JP4575546B2 - Method for manufacturing prismatic alkaline storage battery - Google Patents

Method for manufacturing prismatic alkaline storage battery Download PDF

Info

Publication number
JP4575546B2
JP4575546B2 JP2000110693A JP2000110693A JP4575546B2 JP 4575546 B2 JP4575546 B2 JP 4575546B2 JP 2000110693 A JP2000110693 A JP 2000110693A JP 2000110693 A JP2000110693 A JP 2000110693A JP 4575546 B2 JP4575546 B2 JP 4575546B2
Authority
JP
Japan
Prior art keywords
welding
storage battery
alkaline storage
current collector
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000110693A
Other languages
Japanese (ja)
Other versions
JP2001297746A (en
Inventor
淳史 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000110693A priority Critical patent/JP4575546B2/en
Publication of JP2001297746A publication Critical patent/JP2001297746A/en
Application granted granted Critical
Publication of JP4575546B2 publication Critical patent/JP4575546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、角形アルカリ蓄電池の製造方法に関する。
【0002】
【従来の技術】
近年、アルカリ蓄電池は、ポータブル機器や携帯機器などの電源として、また電気自動車やハイブリッド電気自動車等に至る移動用電源として注目されており、従来にも増して高性能化が要請されている。たとえば、水酸化ニッケルを主体とした活物質からなる正極と、水素吸蔵合金を主材料とした負極とを備えるニッケル水素二次電池は、エネルギー密度が高く信頼性に優れた二次電池として急速に普及している。
【0003】
上記アルカリ蓄電池のうち、角形のアルカリ蓄電池の製造方法では、セパレータを介して複数の正極と複数の負極とを交互に積層したのち、複数の正極と複数の負極とをそれぞれ異なる集電体に溶接して極板群を形成する。このとき、溶接が十分でない場合には電池特性が低下するため、溶接を終了した段階で溶接が十分であるかどうかを判断する必要がある。従来、溶接の可否を判断するために、通常は溶接終了後に目視で検査を行っていた。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、人の目で判断するため、一定の判断基準で判断することが困難で、生産性が悪いという問題があった。このため、従来の角形アルカリ蓄電池の製造方法は、歩留まりおよび生産性が十分でないという問題があった。
【0005】
上記問題点を解決するため、本発明は、溶接の良否の判断を容易かつ正確にすることによって、歩留まりおよび生産性が高い角形アルカリ蓄電池の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の角形アルカリ蓄電池の製造方法は、複数の正極と複数の負極とをセパレータを介して交互に積層したのち、上記複数の正極を複数の溶接部で第1の集電体に溶接し、上記複数の負極を複数の溶接部で第2の集電体に溶接する第1の工程と、上記第1の集電体および上記第2の集電体から選ばれる少なくとも1つについて、上記複数の溶接部間の抵抗値を測定することによって溶接の良否を判断する第2の工程とを含むことを特徴とする。上記製造方法によれば、溶接の良否の判断を容易かつ正確に行うことができるため、歩留まりおよび生産性よく角形アルカリ蓄電池を製造できる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0008】
本発明の角形アルカリ蓄電池の製造方法では、まず、セパレータを介して複数の正極と複数の負極とを交互に積層し、複数の正極と複数の負極とをそれぞれ集電体に溶接する(第1の工程)。このときの溶接の方法について、一例の斜視図を図1に示す。
【0009】
図1を参照して、正極11は、袋状のセパレータ12に入れられ、リード部11aのみが露出している。そして、複数の正極11のリード部11a上には、集電体13が配置される。複数の溶接部13(溶接部13a〜13f)の裏面にはロウ材(図示せず)が配置されており、溶接部13a〜13fに電子ビーム16を照射することによって、複数の溶接部13a〜13fで正極11と集電体13とが溶接される。同様にして、負極14と集電体15とを溶接する。このようにして形成される極板群20の断面図を図2に示す。図2を参照して、複数の正極11と複数の負極14は、セパレータ12(ハッチングは省略する)を介して交互に積層されている。そして、複数の正極11は、集電体(第1の集電体)13に接続されている。また、複数の負極14は、集電体(第2の集電体)15に接続されている。
【0010】
次に、このようにして作製した極板群20について、集電体13および集電体15から選ばれる少なくとも1つについて、複数の溶接部間の抵抗値を測定することによって溶接の良否を判断する(第2の工程)。このとき用いる測定器30について、正面図を図3に示す。図3を参照して、測定器30は、ステージ31上に配置された極板群支持部32と、電極端子部33とを備える。そして、ステージ31上に配置された極板群20は、極板群支持部32と電極端子部33とによって挟まれている。電極端子部33を極板群20側から見た平面図を図4に示す。図4を参照して、電極端子部33は、溶接部13a〜13fのそれぞれに対応する位置に、電流端子34a〜34fと電圧端子35a〜35fとを備える。
電流端子34a〜34fは、直流電源(図示せず)に接続されている。また、電圧端子34a〜34fは、電圧計(図示せず)に接続されている。電流端子34a〜34fと電圧端子35a〜35fとは、バネ36によって、集電体13の溶接部13a〜13fに押圧されるようになっている。
【0011】
次に、溶接の良否の判断方法について具体的に説明する。まず、極板群20を測定器30にセットし、溶接部13a〜13fに電流端子34a〜34fと電圧端子35a〜35fとを密接させる。その後、電流端子34a〜34fに一定の電流を流し、電圧端子35a〜35f間の電圧値を測定する。なお、電圧値は、隣接する端子間の電圧値を測定してもよいし、基準とする端子と他の端子との間の電圧値を測定してもよい。
【0012】
隣接する溶接部13間の距離が等しい場合の等価回路を図5に模式的に示す。
図5を参照して、隣接する溶接部13aと溶接部13bとの間には、集電体13の抵抗R13(a-b)と、溶接部13aおよび13bの抵抗R13aおよび抵抗R13bと、正極11の抵抗R11(a-b)とが存在する。ここで、たとえば溶接部13aに溶接不良が生じて抵抗R13aが大きくなると、その部分の電圧値が大きくなる。なお、隣接する溶接部13間の距離が等しくない場合でも、R33とR13とを溶接部13間の距離に応じて変化させればよい。
【0013】
このように、隣接する端子間の電圧値、または基準となる端子と他の端子との間の電圧値から端子間の抵抗値が計算できる。そして、端子間の距離と抵抗値とを比較し、他の端子間と比較して抵抗値が高い部分があれば、その部分に溶接不良が生じていることがわかる。
【0014】
上述のように正極と負極とについて溶接不良をチェックしたのち、溶接不良がなかった極板群20を電槽内に配置し、電解液を注液する。その後、電槽を封口することによって、角形アルカリ蓄電池を製造できる。
【0015】
なお、上記製造方法で用いる正極、負極、セパレータおよび電解液などには、角形アルカリ蓄電池に通常用いられるものを用いることができる。具体的には、正極には、水酸化ニッケル粒子が充填された発泡ニッケルを用いることができる。また、負極には、水素吸蔵合金が塗布されたパンチングメタルを用いることができる。また、セパレータには、スルホン化されたポリプロピレンセパレータを用いることができる。また、電解液には、水酸化カリウムを溶質として含むアルカリ水溶液を用いることができる。
【0016】
以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することができる。
【0017】
たとえば、上記実施の形態で説明した測定器や極板群は一例であり、他の構造の測定器や極板群を用いてもよい。
【0018】
また、上記実施の形態で説明した集電体の溶接方法も一例であり、他の方法を用いて溶接してもよい。
【0019】
【発明の効果】
以上説明したように、本発明の角形アルカリ蓄電池の製造方法によれば、溶接の良否の判断を容易かつ正確にできるため、歩留まりおよび生産性よく角形アルカリ蓄電池を製造できる。
【図面の簡単な説明】
【図1】本発明の角形アルカリ蓄電池の製造方法によって製造される角形アルカリ蓄電池について極板群の一例を示す斜視図である。
【図2】図1に示した極板群の断面図である。
【図3】本発明の角形アルカリ蓄電池の製造方法に用いる測定器について一例を示す正面図である。
【図4】図3に示した測定器について一部を示す平面図である。
【図5】図1に示した極板群について等価回路を示す回路図である。
【符号の説明】
11 正極
12 セパレータ
13、15 集電体
13a〜13f 溶接部
14 負極
16 電子ビーム
20 極板群
30 測定器
31 ステージ
33 電極端子部
34 電流端子
35 電圧端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a prismatic alkaline storage battery.
[0002]
[Prior art]
In recent years, alkaline storage batteries have attracted attention as power sources for portable devices and portable devices, and as mobile power sources for electric vehicles, hybrid electric vehicles, and the like, and higher performance is required than ever. For example, a nickel-metal hydride secondary battery comprising a positive electrode made of an active material mainly composed of nickel hydroxide and a negative electrode made mainly of a hydrogen storage alloy has rapidly become a secondary battery with high energy density and excellent reliability. It is popular.
[0003]
Among the above alkaline storage batteries, in the method of manufacturing a rectangular alkaline storage battery, a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked via separators, and then the plurality of positive electrodes and the plurality of negative electrodes are welded to different current collectors. Thus, an electrode plate group is formed. At this time, if the welding is not sufficient, the battery characteristics are deteriorated. Therefore, it is necessary to determine whether the welding is sufficient when the welding is completed. Conventionally, in order to determine whether or not welding is possible, an inspection is usually performed visually after the end of welding.
[0004]
[Problems to be solved by the invention]
However, the above-described conventional method has a problem that it is difficult to make a judgment based on a certain judgment standard because the judgment is made by human eyes, and the productivity is poor. For this reason, the conventional method for manufacturing a prismatic alkaline storage battery has a problem that yield and productivity are not sufficient.
[0005]
In order to solve the above-described problems, an object of the present invention is to provide a method for manufacturing a prismatic alkaline storage battery with high yield and productivity by easily and accurately determining the quality of welding.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a prismatic alkaline storage battery according to the present invention includes a plurality of positive electrodes and a plurality of negative electrodes alternately stacked via separators, and then the plurality of positive electrodes are first welded by a plurality of welds. The first step of welding to the current collector and welding the plurality of negative electrodes to the second current collector at a plurality of welds, and the first current collector and the second current collector. And a second step of determining whether the welding is good or not by measuring a resistance value between the plurality of welds. According to the above manufacturing method, it is possible to easily and accurately determine whether welding is good or bad, and therefore, a rectangular alkaline storage battery can be manufactured with high yield and productivity.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
In the method for producing a prismatic alkaline storage battery of the present invention, first, a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked via a separator, and the plurality of positive electrodes and the plurality of negative electrodes are welded to current collectors, respectively (first Process). An example perspective view of the welding method at this time is shown in FIG.
[0009]
Referring to FIG. 1, positive electrode 11 is placed in a bag-like separator 12, and only lead portion 11a is exposed. A current collector 13 is disposed on the lead portions 11 a of the plurality of positive electrodes 11. A brazing material (not shown) is disposed on the back surface of the plurality of welded portions 13 (welded portions 13a to 13f), and the plurality of welded portions 13a to 13f are irradiated by irradiating the electron beams 16 to the welded portions 13a to 13f. The positive electrode 11 and the current collector 13 are welded at 13f. Similarly, the negative electrode 14 and the current collector 15 are welded. A sectional view of the electrode plate group 20 formed in this way is shown in FIG. Referring to FIG. 2, a plurality of positive electrodes 11 and a plurality of negative electrodes 14 are alternately stacked via separators 12 (hatching is omitted). The plurality of positive electrodes 11 are connected to a current collector (first current collector) 13. The plurality of negative electrodes 14 are connected to a current collector (second current collector) 15.
[0010]
Next, with respect to the electrode plate group 20 thus manufactured, the quality of welding is determined by measuring the resistance value between a plurality of welded portions for at least one selected from the current collector 13 and the current collector 15. (Second step). A front view of the measuring instrument 30 used at this time is shown in FIG. With reference to FIG. 3, the measuring instrument 30 includes an electrode plate group support portion 32 disposed on a stage 31 and an electrode terminal portion 33. The electrode plate group 20 arranged on the stage 31 is sandwiched between the electrode plate group support part 32 and the electrode terminal part 33. FIG. 4 shows a plan view of the electrode terminal portion 33 viewed from the electrode plate group 20 side. Referring to FIG. 4, electrode terminal portion 33 includes current terminals 34 a to 34 f and voltage terminals 35 a to 35 f at positions corresponding to weld portions 13 a to 13 f.
The current terminals 34a to 34f are connected to a direct current power source (not shown). The voltage terminals 34a to 34f are connected to a voltmeter (not shown). The current terminals 34 a to 34 f and the voltage terminals 35 a to 35 f are pressed against the welded portions 13 a to 13 f of the current collector 13 by a spring 36.
[0011]
Next, a method for determining the quality of welding will be specifically described. First, the electrode plate group 20 is set in the measuring instrument 30, and the current terminals 34a to 34f and the voltage terminals 35a to 35f are brought into close contact with the welded portions 13a to 13f. Thereafter, a constant current is passed through the current terminals 34a to 34f, and the voltage value between the voltage terminals 35a to 35f is measured. In addition, the voltage value may measure the voltage value between adjacent terminals, and may measure the voltage value between the terminal used as a reference | standard and another terminal.
[0012]
FIG. 5 schematically shows an equivalent circuit in the case where the distance between adjacent welds 13 is equal.
Referring to FIG. 5, between the welded portion 13a and a welding portion 13b adjacent the resistance R 13 of the current collector 13 and (ab), a resistor R 13a and resistor R 13b welds 13a and 13b, There is a resistance R 11 (ab) of the positive electrode 11. Here, for example, when a welding failure occurs in the welded portion 13a and the resistance R13a increases, the voltage value at that portion increases. Even when the distance between the welds 13 adjacent the unequal, may be changed according to the R 33 and R 13 to the distance between the weld portion 13.
[0013]
Thus, the resistance value between terminals can be calculated from the voltage value between adjacent terminals or the voltage value between a reference terminal and another terminal. Then, the distance between the terminals and the resistance value are compared, and if there is a portion where the resistance value is higher than that between the other terminals, it can be seen that welding failure has occurred in that portion.
[0014]
After checking the welding failure about the positive electrode and the negative electrode as described above, the electrode plate group 20 having no welding failure is placed in the battery case, and the electrolyte is injected. Then, a rectangular alkaline storage battery can be manufactured by sealing a battery case.
[0015]
In addition, what is normally used for a square alkaline storage battery can be used for the positive electrode, negative electrode, separator, electrolyte solution, etc. which are used with the said manufacturing method. Specifically, nickel nickel foam filled with nickel hydroxide particles can be used for the positive electrode. Moreover, the punching metal with which the hydrogen storage alloy was apply | coated can be used for a negative electrode. Moreover, a sulfonated polypropylene separator can be used as the separator. Further, an alkaline aqueous solution containing potassium hydroxide as a solute can be used as the electrolytic solution.
[0016]
Although the embodiments of the present invention have been described above by way of examples, the present invention is not limited to the above-described embodiments, and can be applied to other embodiments based on the technical idea of the present invention.
[0017]
For example, the measuring instrument and the electrode plate group described in the above embodiment are examples, and a measuring instrument and an electrode plate group having other structures may be used.
[0018]
The current collector welding method described in the above embodiment is also an example, and other methods may be used for welding.
[0019]
【The invention's effect】
As described above, according to the method for manufacturing a prismatic alkaline storage battery of the present invention, it is possible to easily and accurately determine the quality of welding, so that the prismatic alkaline storage battery can be manufactured with high yield and productivity.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an electrode plate group for a prismatic alkaline storage battery manufactured by the method for manufacturing a prismatic alkaline storage battery of the present invention.
2 is a cross-sectional view of the electrode plate group shown in FIG. 1. FIG.
FIG. 3 is a front view showing an example of a measuring instrument used in the method for manufacturing a prismatic alkaline storage battery of the present invention.
4 is a plan view showing a part of the measuring instrument shown in FIG. 3. FIG.
5 is a circuit diagram showing an equivalent circuit for the electrode plate group shown in FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Positive electrode 12 Separator 13, 15 Current collector 13a-13f Welding part 14 Negative electrode 16 Electron beam 20 Electrode board group 30 Measuring instrument 31 Stage 33 Electrode terminal part 34 Current terminal 35 Voltage terminal

Claims (1)

複数の正極と複数の負極とをセパレータを介して交互に積層したのち、前記複数の正極を複数の溶接部で第1の集電体に溶接し、前記複数の負極を複数の溶接部で第2の集電体に溶接する第1の工程と、
前記第1の集電体および前記第2の集電体から選ばれる少なくとも1つについて、前記複数の溶接部間の抵抗値を測定することによって溶接の良否を判断する第2の工程とを含むことを特徴とする角形アルカリ蓄電池の製造方法。
After alternately laminating a plurality of positive electrodes and a plurality of negative electrodes via separators, the plurality of positive electrodes are welded to the first current collector by a plurality of welds, and the plurality of negative electrodes are welded by a plurality of welds. A first step of welding to the two current collectors;
A second step of determining whether or not welding is good by measuring a resistance value between the plurality of welded portions with respect to at least one selected from the first current collector and the second current collector. A method for producing a prismatic alkaline storage battery.
JP2000110693A 2000-04-12 2000-04-12 Method for manufacturing prismatic alkaline storage battery Expired - Fee Related JP4575546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110693A JP4575546B2 (en) 2000-04-12 2000-04-12 Method for manufacturing prismatic alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110693A JP4575546B2 (en) 2000-04-12 2000-04-12 Method for manufacturing prismatic alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2001297746A JP2001297746A (en) 2001-10-26
JP4575546B2 true JP4575546B2 (en) 2010-11-04

Family

ID=18623164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110693A Expired - Fee Related JP4575546B2 (en) 2000-04-12 2000-04-12 Method for manufacturing prismatic alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4575546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043469A (en) * 2007-08-07 2009-02-26 Panasonic Ev Energy Co Ltd Manufacturing method of battery, and inspection method of battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137471U (en) * 1979-03-23 1980-09-30
JPS607058A (en) * 1983-06-23 1985-01-14 Shin Kobe Electric Mach Co Ltd Method of welding terminal for current collection
JPS6065453A (en) * 1983-09-20 1985-04-15 Shin Kobe Electric Mach Co Ltd Resistive welding device for lead storage battery
JPH04284368A (en) * 1991-03-13 1992-10-08 Japan Storage Battery Co Ltd Manufacture of lead-acid battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137471U (en) * 1979-03-23 1980-09-30
JPS607058A (en) * 1983-06-23 1985-01-14 Shin Kobe Electric Mach Co Ltd Method of welding terminal for current collection
JPS6065453A (en) * 1983-09-20 1985-04-15 Shin Kobe Electric Mach Co Ltd Resistive welding device for lead storage battery
JPH04284368A (en) * 1991-03-13 1992-10-08 Japan Storage Battery Co Ltd Manufacture of lead-acid battery

Also Published As

Publication number Publication date
JP2001297746A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP4446205B2 (en) Battery and manufacturing method thereof
JP5137530B2 (en) Secondary battery and manufacturing method thereof
JP2021526303A (en) Busbar for battery cell connection, battery pack and its manufacturing method
JP6593304B2 (en) Electric storage device and method for manufacturing electric storage device
KR20120007467A (en) Square-sealed type secondary battery and manufacturing method thereof
US6713211B2 (en) Square shaped battery
US8765300B2 (en) Battery manufacturing method, battery, pre-welding positive plate manufacturing method, and pre-welding positive plate
JP5198134B2 (en) Method for manufacturing cylindrical battery
JPH10284046A (en) Nonaqueous electrolyte secondary battery
JP2001126703A (en) Module cell
JP2002170547A (en) Closed type battery
KR20130014223A (en) Pouched type secondary battery
JP2002246007A (en) Battery with layered plate group
KR20130031076A (en) Electrode unit with porous structures and second battery using the same
JP4575546B2 (en) Method for manufacturing prismatic alkaline storage battery
JP6909406B2 (en) Battery module
JP3733009B2 (en) Manufacturing method and manufacturing apparatus of assembled battery
JPH07226197A (en) Battery
JP3649909B2 (en) battery
JP2000100415A (en) Storage battery
KR20190029461A (en) Method for producing an electrode unit for a battery cell and battery cell
KR20210037929A (en) Battery cell for electric vehicle and manufacturing method thereof
JP2001023605A (en) Manufacture of battery
US20240120554A1 (en) Energy Storage Cell and Method for the Production Thereof
JP2000306570A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

R150 Certificate of patent or registration of utility model

Ref document number: 4575546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees