JP5495646B2 - Current collector for electrochemical element and electrochemical element using the same - Google Patents

Current collector for electrochemical element and electrochemical element using the same Download PDF

Info

Publication number
JP5495646B2
JP5495646B2 JP2009167849A JP2009167849A JP5495646B2 JP 5495646 B2 JP5495646 B2 JP 5495646B2 JP 2009167849 A JP2009167849 A JP 2009167849A JP 2009167849 A JP2009167849 A JP 2009167849A JP 5495646 B2 JP5495646 B2 JP 5495646B2
Authority
JP
Japan
Prior art keywords
current collector
fiber
metal
electrochemical element
organic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009167849A
Other languages
Japanese (ja)
Other versions
JP2011023232A (en
Inventor
正 遠藤
俊明 高瀬
康博 伊藤
政尚 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2009167849A priority Critical patent/JP5495646B2/en
Publication of JP2011023232A publication Critical patent/JP2011023232A/en
Application granted granted Critical
Publication of JP5495646B2 publication Critical patent/JP5495646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は電気化学素子用集電材及び、これを用いた電気化学素子に関する。   The present invention relates to a current collector for an electrochemical element and an electrochemical element using the same.

アルカリ電池は、高信頼かつ軽量化できるため、現在ポータブル機器から産業用大型設備まで、各装置の電源として広く用いられている。このアルカリ電池の内部には、電極とセパレーターとが積層された状態で収められている。多くの場合、電極は平板金属あるいは金属多孔体から構成された集電材に、電池反応を担う活物質が塗布あるいは充填されている。アルカリ電池の発電能力は、集電材に充填された活物質の量に依存することから、活物質をより多量に充填することができるように、集電材が高い空隙率を有する構造であることが求められている。   Alkaline batteries are widely used as power sources for devices ranging from portable devices to large industrial facilities because they can be highly reliable and lightweight. The alkaline battery contains an electrode and a separator in a stacked state. In many cases, an electrode is formed by coating or filling a current collector made of a flat metal or a metal porous body with an active material responsible for a battery reaction. Since the power generation capacity of the alkaline battery depends on the amount of the active material filled in the current collector, the current collector may have a high porosity so that the active material can be filled in a larger amount. It has been demanded.

このような高い空隙率を有する構造の集電材として、特開2007-305345号公報(以下、特許文献1)には、合成繊維からなる所定の方向に配向した不織布にニッケルめっきを施すことで製造される、樹脂骨格を有する正極基板(集電材)が、特開2009-26562号公報(以下、特許文献2)には、樹脂繊維からなる不織布を熱処理によって厚さの調整を行った後、金属の皮膜層を形成することで製造された、樹脂繊維から成る不織布の繊維表面に金属の皮膜層を有する電池用電極基材(集電材)が開示されている。   As a current collector having such a high porosity, Japanese Patent Laid-Open No. 2007-305345 (hereinafter referred to as Patent Document 1) is manufactured by applying nickel plating to a nonwoven fabric oriented in a predetermined direction made of synthetic fibers. In JP 2009-26562 A (hereinafter referred to as Patent Document 2), a positive electrode substrate having a resin skeleton (current collector) is prepared by adjusting the thickness of a nonwoven fabric made of resin fibers by heat treatment, A battery electrode base material (current collector) having a metal film layer on a fiber surface of a nonwoven fabric made of resin fibers produced by forming a film layer is disclosed.

しかしながら、これらのように製造された集電材中には樹脂骨格が存在しているために、端子と接合した際の接合力が弱いものとなる。そのため、端子付け工程で集電材をタブレスに加工してから接合を行う、あるいはエキスパンドメタルを集電材と端子との間に介在させてから接合を行う必要があり、アルカリ電池の製造が複雑なものとなっていた。   However, since the resin skeleton is present in the current collector manufactured as described above, the bonding force when bonded to the terminal is weak. Therefore, it is necessary to perform the joining after processing the current collector to be tabless in the terminal attaching process, or it is necessary to perform the joining after the expanded metal is interposed between the current collector and the terminal. It was.

このようなタブレス加工やエキスパンドメタルを必要としない集電材として、金属多孔体が知られている。例えば、特開平08-69801号公報(以下、特許文献3)には、ポリプロピレン短繊維からなる不織布に、電気めっきを施した後、不織布を熱によって分解除去することで製造した、目付が500g/m2の金属多孔体が開示されている。なお、引用文献3では、上述のように製造された金属多孔体の表面の金属繊維が毛羽立っていることで、アルカリ蓄電池を製造した際に、セパレーターを貫通して短絡を発生させることを指摘するとともに、ロールを用いた熱溶着により電気めっき前の不織布の表面を平滑化することで、短絡の発生を防ぐことを開示している。 A porous metal is known as a current collector that does not require such tabless processing or expanded metal. For example, in Japanese Patent Application Laid-Open No. 08-69801 (hereinafter referred to as Patent Document 3), a non-woven fabric made of polypropylene short fibers is electroplated, and then the non-woven fabric is decomposed and removed by heat. A metal porous body of m 2 is disclosed. In Reference 3, it is pointed out that when the alkaline storage battery is manufactured, the metal fiber on the surface of the porous metal body manufactured as described above causes a short circuit through the separator when the alkaline storage battery is manufactured. In addition, it discloses that the occurrence of a short circuit is prevented by smoothing the surface of the nonwoven fabric before electroplating by thermal welding using a roll.

引用文献3と同様に、不織布を熱によって分解除去することで製造する金属多孔体として、特開平08-69814号公報(以下、特許文献4)には、ポリプロピレン等の有機ポリマーからなる不織布に電気めっきを施した後、不織布を熱によって分解除去することで製造した、金属多孔体が開示されている。引用文献4には、捲回方法や短絡の定義などが開示されていないものの、金属多孔体とセパレーターとを積層してなるニッケル-水素電池の短絡は100個中0個であったことが開示されている。しかし、引用文献4には製造された金属多孔体の目付が開示されていないものの、樹脂骨格となる不織布を有していない金属多孔体の目付は、引用文献3のように300〜500g/m2程度であることが技術常識であることから、引用文献4に開示されている多孔体もまた、引用文献3と同様に金属繊維の毛羽によって短絡が発生しやすいものであると考えられる。 As in the case of the cited document 3, as a porous metal body manufactured by decomposing and removing a nonwoven fabric by heat, Japanese Patent Application Laid-Open No. 08-69814 (hereinafter referred to as Patent Document 4) describes a method for electrically treating a nonwoven fabric made of an organic polymer such as polypropylene. Disclosed is a porous metal body produced by plating and removing a nonwoven fabric by heat. Although cited reference 4 does not disclose the winding method or the definition of short circuit, it is disclosed that the short circuit of the nickel-hydrogen battery formed by laminating the porous metal body and the separator was 0 out of 100. Has been. However, although the basis weight of the manufactured metal porous body is not disclosed in the cited document 4, the basis weight of the metal porous body that does not have the nonwoven fabric that becomes the resin skeleton is 300 to 500 g / m as in the cited reference 3. Since it is technical common sense that it is about 2, it is considered that the porous body disclosed in the cited document 4 is also likely to cause a short circuit due to the fluff of the metal fiber, as in the cited document 3.

実際、引用文献4に開示されている製造方法に則って製造したニッケル-水素電池において、短絡が発生しないものであるかを検討した結果、従来の技術常識の目付(300g/m2ならびに450g/m2)の集電材の表面に多数の毛羽立ちが認められると共に、この集電材を用いて製造したニッケル-水素電池では、集電材の毛羽がセパレーターを貫通することに起因する短絡の発生が認められた。
In fact, as a result of examining whether or not a short circuit occurs in a nickel-hydrogen battery manufactured in accordance with the manufacturing method disclosed in the cited document 4, the basis weight of conventional technical common sense (300 g / m 2 and 450 g / m 2 ) A large number of fluffing was observed on the surface of the current collector, and in the nickel-hydrogen battery manufactured using this current collector, the occurrence of a short circuit due to the fuzz of the current collector penetrating the separator was observed. It was.

以上はアルカリ電池における問題点であるが、キャパシター等の電気化学素子においても、短絡の発生は発電能力の停止を招くものであることから、短絡が発生し難い集電材の開発が求められている。しかしながら、従来の金属多孔体からなる集電材は、その表面に繊維の毛羽立ちを多数有するものであることから、積層したセパレーターを貫通することに起因する短絡を、該集電材を用いたキャパシターなどの電気化学素子において、発生させることがあった。
Although the above is a problem in alkaline batteries, even in electrochemical elements such as capacitors, since the occurrence of a short circuit causes the stop of power generation capacity, development of a current collector that is unlikely to cause a short circuit is required. . However, since the current collector made of a porous metal body has many fiber fluffs on the surface thereof, a short circuit caused by penetrating the laminated separator can be prevented, such as a capacitor using the current collector. In some electrochemical devices, it may occur.

特開2007-305345号公報(特許請求の範囲、0010、0029、0040、0050-0052)JP 2007-305345 A (Claims 0010, 0029, 0040, 0050-0052) 特開2009-26562号公報(特許請求の範囲、0016、0019-0023、0043、0052)JP 2009-26562 (Claims, 0016, 0019-0023, 0043, 0052) 特開平08-69801号公報(特許請求の範囲、0005-0010、0017、0019、0022)JP 08-69801 A (claims, 0005-0010, 0017, 0019, 0022) 特開平08-69814号公報(特許請求の範囲、0005-0008、0012-0019)JP 08-69814 A (Claims 0005-0008, 0012-0019)

本発明は、上述した従来技術が有する限界を超えるべくなされたもので、電気化学素子の内部短絡が発生し難い電気化学素子用集電材、及びそれを用いた電気化学素子の提供を目的とするものである。   The present invention has been made to exceed the above-mentioned limitations of the prior art, and an object thereof is to provide a current collector for an electrochemical element in which an internal short circuit of the electrochemical element is difficult to occur, and an electrochemical element using the same. Is.

請求項1の電気化学素子用集電材は「目付が215g/m以下の、ニッケル金属よりなる中空繊維の集合体であることを特徴とする、電気化学素子用集電材」である。
The current collector for an electrochemical element according to claim 1 is “a current collector for an electrochemical element, characterized by being an aggregate of hollow fibers made of nickel metal having a basis weight of 215 g / m 2 or less”.

請求項2の電気化学素子は「請求項1に記載の電気化学素子用集電材を用いた電気化学素子」である。   The electrochemical element according to claim 2 is an “electrochemical element using the current collector for an electrochemical element according to claim 1”.

本発明の請求項1によれば、電気化学素子用集電材が「目付が215g/m以下の、ニッケル金属よりなる中空繊維の集合体」であることから、たとえ電気化学素子用集電材の表面に繊維の毛羽立ちがあったとしても、その繊維の毛羽が曲がりやすく脆弱な金属よりなる中空繊維であることから、セパレーターを貫通しない。そのため、電気化学素子の内部短絡が発生し難い、電気化学素子用集電材である。
According to claim 1 of the present invention, since the current collector for an electrochemical element is an “aggregate of hollow fibers made of nickel metal having a basis weight of 215 g / m 2 or less”, the current collector for an electrochemical element Even if there is fluff of the fiber on the surface, the fluff of the fiber is a hollow fiber made of a fragile metal that is easy to bend and thus does not penetrate the separator. Therefore, it is a current collector for an electrochemical element that does not easily cause an internal short circuit of the electrochemical element.

本発明の請求項2によれば、請求項1に記載の電気化学素子用集電材を用いることで、内部短絡の発生が防がれた、電気化学素子である。
According to a second aspect of the present invention, there is provided an electrochemical element in which the occurrence of an internal short circuit is prevented by using the electrochemical element current collector according to the first aspect.

本発明に係る電気化学素子用集電材の静止摩擦力の測定方法を示した、電気化学素子用集電材の表面と垂直をなす方向における断面図である。It is sectional drawing in the direction which makes perpendicular | vertical to the surface of the electrical power collector for electrochemical elements which showed the measuring method of the static friction force of the electrical power collector for electrochemical elements which concerns on this invention.

本発明の電気化学素子用集電材(以降、集電材と呼ぶ)は、金属よりなる中空繊維の集合体であり、その目付は250g/m2以下のものである。
The current collector for an electrochemical element of the present invention (hereinafter referred to as a current collector) is an aggregate of hollow fibers made of metal, and its basis weight is 250 g / m 2 or less.

ここでいう金属とは、例えば、ニッケル、銅、白金、金、銀、亜鉛、カドミウム、錫、クロム、各種合金、金属酸化物などの各種金属化合物のみに限らず、公知のものを指す。また、集電材は一種類の金属のみから構成されていても良いし、複数種類の金属から構成されていても良い。
The metal referred to here is not limited to various metal compounds such as nickel, copper, platinum, gold, silver, zinc, cadmium, tin, chromium, various alloys, metal oxides, and the like, for example. Further, the current collector may be composed of only one type of metal, or may be composed of a plurality of types of metals.

ここでいう中空繊維とは、繊維横断面において金属の不存在領域が存在している繊維を指す。不存在領域の形状が真円であると、中空繊維全体における強度が均一なものとなり好ましい。しかし、集電材を好適に構成することのできる中空繊維であれば、不存在領域の形状が楕円、多角形型、星型、米型、Y字等のアルファベット型など、いかなる形状でも構わない。   The hollow fiber here refers to a fiber in which a metal non-existence region exists in the fiber cross section. It is preferable that the shape of the nonexistent region is a perfect circle because the strength of the entire hollow fiber is uniform. However, as long as the hollow fiber can suitably constitute the current collector, the shape of the nonexistent region may be any shape such as an ellipse, a polygonal shape, a star shape, a rice shape, or an alphabet shape such as a Y shape.

金属の不存在領域が繊維横断面の中心に存在していると、中空繊維全体における強度が均一なものとなり好ましい。しかし、集電材を好適に構成することのできる中空繊維であれば、金属の不存在領域の存在位置が偏心していても構わない。なお、中空繊維の表面の一部が開裂あるいは開口をなしており、中空繊維の表面と金属の不存在領域とが連続しているものも、中空繊維とみなす。   It is preferable that the metal-free region exists in the center of the fiber cross section because the strength of the entire hollow fiber becomes uniform. However, as long as it is a hollow fiber that can suitably constitute the current collector, the location where the metal-free region is present may be eccentric. A hollow fiber having a part of the surface of the hollow fiber that is cleaved or opened and the surface of the hollow fiber is continuous with the metal-free region is also regarded as a hollow fiber.

中空繊維横断面における不存在領域の割合が10%未満であると、集電材の表面で中空繊維が毛羽立った際、該中空繊維の強度が高く、セパレーターを貫通することで、電気化学素子を製造した際の短絡を招く傾向がある。また割合が90%を超えると、中空繊維の強度が低下することで、集電材の破断を招く傾向がある。そのため、この割合は10%〜90%の範囲であるのが好ましく、15%〜80%の範囲であるのがより好ましい。
When the ratio of the non-existing region in the cross-section of the hollow fiber is less than 10%, when the hollow fiber fluffs on the surface of the current collector, the hollow fiber is strong and penetrates the separator to produce an electrochemical element. There is a tendency to cause a short circuit. On the other hand, when the ratio exceeds 90%, the strength of the hollow fiber is lowered, and the current collector tends to be broken. Therefore, this ratio is preferably in the range of 10% to 90%, and more preferably in the range of 15% to 80%.

ここでいう集合体とは、金属よりなる中空繊維の表面同士が焼結するなどして部分的に一体化している状態を指す。
The term “aggregate” as used herein refers to a state in which the surfaces of hollow fibers made of metal are partially integrated by sintering.

集電材の目付が250g/m2以下であるとともに、金属よりなる中空繊維により構成されているため、該集電材の表面に発生する毛羽は、曲がりやすい脆弱なものとなる。そのため、該集電材を用いて電気化学素子を製造する際に発生する毛羽がセパレーターを貫通する可能性が低い。 Since the weight of the current collector is 250 g / m 2 or less and is constituted by a hollow fiber made of metal, the fluff generated on the surface of the current collector becomes fragile and easily bent. Therefore, the possibility that the fluff generated when the electrochemical element is manufactured using the current collector penetrates the separator is low.

目付が低い集電材であるほど、金属よりなる中空繊維が脆弱な毛羽となる傾向があるため、セパレーターを貫通する可能性がより低いものとなる。そのため集電材の目付は、215g/m2以下であるのがより好ましく、200g/m2以下であるのが更に好ましく、170g/m2以下であるのが最も好ましい。 The lower the basis weight, the lower the possibility of penetrating the separator because the hollow fibers made of metal tend to become brittle fluff. Basis weight of the order current collector is more preferably at 215 g / m 2 or less, more preferably at 200 g / m 2 or less, most preferably 170 g / m 2 or less.

集電材は目付が低くなるとともに剛性が劣る傾向があり、あまりに低い目付の集電材を用いた場合、電気化学素子を製造することが困難になる傾向がある。そのため集電材の目付は、150g/m2以上であるのが好ましい。
Current collectors tend to have a low basis weight and poor rigidity, and when a current collector with a too low basis weight is used, it tends to be difficult to produce an electrochemical element. Therefore, the basis weight of the current collector is preferably 150 g / m 2 or more.

本発明における集電材の目付は、集電材の面積と質量を量り、該集電材の面積1m2あたりの質量を算出し、算出した質量を目付とする。
The basis weight of the current collector in the present invention is obtained by measuring the area and mass of the current collector, calculating the mass per 1 m 2 of the current collector, and using the calculated mass as the basis weight.

電極間にセパレータを介在させた状態で捲回して円筒型の電気化学素子を製造する場合、捲回時に電極へと力がかかり電極が破断することを防止できることから、本発明の集電材に活物質を充填してなる該電極の、捲回方向における引張り強さは強いものであることが好ましい。   When a cylindrical electrochemical device is manufactured by winding with a separator interposed between the electrodes, a force is applied to the electrode during winding to prevent the electrode from being broken. The electrode filled with the substance preferably has a high tensile strength in the winding direction.

円筒型の電気化学素子を製造する場合に使用する電極は、多くは長方形状をなすことから、上述の捲回方向と電極の長辺方向とは同一の方向を示す。そのため、電極を構成する集電材の長辺方向における引張り強さは、捲回時に電極へと力がかかり電極が破断することを防止できるように、強いものであることが好ましい。より具体的には、集電材の長辺方向の引張り強さは11N/2cm幅以上であるのが好ましく、20N/2cm幅以上であるのがより好ましく、25N/2cm幅以上であるのが最も好ましい。   Since many electrodes used when manufacturing a cylindrical electrochemical element are rectangular, the winding direction and the long side direction of the electrode indicate the same direction. Therefore, the tensile strength in the long side direction of the current collector constituting the electrode is preferably strong so that a force can be applied to the electrode during winding to prevent the electrode from breaking. More specifically, the tensile strength in the long side direction of the current collector is preferably 11 N / 2 cm width or more, more preferably 20 N / 2 cm width or more, and most preferably 25 N / 2 cm width or more. preferable.

このような長辺方向における引張り強さを有する集電材は、例えば、中空繊維を長辺方向に配向させたものである。このように、長辺方向に中空繊維が配向した場合、長辺方向における引張強さが短辺方向における引張り強さよりも強くなる。   The current collector having such a tensile strength in the long side direction is, for example, a hollow fiber oriented in the long side direction. Thus, when the hollow fibers are oriented in the long side direction, the tensile strength in the long side direction is stronger than the tensile strength in the short side direction.

なお、長方形状の集電材の長辺方向および短辺方向の引張り強さは、以下の測定方法によって求めた値をいう。   The tensile strength in the long side direction and the short side direction of the rectangular current collector is a value obtained by the following measurement method.

長辺方向の引張り強さは、長方形状の集電材から、長辺方向における長さが4cm、短辺方向における長さが2cmの試験片を切り取った後、JIS L1096:1999、8.12.1(A法、ストリップ法)に準じ、定速緊張形引張り試験機(ORIENTEC社 TENSILON UCT-100、チャック間2cm、引張り速度100mm/min.)を用いて測定した値である。   The tensile strength in the long side direction was measured by cutting a test piece having a length of 4 cm in the long side direction and a length of 2 cm in the short side direction from a rectangular current collector, and then JIS L1096: 1999, 8.12. 1 (A method, strip method) is a value measured using a constant speed tension type tensile tester (ORIENTEC TENSILON UCT-100, 2 cm between chucks, pulling speed 100 mm / min.).

短辺方向の引張り強さは、長方形状の集電材から、長辺方向における長さが2cm、短辺方向における長さが4cmの試験片を切り取った後、上述と同様の方法により測定した値である。   The tensile strength in the short side direction is a value measured by the same method as described above after cutting out a test piece having a length of 2 cm in the long side direction and a length of 4 cm in the short side direction from a rectangular current collector. It is.

なお、中空繊維が配向している方向と捲回方向とが一致するように電極を捲回すると、捲回時に電極の毛羽が発生しにくくなる傾向があり、電気化学素子の内部短絡が発生しにくくなるため好適である。
In addition, when the electrode is wound so that the direction in which the hollow fibers are oriented and the winding direction coincide with each other, there is a tendency that fluffing of the electrode is less likely to occur during winding, and an internal short circuit of the electrochemical element occurs. This is preferable because it becomes difficult.

以下に、本発明に係る集電材の製造方法を説明する。
Below, the manufacturing method of the electrical power collector which concerns on this invention is demonstrated.

本発明の集電材を構成する金属よりなる中空繊維は、例えば、公知の有機繊維集合体に金属皮膜を形成した後、焼成により有機繊維集合体を焼失させることで得られるものであり、金属よりなる中空繊維同士が焼結するなどして、該繊維同士がその交点で結合していることで、集電材を形成している。
The hollow fiber made of the metal constituting the current collector of the present invention is obtained, for example, by forming a metal film on a known organic fiber aggregate and then burning the organic fiber aggregate by firing, The current collecting material is formed by sintering the hollow fibers to be bonded together at the intersection.

まず、有機繊維集合体を構成する有機繊維は、特に限定するものではないが、後述する、有機繊維集合体上に好適に金属皮膜が形成されるように、また有機繊維集合体が容易に焼失できるように、例えば、ポリオレフィン系繊維、ポリイミド系繊維、ポリアミドイミド繊維、ポリアミド系繊維(芳香族ポリアミド繊維、芳香族ポリエーテルアミド繊維、ナイロン繊維)、ポリエステル系繊維(全芳香族ポリエステル繊維、ポリエチレンテレフタレート繊維)、セルロース系繊維、ポリベンゾイミダゾール繊維を好適に使用することができる。   First, the organic fiber constituting the organic fiber assembly is not particularly limited, but the organic fiber assembly is easily burned out so that a metal film is suitably formed on the organic fiber assembly, which will be described later. For example, polyolefin fiber, polyimide fiber, polyamideimide fiber, polyamide fiber (aromatic polyamide fiber, aromatic polyetheramide fiber, nylon fiber), polyester fiber (fully aromatic polyester fiber, polyethylene terephthalate) Fiber), cellulosic fiber, and polybenzimidazole fiber can be suitably used.

また、これらの有機繊維をなす樹脂は、直鎖状ポリマーまたは分岐状ポリマーのいずれからなるものでも構わず、またポリマーがブロック共重合体やランダム共重合体、多成分のポリマーが混和した樹脂でも構わず、またポリマーの立体構造や結晶性の有無がいかなるものでも構わない。   Further, the resin forming these organic fibers may be either a linear polymer or a branched polymer, and the polymer may be a block copolymer, a random copolymer, or a resin mixed with a multi-component polymer. It does not matter whether the polymer has any three-dimensional structure or crystallinity.

有機繊維集合体は、一種類の繊維から構成したものに限らず、複数種類の繊維から構成したものでも良い。また、複数種類の樹脂からなる有機繊維を用いて構成したものでも良い。複数種類の樹脂からなる有機繊維の例として、有機繊維が低融点樹脂と高融点樹脂とを備えており、低融点樹脂が有機繊維表面に露出した複合型融着繊維(特には、繊維断面における配置が芯鞘型又は海島型であるのが好ましい)が挙げられる。上述の複合型融着繊維を用いると、熱融着処理により有機繊維同士が一体化することで、有機繊維集合体を得られるため好ましい。   The organic fiber assembly is not limited to one composed of one type of fiber, and may be composed of a plurality of types of fibers. Moreover, what was comprised using the organic fiber which consists of multiple types of resin may be used. As an example of an organic fiber composed of a plurality of types of resins, a composite-type fused fiber (particularly in the fiber cross section) in which the organic fiber includes a low melting point resin and a high melting point resin, and the low melting point resin is exposed on the surface of the organic fiber. The arrangement is preferably a core-sheath type or a sea-island type). It is preferable to use the above-described composite fusion fiber because the organic fiber aggregate can be obtained by integrating the organic fibers by heat fusion treatment.

いずれの場合であっても、集電材を製造した際に活物質の充填性が優れるように、繊度0.01〜30dtexの有機繊維を使用して有機繊維集合体を構成するのが好ましい。有機繊維の繊維長は有機繊維集合体の形成方法によって異なり、乾式法により有機繊維集合体を形成する場合には30mm以上であるのが好ましく、湿式法により有機繊維集合体を形成する場合には10mm以下であるのが好ましい。
In any case, it is preferable to form an organic fiber aggregate using organic fibers having a fineness of 0.01 to 30 dtex so that the active material can be filled well when the current collector is manufactured. The fiber length of the organic fiber varies depending on the method of forming the organic fiber aggregate, and is preferably 30 mm or more when the organic fiber aggregate is formed by a dry method, and when the organic fiber aggregate is formed by a wet method. It is preferable that it is 10 mm or less.

次いで、有機繊維ウェブを形成する。例えば、上述の有機繊維あるいは上述の有機繊維を製造することができる樹脂から、有機繊維集合体を形成する手段として公知の、カード法、エアレイ法、メルトブロー法、或いはスパンボンド法のような乾式法、又は湿式法を使用して形成できる。なお、有機繊維ウェブを形成する際に、有機繊維が一方向に配向しやすいようにすると、配向方向の引張り強さが、該方向と垂直をなす方向の引張り強さよりも強い、有機繊維集合体を形成でき、結果として、中空繊維が一方向に配向し、配向方向の引張り強さの強い集電材を製造することができる。このような一方向に配向した有機繊維ウェブは、例えば、有機繊維を受け取るコンベアなどの支持体の搬送速度を速くすることによって形成できる。
An organic fiber web is then formed. For example, a dry method such as a card method, an air lay method, a melt blow method, or a spun bond method, which is known as a means for forming an organic fiber assembly from the above organic fiber or a resin capable of producing the above organic fiber. Or can be formed using wet methods. When forming the organic fiber web, if the organic fibers are easily oriented in one direction, the tensile strength in the orientation direction is stronger than the tensile strength in the direction perpendicular to the direction. As a result, it is possible to produce a current collector in which the hollow fibers are oriented in one direction and the tensile strength in the orientation direction is strong. Such an organic fiber web oriented in one direction can be formed, for example, by increasing the conveying speed of a support such as a conveyor for receiving organic fibers.

次いで、絡合処理(水流絡合処理、ニードルパンチ処理)、熱融着処理、又は接着処理を単独で、又は併用して行うことで、一枚の有機繊維ウェブあるいは複数枚積層した有機繊維ウェブを一体化して有機繊維集合体を製造できる。特に、熱融着処理によって有機繊維同士を融着させ一体化すると、強度が優れた有機繊維集合体となるため好適である。   Next, one organic fiber web or a plurality of organic fiber webs laminated by performing entanglement treatment (water entanglement treatment, needle punching treatment), heat fusion treatment, or adhesion treatment alone or in combination. Can be integrated to produce an organic fiber assembly. In particular, it is preferable that the organic fibers are fused and integrated by heat fusion treatment because an organic fiber aggregate having excellent strength is obtained.

なお、有機繊維集合体の厚さは、電気化学素子の種類(例えば、形態が円筒状であるか平板状であるかなど)に合わせて製造される集電材によって変わるため、特に限定するものではないが、例えば、円筒型電池用の集電材を製造する場合、極板群作製時の捲回が容易に行えるように、有機繊維集合体の厚さは0.3〜1.8mmであるのが好ましい。
The thickness of the organic fiber aggregate varies depending on the current collector manufactured according to the type of electrochemical element (for example, whether it is cylindrical or flat), and is not particularly limited. However, for example, when manufacturing a current collector for a cylindrical battery, the thickness of the organic fiber assembly is 0.3 to 1.8 mm so that winding can be easily performed at the time of preparing the electrode plate group. Is preferred.

次いで、有機繊維集合体に金属皮膜を形成することで、メッキ集合体を得ることができる。   Subsequently, a plating aggregate can be obtained by forming a metal film on the organic fiber aggregate.

有機繊維集合体と金属との密着性及び接着性を高めるために、有機繊維集合体を親水化処理するのが好ましい。この親水化処理として公知の、スルホン化処理、酸素ガス、二酸化炭素ガス及び/又は二酸化硫黄ガスを含むフッ素ガスによる処理、親水性ビニルモノマーのグラフト処理、或いはコロナ放電処理などを挙げることができる。有機繊維集合体を構成している有機繊維の種類により、適用する親水化処理を選択するとともに、親水化処理の程度を適宜調整する。   In order to improve the adhesion and adhesion between the organic fiber aggregate and the metal, it is preferable to hydrophilize the organic fiber aggregate. Examples of the hydrophilization treatment include a sulfonation treatment, a treatment with a fluorine gas containing oxygen gas, carbon dioxide gas and / or sulfur dioxide gas, a graft treatment with a hydrophilic vinyl monomer, or a corona discharge treatment. The hydrophilic treatment to be applied is selected according to the type of organic fiber constituting the organic fiber aggregate, and the degree of the hydrophilic treatment is appropriately adjusted.

有機繊維集合体に金属皮膜を形成する方法として、例えば、公知の無電解メッキ法のみによる方法、無電解メッキの後に電解メッキをする方法、金属蒸着処理による方法、スパッタリング処理による方法、イオンプレーティングによる方法、金属溶射による方法などを挙げることができる。金属皮膜の形成化処理は適宜選択することができるとともに、該メッキ集合体を焼成した後に得られる、金属よりなる中空繊維の集合体の目付が250g/m以下となるように、金属皮膜の形成量や皮膜の厚さは適宜調整する。 Examples of a method for forming a metal film on an organic fiber assembly include, for example, a method using only a known electroless plating method, a method of performing electroplating after electroless plating, a method using metal vapor deposition, a method using sputtering, and ion plating. And a method by metal spraying. The formation treatment of the metal film can be selected as appropriate, and the weight of the metal film is adjusted so that the basis weight of the aggregate of hollow fibers made of metal obtained after firing the plating aggregate is 250 g / m 2 or less. The amount of formation and the thickness of the film are adjusted as appropriate.

また、金属皮膜の種類は電解液や電気化学素子の反応により劣化が起こらない金属であれば良く、例えば、アルカリ二次電池ではニッケル、リチウムイオン二次電池では負極用として銅、ニッケル又はチタン、正極用としてニッケル又はチタン、電気二重層キャパシタではニッケル又はチタンを挙げることができる。
In addition, the type of the metal film may be any metal that does not deteriorate due to the reaction of the electrolytic solution or the electrochemical element, for example, nickel for an alkaline secondary battery, copper, nickel or titanium for a negative electrode for a lithium ion secondary battery, Nickel or titanium can be used for the positive electrode, and nickel or titanium can be used for the electric double layer capacitor.

この様にして製造したメッキ集合体を加熱し焼成することで、該メッキ集合体から有機繊維集合体を焼失させる。焼成により金属皮膜のみが残留することで、集電材を製造することができる。   By heating and firing the thus produced plating aggregate, the organic fiber aggregate is burned off from the plating aggregate. A current collector can be produced by leaving only the metal film by firing.

焼成時の温度は、焼失させる有機繊維の種類によって異なるため限定されるものではなく、好適に有機繊維の焼失が行えるように、加熱温度や加熱を行う装置を適宜調整する。また、焼成を行う際に金属が酸化および変性することがないように、真空条件下あるいは窒素や希ガス雰囲気下で、メッキ集合体を焼成するのが好ましい。   The temperature at the time of firing is not limited because it varies depending on the type of organic fiber to be burned off, and the heating temperature and the apparatus for heating are appropriately adjusted so that the organic fiber can be burned off suitably. Further, it is preferable to fire the plating assembly under vacuum conditions or in an atmosphere of nitrogen or a rare gas so that the metal is not oxidized or modified during firing.

このような集電材は電気化学素子の種類(例えば、形態が円筒状であるか平板状であるかなど)に応じて、大きさ・形状に裁断して使用することができる。
Such a current collector can be used after being cut into a size and shape depending on the type of electrochemical element (for example, whether the shape is cylindrical or flat).

本発明に係る電気化学素子は、上述のような集電材を用いてなること以外は、従来と全く同様の材料から製造することができる。例えば、円筒型ニッケル−水素電池は、本発明の集電材に水酸化ニッケルを充填した正極と水素吸蔵合金負極板とを、セパレータを介して渦巻き状に巻回した極板群を、金属のケースに挿入するとともに、水酸化カリウム/水酸化リチウム、或いは水酸化カリウム/水酸化ナトリウム/水酸化リチウムの電解液を金属ケースに注液した構造を有している。また、電気二重層キャパシタは、活性炭、導電性を有する充填材(カーボンブラックやアセチレンブラックなど)及び結着剤を混練した後に、本発明の集電材に充填した一対の電極材の間を、セパレータによって絶縁しており、これら全体がケース又はアルミニウムラミネートパック内に収納されるとともに、有機溶媒又は硫酸溶液の電解液が注液された構造を有している。
The electrochemical device according to the present invention can be manufactured from the same material as the conventional one except that the current collector as described above is used. For example, a cylindrical nickel-hydrogen battery includes an electrode plate group obtained by winding a positive electrode in which the current collector of the present invention is filled with nickel hydroxide and a hydrogen storage alloy negative electrode plate in a spiral shape with a separator interposed therebetween. And an electrolytic solution of potassium hydroxide / lithium hydroxide or potassium hydroxide / sodium hydroxide / lithium hydroxide is poured into a metal case. In addition, the electric double layer capacitor has a separator between a pair of electrode materials filled in the current collector of the present invention after kneading activated carbon, a conductive filler (carbon black, acetylene black, etc.) and a binder. These are all housed in a case or an aluminum laminate pack, and have an organic solvent or an electrolyte solution of a sulfuric acid solution.

本発明の電気化学素子用集電材は、セパレーターと積層した際に、該電気化学素子用集電材の表面に発生している金属よりなる中空繊維の毛羽が、曲がりやすく脆弱なものであるため、該毛羽がセパレーターを貫通することを防止できることから、電気化学素子を製造した際に発生する、内部短絡の発生を防止できる。そのため、例えば、ニッケル水素電池、ニッケルカドミウム電池などのアルカリ二次電池、リチウムイオン二次電池などの非水系電池、或いは電気二重層キャパシタなどの蓄電デバイスとして好適に使用でき、特にアルカリ二次電池又はリチウム二次電池などの電池、電気二重層キャパシタ用の集電体として好適に使用できる。また、本発明の集電材は目付が小さいことから、従来の集電材よりも低コストであるとともに電気化学素子の軽量化をもたらすものである。   When the current collector for an electrochemical device of the present invention is laminated with a separator, the fluff of hollow fibers made of metal generated on the surface of the current collector for electrochemical device is easily bent and fragile. Since the fluff can be prevented from penetrating the separator, it is possible to prevent the occurrence of an internal short circuit that occurs when an electrochemical element is manufactured. Therefore, for example, it can be suitably used as an electric storage device such as an alkaline secondary battery such as a nickel metal hydride battery or a nickel cadmium battery, a non-aqueous battery such as a lithium ion secondary battery, or an electric double layer capacitor. It can be suitably used as a current collector for batteries such as lithium secondary batteries and electric double layer capacitors. In addition, since the current collector of the present invention has a small basis weight, it is lower in cost than the conventional current collector and reduces the weight of the electrochemical element.

そのため、該集電材を用いてなる電気化学素子は、電気(ハイブリッドも含む)自動車、電気アシスト自転車、電動工具、リモコン玩具、パソコン用のバックアップ電源、非常灯用電源デジタルカメラ用電池、デジタルビデオ用電源等に使用されている電気化学素子として好適に使用できる。
Therefore, the electrochemical element using the current collector is an electric (including hybrid) automobile, an electric assist bicycle, an electric tool, a remote control toy, a backup power source for a personal computer, a power supply for an emergency light, a battery for a digital camera, and a digital video. It can be suitably used as an electrochemical element used for a power source or the like.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.

本発明における厚さは、厚さを測定する対象物の最も広い面積を有する面における、30点の測定箇所について、ダイアルゲージ(荷重:2.3N/cm2、測定子:5cm2の円柱形状)を用いて厚さを測定し、得られた30点の算術平均値をいう。
The thickness in the present invention is a dial gauge (load: 2.3 N / cm 2 , measuring element: 5 cm 2 cylindrical shape) at 30 measurement points on the surface having the widest area of the object whose thickness is to be measured. Thickness is measured using, and the arithmetic average value of 30 points obtained is said.

(実施例1)
(1)有機繊維の選択
有機繊維集合体を構成する有機繊維として、熱融着作用を示す次の芯鞘型繊維を用いた。

[芯鞘型繊維]
芯成分の材料:ポリプロピレン
芯成分の融点:160℃
鞘成分の材料:ポリエチレン
鞘成分の融点:135℃
繊度:6.6dtex、繊維長:76mm
(Example 1)
(1) Selection of organic fibers As the organic fibers constituting the organic fiber aggregate, the following core-sheath type fibers showing a heat-sealing action were used.

[Core-sheath fiber]
Core component material: Polypropylene core component melting point: 160 ° C
Sheath component material: Polyethylene sheath component melting point: 135 ° C
Fineness: 6.6dtex, fiber length: 76mm

(2)有機繊維集合体の形成方法
上述した芯鞘型繊維をカード機を用いて開繊して、目付が50g/m2のクロスレイウェブ(オーバーラップ3回)と、目付が35g/m2の一方向ウェブを製造した。なお、これらいずれのウェブも最終的なラインテンポが15m/minとなるように製造した。次いで、得られたウェブを積層するとともに、温度を140℃に設定したエアースルー方式ドライヤーへと供給し、芯鞘型繊維の熱融着作用を発現させることで、目付が85g/m2、厚さが0.9mmの融着有機繊維集合体を得た。
(2) Forming method of organic fiber aggregate The above-described core-sheath fiber is opened using a card machine, and the basis weight is 50 g / m 2 cross lay web (overlap 3 times) and the basis weight is 35 g / m. Two unidirectional webs were produced. All these webs were manufactured so that the final line tempo was 15 m / min. Next, while laminating the obtained web, it is supplied to an air-through dryer having a temperature set at 140 ° C., and by expressing the heat-sealing action of the core-sheath fiber, the basis weight is 85 g / m 2 , thickness A fused organic fiber aggregate having a thickness of 0.9 mm was obtained.

(3)金属皮膜の形成方法
該融着有機繊維集合体を次いで、シリコーンゴムを担持した平板状電極により挟持した状態(シリコーンゴムが該融着有機繊維集合体と当接)で、大気圧下、空気(湿度:60RH%)の存在下で、両電極間に交流電圧を印加(電圧:24kVp、出力:2.8kW、単位面積あたりの出力:1.83W/cm、周波数:25KHz、波形:正弦波)し、該融着有機繊維集合体内部で放電を発生させて親水化処理を行った。
(3) Forming method of metal film The fused organic fiber assembly is then sandwiched between flat electrodes carrying silicone rubber (silicone rubber is in contact with the fused organic fiber assembly) and at atmospheric pressure. In the presence of air (humidity: 60 RH%), an AC voltage is applied between the electrodes (voltage: 24 kVp, output: 2.8 kW, output per unit area: 1.83 W / cm 2 , frequency: 25 KHz, waveform : Sine wave), and a hydrophilization treatment was performed by generating electric discharge inside the fused organic fiber assembly.

次いで、この親水化処理した融着有機繊維集合体を、染色機のキャリヤーに巻き付け、精錬剤を循環、水洗いし、次に、塩化第1スズ10g/L、塩酸20ml/Lを含んだ水溶液を循環させ、水洗後、塩化パラジウム1g/L、塩酸20ml/Lを含む水溶液を循環させて触媒化を行った。その後、更に水洗を行い、硫酸ニッケル18g/L、クエン酸ナトリウム10g/L、水和ヒドラジン50ml/L、25%アンモニア水100ml/Lの無電解ニッケルメッキ液を、温度60℃に加熱して循環させた。1時間加熱循環させてメッキ液がほぼ透明となった後に、その循環を止めてニッケル皮膜を形成した、親水化処理した融着有機繊維集合体を取り出し、水洗し、更に乾燥を行って、目付が285g/mのメッキ集合体を得た。
Then, the hydrophilic organic fiber assembly subjected to the hydrophilic treatment is wound around a carrier of a dyeing machine, a refining agent is circulated and washed with water, and then an aqueous solution containing 10 g / L of stannous chloride and 20 ml / L of hydrochloric acid is obtained. The mixture was circulated, washed with water, and then catalyzed by circulating an aqueous solution containing 1 g / L of palladium chloride and 20 ml / L of hydrochloric acid. Thereafter, washing with water is further performed, and an electroless nickel plating solution of nickel sulfate 18 g / L, sodium citrate 10 g / L, hydrated hydrazine 50 ml / L, 25% aqueous ammonia 100 ml / L is heated to a temperature of 60 ° C. and circulated. I let you. After heating and circulating for 1 hour, the plating solution became almost transparent, and then the circulation was stopped to form a nickel coating, and the hydrophilized fused organic fiber assembly was taken out, washed with water, dried, and dried. Of 285 g / m 2 was obtained.

(4)メッキ集合体の焼成方法
該メッキ集合体を酸素雰囲気下において、温度を500℃に設定した焼成炉へと供給するとともに、融着有機繊維集合体を焼失させ、次いで水素雰囲気下900℃で焼成して、目付が200g/m、厚さが0.8mmの、ニッケル金属よりなる中空繊維同士が交差する箇所で焼結してなる、集電材を得た。また、該ニッケル金属よりなる中空繊維において、金属の不存在領域の形状は真円形状であるとともに繊維横断面の中心に存在しており、金属の不存在領域の割合は56%であった。
(4) Plating assembly firing method The plating assembly is supplied to a firing furnace set at a temperature of 500 ° C. in an oxygen atmosphere, the fused organic fiber assembly is burned off, and then 900 ° C. in a hydrogen atmosphere. The current collector was obtained by sintering at a location where hollow fibers made of nickel metal having a basis weight of 200 g / m 2 and a thickness of 0.8 mm intersect. Further, in the hollow fiber made of nickel metal, the shape of the metal-free region was a perfect circle and was present at the center of the fiber cross section, and the proportion of the metal-free region was 56%.

なお該集電材の長手方向(融着有機繊維集合体の生産方向と一致)における引張り強さは30N/2cm幅、短手方向(融着有機繊維集合体の幅方向と一致)における引張り強さは17N/2cm幅であった。
The tensile strength of the current collector in the longitudinal direction (coincident with the production direction of the fused organic fiber aggregate) is 30 N / 2 cm width, and the tensile strength in the short direction (corresponding to the width direction of the fused organic fiber aggregate). Was 17 N / 2 cm wide.

(5)二次電池の正極の作成方法
該集電材を長辺(長手方向と一致)105mm、短辺(短手方向と一致)40mmの長方形に切り取った。切り取った集電材の空隙に正極ペースト剤を充填した後、乾燥し、室温でロール圧延した後、該集電材に集電用外部端子を溶接することにより正極を作製した。
(5) Method for producing positive electrode of secondary battery The current collector was cut into a rectangle having a long side (matching the longitudinal direction) of 105 mm and a short side (matching the short direction) of 40 mm. The positive electrode paste was filled in the gaps of the collected current collector, dried, and roll-rolled at room temperature, and then a current collector external terminal was welded to the current collector to produce a positive electrode.

ここで、正極ペースト剤としては、水酸化ニッケル粉末を90質量%、導電助剤として一酸化コバルト粉末を10質量%、増粘剤としてカルボキシメチルセルロース、更に粘着剤としてポリテトラフルオロエチレンを含むものを使用した。
Here, as the positive electrode paste agent, nickel hydroxide powder is 90% by mass, cobalt monoxide powder is 10% by mass as a conductive additive, carboxymethyl cellulose is used as a thickener, and polytetrafluoroethylene is used as an adhesive. used.

(6)二次電池の負極の作製
ウレタン樹脂の発泡体シートにニッケルメッキを施し、更に還元性雰囲気下で焼成してそのウレタン樹脂を熱分解除去し、メッキされたニッケルを網状骨格とする3次元網状構造の集電材(目付:420g/m、厚さ:0.8mm)を作製した。次いで、この集電材の空隙に負極ペースト剤を充填した後、乾燥し、室温でロール圧延した後、集電材に集電用外部端子を溶接することにより負極を作製した。
(6) Production of negative electrode for secondary battery Nickel plating is applied to a urethane resin foam sheet, and further, the urethane resin is pyrolyzed and removed by firing in a reducing atmosphere. A current collector with a three-dimensional network structure (weight per unit: 420 g / m 2 , thickness: 0.8 mm) was produced. Next, after filling the voids of the current collector with the negative electrode paste, drying and roll-rolling at room temperature, a current collector external terminal was welded to the current collector to produce a negative electrode.

ここで、負極ペースト剤としては、水素吸蔵合金粉末をベースとし、増粘剤としてカルボキシメチルセルロース、更に粘着剤としてポリテトラフルオロエチレンを含むものを使用した。
Here, as the negative electrode paste agent, a material containing hydrogen storage alloy powder as a base, carboxymethyl cellulose as a thickener, and polytetrafluoroethylene as an adhesive was used.

3.二次電池の作製
AA電池サイズの円筒形電池ケースを用意した。また、芯成分がポリプロピレンからなり、鞘成分がポリエチレンからなる芯鞘型複合繊維(繊度:2.2dtex、繊維長:5mm)が融着した融着不織布からなるセパレータを準備した。
3. Production of secondary battery AA battery size cylindrical battery case was prepared. Moreover, the separator which consists of a fusion | melting nonwoven fabric to which the core-sheath-type composite fiber (fineness: 2.2 dtex, fiber length: 5 mm) which a core component consists of a polypropylene and a sheath component consists of polyethylene was prepared.

次いで、前記セパレータ、前記正極、前記セパレータ、前記負極の順に重ね合わせ、この重ね合わせた積層体を、正極が内側となるように渦巻き円状に巻いて、前記円筒形電池ケースに挿入した。そして、円筒形電池ケースに負極の集電用外部端子を缶底に溶接し、その後ネッキングを行い、アルカリ電解液を所定量注入した。その後、円筒形電池ケース上部を封入板で密閉してアルカリ二次電池を作製した。
Next, the separator, the positive electrode, the separator, and the negative electrode were stacked in this order, and the stacked laminate was wound in a spiral shape so that the positive electrode was inside, and inserted into the cylindrical battery case. And the negative electrode current collection external terminal was welded to the bottom of the can in the cylindrical battery case, then necking was performed, and a predetermined amount of alkaline electrolyte was injected. Thereafter, the upper part of the cylindrical battery case was sealed with an encapsulating plate to produce an alkaline secondary battery.

(実施例2)
ニッケル金属よりなる中空繊維の集合体の目付が215g/m2となるように、メッキ量を調整したこと以外は実施例1と同様に、集電材ならびに二次電池を製造した。
(Example 2)
A current collector and a secondary battery were produced in the same manner as in Example 1 except that the plating amount was adjusted so that the weight of the aggregate of hollow fibers made of nickel metal was 215 g / m 2 .

参考例
ニッケル金属よりなる中空繊維の集合体の目付が250g/mとなるように、メッキ量を調整したこと以外は実施例1と同様に、集電材ならびに二次電池を製造した。
( Reference example )
A current collector and a secondary battery were produced in the same manner as in Example 1 except that the plating amount was adjusted so that the weight of the aggregate of hollow fibers made of nickel metal was 250 g / m 2 .

(実施例
ニッケル金属よりなる中空繊維の集合体の目付が170g/mとなるように、メッキ量を調整したこと以外は実施例1と同様に、集電材ならびに二次電池を製造した。
(Example 3 )
A current collector and a secondary battery were produced in the same manner as in Example 1 except that the plating amount was adjusted so that the basis weight of the hollow fiber aggregate made of nickel metal was 170 g / m 2 .

(比較例1)
ニッケル金属よりなる中空繊維の集合体の目付が300g/m2となるように、メッキ量を調整したこと以外は実施例1と同様に、集電材ならびに二次電池を製造した。
(Comparative Example 1)
A current collector and a secondary battery were produced in the same manner as in Example 1 except that the plating amount was adjusted so that the weight of the aggregate of hollow fibers made of nickel metal was 300 g / m 2 .

(比較例2)
ニッケル金属よりなる中空繊維の集合体の目付が450g/m2となるように、メッキ量を調整したこと以外は実施例1と同様に、集電材ならびに二次電池を製造した。
(Comparative Example 2)
A current collector and a secondary battery were produced in the same manner as in Example 1 except that the plating amount was adjusted so that the weight of the aggregate of hollow fibers made of nickel metal was 450 g / m 2 .

上述のように得られた集電材ならびに二次電池の、各種物性は以下の方法を用いて測定した。また測定の結果を表1にまとめた。
Various physical properties of the current collector and the secondary battery obtained as described above were measured using the following methods. The measurement results are summarized in Table 1.

(静止摩擦力測定)
ポリエステルとナイロンからなる繊度2.2dtex、繊維長51mm(オレンジ型16分割)の分割繊維を用いた目付100g/m2のウエッブを、10MPaの圧力の水流で片面ずつ、表面から1回、裏面から2回、水流絡合を行うことで厚さ0.5mmの有機繊維集合体を得た。
(Static friction force measurement)
A web of 100g / m 2 with a fabric weight of 2.2dtex made of polyester and nylon and a fiber length of 51mm (orange-type 16 divisions) is applied once from the surface and 2 times from the back surface with a water flow of 10MPa pressure. An organic fiber assembly having a thickness of 0.5 mm was obtained by performing hydroentanglement once.

各集電材を長辺(長手方向と一致)200mm、短辺(短手方向と一致)50mmの長方形に切り取った。   Each current collector was cut into a rectangle having a long side (matching the longitudinal direction) of 200 mm and a short side (matching the short side direction) of 50 mm.

以降、図1を用いて説明する。   Hereinafter, description will be made with reference to FIG.

アルミ平板(11)と該水流絡合された有機繊維集合体(12)とを接着して測定板(20)を作製した。該測定板(20)を、アルミ平板(11)側が重力方向となるように、平らな机(図示せず)上に静置した。該測定板(20)の該水流絡合された有機繊維集合体(12)側に、採取した集電材(13)、次いで、集電材(13)との接触面の大きさが縦3cm×横3cmの、200gの荷重体(14)の順で積層した。   The aluminum plate (11) and the water-entangled organic fiber assembly (12) were adhered to produce a measurement plate (20). The measurement plate (20) was placed on a flat desk (not shown) so that the aluminum flat plate (11) side was in the direction of gravity. The size of the contact surface with the collected current collector (13) and then the current collector (13) on the side of the water-entangled organic fiber aggregate (12) of the measurement plate (20) is 3 cm in length × width Lamination was performed in the order of a load body (14) of 3 g and 200 g.

定速緊張形引張り試験機(図示せず、ORIENTEC社 TENSILON UCT-100、引張り速度 500mm/min)を用いて、上述した条件下にある集電材(13)を長辺方向(a)に引張り、その際発生する静止摩擦力を測定した。なお、該集電材(13)の表面ならびに裏面の静止摩擦力を、各2回ずつ測定した算術平均値を求めることで、採取した集電材(13)の静止摩擦力を算出した。
Using a constant speed tension type tensile testing machine (not shown, ORIENTEC TENSILON UCT-100, tensile speed 500 mm / min), the current collector (13) under the above conditions is pulled in the long side direction (a). The static friction force generated at that time was measured. The static friction force of the collected current collector (13) was calculated by calculating the arithmetic average value obtained by measuring the static friction force on the front and back surfaces of the current collector (13) twice.

(官能評価)
指先で集電材の表面を触った際に、毛羽立ちによる抵抗を感じるものであるかを評価した。
○:毛羽立ちによる抵抗を感じない
△:毛羽立ちによる抵抗を感じる
×:毛羽立ちによる抵抗を大いに感じる
(sensory evaluation)
When the surface of the current collector was touched with a fingertip, it was evaluated whether it felt resistance due to fluffing.
○: No resistance due to fluffing △: Feeling resistance due to fluffing ×: Very much resistance due to fluffing

(内部抵抗測定)
LCRメーター(HIOKI製)を用いて、各アルカリ二次電池の交流1KHzでの比抵抗を測定し、各3個の算術平均値を求めることで、内部抵抗を算出した。
(Internal resistance measurement)
Using an LCR meter (manufactured by HIOKI), the specific resistance of each alkaline secondary battery at an alternating current of 1 KHz was measured, and the internal resistance was calculated by calculating the arithmetic average value of each three.

(電池不良率測定)
上述の方法で円筒型ニッケル水素二次電池を製造した際に、短絡が発生し好適に二次電池を製造できなかった百分率を、電池不良率とした。
(Battery failure rate measurement)
When the cylindrical nickel-metal hydride secondary battery was manufactured by the above-described method, the percentage that the short-circuit occurred and the secondary battery could not be manufactured appropriately was defined as the battery defect rate.

Figure 0005495646






Figure 0005495646






以上の結果から、本発明の電気化学素子用集電材は目付が低いほど、静止摩擦力が低下するとともに毛羽立ちによる抵抗を感じさせないものであり、またその結果と対応して、電池不良率が低下するものであることが判明した。特に、該電気化学素子用集電材が250g/m2以下の目付を有する時、毛羽立ちによる抵抗を感じない電気化学素子用集電材になるとともに、電池不良率を低下する効果は顕著なものとなった。
From the above results, the current collector of the electrochemical device according to the present invention has a lower basis weight, so that the static friction force decreases and resistance due to fuzz is not felt, and the battery failure rate decreases corresponding to the result. Turned out to be. In particular, when the current collector for an electrochemical element has a basis weight of 250 g / m 2 or less, it becomes a current collector for an electrochemical element that does not feel resistance due to fluffing, and the effect of reducing the battery defect rate becomes remarkable. It was.

本発明の電気化学素子用集電材は、「目付が250g/m2以下の、金属よりなる中空繊維の集合体」であることから、たとえ電気化学素子用集電材の表面に繊維の毛羽立ちがあったとしても、その繊維の毛羽が曲がりやすい脆弱な金属よりなる中空繊維であることから、セパレーターを貫通することを防止できる。そのため、該電気化学素子用集電材を用いてなる電気化学素子は、内部短絡が発生し難い、電気化学素子用集電材である。 Since the current collector for an electrochemical element of the present invention is an “aggregate of hollow fibers made of metal having a basis weight of 250 g / m 2 or less”, there is a fuzz of fibers on the surface of the current collector for an electrochemical element. Even so, since the fluff of the fiber is a hollow fiber made of a fragile metal that is easily bent, it can be prevented from penetrating the separator. Therefore, an electrochemical element using the current collector for an electrochemical element is a current collector for an electrochemical element that hardly causes an internal short circuit.

本発明の電気化学素子用集電材は、電気化学素子用途に利用することができる。
The current collector for an electrochemical device of the present invention can be used for electrochemical device applications.

11・・・アルミ板
12・・・水流絡合された有機繊維集合体
13・・・採取した集電材
14・・・集電材(13)との接触面の大きさが縦3cm×横3cmの、200gの荷重体
20・・・測定板
a・・・集電材の金属よりなる中空繊維の長辺方向
11 ... Aluminum plate
12 ... Water-entangled organic fiber assembly
13 ... Collected current collector
14 ・ ・ ・ 200g load body with 3cm vertical x 3cm horizontal contact surface with current collector (13)
20 ... Measurement plate
a: Long side direction of hollow fiber made of metal of current collector

Claims (2)

目付が215g/m以下の、ニッケル金属よりなる中空繊維の集合体であることを特徴とする、電気化学素子用集電材。 A current collector for an electrochemical element, characterized by being an aggregate of hollow fibers made of nickel metal having a basis weight of 215 g / m 2 or less. 請求項1に記載の電気化学素子用集電材を用いた電気化学素子。 An electrochemical device using the current collector for an electrochemical device according to claim 1.
JP2009167849A 2009-07-16 2009-07-16 Current collector for electrochemical element and electrochemical element using the same Expired - Fee Related JP5495646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167849A JP5495646B2 (en) 2009-07-16 2009-07-16 Current collector for electrochemical element and electrochemical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167849A JP5495646B2 (en) 2009-07-16 2009-07-16 Current collector for electrochemical element and electrochemical element using the same

Publications (2)

Publication Number Publication Date
JP2011023232A JP2011023232A (en) 2011-02-03
JP5495646B2 true JP5495646B2 (en) 2014-05-21

Family

ID=43633121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167849A Expired - Fee Related JP5495646B2 (en) 2009-07-16 2009-07-16 Current collector for electrochemical element and electrochemical element using the same

Country Status (1)

Country Link
JP (1) JP5495646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018287A1 (en) * 2015-07-29 2017-02-02 国立大学法人福井大学 Collector for energy storage device, electrode for energy storage device, and energy storage device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870125B2 (en) * 1990-05-29 1999-03-10 新神戸電機株式会社 Manufacturing method of non-woven metal sintered sheet
JP3411044B2 (en) * 1992-06-03 2003-05-26 日本バイリーン株式会社 Battery electrode substrate and method of manufacturing the same
JPH0869801A (en) * 1994-08-31 1996-03-12 Sumitomo Electric Ind Ltd Manufacture of electrode support body
JP3221306B2 (en) * 1995-01-18 2001-10-22 松下電器産業株式会社 Electrode for storage battery and method of manufacturing the same
JP3330263B2 (en) * 1995-10-05 2002-09-30 東芝電池株式会社 Alkaline secondary battery and manufacturing method thereof
JPH11185766A (en) * 1997-12-16 1999-07-09 Nippon Seisen Co Ltd Base material for battery electrode and battery using the base material
JP2007123244A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Cylindrical alkaline battery

Also Published As

Publication number Publication date
JP2011023232A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
TW516252B (en) Collector for alkaline secondary battery, method for making the same, and alkaline secondary battery using the same
JP2006310261A (en) Current collector and electrode base plate for battery and their manufacturing method
CN105493322B (en) Secondary battery current collector and electrode using same
JP5137117B2 (en) Nonwoven fabric substrate for battery, battery electrode using the same, and battery
JP2009176517A (en) Nonwoven fabric-like nickel chromium current collector for nonaqueous electrolyte secondary battery and electrode using it
JP2009163976A (en) Nonwoven fabric substrate for battery, and its manufacturing method
JP4903959B2 (en) Battery current collector and battery using the same
JP5495646B2 (en) Current collector for electrochemical element and electrochemical element using the same
JP2016182817A (en) Laminate
JP4425544B2 (en) Battery current collector and battery using the same
JP4481282B2 (en) Battery electrode substrate, battery electrode, and alkaline secondary battery using the same
JP2008159497A (en) Current collector material for electrochemical element and electrochemical element
Yong et al. Fabrication of a flexible aqueous textile zinc-Ion battery in a single fabric layer
JP5285014B2 (en) Current collector, battery electrode substrate, and manufacturing method thereof
JP2006286365A (en) Current collector with terminal, and electrochemical element using the same
JP3917873B2 (en) Nonwoven fabric and battery using the same
JP2004319606A (en) Electric double layer capacitor
JP6995579B2 (en) Non-woven current collector for secondary batteries
JP2000215873A (en) Alkaline storage battery and its manufacture
JP4699686B2 (en) Current collector for electrochemical device, battery using the same, and electric double layer capacitor using the same
JP4474148B2 (en) Electrode for alkaline secondary battery and method for producing the same
JP4220718B2 (en) Battery current collector and battery using the same
JP2009026562A (en) Electrode substrate for battery, electrode for battery, and battery
JP4766832B2 (en) Current collector with terminal, electrochemical element using the same
JP2001084986A (en) Nonwoven fabric for alkaline storage battery separator and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5495646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees