JP4474148B2 - Electrode for alkaline secondary battery and method for producing the same - Google Patents

Electrode for alkaline secondary battery and method for producing the same Download PDF

Info

Publication number
JP4474148B2
JP4474148B2 JP2003386194A JP2003386194A JP4474148B2 JP 4474148 B2 JP4474148 B2 JP 4474148B2 JP 2003386194 A JP2003386194 A JP 2003386194A JP 2003386194 A JP2003386194 A JP 2003386194A JP 4474148 B2 JP4474148 B2 JP 4474148B2
Authority
JP
Japan
Prior art keywords
current collector
positive
electrode
terminals
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003386194A
Other languages
Japanese (ja)
Other versions
JP2005149921A (en
Inventor
良享 黛
浩之 今井
暁夫 水口
晃裕 樋上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2003386194A priority Critical patent/JP4474148B2/en
Publication of JP2005149921A publication Critical patent/JP2005149921A/en
Application granted granted Critical
Publication of JP4474148B2 publication Critical patent/JP4474148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、不織布からなる帯状の集電材を用いたアルカリ二次電池用電極及びその製造方法に関するものである。   The present invention relates to an electrode for an alkaline secondary battery using a strip-shaped current collector made of a nonwoven fabric and a method for producing the same.

従来、アルカリ二次電池は、高信頼性でかつ小型軽量化が可能であるため、ポータブル機器から産業用大型設備までの各種装置の電源として多用されている。このアルカリ二次電池は正極電極及び負極電極がセパレータを介して巻回又は積層されて構成された発電体を備え、その発電体を電池ケースに収容して封止板によりその電池ケースを封止することにより作られる。そして従来、正極電極及び負極電極として、集電機能を分担する帯状の集電材に電池反応を生起させるための正極又は負極活物質を担持させ、集電材の幅方向の一方の側部に長手方向に所定の間隔を開けて複数本の正極又は負極端子をスポット溶接したものが知られている。その場合の集電材として、最近では、電池の小型化、高容量化の要請に伴い、集電材の活物質の充填密度を高めるために、空隙率が大きく、それ故活物質の充填密度を高めることができる3次元網状構造体からなる集電材が採用されている。   2. Description of the Related Art Conventionally, alkaline secondary batteries are highly reliable and can be reduced in size and weight, and thus are widely used as power sources for various devices ranging from portable devices to industrial large facilities. This alkaline secondary battery includes a power generator configured by winding or laminating a positive electrode and a negative electrode with a separator interposed therebetween. The power generator is accommodated in a battery case and the battery case is sealed with a sealing plate. Made by doing. Conventionally, as a positive electrode and a negative electrode, a belt-shaped current collector sharing a current collecting function is loaded with a positive electrode or a negative electrode active material for causing a battery reaction, and the longitudinal direction is formed on one side of the current collector in the width direction. In addition, a plurality of positive or negative terminals which are spot-welded with a predetermined interval are known. As a current collector in that case, in recent years, in order to increase the packing density of the active material of the current collector, the porosity is large, and therefore the packing density of the active material is increased in accordance with the demand for a smaller battery and higher capacity. A current collector made of a three-dimensional network structure that can be used is employed.

この3次元網状構造の集電材として、例えばウレタン樹脂の発泡体シートや有機繊維の不織布等の多孔質網状構造体に公知のニッケルめっきを施し、更に還元性雰囲気下で焼成してそのウレタン樹脂や有機繊維を熱分解除去し、めっきされたニッケルを網状骨格として残存させることによって製造されたものが知られている。この集電材に対しては、端子を取り付ける箇所を押しつぶした後、全体の空隙部に活物質合成ペーストを充填し、そして押しつぶした箇所に例えばニッケル片からなる端子をスポット溶接することにより電極が製造される。この集電材は多孔質であり、その孔径が大きく、空隙率が90〜98%と非常に大きい性質を有し、ペースト状の水酸化ニッケルを直接充填できることから活物質を高密度に充填することができ、アルカリ二次電池の更なる高容量化が期待されている。   As the current collector of this three-dimensional network structure, for example, a well-known nickel plating is applied to a porous network structure such as a urethane resin foam sheet or an organic fiber non-woven fabric, and further fired in a reducing atmosphere to obtain the urethane resin or An organic fiber manufactured by thermally decomposing and leaving plated nickel as a network skeleton is known. For this current collector, after crushing the location where the terminal is to be attached, the entire gap is filled with active material synthetic paste, and the electrode is manufactured by spot welding a terminal made of, for example, a nickel piece to the crushed location. Is done. This current collector is porous, has a large pore size and a very high porosity of 90 to 98%, and can be filled directly with paste-like nickel hydroxide, so that it can be filled with an active material at a high density. Therefore, further increase in capacity of the alkaline secondary battery is expected.

しかし、3次元網状構造体からなる帯状の集電材では、従来から用いられている焼結ニッケル板やパンチングニッケル板に比較してその空隙率を向上させることができるけれども、その隙間率の向上に伴い3次元網状構造体からなる帯状の集電材に複数本の端子を従来と同様にスポット溶接すると、そのスポット溶接される部分における集電材が部分的な溶接により押しつぶされ、溶接箇所周囲における3次元網状構造体を構成する骨格が局部的に座屈や折損を起こす不具合がある。また、このスポット溶接箇所周囲における集電材の座屈や折損は端子の溶接強度を低下させ、端子が外れて集電不能になる不具合がある。更に、その部分における電気的抵抗を上昇させて二次電池の放電特性を悪化させる不具合もある。   However, in the band-shaped current collector made of a three-dimensional network structure, the porosity can be improved compared to the conventionally used sintered nickel plate or punched nickel plate, but the gap ratio is improved. As a result, when a plurality of terminals are spot-welded to a belt-shaped current collector made of a three-dimensional network structure in the same manner as in the past, the current collector in the spot-welded portion is crushed by partial welding, and the three-dimensional area around the weld location There is a problem that the skeleton constituting the network structure locally buckles or breaks. Further, buckling or breakage of the current collecting material around the spot welded portion has a problem that the welding strength of the terminal is lowered, and the terminal is detached to make current collection impossible. Further, there is a problem that the electrical resistance in the portion is increased to deteriorate the discharge characteristics of the secondary battery.

これらの点を解消するために、集電材に金属テープをスポット又はナゲット溶接し、その金属テープを介して複数の正極又は負極端子を集電材にスポット溶接することが提案されている(例えば、特許文献1参照。)。このように複数の正極又は負極端子を金属テープに溶接すると、金属テープはスポット溶接を行う電極により押しつぶされたりすることはなく、複数の正極又は負極端子は金属テープに確実に溶接接合される。従って、正極又は負極端子がスポット溶接される集電材自体がそのスポット溶接される溶接箇所周囲の骨格が局部的に座屈や折損を起こすことはなく、それらの端子と集電材との溶接強度はそれらの端子を集電材に直接スポット溶接した場合に比較して向上させることができるものとしている。
特開2002−319410号公報(特許請求の範囲)
In order to eliminate these points, it has been proposed to spot or nugget a metal tape to a current collector and spot weld a plurality of positive or negative terminals to the current collector via the metal tape (for example, patents). Reference 1). When a plurality of positive or negative terminals are welded to the metal tape in this way, the metal tape is not crushed by the electrode for spot welding, and the plurality of positive or negative terminals are securely welded to the metal tape. Therefore, the current collector material on which the positive electrode or negative electrode terminal is spot welded does not cause local buckling or breakage of the skeleton around the welded spot, and the welding strength between these terminals and the current collector material is These terminals can be improved as compared with the case where spot welding is directly performed on the current collector.
JP 2002-319410 A (Claims)

しかし、スポット溶接やナゲット溶接等に代表されるいわゆる抵抗溶接は、その溶接時における接合部分における電気抵抗により数百から数千という高温状態にしてその部分におけるで金属を一部溶融して固着するものである。従って、端子を不織布からなる集電材にスポット溶接すると、発生する熱により集電体の骨格素材である樹脂は溶融し、集電体の構造が破壊される不具合があった。このように集電体の構造が破壊されると、集電体に溶接された端子の強度が低下しまた集電体と端子間の接触抵抗も増加する不具合があった。
また、上述したように金属テープを介して端子を集電材にスポット溶接すればそのスポット溶接時における溶接箇所周囲の骨格が局部的に座屈や折損を起こすことはないけれども、集電材に金属テープをスポット又はナゲット溶接する際にそのスポット溶接される部分における集電材が部分的に押しつぶされ、その溶接箇所周囲における集電材の骨格が局部的に座屈や折損を起こす未だ解決すべき課題が残存していた。
本発明の目的は、端子と集電材の溶接強度を向上させ、効率的に集電することにより放電特性を向上し得るアルカリ二次電池用電極及びその製造方法を提供することにある。
However, so-called resistance welding represented by spot welding, nugget welding, and the like is carried out at a high temperature of several hundred to several thousand due to electrical resistance at the joint at the time of welding, and the metal is partially melted and fixed at that part. Is. Therefore, when the terminals are spot-welded to a current collector made of non-woven fabric, the resin that is the skeleton material of the current collector is melted by the generated heat, and the structure of the current collector is destroyed. When the structure of the current collector is thus destroyed, the strength of the terminal welded to the current collector is reduced, and the contact resistance between the current collector and the terminal is increased.
In addition, if the terminal is spot-welded to the current collector via the metal tape as described above, the skeleton around the welded spot during the spot welding will not locally buckle or break, but the metal tape will be applied to the current collector. When spot or nugget welding is performed, the current collector in the spot-welded part is partially crushed, and the current collector frame around the weld is locally buckled or broken. Was.
An object of the present invention is to provide an electrode for an alkaline secondary battery that can improve the discharge characteristics by improving the welding strength of a terminal and a current collector and collecting current efficiently, and a method for producing the same.

請求項1に係る発明は、図1に示すように、ニッケルメッキが施された不織布から構成され正極又は負極活物質が充填された帯状の集電材11と、集電材11に超音波溶接された1又は2以上の正極又は負極端子12a,12bとを備えたアルカリ二次電池用電極であって、1又は2以上の正極又は負極端子12a,12bの集電材11に溶接された部分にエンボス加工による凹凸が形成され、集電材11の厚さtは0.3〜2.0mmであって、エンボス加工により形成された凹凸の深さhは1又は2以上の正極又は負極端子12a,12bの厚さd 1 以上であって集電材11の厚さt以下であり、エンボス加工による凹凸が形成された金属テープ13を介して1又は2以上の正極又は負極端子12a,12bが集電材11に超音波溶接されたことを特徴とするアルカリ二次電池用電極である。
請求項に係る発明は、図3に示すように、ニッケルメッキが施された不織布を切断して帯状の集電材11を得る工程と、1又は2以上の正極又は負極端子12a,12bの一部又は全部にエンボス加工による凹凸を形成する工程と、1又は2以上の正極又は負極端子12a,12bの凹凸が形成された部分を集電材11に超音波溶接する工程と、エンボス加工による凹凸が形成された金属テープ13を集電材11に超音波溶接する工程とを含み、金属テープ13を介して1又は2以上の正極又は負極端子12a,12bを集電材11に超音波溶接することを特徴とするアルカリ二次電池用電極の製造方法である。
この請求項1に記載されたアルカリ二次電池用電極及び請求項に記載されたアルカリ二次電池用電極の製造方法では、集電材11に1又は2以上の正極又は負極端子12a,12bを超音波溶接することにより、集電体の骨格素材である樹脂の溶融を防止する。そして、端子12a,12bの集電材11に溶接される部分に凹凸を形成することにより、超音波振動を有効に熱に変換してその溶接を可能にする。
The invention according to claim 1 is ultrasonically welded to the current collector 11 and a strip-shaped current collector 11 made of a non-woven fabric plated with nickel and filled with a positive electrode or negative electrode active material, as shown in FIG. An electrode for an alkaline secondary battery having one or more positive or negative electrode terminals 12a and 12b, and embossing a portion welded to the current collector 11 of the one or more positive or negative electrode terminals 12a and 12b The thickness t of the current collector 11 is 0.3 to 2.0 mm, and the depth h of the unevenness formed by embossing is one or more of the positive or negative terminals 12a and 12b. a is the thickness d 1 or more or less the thickness t of the current collector 11, via the metal tape 13 on which irregularities are formed by embossing one or more positive electrode or the negative electrode terminal 12a, 12b is the current collector 11 Ultrasonic welded An electrode for alkaline secondary battery, characterized in that the.
As shown in FIG. 3, the invention according to claim 2 includes a step of obtaining a strip-shaped current collector 11 by cutting a nickel-plated non-woven fabric, and one of one or more positive or negative terminals 12a and 12b. A step of forming unevenness by embossing in part or all, a step of ultrasonically welding the portion where the unevenness of one or more positive or negative electrode terminals 12a, 12b is formed to the current collector 11, and an unevenness by embossing A step of ultrasonically welding the formed metal tape 13 to the current collector 11, and ultrasonically welding one or more positive or negative terminals 12 a and 12 b to the current collector 11 via the metal tape 13. It is a manufacturing method of the electrode for alkaline secondary batteries.
In the method for producing an alkaline secondary battery electrode according to claim 1 and the alkaline secondary battery electrode according to claim 2 , one or two or more positive or negative terminals 12 a and 12 b are provided on the current collector 11. By ultrasonic welding, melting of the resin, which is the skeleton material of the current collector, is prevented. And the unevenness | corrugation is formed in the part welded to the current collection material 11 of terminal 12a, 12b, By converting ultrasonic vibration into heat effectively, the welding is enabled.

上記請求項に記載されたアルカリ二次電池用電極では、集電材11の3次元網状構造をあまり押しつぶすことなく、端子12a,12bの集電材11への溶接を可能にすることができる。 In the electrode for an alkaline secondary battery according to the first aspect , the terminals 12a and 12b can be welded to the current collector 11 without crushing the three-dimensional network structure of the current collector 11 so much.

上記請求項に記載されたアルカリ二次電池用電極及び請求項に記載されたアルカリ二次電池用電極の製造方法では、集電材11に超音波溶接されてその集電材11から効率的に集電可能な金属テープ13を介して正極又は負極端子12a,12bが超音波溶接されるので、その放電特性が向上する。
In the manufacturing method of the alkaline rechargeable battery electrode according to the alkaline rechargeable battery electrode and claim 2, which is described in claim 1, from the current collector 11 is ultrasonically welded to the current collector 11 efficiently Since the positive electrode or negative electrode terminals 12a and 12b are ultrasonically welded via the current-collectable metal tape 13, the discharge characteristics are improved.

本発明のアルカリ2次電池用電極及びその製造方法では、集電材に1又は2以上の正極又は負極端子を超音波溶接するので、集電体の骨格素材である樹脂の溶融を防止することができる。そして、端子の集電材に溶接される部分に凹凸を形成するので、集電材に対して正極又は負極端子が滑ることなく、超音波溶接時に加えられる超音波振動は有効に熱に変換されて集電材に正極又は負極端子を確実に溶接することができる。
この場合、集電材の厚さは0.3〜2.0mmであって、エンボス加工により形成された凹凸の深さは1又は2以上の正極又は負極端子の厚さよりも深く形成され、かつ凹凸の深さは0.1mm以上集電材の厚さ以下であれば、集電材の3次元網状構造をあまり押しつぶすことなく、端子の集電材への溶接を可能にすることができる。そして、エンボス加工による凹凸が形成された金属テープを介して1又は2以上の正極又は負極端子を集電材に超音波溶接すれば、その放電特性を向上させることができる。
In the alkaline secondary battery electrode and the method for producing the same according to the present invention, since one or more positive or negative terminals are ultrasonically welded to the current collector, it is possible to prevent melting of the resin that is the skeleton material of the current collector. it can. In addition, since uneven portions are formed on the portion of the terminal welded to the current collector, the ultrasonic vibration applied during ultrasonic welding is effectively converted into heat without causing the positive or negative electrode terminal to slide relative to the current collector. The positive electrode or the negative electrode terminal can be reliably welded to the electric material.
In this case, the thickness of the current collector is 0.3 to 2.0 mm, and the depth of the unevenness formed by embossing is formed deeper than the thickness of one or more positive or negative electrode terminals, and the unevenness If the depth is 0.1 mm or more and less than the thickness of the current collector, it is possible to weld the terminal to the current collector without crushing the three-dimensional network structure of the current collector so much. And if the 1 or 2 or more positive electrode or negative electrode terminal is ultrasonically welded to a collector through the metal tape in which the unevenness | corrugation by embossing was formed, the discharge characteristic can be improved.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1及び図3に示すように、本発明のアルカリ2次電池用電極10a,10bは3次元網状構造体からなる集電材11を備える。この実施の形態における集電材11は、ポリオレフィン系繊維又はポリアミド樹脂系繊維のいずれか一方又は双方で構成された不織布を親水化処理し、その親水化処理された不織布をニッケルめっき処理して作られる。ポリオレフィン系繊維又はポリアミド樹脂系繊維のいずれか一方又は双方で構成された不織布を使用するのは、ポリオレフィン系繊維及びポリアミド樹脂系繊維自体がすでに電池のセパレータとして使用されている実績があり、20〜35重量%KOH水溶液と接触してもポリオレフィン系繊維及びポリアミド樹脂系繊維は溶解しないため物性の変化がなく、耐アルカリ性が優れており、非常に安価に購入できて汎用性が高いからである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG.1 and FIG.3, the electrode 10a, 10b for alkaline secondary batteries of this invention is equipped with the electrical power collector 11 which consists of a three-dimensional network structure. The current collector 11 in this embodiment is made by hydrophilizing a nonwoven fabric composed of one or both of polyolefin fibers or polyamide resin fibers, and nickel-plating the hydrophilized nonwoven fabric. . The use of a nonwoven fabric composed of one or both of polyolefin fibers and polyamide resin fibers has a track record that polyolefin fibers and polyamide resin fibers themselves are already used as battery separators. This is because polyolefin fibers and polyamide resin fibers do not dissolve even when contacted with a 35 wt% KOH aqueous solution, so there is no change in physical properties, excellent alkali resistance, and they can be purchased at a very low price and have high versatility.

不織布を製造する方法としては、カード法やエアレイ法、又は紡糸状態から連続的にシート化するメルトブロー法やスパンボンド法のような乾式法、或いは繊維を水に分散し、それを抄きとる湿式法等を採用することができる。特に、湿式法により得られた不織布は乾式法により得られた不織布と比較してその目付及び厚みのばらつきが小さいので、均一な集電材を得ることができる。このため、この集電材を使用すると厚みが均一な電極が形成され、その電極を巻回すると密着性に優れた極群が形成でき結果として充放電特性に優れた電池を得ることができる。   Nonwoven fabrics can be produced by the card method, air lay method, dry method such as melt blow method or spun bond method that forms a continuous sheet from the spinning state, or wet method in which fibers are dispersed in water and then removed. Laws can be adopted. In particular, since the nonwoven fabric obtained by the wet method has a smaller basis weight and thickness variation than the nonwoven fabric obtained by the dry method, a uniform current collector can be obtained. For this reason, when this current collector is used, an electrode having a uniform thickness is formed. When the electrode is wound, a pole group having excellent adhesion can be formed, and as a result, a battery having excellent charge / discharge characteristics can be obtained.

不織布の表面を親水化処理するのは。一般にポリプロピレンなどのポリオレフィン系の材料及びポリアミド系の材料は非極性材料であるので、めっき液の浸透性が悪く、密着性に乏しいからである。親水化処理することにより、めっき液の浸透性が向上し、強固にニッケルイオンと結合するので、導電性の向上と繊維表面に形成される金属めっきとの密着性の向上が図られる。親水化処理としては、例えば、スルホン化処理、フッ素ガス処理、ビニルモノマーのグラフト重合、界面活性化剤処理、或いは親水性樹脂付与処理などがある。特に、スルホン化処理、フッ素ガス処理又はビニルモノマーのグラフト処理は電池に使用される電解液である20〜35重量%KOHの水溶液中で長期間におけるめっき膜質の脱落や表面抵抗の上昇がなく好ましい。   What makes the surface of the nonwoven fabric hydrophilic? This is because, in general, polyolefin-based materials such as polypropylene and polyamide-based materials are nonpolar materials, so that the permeability of the plating solution is poor and the adhesion is poor. By performing the hydrophilization treatment, the permeability of the plating solution is improved and strongly bonded to nickel ions, so that the conductivity is improved and the adhesion with the metal plating formed on the fiber surface is improved. Examples of the hydrophilization treatment include sulfonation treatment, fluorine gas treatment, vinyl monomer graft polymerization, surfactant treatment, or hydrophilic resin application treatment. In particular, sulfonation treatment, fluorine gas treatment, or vinyl monomer grafting treatment is preferable in the absence of dropout of plating film quality and increase in surface resistance in an aqueous solution of 20 to 35 wt% KOH which is an electrolytic solution used in batteries. .

親水化処理不織布のニッケルめっき処理は、無電解めっき法であるが、必要に応じて無電解めっき法により形成された無電解めっき膜に更に電解めっき法により電解めっき膜を形成し、不織布の表面をニッケルめっき膜で被覆する。このように作られた集電材11は、電池のセパレータとして使用されている実績があるポリオレフィン系繊維又はポリアミド樹脂系繊維のいずれか一方又は双方で構成された不織布を使用するので、比較的信頼性が高い。また、この不織布を親水化処理(特にスルホン化処理,フッ素ガス処理又はビニルモノマーのグラフト処理)するので、不織布のめっき液の浸透性を向上させ、繊維表面が均一で微細にマイナスチャージした不織布を得ることができ、親水化処理されたこの不織布をニッケルめっき処理するので、不織布は強固にニッケルイオンと結合する。この結果、導電性の向上と繊維表面に形成される金属めっきとの密着性が向上した集電材が得られる。   The nickel plating treatment of the hydrophilic treatment nonwoven fabric is an electroless plating method. If necessary, an electrolytic plating film is further formed on the electroless plating film formed by the electroless plating method, and the surface of the nonwoven fabric is formed. Is coated with a nickel plating film. Since the current collector 11 made in this manner uses a nonwoven fabric composed of either or both of polyolefin fibers and polyamide resin fibers that have been used as battery separators, it is relatively reliable. Is expensive. Also, since this nonwoven fabric is hydrophilized (especially sulfonation, fluorine gas treatment or vinyl monomer grafting), the nonwoven fabric has a uniform and fine negative charge on the fiber surface, improving the permeability of the plating solution of the nonwoven fabric. This non-woven fabric that can be obtained and subjected to a hydrophilic treatment is nickel-plated, so that the non-woven fabric is strongly bonded to nickel ions. As a result, a current collector with improved conductivity and improved adhesion with the metal plating formed on the fiber surface can be obtained.

本発明のアルカリ2次電池用電極10a,10bは、上述のようにして得られた不織布からなる集電材11を帯状に切断し、集電材11の幅方向の一方の側部に長手方向に所定の間隔を開けて1又は2以上の正極又は負極端子12a,12bを超音波溶接することにより得られる。この実施の形態では、金属テープ13を介して1又は2以上の正極又は負極端子12a,12bが集電材11に超音波溶接される例を示す。金属テープ13は集電材11の表面に表出する金属との関係で適宜選定され、集電材11の表面に表出する金属に対して超音波溶接可能な金属が選ばれる。具体的に、集電材11は不織布にニッケルめっきを施しているので、金属テープ13は銀、銅又はニッケルが好ましく、その厚さd2は正極又は負極端子12a,12bの厚さd1と同じ0.05〜0.20mmであって、その幅は集電材11の幅の(1/50)〜(1/5)であることが好ましい。 The electrodes 10a and 10b for alkaline secondary batteries of the present invention are obtained by cutting the current collector 11 made of a nonwoven fabric obtained as described above into a strip shape and predetermined in the longitudinal direction on one side in the width direction of the current collector 11 Is obtained by ultrasonic welding one or two or more positive or negative electrode terminals 12a and 12b. In this embodiment, an example in which one or two or more positive or negative terminals 12 a and 12 b are ultrasonically welded to the current collector 11 through a metal tape 13 is shown. The metal tape 13 is appropriately selected in relation to the metal that appears on the surface of the current collector 11, and a metal that can be ultrasonically welded to the metal that appears on the surface of the current collector 11 is selected. Specifically, since the current collector 11 is plated with nickel nonwoven, metal tape 13 silver, copper or nickel are preferred, and the thickness d 2 is positive or negative terminal 12a, the same as the thickness d 1 of 12b The width is preferably 0.05 to 0.20 mm, and the width is preferably (1/50) to (1/5) of the width of the current collector 11.

金属テープ13及び1又は2以上の正極又は負極端子12a,12bの集電材11に溶接される部分にはそれぞれエンボス加工による凹凸が形成される。具体的に説明すると、この実施の形態では金属テープ13及びに1又は2以上の正極又は負極端子12a,12bはそれぞれ銅箔又は銅板からなり、図2に示すように、その表と裏に対して凹凸が連続して交互に形成され、その凹凸により断面は図1に示すような波形に形成される。図1に示すように、金属テープ13及びに1又は2以上の正極又は負極端子12a,12bに形成された凹凸はそれぞれ同一形状であり、集電材11の厚さtは0.3〜2.0mmであって、エンボス加工により形成された凹凸の深さhは1又は2以上の正極又は負極端子12a,12bの厚さd1よりも深く形成される。そして、凹凸の深さhは0.1mm以上であって集電材11の厚さt以下に形成される。 Concavities and convexities are formed by embossing on the portions of the metal tape 13 and one or more positive or negative electrode terminals 12a and 12b that are welded to the current collector 11 respectively. More specifically, in this embodiment, the metal tape 13 and one or more positive or negative terminals 12a, 12b are each made of copper foil or copper plate, and as shown in FIG. Concavities and convexities are continuously and alternately formed, and the cross section is formed into a waveform as shown in FIG. As shown in FIG. 1, the unevenness | corrugation formed in the metal tape 13 and one or two or more positive electrode or negative electrode terminals 12a and 12b is the same shape, respectively, and the thickness t of the current collection material 11 is 0.3-2. The depth h of the unevenness formed by embossing is 0 mm, which is deeper than the thickness d 1 of one or more positive or negative terminals 12a and 12b. Then, the depth h of the unevenness is 0.1 mm or more and less than the thickness t of the current collector 11.

図3に示すように、このようにエンボス加工による凹凸が形成された金属テープ13は最初に集電材11に超音波溶接され、その金属テープ13を介して1又は2以上の正極又は負極端子12a,12bが更に超音波溶接される。即ち、正極活物質を充填する正極電極10aは、図3(a)に示すように、上述した集電材11を帯状に形成する。そして図3(b)に示すように、集電材11の幅方向の一方の側部の片面に金属テープ13を全長にわたって超音波溶接する。その後図3(c)に示すように、この金属テープ13を介して複数の正極端子12aを集電材11に長手方向に所定の間隔を開けて超音波溶接する。その後、全体の空隙部に正極活物質を含む正極ペーストを充填し、その後乾燥及び圧延することにより正極電極10aが作られる。   As shown in FIG. 3, the metal tape 13 with the unevenness formed by embossing is first ultrasonically welded to the current collector 11, and one or more positive or negative electrode terminals 12 a are interposed through the metal tape 13. 12b are further ultrasonically welded. That is, as shown in FIG. 3A, the positive electrode 10a filled with the positive electrode active material forms the above-described current collector 11 in a strip shape. And as shown in FIG.3 (b), the metal tape 13 is ultrasonically welded to the single side | surface of the one side part of the width direction of the current collection material 11 over the full length. Thereafter, as shown in FIG. 3C, a plurality of positive terminals 12 a are ultrasonically welded to the current collector 11 at predetermined intervals in the longitudinal direction via the metal tape 13. Thereafter, a positive electrode paste containing a positive electrode active material is filled in the entire gap, and then dried and rolled to produce the positive electrode 10a.

また、負極活物質を充填する負正極電極10bは、正極電極10aと同様にして作られる。具体的には上述した集電材11を帯状に形成する。そして集電材11の幅方向の一方の側部の片面に金属テープ13を全長にわたって超音波溶接する。その後この金属テープ13を介して複数の負極端子12bを集電材11に長手方向に所定の間隔を開けて超音波溶接する。その後、全体の空隙部に負極活物質を含む負極ペーストを充填し、その後乾燥及び圧延することにより負正極電極10bが作られる。   The negative positive electrode 10b filled with the negative electrode active material is made in the same manner as the positive electrode 10a. Specifically, the current collector 11 described above is formed in a strip shape. And the metal tape 13 is ultrasonically welded to the single side | surface of the one side part of the width direction of the current collection material 11 over the full length. Thereafter, the plurality of negative electrode terminals 12b are ultrasonically welded to the current collector 11 at predetermined intervals in the longitudinal direction via the metal tape 13. After that, the negative electrode paste containing the negative electrode active material is filled in the entire voids, and then dried and rolled to form the negative positive electrode 10b.

複数本の正極又は負極端子12a,12bを溶接する際の端子間における所定の間隔wは、この電極10a,10b用いて構成しようとする発電体の厚み及び長さにより異なるが、図4に示すようにセパレータ14a,14bを介して正極電極10a及び負極電極10bを巻回して得られる発電体16にあっては、巻回された状態で正極又は負極端子12a,12bがそれぞれ別々に重なり合うような間隔で、集電材11に複数本の正極又は負極端子12a,12bがそれぞれ溶接される。図5に示すように、この発電体16は導電性の電池ケース21に収容され、このケース21は正極を兼ねる封入板22により封止される。この電池ケース21には発電体16における複数本の負極端子が電気的に接続され、封入板22には発電体16における複数本の正極端子12aが電気的に接続されてアルカリ二次電池が得られる。   The predetermined interval w between the terminals when welding a plurality of positive or negative terminals 12a and 12b varies depending on the thickness and length of the power generator to be configured using the electrodes 10a and 10b, but is shown in FIG. Thus, in the power generating body 16 obtained by winding the positive electrode 10a and the negative electrode 10b via the separators 14a and 14b, the positive or negative terminals 12a and 12b overlap each other in the wound state. A plurality of positive or negative terminals 12a and 12b are welded to the current collector 11 at intervals. As shown in FIG. 5, the power generator 16 is accommodated in a conductive battery case 21, and the case 21 is sealed by an encapsulating plate 22 that also serves as a positive electrode. A plurality of negative electrode terminals in the power generator 16 are electrically connected to the battery case 21, and a plurality of positive terminals 12a in the power generator 16 are electrically connected to the encapsulating plate 22 to obtain an alkaline secondary battery. It is done.

このように構成されたアルカリ二次電池用電極では、集電材11に1又は2以上の正極又は負極端子12a,12bを超音波溶接するので、溶接時に高い熱が集電材11の骨格素材である樹脂に加わるいわゆる抵抗溶接に比較して、その骨格素材である樹脂へ加わる熱を低減できその溶融を防止することができる。ここで、金属箔等の超音波溶接は、その白桃が滑って溶接することが困難であるけれども、本発明では、端子12a,12bの集電材11に溶接される部分に凹凸を形成するので、金属箔等からなる端子12a,12bは集電材11に対して滑ることはなく、その端子12a,12b及び集電材11に加わる超音波振動は有効に熱に変換してその溶接が可能になる。   In the electrode for an alkaline secondary battery configured in this way, one or more positive or negative terminals 12a, 12b are ultrasonically welded to the current collector 11, so that high heat is the skeleton material of the current collector 11 during welding. Compared with so-called resistance welding applied to the resin, the heat applied to the resin, which is the skeleton material, can be reduced and its melting can be prevented. Here, the ultrasonic welding of a metal foil or the like is difficult for the white peach to slip and weld, but in the present invention, since unevenness is formed in the portion welded to the current collector 11 of the terminals 12a and 12b, The terminals 12a and 12b made of metal foil or the like do not slide with respect to the current collector 11, and the ultrasonic vibration applied to the terminals 12a and 12b and the current collector 11 is effectively converted into heat and can be welded.

また、集電材11の厚さtを0.3〜2.0mmにすることにより必要な強度を確保することができ、エンボス加工により形成された凹凸の深さhを1又は2以上の正極又は負極端子12a,12bの厚さdよりも深く形成することにより、端子12a,12bが集電材11に対して滑ることを有効に防止することができる。更に、凹凸の深さhを0.1mm以上であって集電材11の厚さt以下とするので、集電材11の3次元網状構造をあまり押しつぶすことなく、端子12a,12bの集電材11へ溶接することができる。   Moreover, the required intensity | strength can be ensured by making thickness t of the current collection material 11 into 0.3-2.0 mm, and the depth h of the unevenness | corrugation formed by embossing is 1 or 2 or more positive electrodes or By forming deeper than the thickness d of the negative electrode terminals 12a and 12b, it is possible to effectively prevent the terminals 12a and 12b from sliding with respect to the current collector 11. Furthermore, since the depth h of the unevenness is 0.1 mm or more and less than the thickness t of the current collector 11, the current collector 11 of the terminals 12 a and 12 b can be moved to the current collector 11 without crushing the three-dimensional network structure of the current collector 11 much. Can be welded.

更に、エンボス加工による凹凸が形成された金属テープ13を介して1又は2以上の正極又は負極端子12a,12bを集電材11に超音波溶接するので、金属テープ13は集電材11に比較的大きな溶接面積で溶接されてその集電材11から効率的に集電する。そしてその金属テープ13を介して正極又は負極端子12a,12bを超音波溶接することによりその放電特性を向上させることができる。即ち、溶接される金属テープ13と集電材11とは連続的に溶接され、局部的に正極又は負極端子12a,12bを接合するスポット溶接に比較してその接合強度は高い。そして、複数の正極又は負極端子12a,12bはこの金属テープ13に溶接されるが、金属テープ13は溶接により押しつぶされたりすることはなく、複数の正極又は負極端子12a,12bは金属テープ13に確実に接合される。従って、正極又は負極端子12a,12bが超音波溶接される集電材11自体が局部的に座屈や折損を起こすことはなく、それらの端子12a,12bと集電材11との溶接強度はそれらの端子12a,12bを集電材11に直接溶接した場合に比較して向上する。   Furthermore, since one or two or more positive or negative terminals 12a and 12b are ultrasonically welded to the current collector 11 via the metal tape 13 on which irregularities are formed by embossing, the metal tape 13 is relatively large on the current collector 11. It is welded in the welding area and efficiently collects current from the current collector 11. And the discharge characteristic can be improved by ultrasonically welding the positive or negative electrode terminals 12a and 12b through the metal tape 13. That is, the metal tape 13 to be welded and the current collector 11 are continuously welded, and the joint strength is higher than spot welding in which the positive or negative electrode terminals 12a and 12b are locally joined. The plurality of positive or negative terminals 12a and 12b are welded to the metal tape 13, but the metal tape 13 is not crushed by welding, and the plurality of positive or negative terminals 12a and 12b is attached to the metal tape 13. Securely joined. Accordingly, the current collector 11 itself to which the positive or negative terminals 12a and 12b are ultrasonically welded does not locally buckle or break, and the welding strength between the terminals 12a and 12b and the current collector 11 is not limited to those. This is an improvement over the case where the terminals 12a and 12b are directly welded to the current collector 11.

なお、上述した実施の形態では円筒状の電池ケース21にロール状に巻かれた発電体16が挿入された電池を説明したが、電池ケースは角筒状のものであっても良く、発電体は正極電極10a及び負極電極10bを渦巻き角状に巻回したもの、又は蛇腹状に屈曲積層したものであっても良い。   In the above-described embodiment, the battery in which the power generator 16 wound in a roll shape is inserted into the cylindrical battery case 21 has been described. However, the battery case may be a rectangular tube, and the power generator May be one in which the positive electrode 10a and the negative electrode 10b are wound in a spiral shape or bent and laminated in a bellows shape.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
集電材11の幅方向の一方の側部の片面に金属テープ13を超音波溶接し、その金属テープ13を介して端子12を超音波溶接した電極を得た。集電材は不織布を親水化処理し、その親水化処理された不織布をニッケルめっき処理して作った。集電材11の厚さtは0.8mmであって、金属テープ13は厚さが0.1mmのニッケル箔である。金属テープ13にはエンボス加工により凹凸を形成し、その凹凸の深さhは集電材11の厚さt以下である0.2mmに形成して。このようにエンボス加工による凹凸を形成した金属テープ13は、集電材11の幅方向の一方の側部の片面に超音波溶接した。超音波溶接は、その周波数が10〜60kHzの範囲内であり、超音波溶接の出力は0.2〜50kWの範囲内で行った。次に端子として縦15mm、横4mmであって厚さが0.2mmのニッケル片を準備した。このニッケル片の一端に金属テープ13に形成した凹凸と同一の凹凸をエンボス加工により形成し、そのニッケル片の一端を金属テープに重ねて超音波溶接し、本発明の電極とした。この電極を実施例1とした。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
A metal tape 13 was ultrasonically welded to one surface of one side in the width direction of the current collector 11, and an electrode was obtained by ultrasonically welding the terminal 12 via the metal tape 13. The current collector was made by hydrophilizing a non-woven fabric and nickel-plating the hydrophilized non-woven fabric. The current collector 11 has a thickness t of 0.8 mm, and the metal tape 13 is a nickel foil having a thickness of 0.1 mm. Unevenness is formed on the metal tape 13 by embossing, and the depth h of the unevenness is 0.2 mm which is equal to or less than the thickness t of the current collector 11. Thus, the metal tape 13 which formed the unevenness | corrugation by embossing was ultrasonically welded to the single side | surface of the one side part of the width direction of the current collection material 11. FIG. The frequency of ultrasonic welding was within a range of 10 to 60 kHz, and the output of ultrasonic welding was performed within a range of 0.2 to 50 kW. Next, a nickel piece having a length of 15 mm, a width of 4 mm, and a thickness of 0.2 mm was prepared as a terminal. The same unevenness as that formed on the metal tape 13 was formed on one end of the nickel piece by embossing, and one end of the nickel piece was superposed on the metal tape and ultrasonically welded to obtain the electrode of the present invention. This electrode was referred to as Example 1.

<比較例1>
実施例1と同一の集電材11の幅方向の一方の側部の片面に金属テープ13をシーム溶接し、その金属テープ13を介して実施例1と同一の端子12をスポット溶接した電極を得た。金属テープとして、目付500g/m2のニッケル網からなり幅が4mmのものを使用した。シーム溶接は幅4mmの溶接ロールを用いて行い、溶接電圧1.6vであって、溶接時間が2msec、溶接速度が15mm/secの条件で行った。端子のスポット溶接は、ニッケル片からなる端子の一端を金属テープに重ねて70w・secの溶接条件で2カ所スポット溶接して電極とした。この電極を比較例1とした。
<Comparative Example 1>
A metal tape 13 is seam welded to one side in the width direction of the same current collector 11 as in Example 1, and an electrode in which the same terminal 12 as in Example 1 is spot-welded through the metal tape 13 is obtained. It was. As the metal tape, a nickel tape having a basis weight of 500 g / m 2 and a width of 4 mm was used. Seam welding was performed using a welding roll having a width of 4 mm, a welding voltage of 1.6 v, a welding time of 2 msec, and a welding speed of 15 mm / sec. In the spot welding of the terminals, one end of a terminal made of a nickel piece was placed on a metal tape and spot-welded at two locations under a welding condition of 70 w · sec to obtain an electrode. This electrode was designated as Comparative Example 1.

<実施例2>
実施例1と同一の集電材11とニッケル片の一端にエンボス加工により実施例1と同様に凹凸を形成した実施例1と同一の端子を準備した。そして、端子12であるそのニッケル片の一端を金属テープに重ねて超音波溶接し、本発明の電極とした。超音波溶接は、その周波数が10〜60kHzの範囲内であり、超音波溶接の出力は0.2〜50kWの範囲内で行った。この電極を実施例2とした。
<比較例2>
実施例2と同一の集電材11と端子を準備した。但し、端子にはエンボス加工による凹凸を形成することなく、その端子を集電材に直接スポット溶接して電極を得た。端子のスポット溶接は、ニッケル片からなる端子の一端を集電材11に重ねて70w・secの溶接条件で2カ所スポット溶接して電極とした。この電極を比較例2とした。
<Example 2>
The same current collector 11 as in Example 1 and the same terminal as that in Example 1 in which irregularities were formed on one end of the nickel piece by embossing in the same manner as in Example 1 were prepared. Then, one end of the nickel piece serving as the terminal 12 was superposed on a metal tape and ultrasonically welded to obtain an electrode of the present invention. The frequency of ultrasonic welding was within a range of 10 to 60 kHz, and the output of ultrasonic welding was performed within a range of 0.2 to 50 kW. This electrode was referred to as Example 2.
<Comparative example 2>
The same current collector 11 and terminals as in Example 2 were prepared. However, an electrode was obtained by spot welding the terminal directly to a current collector without forming irregularities by embossing. In the spot welding of the terminal, one end of a terminal made of a nickel piece was overlapped on the current collector 11 and spot-welded at two locations under a welding condition of 70 w · sec to obtain an electrode. This electrode was designated as Comparative Example 2.

<比較試験1>
実施例1、実施例2、比較例1及び比較例2におけるそれぞれの電極の集電材と端子との間の抵抗値を測定した。抵抗値の測定は、抵抗測定器(日置製作所社製、ミリオームハイテスタ)を使用して行った。この抵抗値の測定した結果を表1に示す。
<比較試験2>
実施例1、実施例2、比較例1及び比較例2におけるそれぞれの電極を用いてSub−C型の円筒型ニッケル水素電池を得た。このアルカリ二次電池であるニッケル水素電池の放電容量を0.2C,1C,5Cの場合に分けてそれぞれ測定した。この放電容量の測定した結果を表1に示す。
<Comparison test 1>
In Example 1, Example 2, Comparative Example 1 and Comparative Example 2, resistance values between current collectors and terminals of the respective electrodes were measured. The resistance value was measured using a resistance measuring instrument (manufactured by Hioki Seisakusho, Milliohm HiTester). Table 1 shows the measurement results of the resistance value.
<Comparison test 2>
A Sub-C type cylindrical nickel-metal hydride battery was obtained using the respective electrodes in Example 1, Example 2, Comparative Example 1 and Comparative Example 2. The discharge capacity of the nickel metal hydride battery, which is an alkaline secondary battery, was measured separately for 0.2C, 1C, and 5C. Table 1 shows the measurement results of the discharge capacity.

Figure 0004474148
Figure 0004474148

<評価1>
表1の結果から明らかなように、抵抗値において実施例1は比較例1に比較して優れており、実施例2は比較例2に比較して優れていることが判る。これは、比較例1及び2がスポット溶接により端子を溶接しているのに対して、実施例1及び2は超音波溶接により端子を溶接しているので、集電体の骨格素材である樹脂の溶融を防止され、集電材11の3次元網状構造を押しつぶすことなく端子12a,12bが集電材11に溶接された結果と考えられる。ここで、実施例1は実施例2に比較して抵抗値が更に低く優れているのは、実施例1では金属テープを介して集電材に端子を溶接しているためと考えられる。
また、表1の結果から放電容量において実施例1は比較例1に比較して優れており、実施例2は比較例2に比較して優れていることが判る。これは、比較例1及び2がスポット溶接により端子を溶接しているのに対して、実施例1及び2は超音波溶接により端子を溶接しているので、比較例1及び2では集電材のスポット溶接される溶接箇所周囲の骨格が局部的に座屈や折損を起こしたことによるものと考えられる。
<Evaluation 1>
As is apparent from the results in Table 1, it can be seen that the resistance value of Example 1 is superior to that of Comparative Example 1, and Example 2 is superior to that of Comparative Example 2. This is because Comparative Examples 1 and 2 weld the terminals by spot welding, whereas Examples 1 and 2 weld the terminals by ultrasonic welding, so the resin that is the skeleton material of the current collector It is considered that the terminals 12 a and 12 b are welded to the current collector 11 without crushing the three-dimensional network structure of the current collector 11. Here, it is considered that the reason why the resistance value of Example 1 is lower and superior than that of Example 2 is that the terminal is welded to the current collector through the metal tape in Example 1.
In addition, it can be seen from the results in Table 1 that Example 1 is superior to Comparative Example 1 in terms of discharge capacity, and Example 2 is superior to Comparative Example 2. This is because Comparative Examples 1 and 2 weld the terminal by spot welding, whereas Examples 1 and 2 weld the terminal by ultrasonic welding. This is thought to be because the skeleton around the spot to be spot welded locally buckled or broken.

本発明の電極の断面構造を示す図3のA−A線断面図である。It is the sectional view on the AA line of FIG. 3 which shows the cross-section of the electrode of this invention. その金属テープにおける凹凸の配置状態を示す平面図である。It is a top view which shows the arrangement | positioning state of the unevenness | corrugation in the metal tape. その電極の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of the electrode. その電極を巻回して得られた発電体を示す斜視図である。It is a perspective view which shows the electric power generation body obtained by winding the electrode. その発電体を有するアルカリ2次電池の一部を切り欠いた斜視図である。It is the perspective view which notched some alkaline secondary batteries which have the electric power generation body.

符号の説明Explanation of symbols

11 集電材
12a 正極端子
12b 負極端子
13 金属テープ
t 集電材の厚さ
h エンボス加工により形成された凹凸の深さ
1 正極又は負極端子の厚さ
DESCRIPTION OF SYMBOLS 11 Current collector 12a Positive electrode terminal 12b Negative electrode terminal 13 Metal tape t Thickness of current collector h Depth of unevenness formed by embossing d 1 Thickness of positive electrode or negative electrode terminal

Claims (2)

ニッケルメッキが施された不織布から構成され正極又は負極活物質が充填された帯状の集電材(11)と、前記集電材(11)に超音波溶接された1又は2以上の正極又は負極端子(12a,12b)とを備えたアルカリ二次電池用電極であって、
前記1又は2以上の正極又は負極端子(12a,12b)の前記集電材(11)に溶接された部分にエンボス加工による凹凸が形成され
前記集電材(11)の厚さ(t)は0.3〜2.0mmであって、前記エンボス加工により形成された凹凸の深さ(h)は前記1又は2以上の正極又は負極端子(12a,12b)の厚さ(d 1 )以上であって前記集電材(11)の厚さ(t)以下であり、
前記エンボス加工による凹凸が形成された金属テープ(13)を介して前記1又は2以上の正極又は負極端子(12a,12b)が前記集電材(11)に超音波溶接された
ことを特徴とするアルカリ二次電池用電極。
A strip-shaped current collector (11) composed of a nickel-plated non-woven fabric and filled with a positive or negative electrode active material, and one or more positive or negative terminals (1 or 2) ultrasonically welded to the current collector (11) 12a, 12b), and an electrode for an alkaline secondary battery,
Embossed irregularities are formed on the portion of the one or more positive or negative terminals (12a, 12b) welded to the current collector (11) ,
The thickness (t) of the current collector (11) is 0.3 to 2.0 mm, and the depth (h) of the unevenness formed by the embossing is one or more positive or negative terminals ( 12a, 12b) is not less than the thickness (d 1 ) and not more than the thickness (t) of the current collector (11),
The one or more positive or negative electrode terminals (12a, 12b) are ultrasonically welded to the current collector (11) through a metal tape (13) formed with unevenness by the embossing. Electrode for alkaline secondary battery.
ニッケルメッキが施された不織布を切断して帯状の集電材(11)を得る工程と、
1又は2以上の正極又は負極端子(12a,12b)の一部又は全部にエンボス加工による凹凸を形成する工程と、
前記1又は2以上の正極又は負極端子(12a,12b)の前記凹凸が形成された部分を前記集電材(11)に超音波溶接する工程と
前記エンボス加工による凹凸が形成された金属テープ(13)を前記集電材(11)に超音波溶接する工程とを含み、
前記金属テープ(13)を介して1又は2以上の正極又は負極端子(12a,12b)を前記集電材(11)に超音波溶接することを特徴とするアルカリ二次電池用電極の製造方法。
Cutting the non-woven fabric plated with nickel to obtain a strip-shaped current collector (11);
Forming irregularities by embossing on part or all of one or more positive or negative electrode terminals (12a, 12b);
A step of ultrasonically welding the uneven portion of the one or more positive or negative electrode terminals (12a, 12b) to the current collector (11) ;
A step of ultrasonically welding the metal tape (13) formed with unevenness by the embossing to the current collector (11),
A method for producing an electrode for an alkaline secondary battery , comprising ultrasonically welding one or more positive or negative terminals (12a, 12b) to the current collector (11) via the metal tape (13) .
JP2003386194A 2003-11-17 2003-11-17 Electrode for alkaline secondary battery and method for producing the same Expired - Fee Related JP4474148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386194A JP4474148B2 (en) 2003-11-17 2003-11-17 Electrode for alkaline secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386194A JP4474148B2 (en) 2003-11-17 2003-11-17 Electrode for alkaline secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005149921A JP2005149921A (en) 2005-06-09
JP4474148B2 true JP4474148B2 (en) 2010-06-02

Family

ID=34693941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386194A Expired - Fee Related JP4474148B2 (en) 2003-11-17 2003-11-17 Electrode for alkaline secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4474148B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381674B1 (en) * 2011-08-12 2014-04-04 주식회사 엘지화학 Jelly-Roll of Improved Productivity and Battery Cell Comprising the Same
KR101698564B1 (en) * 2016-05-02 2017-01-23 주식회사 티피에스 An electrode terminal for secondary battery and manufacturing method thereof
CN115832634A (en) * 2022-06-17 2023-03-21 宁德时代新能源科技股份有限公司 Negative electrode plate, preparation method thereof, secondary battery comprising negative electrode plate and electric device comprising negative electrode plate

Also Published As

Publication number Publication date
JP2005149921A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
KR100739914B1 (en) Collector For Alkaline Secondary Battery, Method For Making The Same, And Alkaline Secondary Battery Using The Same
JPH11149914A (en) Cylindrical alkaline storage battery employing non-sintered electrode and its manufacture
US6713211B2 (en) Square shaped battery
JP5137117B2 (en) Nonwoven fabric substrate for battery, battery electrode using the same, and battery
JP4903959B2 (en) Battery current collector and battery using the same
JP2005347177A (en) Alkaline battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4474148B2 (en) Electrode for alkaline secondary battery and method for producing the same
JP4868761B2 (en) Current collector with terminal and electrochemical device using the same
JP2009163976A (en) Nonwoven fabric substrate for battery, and its manufacturing method
JP2002319410A (en) Alkaline secondary battery electrode and alkaline secondary battery using the same
JP2007234445A (en) Battery
KR101148017B1 (en) Secondary battery with a spirally-rolled electrode group
JP2008159497A (en) Current collector material for electrochemical element and electrochemical element
JP4766832B2 (en) Current collector with terminal, electrochemical element using the same
JP4016214B2 (en) Battery electrode manufacturing method
JPH11162440A (en) Manufacture of alkaline storage battery
JP2009026562A (en) Electrode substrate for battery, electrode for battery, and battery
JPH11233107A (en) Alkaline storage battery using nonsintred type electrode, and its manufacture
JP5495646B2 (en) Current collector for electrochemical element and electrochemical element using the same
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP2000195511A5 (en)
JP4025929B2 (en) Battery electrode
JP2000223128A (en) Spiral electrode with three-dimensional support
JP4575546B2 (en) Method for manufacturing prismatic alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees