導体線を含む複数本の導体線を集めて撚って構成されたものである。   The stranded wire conductor of the present invention is constituted by collecting and twisting a plurality of conductor wires including the conductor wire of the present invention.

本発明の絶縁電線は、本発明の撚線導体を絶縁層で被覆して構成されたものである。   The insulated wire of the present invention is constituted by covering the stranded conductor of the present invention with an insulating layer.

本発明の溶接構造は、本発明の絶縁電線の絶縁層を部分的に剥がして露出した撚線導体を他の金属材に溶接して構成されたものである。   The welded structure of the present invention is constructed by welding the stranded wire conductor exposed by partially peeling the insulating layer of the insulated wire of the present invention to another metal material.

本発明の溶接方法は、本発明の絶縁電線の絶縁層を部分的に剥がして露出した撚線導体を他の金属材に溶接するものである。   In the welding method of the present invention, the stranded wire conductor exposed by partially peeling the insulating layer of the insulated wire of the present invention is welded to another metal material.

本発明によれば、外径0.08〜0.26mmの細径の導体線であるものの、それが、銅又は銅合金からなると共に、表面に平均厚さが20nm以下である酸化膜が形成されており、しかも、引張強さが350MPa以上で、且つ表面から中心に向かって2.0μm以下の外層部のビッカース硬さの表面から中心に向かって5.0μm以上の内層部のビッカース硬さに対する比が1.05以下であることにより、十分に高く且つバラツキが小さい溶接強度を得ることができる   According to the present invention, although it is a thin conductor wire having an outer diameter of 0.08 to 0.26 mm, it is made of copper or a copper alloy, and an oxide film having an average thickness of 20 nm or less is formed on the surface. Moreover, the Vickers hardness of the inner layer portion of 5.0 μm or more from the surface to the center of the Vickers hardness of the outer layer portion having a tensile strength of 350 MPa or more and 2.0 μm or less from the surface toward the center. When the ratio to is 1.05 or less, it is possible to obtain a welding strength that is sufficiently high and has little variation.

実施形態に係る導体線を示す斜視図である。It is a perspective view which shows the conductor wire which concerns on embodiment. 実施形態に係る導体線の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the conductor wire which concerns on embodiment. 実施形態に係る絶縁電線の断面図である。It is sectional drawing of the insulated wire which concerns on embodiment. 変形例の絶縁電線の断面図である。It is sectional drawing of the insulated wire of a modification. 実施形態に係る溶接構造を示す平面図である。It is a top view which shows the welding structure which concerns on embodiment. 溶接強度の測定方法の説明図である。It is explanatory drawing of the measuring method of welding strength.

以下、実施形態について図面に基づいて詳細に説明する。   Hereinafter, embodiments will be described in detail based on the drawings.

図1は本実施形態に係る導体線10を示す。   FIG. 1 shows a conductor wire 10 according to this embodiment.

本実施形態に係る導体線10は、硬質材(強度向上材を含む)である銅又は銅合金からなり、断面円形に形成されている。銅としては、例えば、タフピッチ銅、無酸素銅等が挙げられる。銅合金としては、例えば、Cu−0.3%Sn合金、Cu−2.5%Ni−0.6%Si−0.35%Cr合金(C18000)等が挙げられる。導体線10の外径は0.08〜0.26mmであり、0.08〜0.22mmであることが好ましく、0.08〜0.18mmであることがより好ましい。導体線10の断面形状は、真円であることが好ましいが、必ずしも真円である必要はなく、偏平した円形であってもよい。なお、その場合の外径は、導体線10の断面の最大外径である。   The conductor wire 10 according to the present embodiment is made of copper or a copper alloy, which is a hard material (including a strength improving material), and has a circular cross section. Examples of copper include tough pitch copper and oxygen-free copper. Examples of the copper alloy include a Cu-0.3% Sn alloy, a Cu-2.5% Ni-0.6% Si-0.35% Cr alloy (C18000), and the like. The outer diameter of the conductor wire 10 is 0.08 to 0.26 mm, preferably 0.08 to 0.22 mm, and more preferably 0.08 to 0.18 mm. The cross-sectional shape of the conductor wire 10 is preferably a perfect circle, but is not necessarily a perfect circle and may be a flat circle. In this case, the outer diameter is the maximum outer diameter of the cross section of the conductor wire 10.

導体線10は、表面に平均厚さが20nm以下である酸化膜が形成されている。酸化膜の厚さは15nm以下であることが好ましく、10nm以下であることがより好ましい。酸化膜の厚さは、電解液に0.1NのKCl水溶液及び対極電極に白金をそれぞれ用い、曝露面積を1.5cm2及び電流密度を0.5A/dm2としたカソード還元法によって測定される。導体線10の表面の酸化膜は、実際にはCuO及びCu2Oを含み、また、銅合金の場合には他の元素の酸化物をも含むが、上記の酸化膜の厚さの測定方法では、全てがCu2Oであるとみなすものとする。従って、本願における酸化膜の厚さはCu2O換算での酸化膜の厚さを意味する。 The conductor wire 10 has an oxide film having an average thickness of 20 nm or less on the surface. The thickness of the oxide film is preferably 15 nm or less, and more preferably 10 nm or less. The thickness of the oxide film was measured by a cathodic reduction method using a 0.1N KCl aqueous solution as the electrolyte and platinum as the counter electrode, with an exposed area of 1.5 cm 2 and a current density of 0.5 A / dm 2. The The oxide film on the surface of the conductor wire 10 actually contains CuO and Cu 2 O, and in the case of a copper alloy, it also contains oxides of other elements. Then, all shall be regarded as Cu 2 O. Therefore, the thickness of the oxide film in the present application means the thickness of the oxide film in terms of Cu 2 O.

導体線10は、引張強さが350MPa以上であり、400MPa以上であることが好ましく、450MPa以上であることがより好ましい。この導体線10の引張強さは、JIS Z2241に基づいて測定される。   The conductor wire 10 has a tensile strength of 350 MPa or more, preferably 400 MPa or more, and more preferably 450 MPa or more. The tensile strength of the conductor wire 10 is measured based on JIS Z2241.

導体線10は、表面から中心に向かって2.0μm以下の外層部のビッカース硬さの表面から中心に向かって5.0μm以上の内層部のビッカース硬さに対する比が1.05以下である。その比は1.04以下であることが好ましく、1.03以下であることがより好ましい。   The conductor wire 10 has a ratio of the outer layer portion Vickers hardness of 2.0 μm or less from the surface toward the center to the Vickers hardness of the inner layer portion 5.0 μm or more from the surface to the center of 1.05 or less. The ratio is preferably 1.04 or less, and more preferably 1.03 or less.

外層部及び内層部のビッカース硬さは、JIS K2244に基づき、外層部の場合には試験荷重5mN及び内層部の場合には試験荷重50mNとして測定される。   The Vickers hardness of the outer layer portion and the inner layer portion is measured based on JIS K2244 as a test load of 5 mN for the outer layer portion and a test load of 50 mN for the inner layer portion.

次に、本実施形態に係る導体線10の製造方法について説明する。   Next, the manufacturing method of the conductor wire 10 which concerns on this embodiment is demonstrated.

本実施形態に係る導体線10の製造方法は、図2(a)に示すように、導体線材料の表面層を除去する表面層除去加工と、その後、表面層を除去した導体線材料を円形断面に伸線する表面層除去後伸線加工(表面層除去後冷間伸線加工)とを含む。表面層除去加工では、導体線材料の外径の3〜8%の表面層を除去することが好ましく、5〜8%の表面層を除去することがより好ましい。この表面層除去加工を施すことにより、最終的に、表面に平均厚さが20nm以下である酸化膜が形成され、また、引張強さが350MPa以上で、且つ表面から中心に向かって2.0μm以下の外層部のビッカース硬さの表面から中心に向かって5.0μm以上の内層部のビッカース硬さに対する比が1.05以下で、さらに、外径が0.08〜0.26mmであることを特徴とする上記導体線10を得ることができる。表面層除去加工としては、例えば、導体線材料を皮剥ダイスに通す皮剥加工、導体線材料の表面を研磨する研磨加工、導体線材料を酸に浸漬して表面層をエッチングする酸洗浄加工が挙げられる。これらのうち、均一且つ簡単に導体線材料の表面層を除去することができるという観点から皮剥加工が好ましい。   As shown in FIG. 2A, the manufacturing method of the conductor wire 10 according to the present embodiment is a surface layer removing process for removing the surface layer of the conductor wire material, and then the conductor wire material from which the surface layer is removed is circular. And after the surface layer removal that is drawn in the cross section (cold drawing after the surface layer removal). In the surface layer removal processing, it is preferable to remove the surface layer of 3 to 8% of the outer diameter of the conductor wire material, and it is more preferable to remove the surface layer of 5 to 8%. By performing this surface layer removal processing, an oxide film having an average thickness of 20 nm or less is finally formed on the surface, and the tensile strength is 350 MPa or more and 2.0 μm from the surface toward the center. The ratio of the Vickers hardness of the inner layer portion of 5.0 μm or more from the surface of the Vickers hardness of the following outer layer portion toward the center is 1.05 or less, and the outer diameter is 0.08 to 0.26 mm. Thus, the above-described conductor wire 10 can be obtained. Examples of the surface layer removing process include a peeling process in which the conductor wire material is passed through a peeling die, a polishing process for polishing the surface of the conductor wire material, and an acid cleaning process in which the conductor layer material is immersed in an acid to etch the surface layer. It is done. Of these, skinning is preferable from the viewpoint that the surface layer of the conductor wire material can be removed uniformly and easily.

本実施形態に係る導体線10の製造方法は、表面層除去代の均一化を図る観点から、図2(b)に示すように、表面層除去加工の前に、導体線材料の初期形態である荒引線を円形断面に伸線する表面層除去前伸線加工(表面層除去前冷間伸線加工)をさらに含むことが望ましい。導体線材料の初期形態である荒引銅線の外径は例えば8〜13mmである。表面層除去前伸線加工では、続く表面層除去加工による断線を防止する観点から、導体線材料の外径を例えば3〜7mmに細径化することが好ましい。   The manufacturing method of the conductor wire 10 according to the present embodiment is performed in the initial form of the conductor wire material before the surface layer removal processing, as shown in FIG. 2B, from the viewpoint of uniformizing the surface layer removal allowance. It is desirable to further include a drawing process before removing the surface layer (cold drawing before removing the surface layer) for drawing a rough drawing wire in a circular cross section. The outer diameter of the rough drawn copper wire that is the initial form of the conductor wire material is, for example, 8 to 13 mm. In the wire drawing before surface layer removal, it is preferable to reduce the outer diameter of the conductor wire material to 3 to 7 mm, for example, from the viewpoint of preventing disconnection due to subsequent surface layer removal.

本実施形態に係る導体線10の製造方法は、図2(c)に示すように、必要に応じて、前記伸線加工中の、或いは、前記伸線加工後の熱処理工程をさらに含んでいてもよい。熱処理工程での熱処理方法、並びにその熱処理温度及び熱処理時間の条件は適宜設定すればよいが、熱処理温度は例えば100〜600℃とし、熱処理時間は例えば0.5〜10時間とする。熱処理雰囲気はCOガスやH2ガス等の還元ガスを含む雰囲気とする。つまり、この熱処理は還元処理である。 As shown in FIG. 2C, the method for manufacturing the conductor wire 10 according to the present embodiment further includes a heat treatment step during or after the wire drawing as necessary. Also good. The heat treatment method in the heat treatment step and the conditions of the heat treatment temperature and the heat treatment time may be set as appropriate. The heat treatment temperature is, for example, 100 to 600 ° C., and the heat treatment time is, for example, 0.5 to 10 hours. The heat treatment atmosphere is an atmosphere containing a reducing gas such as CO gas or H 2 gas. That is, this heat treatment is a reduction treatment.

表面層除去後伸線加工では、導体線材料を伸線ダイスに通して、最終的な外径を有する導体線10に仕上げる。   In the wire drawing after removing the surface layer, the conductor wire material is passed through a wire drawing die to finish the conductor wire 10 having a final outer diameter.

以上の導体線の製造方法は、連続して行ってもよく、また、それぞれ独立して行ってもよいが、生産性を高める観点からは、連続して行うことが好ましい。その場合の線速度は例えば100〜2000m/minである。   The above-described method for producing a conductor wire may be performed continuously, or may be performed independently. However, from the viewpoint of improving productivity, it is preferable that the method is performed continuously. In this case, the linear velocity is, for example, 100 to 2000 m / min.

次に、本実施形態に係る絶縁電線20について説明する。   Next, the insulated wire 20 according to the present embodiment will be described.

図3は本実施形態に係る絶縁電線20を示す。この絶縁電線20は、例えば、自動車内のワイヤーハーネスを構成するのに用いられるものである。   FIG. 3 shows an insulated wire 20 according to this embodiment. This insulated wire 20 is used, for example, to constitute a wire harness in an automobile.

本実施形態に係る絶縁電線20は、本実施形態に係る導体線10を含む複数本の導体線10を集めて撚って構成された撚線導体21を絶縁層22で被覆して構成されている。   The insulated wire 20 according to the present embodiment is configured by covering a plurality of conductor wires 10 including the conductor wires 10 according to the present embodiment and twisting the conductor wires 21 with an insulating layer 22. Yes.

撚線導体21を構成する導体線10の本数は例えば7〜37本である。撚線導体21には本実施形態に係る導体線10が少なくとも1本含まれていればよいが、撚線導体21を構成する全ての導体線10が本実施形態に係る導体線10であることが好ましい。   The number of conductor wires 10 constituting the stranded conductor 21 is, for example, 7 to 37. The stranded wire conductor 21 only needs to include at least one conductor wire 10 according to this embodiment, but all the conductor wires 10 constituting the stranded wire conductor 21 are conductor wires 10 according to this embodiment. Is preferred.

撚線導体21の撚形態は、集合撚りであってもよく、また、同心撚りであってもよい。集合撚りは、導体線10を集めて撚り合わせただけのものであり、製造コストが安いというメリットがある。同心撚りは、導体線10を同心円状に配設し、断面が正多角形や円形に近似した形状となるように撚り合わせたものである。複数本の導体線10の外径が同一である場合には、低張力で安定して撚ることができるという観点から、集合撚りよりも、中心線である1本の導体線10の周りに他の導体線10を撚る同心撚りが好ましい。また、同心撚りにおいても、絶縁電線20の細径化を図る観点からは、導体線10を隙間無く最密充填状に配設することが好ましく、具体的には、例えば、図3に示すような1本の中心の導体線10の周りに6本の導体線10を最密充填状に1層配設した7(=1+6)本同心撚り、1本の中心の導体線10の周りに6本の導体線10及びその周りに12本の導体線10を最密充填状に配設した19(=1+6+12)本同心撚り、並びに、1本の中心の導体線10の周りに6本の導体線10、その周りに12本の導体線10、及びその周りに18本の導体線10を最密充填状に配設した37(=1+6+12+18)本同心撚りが好ましい。なお、導体線10の本数が多くなると1本の導体線10の断面積が小さくなって断線し易くなり、また、2層以上の撚りの場合に製造工程が煩雑になることから、7本同心撚りが特に好ましい。   The twisted form of the stranded wire conductor 21 may be a collective twist or a concentric twist. The collective twist is simply a matter of collecting and twisting the conductor wires 10 and has an advantage that the manufacturing cost is low. In the concentric twisting, the conductor wires 10 are concentrically arranged and twisted so that the cross section has a shape approximate to a regular polygon or a circle. In the case where the outer diameters of the plurality of conductor wires 10 are the same, from the viewpoint that they can be stably twisted with low tension, rather than the collective twist, around the one conductor wire 10 that is the center line The concentric twist which twists the other conductor wire 10 is preferable. Also, in concentric twisting, from the viewpoint of reducing the diameter of the insulated wire 20, it is preferable to arrange the conductor wires 10 in a close-packed form without gaps. Specifically, for example, as shown in FIG. 7 (= 1 + 6) concentric strands in which six layers of six conductor wires 10 are arranged in a close-packed manner around one central conductor wire 10 and 6 around one central conductor wire 10. 19 (= 1 + 6 + 12) concentric strands in which 12 conductor wires 10 and 12 conductor wires 10 are arranged in a close-packed manner, and 6 conductors around one central conductor wire 10 37 (= 1 + 6 + 12 + 18) concentric strands in which the wire 10, the 12 conductor wires 10 around the wire 10, and the 18 conductor wires 10 around the wire 10 are arranged in a close-packed manner are preferable. If the number of the conductor wires 10 is increased, the cross-sectional area of one conductor wire 10 is reduced and it is easy to break, and the manufacturing process becomes complicated when two or more layers are twisted. Twisting is particularly preferred.

撚線導体21は、図2(c)に示すように、撚線後に最終熱処理が施されていてもよい。最終熱処理の熱処理温度は例えば100〜600℃とし、熱処理時間は例えば0.5〜10時間とする。熱処理雰囲気はCOガスやH2ガス等の還元ガスを含む雰囲気とする。つまり、この最終熱処理は還元処理である。 As shown in FIG. 2C, the stranded wire conductor 21 may be subjected to a final heat treatment after the stranded wire. The heat treatment temperature of the final heat treatment is, for example, 100 to 600 ° C., and the heat treatment time is, for example, 0.5 to 10 hours. The heat treatment atmosphere is an atmosphere containing a reducing gas such as CO gas or H 2 gas. That is, this final heat treatment is a reduction treatment.

撚線導体21は、図4に示すように、複数本の導体線10或いは導体線材料を集めて撚った撚線に圧縮成型を施して導体線10(特に最外層)の断面が変形していてもよく、そうすることにより断面における導体占有率が高められる。また、絶縁層22の厚さを薄くすることができるという効果もある。   As shown in FIG. 4, the stranded wire conductor 21 is formed by compressing a twisted wire obtained by collecting and twisting a plurality of conductor wires 10 or conductor wire materials, and the cross section of the conductor wire 10 (particularly the outermost layer) is deformed. The conductor occupancy in the cross section is increased by doing so. In addition, there is an effect that the thickness of the insulating layer 22 can be reduced.

なお、撚線導体21は、各々、表面層除去加工を施していない複数本の導体線材料集めて撚った撚り線を酸に浸漬して各導体線材料の表面層をエッチングすることによっても製造することができる。この場合、撚線後に導体線材料の表面層を除去する表面層除去加工が施されることとなる。   The stranded wire conductor 21 can also be obtained by etching a surface layer of each conductor wire material by immersing a plurality of conductor wire materials that have not been subjected to surface layer removal processing and immersing the twisted stranded wire in an acid. Can be manufactured. In this case, a surface layer removing process for removing the surface layer of the conductor wire material is performed after the stranded wire.

絶縁層22を形成する材料としては、例えば、ポリ塩化ビニル系樹脂組成物、ポリエチレン、ポリプロピレン、α−オレフィンなどのポリオレフィン系樹脂組成物等が挙げられる。絶縁層22の厚さは例えば0.2〜0.3mmである。   Examples of the material for forming the insulating layer 22 include a polyvinyl chloride resin composition, a polyolefin resin composition such as polyethylene, polypropylene, and α-olefin. The thickness of the insulating layer 22 is, for example, 0.2 to 0.3 mm.

本実施形態に係る絶縁電線20は、押出成形により、撚線導体21を被覆するように絶縁層22を形成して製造することができる。   The insulated wire 20 according to the present embodiment can be manufactured by forming the insulating layer 22 so as to cover the stranded conductor 21 by extrusion molding.

ところで、排ガス低減や燃費向上を目的とした自動車の軽量化が進められており、そのため自動車に搭載される各部品に対して軽量化及び小型化が求められている。その中でワイヤーハーネスも例外ではなく、軽量化のための電線の細径化が進んできている。そして、従来、自動車用の電線では、主に軟銅からなる導体線を同心撚りした撚線導体が用いられていたが、電線の細径化に伴う強度不足による配索時の断線が懸念されることから、現在では、銅合金等の硬質材(強度向上材を含む)からなる導体線が採用されている。   By the way, the weight reduction of automobiles for the purpose of reducing exhaust gas and improving fuel efficiency has been promoted. For this reason, it is required to reduce the weight and size of each component mounted on the automobile. Among them, wire harnesses are no exception, and the diameter of electric wires has been reduced for weight reduction. Conventionally, in an electric wire for an automobile, a stranded wire conductor in which a conductor wire mainly made of soft copper is concentrically twisted has been used, but there is a concern about disconnection at the time of wiring due to insufficient strength due to the reduction in the diameter of the electric wire. Therefore, at present, a conductor wire made of a hard material (including a strength improving material) such as a copper alloy is employed.

ところが、ワイヤーハーネスの組立においてはスプライス部を形成する中間ジョイントが採用されているが、硬質材からなる導体線を用いた細径化した電線を、軟銅からなる導体線を用いた一般電線に超音波溶接でジョイントする場合、溶接強度が不十分であり、また、バラツキが大きいという問題がある。   However, in the assembly of wire harnesses, intermediate joints that form splices are used. However, a thin wire using a conductor wire made of a hard material is replaced with a general wire using a conductor wire made of soft copper. When jointing by sonic welding, there is a problem that welding strength is insufficient and variation is large.

しかしながら、本実施形態では、外径0.08〜0.26mmの細径の導体線10を用いているものの、それが、銅又は銅合金からなると共に、表面に平均厚さが20nm以下である酸化膜が形成されており、しかも、引張強さが350MPa以上で、且つ表面から中心に向かって2.0μm以下の外層部のビッカース硬さの表面から中心に向かって5.0μm以上の内層部のビッカース硬さに対する比が1.05以下であることにより、十分に高く且つバラツキが小さい溶接強度を得ることができる。   However, in this embodiment, although the thin conductor wire 10 having an outer diameter of 0.08 to 0.26 mm is used, it is made of copper or a copper alloy and has an average thickness of 20 nm or less on the surface. An inner layer portion having an oxide film formed thereon and having a tensile strength of 350 MPa or more and an outer layer portion of 2.0 μm or less from the surface toward the center and a Vickers hardness of 5.0 μm or more from the surface to the center. When the ratio of to Vickers hardness is 1.05 or less, it is possible to obtain a sufficiently high welding strength with little variation.

次に、本実施形態に係る溶接構造30について説明する。   Next, the welding structure 30 according to the present embodiment will be described.

図5は本実施形態に係る溶接構造30を示す。この溶接構造30は、上記絶縁電線20の中間部および端末部の絶縁層22を部分的に剥がして露出した撚線導体21を、同様に加工した他の絶縁電線20’の中間部の露出した撚線導体21’に、それらが重ね合わされた溶接部31で溶接してスプライス部に構成されたものであり、例えば、自動車内に搭載されるワイヤーハーネスを構成するものである。   FIG. 5 shows a welded structure 30 according to this embodiment. In this welded structure 30, the intermediate portion of the insulated wire 20 and the insulating layer 22 of the terminal portion are partially peeled to expose the stranded wire conductor 21 exposed in the middle portion of another insulated wire 20 ′ processed in the same manner. The stranded wire conductor 21 ′ is welded at the welded portion 31 where they are overlapped to form a splice portion. For example, it forms a wire harness mounted in an automobile.

他の絶縁電線20’としては、例えば、外径が0.08〜0.32mmの銅又は銅合金からなる導体線10’を7〜65本集めて撚り合わせた撚線導体21’を絶縁層22’で被覆したものを複数本組み合わせたものが挙げられる。従来と比較して溶接強度が十分に高く、しかもバラツキが小さいという作用効果が奏されるという観点からは、他の絶縁電線20’は、引張強さが350MPa未満の軟銅からなる導体線10’で構成されていることが好ましい。なお、他の絶縁電線20’は本実施形態に係る絶縁電線20と同一構成であってもよい。また、溶接対象は、電線に限定されず、電極等の他の金属材であってもよい。   As another insulated wire 20 ′, for example, a stranded wire conductor 21 ′ obtained by collecting and twisting 7 to 65 conductor wires 10 ′ made of copper or a copper alloy having an outer diameter of 0.08 to 0.32 mm is used as an insulating layer. A combination of a plurality of coatings with 22 ′ may be mentioned. From the viewpoint that the welded strength is sufficiently high and the variation is small, the other insulated wire 20 ′ is a conductor wire 10 ′ made of annealed copper having a tensile strength of less than 350 MPa. It is preferable that it is comprised. The other insulated wire 20 'may have the same configuration as the insulated wire 20 according to the present embodiment. Further, the object to be welded is not limited to an electric wire, and may be another metal material such as an electrode.

溶接手段としては、例えば、超音波溶接、抵抗溶接、レーザ溶接等が挙げられる。これらのうち細径化された電線間接続には超音波溶接が好ましい。超音波溶接の条件は、例えば、圧力が2〜6bar、幅が1〜7mm、振幅が50〜100%、及びエネルギーが100〜2000Wsである。   Examples of the welding means include ultrasonic welding, resistance welding, and laser welding. Of these, ultrasonic welding is preferable for the connection between wires having a reduced diameter. The conditions for ultrasonic welding are, for example, a pressure of 2 to 6 bar, a width of 1 to 7 mm, an amplitude of 50 to 100%, and an energy of 100 to 2000 Ws.

(導体線)
<実施例1>
タフピッチ銅からなる荒引銅線を伸線ダイスに通して円形断面に伸線し(表面層除去前伸線加工、φ8.0mm→φ2.6mm)、次いで、皮剥ダイスに通して皮剥加工を施し(表面層除去加工)、続いて、伸線ダイスに通して伸線した後(表面層除去後伸線加工、φ2.6mm→φ1.0mm)、さらに、伸線ダイスに通して最終外径に伸線することにより導体線を得た(φ1.0mm→φ0.16mm)。そして、この導体線を7本集めて同心撚りして撚線導体とした後、押出成形により撚線導体を被覆するように絶縁層を形成して絶縁電線を作製した。この絶縁電線を実施例1とした。なお、撚線後の最終熱処理は施さなかった。
(Conductor wire)
<Example 1>
A rough-drawn copper wire made of tough pitch copper is passed through a drawing die to draw a circular cross section (drawing before surface layer removal, φ8.0 mm → φ2.6 mm), and then passed through a peeling die to perform peeling. (Surface layer removal processing) Subsequently, after drawing through a wire drawing die (drawing after surface layer removal, φ2.6 mm → φ1.0 mm), and further through a wire drawing die to the final outer diameter A conductor wire was obtained by drawing (φ1.0 mm → φ0.16 mm). Then, after collecting the seven conductor wires and concentrically twisting them to form a twisted wire conductor, an insulating layer was formed so as to cover the twisted wire conductor by extrusion molding to produce an insulated wire. This insulated wire was referred to as Example 1. In addition, the final heat treatment after the stranded wire was not performed.

<実施例2>
撚線後の撚線導体に熱処理温度を100℃及び熱処理時間を1時間とした最終熱処理を施したことを除いて実施例1と同様にして絶縁電線を作製し、それを実施例2とした。
<Example 2>
An insulated wire was produced in the same manner as in Example 1 except that a final heat treatment was performed on the stranded wire conductor after the stranded wire at a heat treatment temperature of 100 ° C. and a heat treatment time of 1 hour. .

<実施例3>
撚線後の撚線導体に熱処理温度を120℃及び熱処理時間を1時間とした最終熱処理を施したことを除いて実施例1と同様にして絶縁電線を作製し、それを実施例2とした。
<Example 3>
An insulated wire was produced in the same manner as in Example 1 except that a final heat treatment was performed on the stranded wire conductor after the stranded wire at a heat treatment temperature of 120 ° C. and a heat treatment time of 1 hour. .

<比較例1>
表面層除去加工を施していないことを除いて実施例1と同様にして絶縁電線を作製し、それを比較例1とした。
<Comparative Example 1>
An insulated wire was produced in the same manner as in Example 1 except that the surface layer removal processing was not performed, and this was used as Comparative Example 1.

<比較例2>
表面層除去加工を施していないことを除いて実施例3と同様にして絶縁電線を作製し、それを比較例2とした。
<Comparative Example 2>
An insulated wire was produced in the same manner as in Example 3 except that the surface layer removal processing was not performed, and this was used as Comparative Example 2.

<参考例1>
撚線後の撚線導体に熱処理温度を140℃及び熱処理時間を1時間とした最終熱処理を施したことを除いて比較例1と同様にして絶縁電線を作製し、それを参考例1とした。
<Reference Example 1>
An insulated wire was prepared in the same manner as in Comparative Example 1 except that a final heat treatment was performed on the stranded wire conductor after the stranded wire at a heat treatment temperature of 140 ° C. and a heat treatment time of 1 hour. .

<参考例2>
撚線後の撚線導体に熱処理温度を200℃及び熱処理時間を1時間とした最終熱処理を施したことを除いて比較例1と同様にして絶縁電線を作製し、それを参考例2とした。
<Reference Example 2>
An insulated wire was produced in the same manner as in Comparative Example 1 except that the stranded wire conductor was subjected to a final heat treatment at a heat treatment temperature of 200 ° C. and a heat treatment time of 1 hour. .

<実施例4>
Cu−0.3%Sn合金からなる荒引銅線を用いたことを除いて実施例1と同様にして絶縁電線を作製し、それを実施例4とした。
<Example 4>
An insulated wire was produced in the same manner as in Example 1 except that a rough drawn copper wire made of a Cu-0.3% Sn alloy was used.

<実施例5>
表面層除去加工として、皮剥加工に代えて、導体線材料の表面にサンドペーパーを当てる研磨加工を施したことを除いて実施例1と同様にして絶縁電線を作製し、それを実施例5とした。
<Example 5>
As the surface layer removing process, an insulated wire was produced in the same manner as in Example 1 except that a polishing process for applying a sandpaper to the surface of the conductor wire material was performed instead of the skinning process. did.

<実施例6>
表面層除去加工として、皮剥加工に代えて、導体線材料に酸水溶液(濃度10%の塩酸)に浸漬する酸洗浄加工を施したことを除いて実施例1と同様にして絶縁電線を作製し、それを実施例6とした。
<Example 6>
As the surface layer removal process, an insulated wire was produced in the same manner as in Example 1 except that the conductor wire material was subjected to an acid cleaning process in which the conductor wire material was immersed in an acid aqueous solution (hydrochloric acid having a concentration of 10%). This was taken as Example 6.

<実施例7>
皮剥加工による表面層除去加工を施さず、同心撚り後の撚線導体に、酸水溶液(濃度10%の塩酸)に浸漬する酸洗浄加工を施したことを除いて実施例1と同様にして絶縁電線を作製し、それを実施例7とした。
<Example 7>
Insulated in the same manner as in Example 1 except that the surface layer removal process by peeling is not performed, and the stranded conductor after concentric twisting is subjected to an acid cleaning process soaked in an acid aqueous solution (10% hydrochloric acid). An electric wire was produced and designated as Example 7.

<比較例3>
表面層除去加工を施していないことを除いて実施例4と同様にして絶縁電線を作製し、それを比較例3とした。
<Comparative Example 3>
An insulated wire was produced in the same manner as in Example 4 except that the surface layer removal processing was not performed.

<実施例8>
Cu−2.5%Ni−0.6%Si−0.35%Cr合金からなる荒引銅線を用い、撚線後の撚線導体に熱処理温度を500℃及び熱処理時間を1時間とした最終熱処理を施したことを除いて実施例1と同様にして絶縁電線を作製し、それを実施例8とした。
<Example 8>
Using rough-drawn copper wire made of a Cu-2.5% Ni-0.6% Si-0.35% Cr alloy, the heat treatment temperature was 500 ° C. and the heat treatment time was 1 hour for the stranded wire conductor after the stranded wire. An insulated wire was produced in the same manner as in Example 1 except that the final heat treatment was performed.

<実施例9>
最終熱処理における熱処理温度を550℃としたことを除いて実施例8と同様にして絶縁電線を作製し、それを実施例9とした。
<Example 9>
An insulated wire was produced in the same manner as in Example 8 except that the heat treatment temperature in the final heat treatment was 550 ° C.

<実施例10>
最終熱処理における熱処理温度を600℃としたことを除いて実施例8と同様にして絶縁電線を作製し、それを実施例10とした。
<Example 10>
An insulated wire was produced in the same manner as in Example 8 except that the heat treatment temperature in the final heat treatment was 600 ° C., and it was designated as Example 10.

<比較例4>
表面層除去加工を施していないことを除いて実施例9と同様にして絶縁電線を作製し、それを比較例4とした。
<Comparative Example 4>
An insulated wire was produced in the same manner as in Example 9 except that the surface layer removal processing was not performed, and this was designated as Comparative Example 4.

<参考例3>
最終熱処理における熱処理温度を650℃としたことを除いて比較例4と同様にして絶縁電線を作製し、それを参考例1とした。
<Reference Example 3>
An insulated wire was produced in the same manner as in Comparative Example 4 except that the heat treatment temperature in the final heat treatment was 650 ° C.

(試験評価方法)
<引張り強さ>
実施例1〜10、比較例1〜4、及び参考例1〜3のそれぞれについて、導体線を引き出して試験片とし、その引張り強さをJIS Z2241に基づいて測定した。
(Test evaluation method)
<Tensile strength>
About each of Examples 1-10, Comparative Examples 1-4, and Reference Examples 1-3, the conductor wire was pulled out and it was set as the test piece, and the tensile strength was measured based on JISZ2241.

<酸化膜の厚さ>
実施例1〜10、比較例1〜4、及び参考例1〜3のそれぞれについて、導体線を引き出して試験片とし、表面の酸化膜の厚さを、電解液に0.1NのKCl水溶液及び対極電極に白金をそれぞれ用い、曝露面積を1.5cm2及び電流密度を0.5A/dm2としたカソード還元法によって測定した。
<Thickness of oxide film>
For each of Examples 1 to 10, Comparative Examples 1 to 4, and Reference Examples 1 to 3, a conductor wire was drawn out as a test piece, and the thickness of the oxide film on the surface was set to 0.1 N KCl aqueous solution and electrolyte. Platinum was used for each counter electrode, and measurement was performed by a cathode reduction method with an exposed area of 1.5 cm 2 and a current density of 0.5 A / dm 2 .

<ビッカース硬さ比>
実施例1〜10、比較例1〜4、及び参考例1〜3のそれぞれについて、導体線を引き出して試験片とし、その断面において表面から中心に向かって2.0μm以下の外層部及び表面から中心に向かって5.0μm以上の内層部のそれぞれのビッカース硬さをJIS K2244に基づいて測定した。なお、外層部の測定では試験荷重を5mNとし、内層部の測定では試験荷重を50mNとした。
<Vickers hardness ratio>
For each of Examples 1 to 10, Comparative Examples 1 to 4, and Reference Examples 1 to 3, a conductor wire was drawn out as a test piece, and from the outer layer portion and the surface of 2.0 μm or less from the surface toward the center in the cross section. Each Vickers hardness of the inner layer portion of 5.0 μm or more toward the center was measured based on JIS K2244. In the measurement of the outer layer portion, the test load was 5 mN, and in the measurement of the inner layer portion, the test load was 50 mN.

<溶接強度>
実施例1〜10、比較例1〜4、及び参考例1〜3のそれぞれについて、中間部の絶縁層を部分的に剥がして撚線導体を露出させた。また、外径が0.32mmの銅からなる導体線を7本集めて同心撚りした撚線導体を絶縁層で被覆した被着側絶縁電線を3本準備し、それぞれについて、中間部の絶縁層を部分的に剥がして撚線導体を露出させた。そして、図6に示すように、試験対象の絶縁電線61の露出した撚線導体を、3本の被着側絶縁電線62の露出した撚線導体に超音波溶接して溶接部63を形成し、試験対象の絶縁電線61の180°剥離試験を行い、その溶接部63での剥離強度を溶接強度として測定した。測定を30回実施し、その平均値が20N以上の場合をA判定、及び20N未満の場合をB判定とした。
<Welding strength>
About each of Examples 1-10, Comparative Examples 1-4, and Reference Examples 1-3, the insulating layer of the intermediate part was partially peeled, and the twisted conductor was exposed. Moreover, three conductor-side insulated wires in which seven conductor wires made of copper having an outer diameter of 0.32 mm were gathered and concentrically twisted and covered with an insulating layer were prepared. Was partially peeled to expose the stranded conductor. Then, as shown in FIG. 6, the exposed stranded wire conductor of the insulated wire 61 to be tested is ultrasonically welded to the exposed stranded wire conductors of the three attached-side insulated wires 62 to form a welded portion 63. A 180 ° peel test was performed on the insulated wire 61 to be tested, and the peel strength at the weld 63 was measured as the weld strength. The measurement was performed 30 times, and the case where the average value was 20N or more was determined as A, and the case where it was less than 20N was determined as B.

(試験評価結果)
表1は試験結果を示す。
(Test evaluation results)
Table 1 shows the test results.

Figure 0005744649
Figure 0005744649

引張り強さは、実施例1が550MPa、実施例2が450MPa、実施例3が350MPa、比較例1が600MPa、比較例2が350MPa、参考例1が300MPa、及び参考例2が250MPaであり、また、実施例4が800MPa、実施例5が800MPa、実施例6が800MPa、実施例7が800MPa、比較例3が800MPaであり、さらに、実施例8が700MPa、実施例9が550MPa、実施例10が400MPa、比較例4が550MPa、及び参考例3が300MPaであった。   Tensile strength is 550 MPa in Example 1, 450 MPa in Example 2, 350 MPa in Example 3, 600 MPa in Comparative Example 1, 350 MPa in Comparative Example 2, 300 MPa in Reference Example 1, and 250 MPa in Reference Example 2. Further, Example 4 is 800 MPa, Example 5 is 800 MPa, Example 6 is 800 MPa, Example 7 is 800 MPa, Comparative Example 3 is 800 MPa, Example 8 is 700 MPa, Example 9 is 550 MPa, Example 10 was 400 MPa, Comparative Example 4 was 550 MPa, and Reference Example 3 was 300 MPa.

酸化膜の平均厚さは、実施例1が13nm、実施例2が13nm、実施例3が14nm、比較例1が22nm、比較例2が22nm、参考例1が18nm、及び参考例2が28nmであり、また、実施例4が15nm、実施例5が18nm、実施例6が20nm、実施例7が20nm、比較例3が25nmであり、さらに、実施例8が10nm、実施例9が10nm、実施例10が10nm、比較例4が22nm、及び参考例3が22nmであった。   The average thickness of the oxide film was 13 nm in Example 1, 13 nm in Example 2, 14 nm in Example 3, 22 nm in Comparative Example 1, 22 nm in Comparative Example 2, 18 nm in Reference Example 1, and 28 nm in Reference Example 2. In addition, Example 4 is 15 nm, Example 5 is 18 nm, Example 6 is 20 nm, Example 7 is 20 nm, Comparative Example 3 is 25 nm, Example 8 is 10 nm, and Example 9 is 10 nm. Example 10 was 10 nm, Comparative Example 4 was 22 nm, and Reference Example 3 was 22 nm.

ビッカース硬さ比は、実施例1が1.01、実施例2が1.01、実施例3が1.04、比較例1が1.04、比較例2が1.07、参考例1が1.06、及び参考例2が1.04であり、また、実施例4が1.02、実施例5が1.03、実施例6が1.04、実施例7が1.04、比較例3が1.04であり、さらに、実施例8が1.02、実施例9が1.02、実施例10が1.03、比較例4が1.03、及び参考例3が1.07であった。   The Vickers hardness ratio is 1.01 for Example 1, 1.01 for Example 2, 1.04 for Example 3, 1.04 for Comparative Example 1, 1.07 for Comparative Example 2, and Reference Example 1 1.06 and Reference Example 2 are 1.04, and Example 4 is 1.02, Example 5 is 1.03, Example 6 is 1.04, and Example 7 is 1.04. Example 3 is 1.04, Example 8 is 1.02, Example 9 is 1.02, Example 10 is 1.03, Comparative Example 4 is 1.03, and Reference Example 3 is 1. 07.

剥離強度は、実施例1〜10がA、及び比較例1〜4がBであり、また、参考例1〜3がAであった。なお、引張り強さの低い参考例1〜3では、酸化膜の平均厚さが20nmよりも厚く、或いは、ビッカース硬さ比が1.05より大きくても、溶接強度が高く且つそのバラツキが小さいことが分かる。   The peel strengths of Examples 1 to 10 were A, Comparative Examples 1 to 4 were B, and Reference Examples 1 to 3 were A. In Reference Examples 1 to 3 having low tensile strength, even if the average thickness of the oxide film is thicker than 20 nm or the Vickers hardness ratio is larger than 1.05, the welding strength is high and the variation is small. I understand that.

本発明は、導体線及びその製造方法、並びにそれを用いた撚線導体、絶縁電線、溶接構造及び溶接方法について有用である。   INDUSTRIAL APPLICATION This invention is useful about a conductor wire, its manufacturing method, a stranded wire conductor using the same, an insulated wire, a welding structure, and a welding method.

10 導体線
20 絶縁電線
21 撚線導体
22 絶縁層
30 溶接構造
DESCRIPTION OF SYMBOLS 10 Conductor wire 20 Insulated electric wire 21 Stranded wire conductor 22 Insulating layer 30 Welded structure

Claims (15)

タフピッチ銅又は無酸素銅からなると共に、表面に平均厚さが20nm以下である酸化膜が形成されており、
引張強さが350MPa以上で、且つ表面から中心に向かって2.0μm以下の外層部のビッカース硬さの表面から中心に向かって5.0μm以上の内層部のビッカース硬さに対する比が1.05以下である外径0.08〜0.26mmの導体線。
An oxide film made of tough pitch copper or oxygen-free copper and having an average thickness of 20 nm or less is formed on the surface,
The ratio of the Vickers hardness of the outer layer portion having a tensile strength of 350 MPa or more and 2.0 μm or less from the surface toward the center to the Vickers hardness of the inner layer portion of 5.0 μm or more from the surface to the center is 1.05. A conductor wire having an outer diameter of 0.08 to 0.26 mm as follows.
請求項1に記載された導体線において、
自動車用途に用いられる導体線。
The conductor wire according to claim 1 ,
Conductor wire used for automotive applications.
請求項1又は2に記載された導体線の製造方法であって、
導体線材料の表面層を除去する表面層除去加工を施す導体線の製造方法。
A method of manufacturing a conductor wire according to claim 1 or 2 ,
A method for manufacturing a conductor wire, which performs a surface layer removing process for removing a surface layer of a conductor wire material.
請求項に記載された導体線の製造方法において、
導体線材料に冷間加工を施す冷間加工工程、及び該冷間加工工程で冷間加工した導体線材料に熱処理を施す熱処理工程を有し、
上記表面層除去加工は上記冷間加工工程における冷間加工に含まれると共に、該冷間加工工程における冷間加工は、該表面層除去加工の後に、導体線材料を伸線する表面層除去後伸線加工を含む導体線の製造方法。
In the manufacturing method of the conductor wire described in Claim 3 ,
A cold working step of performing cold working on the conductor wire material, and a heat treatment step of performing a heat treatment on the conductor wire material cold worked in the cold working step,
The surface layer removal processing is included in the cold processing in the cold processing step, and the cold processing in the cold processing step is performed after the surface layer removal for drawing the conductor wire material after the surface layer removal processing. A method of manufacturing a conductor wire including wire drawing.
請求項に記載された導体線の製造方法において、
上記冷間加工工程における冷間加工は、表面層除去加工の前に、導体線材料を円形断面に伸線する表面層除去前伸線加工をさらに含む導体線の製造方法。
In the manufacturing method of the conductor wire described in Claim 4 ,
The cold working in the cold working step is a method of manufacturing a conductor wire that further includes a surface layer pre-removal drawing process for drawing the conductor wire material into a circular cross section before the surface layer removal process.
請求項乃至のいずれかに記載された導体線の製造方法において、
上記表面層除去加工は、導体線材料の表面層を皮剥ぎして除去する皮剥加工である導体線の製造方法。
In the manufacturing method of the conductor wire in any one of Claims 3 thru | or 5 ,
The said surface layer removal process is a manufacturing method of the conductor wire which is the peeling process which peels and removes the surface layer of conductor wire material.
請求項1又は2に記載された導体線を含む複数本の導体線を集めて撚って構成された撚線導体。 A stranded wire conductor configured by collecting and twisting a plurality of conductor wires including the conductor wire according to claim 1 . 請求項に記載された撚線導体において、
上記複数本の導体線を集めて撚った後に圧縮成型されて構成された撚線導体。
In the stranded conductor according to claim 7 ,
A twisted conductor formed by compression molding after collecting and twisting the plurality of conductor wires.
請求項又はに記載された撚線導体において、
上記複数本の導体線の全てが請求項1乃至4のいずれかに記載された導体線である撚線導体。
In the stranded wire conductor according to claim 7 or 8 ,
A twisted wire conductor in which all of the plurality of conductor wires are conductor wires according to any one of claims 1 to 4.
請求項乃至のいずれかに記載された撚線導体において、
同心撚りに構成されている撚線導体。
In the stranded conductor according to any one of claims 7 to 9 ,
A stranded wire conductor constructed in concentric strands.
請求項10に記載された撚線導体において、
上記複数本の導体線の本数が7本である撚線導体。
In the stranded conductor according to claim 10 ,
A stranded wire conductor in which the number of the plurality of conductor wires is seven.
請求項乃至11のいずれかに記載された撚線導体を絶縁層で被覆して構成された絶縁電線。 The insulated wire comprised by coat | covering the twisted-wire conductor in any one of Claims 7 thru | or 11 with an insulating layer. 請求項12に記載された絶縁電線の絶縁層を部分的に剥がして露出した撚線導体を他の金属材に溶接して構成された溶接構造。 The welding structure comprised by welding the twisted-wire conductor exposed by peeling off the insulation layer of the insulated wire described in Claim 12 partially to another metal material. 請求項12に記載された絶縁電線の絶縁層を部分的に剥がして露出した撚線導体を他の金属材に溶接する溶接方法。 The welding method which welds the twisted-wire conductor exposed by peeling off the insulation layer of the insulated wire described in Claim 12 to another metal material. 請求項14に記載された溶接方法において、
溶接手段が超音波溶接である溶接方法。
The welding method according to claim 14 , wherein
A welding method in which the welding means is ultrasonic welding.
JP2011149081A 2011-07-05 2011-07-05 Conductor wire Expired - Fee Related JP5744649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149081A JP5744649B2 (en) 2011-07-05 2011-07-05 Conductor wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149081A JP5744649B2 (en) 2011-07-05 2011-07-05 Conductor wire

Publications (2)

Publication Number Publication Date
JP2013016383A JP2013016383A (en) 2013-01-24
JP5744649B2 true JP5744649B2 (en) 2015-07-08

Family

ID=47688880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149081A Expired - Fee Related JP5744649B2 (en) 2011-07-05 2011-07-05 Conductor wire

Country Status (1)

Country Link
JP (1) JP5744649B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388626B2 (en) * 2018-05-22 2023-11-29 古河電気工業株式会社 Connection structure and connection method
CN108538502B (en) * 2018-05-30 2020-05-12 平湖金都电缆材料有限公司 Processing technology for filling and opening net film of cable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918397B2 (en) * 2000-04-11 2007-05-23 三菱マテリアル株式会社 Adhesion-resistant oxygen-free copper rough wire, its manufacturing method and manufacturing apparatus
JP5397683B2 (en) * 2008-09-26 2014-01-22 三菱マテリアル株式会社 Copper alloy wire with high strength and excellent bending resistance
JP5561510B2 (en) * 2009-02-12 2014-07-30 住友電気工業株式会社 Coiled copper or copper alloy coil
JP5376396B2 (en) * 2009-02-24 2013-12-25 住友電気工業株式会社 Wire conductor for wire harness
JP2011090804A (en) * 2009-10-20 2011-05-06 Autonetworks Technologies Ltd Electric wire with terminal fitting and method of manufacturing the same
JP2012146431A (en) * 2011-01-11 2012-08-02 Auto Network Gijutsu Kenkyusho:Kk Electric wire conductor and insulated electric wire

Also Published As

Publication number Publication date
JP2013016383A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5660458B2 (en) Electric wire with terminal and manufacturing method thereof
JP4804860B2 (en) Composite twisted conductor
JP2015086452A (en) Copper alloy wire, copper alloy twisted wire, coated cable, wire harness and manufacturing method of copper alloy wire
JP2014032819A (en) Aluminum electric wire
JP2012146431A (en) Electric wire conductor and insulated electric wire
JP5377767B2 (en) Automotive wire
JP5744649B2 (en) Conductor wire
JP6733742B2 (en) Stranded wire and wire harness for wire harness
JP5708846B1 (en) Stranded conductor and insulated wire
JP2011258468A (en) Terminal, electric wire with terminal and method for producing the same
JP5497321B2 (en) Compressed stranded conductor, method for producing the same, and insulated wire
JP2018056102A (en) Wire
JP4182850B2 (en) Automotive wire
JP6316229B2 (en) Electric wire with connection terminal and method of manufacturing the electric wire
JP6845999B2 (en) Covered wires, wires with terminals, and stranded wires
JP2016201313A (en) Wire harness and method for manufacturing the same
JP2010129410A (en) Manufacturing method for electric wire conductor and electric wire conductor
JP2019133869A (en) Twisted wire for wire harness and wire harness
JP6406098B2 (en) Insulated wire
JP6706856B2 (en) Wire connection structure for wire harness
JP6948566B2 (en) Manufacturing method of stranded conductor
JP7448428B2 (en) Conductor for power cable and method for manufacturing power cable conductor having intermediate layer
JP6948561B2 (en) Manufacturing method of stranded conductor
US20230231326A1 (en) Electric wire and terminal-equipped electric wire
JP2007059113A (en) Electric wire for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R150 Certificate of patent or registration of utility model

Ref document number: 5744649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees