JP4469958B2 - Thermostable enzyme having acetylated amino sugar and acetylated amino sugar nucleotide synthesis activity - Google Patents

Thermostable enzyme having acetylated amino sugar and acetylated amino sugar nucleotide synthesis activity Download PDF

Info

Publication number
JP4469958B2
JP4469958B2 JP2006337443A JP2006337443A JP4469958B2 JP 4469958 B2 JP4469958 B2 JP 4469958B2 JP 2006337443 A JP2006337443 A JP 2006337443A JP 2006337443 A JP2006337443 A JP 2006337443A JP 4469958 B2 JP4469958 B2 JP 4469958B2
Authority
JP
Japan
Prior art keywords
amino acid
phosphate
acid sequence
dna
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006337443A
Other languages
Japanese (ja)
Other versions
JP2008148584A (en
Inventor
裕 河原林
子蓮 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006337443A priority Critical patent/JP4469958B2/en
Publication of JP2008148584A publication Critical patent/JP2008148584A/en
Application granted granted Critical
Publication of JP4469958B2 publication Critical patent/JP4469958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本願発明は新規アミノ糖アセチル化活性及び該アセチル化アミノ糖の糖ヌクレオチド合成活性を有する耐熱性酵素、及び該酵素を用いて効率的にアセチル化アミノ糖及びその活性化体であるアセチル化アミノ糖ヌクレオチドを製造する方法に関する。   The present invention relates to a thermostable enzyme having a novel amino sugar acetylation activity and sugar nucleotide synthesis activity of the acetylated amino sugar, and an acetylated amino sugar and an acetylated amino sugar that is an activated form thereof efficiently using the enzyme The present invention relates to a method for producing a nucleotide.

グルコサミン-1-リン酸(glucosamine-1-phosphate)にアセチル基を転移してN-アセチルグルコサミン-1-リン酸(N-acetylglucosamine-1-phosphate)を合成する活性は、UDP-N-アセチルグルコサミン(UDP-N-acetylglucosamine, UDP-GlcNAc)合成活性を有する酵素が共有する活性として、見出されている。このようなバイファンクショナル酵素としては、大腸菌(Escherichia coli)(非特許文献1、2参照)及びストレプトコッカス菌(Streptococcus pneumoniae) (非特許文献3参照)由来のGlmU (Glucosamine-1-phosphate uridyltransferase/Glucosamine-1-phosphate acetyltransferase)の詳しい性質や構造がすでに報告されている。GlmUは細胞表面の膜構造合成に必須なN-アセチルグルコサミン(N-acetylglucosamine)の活性体であるUDP-N-アセチルグルコサミンをフルクトース-6-リン酸(fructose-6-phosphate)から合成する代謝経路の最後の2段階の反応を触媒する二つの活性を併せ持つ酵素として見出されてきた。この酵素は、初めにフルクトース-6-リン酸から合成されてきたグルコサミン-1-リン酸にアセチルCoA(Acetyl-CoA)のアセチル基を転移することによってN-アセチルグルコサミン-1-リン酸を合成し、次にこの合成された糖とヌクレオシド三リン酸(UTP)を基質として、UDP-GlcNAcを生産する。その他にも、豚肝臓から同様の糖ヌクレオチドを合成する酵素が見出されているが、その多くが常温生物由来のため室温以上では極めて不安定で、活性は80℃程度の加熱処理により速やかに失活する。このため、使用時の滅菌等の処理が必要であったり、低温での注意深い保存が必要であった。
また、同様にN-アセチルガラクトサミン(N-Acetylgalactosamine)も膜構造の構築に於いて重要な糖であるが、この糖の合成経路に関しては、不明な点が多く、ガラクトサミン-1-リン酸(Galactosamine-1-phosphate)をアセチル化する酵素活性はこれまでに見出されていない。
Mengin-Lecreulx D and van Heijenoort J. " Copurification ofglucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphateuridyltransferase activities of Escherichia coli: characterization ofthe glmU gene product as a bifunctional enzyme catalyzing two subsequent stepsin the pathway for UDP-N-acetylglucosamine synthesis.“ (1994) J. Bacteriology,176, 5788-5795. Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C and BourneY “Crystal structure of the bifunctional N-acetylglucosamine 1-phosphateuridyltransferase from Escherichia coli: a paradigm for the relatedpyrophosphorylase superfamily." (1999) EMBO J., 18, 4096-4107. Sulzenbacher G, Gal L, Peneff C, Fassy F and Bourne Y. " Crystalstructure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphateuridyltransferase bound to acetyl-coenzyme A reveals a novel active sitearchitecture." (2001) J. Biol. Chem., 276, 11844-11851.
The activity of transferring acetyl group to glucosamine-1-phosphate to synthesize N-acetylglucosamine-1-phosphate is UDP-N-acetylglucosamine. (UDP-N-acetylglucosamine, UDP-GlcNAc) It has been found as an activity shared by enzymes having synthetic activity. Such bifunctional enzymes include GlmU (Glucosamine-1-phosphate uridyltransferase / Glucosamine) derived from Escherichia coli (see Non-Patent Documents 1 and 2) and Streptococcus pneumoniae (see Non-Patent Document 3). The detailed properties and structure of -1-phosphate acetyltransferase) have already been reported. GlmU is a metabolic pathway that synthesizes UDP-N-acetylglucosamine, an active form of N-acetylglucosamine, which is essential for cell membrane synthesis, from fructose-6-phosphate. It has been found as an enzyme having two activities that catalyze the last two-stage reaction. This enzyme synthesizes N-acetylglucosamine-1-phosphate by transferring the acetyl group of acetyl CoA (Acetyl-CoA) to glucosamine-1-phosphate, which was originally synthesized from fructose-6-phosphate. Next, UDP-GlcNAc is produced using the synthesized sugar and nucleoside triphosphate (UTP) as substrates. In addition, enzymes that synthesize similar sugar nucleotides from pig liver have been found, but most of them are derived from cold organisms, so they are extremely unstable at room temperature and above, and the activity is quickly achieved by heat treatment at about 80 ° C. Deactivate. For this reason, treatments such as sterilization at the time of use are necessary, and careful storage at low temperatures is necessary.
Similarly, N-acetylgalactosamine is also an important sugar in the construction of the membrane structure, but there are many unclear points regarding the synthetic pathway of this sugar, galactosamine-1-phosphate (Galactosamine). No enzymatic activity to acetylate -1-phosphate) has been found so far.
Mengin-Lecreulx D and van Heijenoort J. "Copurification ofglucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphateuridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent stepsin the pathway for UDP-N- acetylglucosamine synthesis. “(1994) J. Bacteriology, 176, 5788-5795. Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C and BourneY “Crystal structure of the bifunctional N-acetylglucosamine 1-phosphateuridyltransferase from Escherichia coli: a paradigm for the relatedpyrophosphorylase superfamily.” (1999) EMBO J., 18 4096-4107. Sulzenbacher G, Gal L, Peneff C, Fassy F and Bourne Y. "Crystalstructure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphateuridyltransferase bound to acetyl-coenzyme A reveals a novel active sitearchitecture." (2001) J. Biol. Chem., 276, 11844-11851.

グルコサミン-1-リン酸及びガラクトサミン-1-リン酸をアセチル化する活性並びにそのアセチル化アミノ糖の活性化体であるアセチル化アミノ糖ヌクレオチドを合成する活性を有する耐熱性酵素が発見されれば、糖鎖合成の基質となる重要なアセチル化アミノ糖であるN-アセチルグルコサミン及びN-アセチルガラクトサミンについてのアセチル化アミノ糖ヌクレオチド体、すなわちヌクレオシド二リン酸結合体を安定に合成することが可能となる。これまで、糖鎖合成の際の基質として必要なこれらのアセチル化アミノ糖及びヌクレオシド三リン酸を基質として、結合反応を触媒出来る安定な酵素は存在しなかったので、渇望されていた。   If a thermostable enzyme having an activity to acetylate glucosamine-1-phosphate and galactosamine-1-phosphate and an activity to synthesize an acetylated amino sugar nucleotide which is an activated form of the acetylated amino sugar is discovered, It is possible to stably synthesize acetylated amino sugar nucleotides, that is, nucleoside diphosphate conjugates, for N-acetylglucosamine and N-acetylgalactosamine, which are important acetylated amino sugars that are substrates for sugar chain synthesis. . Until now, there was no stable enzyme that could catalyze a binding reaction using these acetylated amino sugars and nucleoside triphosphates necessary as substrates in the synthesis of sugar chains as substrates, and there was a craving.

したがって、本発明の課題は、耐熱性を有し、かつグルコサミン-1-リン酸及びガラクトサミン-1-リン酸を基質として、それぞれのアセチル化アミノ糖-1-リン酸を合成し得る活性、並びにそれらのアセチル化アミノ糖-1-リン酸とヌクレオシド三リン酸を基質として、アセチル化アミノ糖ヌクレオチド(アセチル化アミノ糖−ヌクレオシド二リン酸結合体)を合成することが可能な新規酵素、さらに本酵素を用いたアセチル化アミノ糖及び該アセチル化アミノ糖ヌクレオチド合成法を提供することにある。   Therefore, an object of the present invention is to have heat resistance and an activity capable of synthesizing each acetylated amino sugar-1-phosphate using glucosamine-1-phosphate and galactosamine-1-phosphate as substrates, and A novel enzyme capable of synthesizing acetylated amino sugar nucleotides (acetylated amino sugar-nucleoside diphosphate conjugate) using these acetylated amino sugar-1-phosphate and nucleoside triphosphate as substrates. An object is to provide an acetylated amino sugar using an enzyme and a method for synthesizing the acetylated amino sugar nucleotide.

本発明者は、以上のような課題を解決すべく、75 - 80℃で生育する超好熱古細菌 Sulfolobus tokodaii strain7に着目して、その遺伝子を大腸菌を使って発現させることによって酵素蛋白質を生産し、この酵素蛋白質が高温(80℃)で安定に存在するとともに目的とする活性を示すことを確認し、さらに、本酵素蛋白質を用いることにより目的とするアセチル化アミノ糖ヌクレオチド(アミノ糖−ヌクレオシド二リン酸結合体)を生産することもできることを見いだし、本発明を完成するに至ったものである。   In order to solve the above problems, the present inventor focused on the hyperthermophilic archaeon Sulfolobus tokodaii strain7 that grows at 75-80 ° C, and produced the enzyme protein by expressing the gene using Escherichia coli. The enzyme protein was confirmed to exist stably at high temperature (80 ° C.) and exhibit the desired activity, and by using the enzyme protein, the desired acetylated amino sugar nucleotide (amino sugar-nucleoside) It has been found that a diphosphate conjugate) can also be produced, and the present invention has been completed.

即ち、本発明は、以下の(1)〜(10)に係るものである。
(1)配列番号4に記載のアミノ酸配列を有するか、あるいは、配列番号4に記載のアミノ酸配列に一乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつアセチル化アミノ糖合成活性及びアセチル化アミノ糖ヌクレオチド合成活性を有することを特徴とする、蛋白質。
(2)上記(1)に記載の蛋白質をコードするDNA。
(3)配列番号5に記載の塩基配列を有することを特徴とするDNA。
(4)配列番号5に記載のDNA とストリンジェントな条件下でハイブリダイズし、かつアセチル化アミノ糖合成活性及びアセチル化アミノ糖ヌクレオチド合成活性を有する蛋白質をコードすることを特徴とする、DNA。
(5)上記(2)〜(4)のいずれかに記載のDNAから選ばれるDNAがベクターに組み込まれていることを特徴とする組換え体DNA。
(6)上記(5)に記載の組換え体DNAが宿主細胞に導入されていることを特徴とする形質転換体。
(7)上記(6)に記載の形質転換体を培地に培養し、培養物からアセチル化アミノ糖合成活性及びアセチル化アミノ糖ヌクレオチド合成活性を有する蛋白質を採取することを特徴とする、アセチル化アミノ糖合成活性及びアセチル化アミノ糖ヌクレオチド合成活性を有する蛋白質の製造方法。
(8)グルコサミン-1-リン酸及び/又はガラクトサミン-1-リン酸に、アセチルCoA存在下、上記(1)に記載の蛋白質を作用させることを特徴とする、N-アセチルグルコサミン-1-リン酸及び/又はN-アセチルガラクトサミン-1-リン酸の製造方法。
(9)グルコサミン-1-リン酸及び/又はガラクトサミン-1-リン酸に、アセチルCoA存在下、上記(6)に記載の形質転換体の培養液あるいは培養物の処理物を作用させることを特徴とする、N-アセチルグルコサミン-1-リン酸及び/又はN-アセチルガラクトサミン-1-リン酸の製造方法。
(10)グルコサミン-1-リン酸及び/又はガラクトサミン-1-リン酸に、アセチルCoA存在下、 上記(3)又は(4)に記載のDNAにコードされるタンパク質を作用させることを特徴とする、N-アセチルグルコサミン-1-リン酸及び/又はN-アセチルガラクトサミン-1-リン酸の製造方法。
(11)N-アセチルグルコサミン-1-リン酸及び/又はN-アセチルガラクトサミン-1-リン酸に、ヌクレオシド三リン酸の存在下、上記(1)に記載のタンパク質を作用させることを特徴とする、
N-アセチルグルコサミンおよび/又はN-アセチルガラクトサミンのヌクレオシド二リン酸結合体の製造方法。
(12)N-アセチルグルコサミン-1-リン酸及び/又はN-アセチルガラクトサミン-1-リン酸に、ヌクレオシド三リン酸の存在下、上記(6)に記載の形質転換体の培養液あるいは培養物の処理物を作用させることを特徴とする、N-アセチルグルコサミンおよび/又はN-アセチルガラクトサミンのヌクレオシド二リン酸結合体の製造方法。
(13)N-アセチルグルコサミン-1-リン酸及び/又はN-アセチルガラクトサミン-1-リン酸に、ヌクレオシド三リン酸の存在下、上記(2)〜(4)のいずれかに記載のDNAにコードされるタンパク質を作用させることを特徴とする、N-アセチルグルコサミンおよび/又はN-アセチルガラクトサミンのヌクレオシド二リン酸結合体の製造方法。
That is, the present invention relates to the following (1) to (10).
(1) having the amino acid sequence shown in SEQ ID NO: 4 or having one to several amino acid residues deleted, substituted, inserted or added to the amino acid sequence shown in SEQ ID NO: 4 And a protein having an acetylated amino sugar synthesis activity and an acetylated amino sugar nucleotide synthesis activity.
(2) DNA encoding the protein according to (1) above.
(3) DNA having the base sequence set forth in SEQ ID NO: 5.
(4) A DNA that hybridizes with the DNA of SEQ ID NO: 5 under a stringent condition and encodes a protein having an acetylated amino sugar synthesis activity and an acetylated amino sugar nucleotide synthesis activity.
(5) A recombinant DNA, wherein a DNA selected from the DNAs according to any one of (2) to (4) above is incorporated into a vector.
(6) A transformant, wherein the recombinant DNA according to (5) is introduced into a host cell.
(7) An acetylation comprising culturing the transformant according to (6) above in a medium and collecting a protein having an acetylated amino sugar synthesis activity and an acetylated amino sugar nucleotide synthesis activity from the culture. A method for producing a protein having amino sugar synthesis activity and acetylated amino sugar nucleotide synthesis activity.
(8) N-acetylglucosamine-1-phosphoric acid characterized by allowing the protein described in (1) above to act on glucosamine-1-phosphate and / or galactosamine-1-phosphate in the presence of acetyl CoA A method for producing acid and / or N-acetylgalactosamine-1-phosphate.
(9) The culture solution of the transformant or the treated product of the transformant according to the above (6) is allowed to act on glucosamine-1-phosphate and / or galactosamine-1-phosphate in the presence of acetyl CoA. A method for producing N-acetylglucosamine-1-phosphate and / or N-acetylgalactosamine-1-phosphate.
(10) The protein encoded by the DNA described in (3) or (4) above is allowed to act on glucosamine-1-phosphate and / or galactosamine-1-phosphate in the presence of acetyl CoA , N-acetylglucosamine-1-phosphate and / or N-acetylgalactosamine-1-phosphate production method.
(11) The protein according to (1) is allowed to act on N-acetylglucosamine-1-phosphate and / or N-acetylgalactosamine-1-phosphate in the presence of nucleoside triphosphate. ,
A method for producing a nucleoside diphosphate conjugate of N-acetylglucosamine and / or N-acetylgalactosamine.
(12) The culture medium or culture of the transformant according to (6) above in the presence of nucleoside triphosphate in N-acetylglucosamine-1-phosphate and / or N-acetylgalactosamine-1-phosphate A method for producing a nucleoside diphosphate conjugate of N-acetylglucosamine and / or N-acetylgalactosamine, characterized by causing the treated product to act.
(13) The DNA according to any one of (2) to (4) above, in the presence of nucleoside triphosphate, in N-acetylglucosamine-1-phosphate and / or N-acetylgalactosamine-1-phosphate A method for producing a nucleoside diphosphate conjugate of N-acetylglucosamine and / or N-acetylgalactosamine, wherein the encoded protein is allowed to act.

本発明の酵素を使用すれば、N-アセチルグルコサミン-1-リン酸とN-アセチルガラクトサミン-1-リン酸の2種のアミノ糖アセチル化体が合成可能になると共に、さらに、UDP-GlcNAc、TDP-GlcNAc、及びUDP-GalNAcのようなアセチル化アミノ糖ヌクレオチドを合成することができる。このように本発明の酵素は、単一酵素でありながら広い合成活性を有し、かつ熱等に安定である。このような酵素特性は、既知の酵素にみられないものであり、新規なアセチル化アミノ糖ヌクレオチドの効率的な合成を可能とするものである。
一方、アセチル化アミノ糖ヌクレオチドは、糖タンパク質、糖脂質、多糖類の糖鎖合成にアセチル化アミノ糖供与体として機能するものであり、これらの糖鎖は、癌転移、器官発生あるいは細胞性免疫等に密接に関連するものとして近年注目されており、本発明は、これら糖鎖の人工的合成発展において、その貢献度は極めて大きい。
By using the enzyme of the present invention, two amino sugar acetylated forms of N-acetylglucosamine-1-phosphate and N-acetylgalactosamine-1-phosphate can be synthesized, and further, UDP-GlcNAc, Acetylated amino sugar nucleotides such as TDP-GlcNAc and UDP-GalNAc can be synthesized. As described above, the enzyme of the present invention is a single enzyme, has a wide synthetic activity, and is stable to heat and the like. Such enzyme characteristics are not found in known enzymes, and enable efficient synthesis of novel acetylated amino sugar nucleotides.
On the other hand, acetylated amino sugar nucleotides function as acetylated amino sugar donors for the synthesis of sugar chains of glycoproteins, glycolipids and polysaccharides. These sugar chains can be used for cancer metastasis, organ development or cellular immunity. In recent years, the present invention has attracted attention as being closely related to the above, and the present invention contributes greatly to the development of artificial synthesis of these sugar chains.

以下に、本願発明を具体的に説明する。
本発明の酵素は、好酸性好気性超好熱古細菌スルフォロバス、トーコーダイイ(Sulfolobus tokodaii)(JCM登録番号JCM10545)由来の酵素であり、該超好熱古細菌から本酵素活性を示すと推定した遺伝子領域を、PCR反応で増幅・抽出し、蛋白質発現プラスミドpET21bに挿入後、そのプラスミドにより形質転換した大腸菌を用いて得られたものである。生産された酵素は加熱処理およびカラムクロマトグラムで単離精製し、精製された酵素は、分子量が約44,000のタンパク質で、アセチル化アミノ糖合成活性及びアセチル化アミノ糖ヌクレオチド合成活性を共に有する酵素である。本発明の酵素は、特に、グルコサミン-1-リン酸からN-アセチルグルコサミン-1-リン酸を合成する活性及びN-アセチルグルコサミン-1-リン酸からN-アセチルグルコサミンのヌクレオシド二リン酸結合体を合成する活性のほかに、ガラクトサミン-1-リン酸からN-アセチルガラクトサミン-1-リン酸を合成する活性及びN-アセチルガラクトサミン-1-リン酸からN-アセチルガラクトサミンのヌクレオシド二リン酸結合体を合成する活性を有する点に新規な特徴を有する。なお、これらヌクレオシド二リン酸結合体は、N-アセチルグルコサミン、N-アセチルガラクトサミンのそれぞれ1位にヌクレオシド二リン酸のリン酸基が結合しているものである。
Below, this invention is demonstrated concretely.
The enzyme of the present invention is an enzyme derived from an acidophilic aerobic hyperthermophilic archaeon Sulfolobus tokodaii (JCM registration number JCM10545), and a gene presumed to exhibit the enzyme activity from the hyperthermophilic archaea The region was obtained by using E. coli that was amplified and extracted by PCR reaction, inserted into the protein expression plasmid pET21b, and transformed with the plasmid. The produced enzyme is isolated and purified by heat treatment and column chromatogram, and the purified enzyme is a protein having a molecular weight of about 44,000 and has both acetylated amino sugar synthesis activity and acetylated amino sugar nucleotide synthesis activity. is there. In particular, the enzyme of the present invention has an activity of synthesizing N-acetylglucosamine-1-phosphate from glucosamine-1-phosphate and a nucleoside diphosphate conjugate of N-acetylglucosamine from N-acetylglucosamine-1-phosphate. In addition to the activity to synthesize N-acetylgalactosamine-1-phosphate from galactosamine-1-phosphate and the nucleoside diphosphate conjugate of N-acetylgalactosamine from N-acetylgalactosamine-1-phosphate It has a novel feature in that it has an activity of synthesizing. These nucleoside diphosphate conjugates are those in which the phosphate group of nucleoside diphosphate is bound to the 1-position of each of N-acetylglucosamine and N-acetylgalactosamine.

この酵素の半減期は、50mMトリス塩酸緩衝液(pH7.5)中で、80℃、40分以上であり、高い耐熱性を示した。
この酵素のアミノ酸配列およびその遺伝子DNA(ST0452)の塩基配列を、それぞれ配列表の配列番号4及び5に示す。
The half-life of this enzyme was high heat resistance in a 50 mM Tris-HCl buffer (pH 7.5) at 80 ° C. for 40 minutes or more.
The amino acid sequence of this enzyme and the base sequence of its gene DNA (ST0452) are shown in SEQ ID NOs: 4 and 5, respectively.

本発明における酵素は、上記配列番号4に示されるアミノ酸配列を有するもののみに限定されず、該アミノ酸配列において、数個程度のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列であっても、このアミノ酸配列を有する蛋白質が、上記酵素活性上の特徴に係るアセチル化アミノ糖合成活性及びアセチル化アミノ糖ヌクレオチド合成活性を有する限り、本発明に含まれる。また、本発明のこれら酵素遺伝子DNAについても、上記同配列番号5に示す塩基配列を有するもののみに限定されず、上記アミノ酸配列をコードするものを包含する。さらに上記配列番号5に示されるDNAにストリンジェントな条件下でハイブリダイズし、かつ目的とする上記酵素活性上の特徴に係るアセチル化アミノ糖合成活性及びアセチル化アミノ糖ヌクレオチド合成活性を有する蛋白質をコードするDNAも包含する The enzyme in the present invention is not limited to the one having the amino acid sequence shown in SEQ ID NO: 4, and in the amino acid sequence, an amino acid sequence in which several amino acid residues are deleted, substituted, inserted or added. Even so, as long as the protein having this amino acid sequence has the acetylated amino sugar synthesizing activity and the acetylated amino sugar nucleotide synthesizing activity according to the characteristics of the enzyme activity, it is included in the present invention. Further, these enzyme gene DNAs of the present invention are not limited to those having the base sequence shown in SEQ ID NO: 5 above, but include those encoding the amino acid sequence. Further, a protein that hybridizes to the DNA represented by SEQ ID NO: 5 under stringent conditions and has the acetylated amino sugar synthesizing activity and the acetylated amino sugar nucleotide synthesizing activity according to the target characteristics of the enzyme activity. It also includes the encoding DNA .

本発明の酵素を得るには、通常の遺伝子工学的手法が適用でき、上記酵素遺伝子DNAを、例えば、pET21b、pHY481等の蛋白質発現プラスミドベクター等に挿入して組換えベクターを作製し、該組換えベクターを用いて宿主細胞を形質転換し、該形質転換体を培地で培養し、培養物、培養処理物あるいはこれら培養物から分離回収された形質転換体から、酵素を常法の蛋白質精製手段により精製し単離する。上記宿主細胞としては、大腸菌・枯草菌等が利用可能である。   In order to obtain the enzyme of the present invention, ordinary genetic engineering techniques can be applied. The enzyme gene DNA is inserted into a protein expression plasmid vector such as pET21b, pHY481, etc. to prepare a recombinant vector, and the assembly A host cell is transformed with the replacement vector, the transformant is cultured in a medium, and the enzyme is purified from the culture, the culture treated product, or the transformant separated and recovered from the culture by a conventional protein purification means. Purify and isolate by As the host cell, Escherichia coli, Bacillus subtilis and the like can be used.

本発明においては、さらにこの酵素を用いて、アミノ糖-1-リン酸のアセチル化体を合成するが、この合成においては、アミノ糖-1-リン酸とアセチルCoAを含有する溶液に、該酵素を添加し、反応温度60℃〜95℃で反応させ、アセチル化アミノ糖-1-リン酸を得る。
アミノ糖-1-リン酸としては、例えば、グルコサミン-1-リン酸、ガラクトサミン-1-リン酸が挙げられる。
本発明においては、この酵素を用いて、アセチル化アミノ糖-1-リン酸の糖ヌクレオチド体を合成するが、この合成においては、アセチル化アミノ糖-1-リン酸とヌクレオシド三リン酸を含有する溶液に、該酵素を添加し、反応温度60℃〜95℃で反応させ、該アセチル化アミノ糖分子の糖ヌクレオチド体を得る。
アセチル化アミノ糖-1-リン酸としては、N-アセチルグルコサミン-1-リン酸、N-アセチルガラクトサミン-1-リン酸が挙げられ、ヌクレオシド三リン酸としては、N-アセチルグルコサミン-1-リン酸を基質とする場合にはTTP(チミジントリフォスフェート)及びUTP(ウリジントリフォスフェート)が挙げられ、N-アセチルガラクトサミン-1-リン酸を基質とする場合にはUTP(ウリジントリフォスフェート)が挙げられる。
In the present invention, this enzyme is further used to synthesize an acetylated form of amino sugar-1-phosphate. In this synthesis, a solution containing amino sugar-1-phosphate and acetyl CoA is added to the solution. Enzyme is added and reacted at a reaction temperature of 60 ° C. to 95 ° C. to obtain acetylated amino sugar-1-phosphate.
Examples of amino sugar-1-phosphate include glucosamine-1-phosphate and galactosamine-1-phosphate.
In the present invention, this enzyme is used to synthesize an acetylated amino sugar-1-phosphate sugar nucleotide, which comprises acetylated amino sugar-1-phosphate and nucleoside triphosphate. The enzyme is added to the solution to be reacted and reacted at a reaction temperature of 60 ° C. to 95 ° C. to obtain a sugar nucleotide body of the acetylated amino sugar molecule.
Examples of acetylated amino sugar-1-phosphate include N-acetylglucosamine-1-phosphate and N-acetylgalactosamine-1-phosphate, and examples of nucleoside triphosphate include N-acetylglucosamine-1-phosphate. When acid is used as a substrate, TTP (thymidine triphosphate) and UTP (uridine triphosphate) are listed. When N-acetylgalactosamine-1-phosphate is used as a substrate, UTP (uridine triphosphate) is used. Is mentioned.

このアセチル化反応の式として、グルコサミン-1-リン酸とアセチルCoAからN-アセチルグルコサミン-1-リン酸を合成する場合について以下に示す。
As a formula for this acetylation reaction, the case of synthesizing N-acetylglucosamine-1-phosphate from glucosamine-1-phosphate and acetyl CoA is shown below.

このアセチル化アミノ糖ヌクレオチド合成反応の式として、N-アセチルグルコサミン-1-リン酸とUTPからUDP-N-アセチルグルコサミンを合成する場合について以下に示す。
As a formula for this acetylated amino sugar nucleotide synthesis reaction, a case where UDP-N-acetylglucosamine is synthesized from N-acetylglucosamine-1-phosphate and UTP is shown below.

また、この反応においては。上記精製した酵素のみならず、粗酵素であってもよい。例えば、宿主として枯草菌等分泌型の系を用いる場合には、培養液中に本酵素が生成蓄積され、大腸菌等の非分泌型の系を用いる場合には、菌体内に生成されるので、本酵素を含有する培養液あるいはその処理物、もしくは菌体破砕物等の培養処理物を用いて、アセチルグルコサミン-1-リン酸及び/又はアセチルガラクトサミン-1-リン酸、並びにアセチルグルコサミン及び/又はアセチルガラクトサミンのヌクレオシド二リン酸結合体を合成してもよい。
以下に、本発明の実施例を示すが、本発明実施例により限定されるものではない。
Also in this reaction. Not only the purified enzyme but also a crude enzyme may be used. For example, when a secretory system such as Bacillus subtilis is used as a host, the enzyme is produced and accumulated in the culture solution, and when a non-secretory system such as Escherichia coli is used, it is produced in the bacterial body. Using a culture solution containing this enzyme or a treated product thereof, or a cultured product such as a crushed bacterial cell, acetylglucosamine-1-phosphate and / or acetylgalactosamine-1-phosphate, and acetylglucosamine and / or A nucleoside diphosphate conjugate of acetylgalactosamine may be synthesized.
Examples of the present invention will be shown below, but the present invention is not limited to the examples.

本バイファンクショナル酵素の製造
(1)菌の培養
好酸性好気性超好熱古細菌スルフォロバス、トーコーダイイ(JCM10545)は次の方法で培養した。
1.3gの(NH4)2SO4、0.28 gのKH2PO4、0.25 gのMgSO4・7H2O、0.07 gのCaCl2・2H2O、0.02 gのFeCl3・6H2O、1.8 mg のMnCl2・4H2O、4.5 mgのNa2B4O7・10H2O、0.22 mgのZnSO4・7H2O、0.05 mgのCuCl2・2H2O、0.03 mgのNa2MoO4・2H2O、0.03 mgのVOSO4・xH2O、0.01 mgのCoSO4・7H2O、1.0 gの酵母エキスを1Lの蒸留水に溶かし、この溶液のpHを3.5に10規定H2SO4溶液で調製した。加圧殺菌した後、JCM10545を植菌した。この培養液を80℃で1〜2日培養し、その後遠心分離し集菌した。
Production of this bifunctional enzyme (1) Bacterial culture The acidophilic aerobic hyperthermophilic archaeon Sulfolobus, Tokodaii (JCM10545) was cultured by the following method.
1.3 g (NH 4 ) 2 SO 4 , 0.28 g KH 2 PO 4 , 0.25 g MgSO 4 .7H 2 O, 0.07 g CaCl 2 .2H 2 O, 0.02 g FeCl 3 .6H 2 O, 1.8 MnCl 2 · 4H 2 O in mg, 4.5 mg of Na 2 B 4 O 7 · 10H 2 O, of 0.22 mg ZnSO 4 · 7H 2 O , 0.05 mg of CuCl 2 · 2H 2 O, of 0.03 mg Na 2 MoO 4・ 2H 2 O, 0.03 mg VOSO 4・ xH 2 O, 0.01 mg CoSO 4・ 7H 2 O, 1.0 g yeast extract was dissolved in 1 L of distilled water, and the pH of this solution was adjusted to 3.5 with 10N H 2 SO Prepared with 4 solutions. After sterilization under pressure, JCM10545 was inoculated. This culture solution was cultured at 80 ° C. for 1-2 days, and then centrifuged to collect bacteria.

(2)染色体DNAの調製
好酸性好気性超好熱古細菌スルフォロバス、トーコーダイイ(JCM10545)の染色体DNAは以下の方法により調製した。
培養終了後5000 rpm、10分間の遠心分離により菌体を集菌する。菌体を10 mM EDTA(pH 6.0)溶液で洗浄後、50 mM Tris/HCl-50 mM EDTA (pH 8.5)溶液を加えて細胞を溶解させる。さらに、0.5% Na-lauroylsarcosinate、1 mg/ml プロテアーゼKとなるように各々を加えた後、50℃で3時間保温する。フェノール処理を3回行った後、溶液を10 mM Tris-10 mM EDTA (pH 8.0)溶液に対して透析する。37℃で30分間のRNaseによるRNAの分解後、フェノールクロロフォルム溶液で処理した後、10 mM Tris-1 mM EDTA(pH 8.0)で透析を行う。
(2) Preparation of chromosomal DNA The chromosomal DNA of the acidophilic aerobic hyperthermophilic archaeon Sulfolobus, Tokodaii (JCM10545) was prepared by the following method.
After culturing, the cells are collected by centrifugation at 5000 rpm for 10 minutes. After washing the cells with 10 mM EDTA (pH 6.0) solution, 50 mM Tris / HCl-50 mM EDTA (pH 8.5) solution is added to lyse the cells. Furthermore, after adding each so that it may become 0.5% Na-lauroylsarcosinate and 1 mg / ml protease K, it heat-retains at 50 degreeC for 3 hours. After three phenol treatments, the solution is dialyzed against 10 mM Tris-10 mM EDTA (pH 8.0) solution. After degradation of RNA with RNase at 37 ° C. for 30 minutes, treatment with phenol chloroform solution is followed by dialysis against 10 mM Tris-1 mM EDTA (pH 8.0).

(3)染色体DNAを含むショットガンライブラリークローンの作製
実施例2で得られた染色体DNAを超音波処理することにより断片化した後、アガロースゲル電気泳動により1kb及び2kb長のDNA断片を回収した。この断片をプラスミドベクターpUC118のHincII制限酵素部位に挿入したショットガンライブラリーを作製した。各ショットガンクローンの末端塩基配列を、ABI社製自動塩基配列読み取り装置377を用いて解読していった。各ショットガンクローンから得られた塩基配列を塩基配列自動連結ソフトSequencherを用いて連結編集し、本菌の全塩基配列を決定していった。
(3) Production of shotgun library clones containing chromosomal DNA Fragmentation was performed by sonicating the chromosomal DNA obtained in Example 2, and then 1 kb and 2 kb long DNA fragments were recovered by agarose gel electrophoresis. . A shotgun library was prepared by inserting this fragment into the HincII restriction enzyme site of plasmid vector pUC118. The terminal base sequence of each shotgun clone was decoded using an automatic base sequence reader 377 manufactured by ABI. The base sequence obtained from each shotgun clone was ligated and edited using the base sequence automatic linking software Sequencher, and the entire base sequence of this bacterium was determined.

(4)本バイファンクショナル酵素遺伝子の同定
上記手法で決定された好酸性好気性超好熱古細菌スルフォロバス、トーコーダイイのゲノム塩基配列の大型計算機による解析を行い、グルコサミン-1-リン酸アセチル化活性を有する可能性のあるタンパク質をコードする遺伝子(ST0452)を同定した。超好熱古細菌スルフォロバス、トーコーダイイのST0452遺伝子の開始コドンはATGで、401アミノ酸残基のタンパク質をコードする候補遺伝子として同定された。
(4) Identification of the bifunctional enzyme gene The genome base sequence of the eosinophilic aerobic hyperthermophilic archaeon Sulfolobus and Tokodaii determined by the above method was analyzed using a large computer, and glucosamine-1-phosphate acetylation activity was determined. A gene (ST0452) encoding a protein that may have The start codon of the ST0452 gene of the hyperthermophilic archaeon Sulfolobus, Tokodaii was ATG, and was identified as a candidate gene encoding a protein of 401 amino acid residues.

(5)発現プラスミドの構築
構造遺伝子領域の前後に制限酵素(NdeIとXhoI)サイトを構築する目的でDNAプライマーを合成し、PCRでその遺伝子の前後に制限酵素サイトを導入した。その際に合成されるタンパク質のC末端にヒスチジン残基をタグとして結合するように合成されるようにする場合とST0452遺伝子がコードするタンパク質のみを合成させるようにする場合とでプライマーの配列が異なる。
(5) Construction of expression plasmid DNA primers were synthesized for the purpose of constructing restriction enzyme (NdeI and XhoI) sites before and after the structural gene region, and restriction enzyme sites were introduced before and after the gene by PCR. The primer sequence differs depending on whether the protein is synthesized so that the histidine residue is bound as a tag to the C-terminus of the protein synthesized or when only the protein encoded by the ST0452 gene is synthesized. .

Upper primer,
5'- ATAGCATATGAAGGCATTTATTCTTGCTGC -3'(配列番号1)
(下線部はNdeIサイトを示す)

Lower prime 1, ヒスチジン残基を結合させる場合
5'- TCAACTCGAGGACCTTGAAAAACTCACC-3'(配列番号2)
(下線部はXhoIサイトを示す)

Lower prime 2, ヒスチジン残基を結合させ無い場合
5'- TCAACTCGAGCTAGACCTTGAAAAACTCACC -3'(配列番号3)
(下線部はXhoIサイトを示す)
Upper primer,
5'- ATAG CATATG AAGGCATTTATTCTTGCTGC -3 '(SEQ ID NO: 1)
(Underlined indicates NdeI site)

Lower prime 1, for binding histidine residues
5'-TCAA CTCGAG GACCTTGAAAAACTCACC-3 '(SEQ ID NO: 2)
(Underlined portion indicates XhoI site)

Lower prime 2, when histidine residue is not bound
5'-TCAA CTCGAG CTAGACCTTGAAAAACTCACC -3 '(SEQ ID NO: 3)
(Underlined portion indicates XhoI site)

Upper primerとLower primer1或いはLower primer2を組み合わせたPCR反応後、制限酵素(NdeIとXhoI)で完全分解(37℃で2時間)した後、その構造遺伝子領域断片を精製した。
制限酵素NdeIとXhoIで切断後精製したpET21b(Novagen社製)と上記の構造遺伝子(ST0452)領域断片とをT4リガーゼを用いて16℃、2時間反応させることによって連結した。連結したDNAの一部を大腸菌DH5αのコンピテントセルに導入し形質転換体のコロニーを得た。得られたコロニーからプラスミドをQIAprep Spin Miniprep Kit(QIAGEN社製)で精製し、塩基配列を確認して発現プラスミド、pET21b/ST0452-1及びpET21b/ST0452-2を得た。発現プラスミドpET21b/ST0452-1を用いるとST0452タンパク質はC末端にヒスチジンタグが付加された融合タンパク質として生産され、発現プラスミドpET21b/ST0452-2を用いるとC末端にヒスチジンタグが付加されないタンパク質として生産される。
After a PCR reaction combining Upper primer and Lower primer 1 or Lower primer 2, it was completely digested with restriction enzymes (NdeI and XhoI) (2 hours at 37 ° C), and then the structural gene region fragment was purified.
PET21b (manufactured by Novagen) purified by digestion with restriction enzymes NdeI and XhoI and the above structural gene (ST0452) region fragment were ligated by reacting at 16 ° C. for 2 hours using T4 ligase. A part of the ligated DNA was introduced into competent cells of E. coli DH5α to obtain transformant colonies. Plasmids were purified from the obtained colonies using QIAprep Spin Miniprep Kit (manufactured by QIAGEN), and the nucleotide sequences were confirmed to obtain expression plasmids, pET21b / ST0452-1 and pET21b / ST0452-2. When the expression plasmid pET21b / ST0452-1 is used, the ST0452 protein is produced as a fusion protein with a histidine tag added to the C terminus, and when the expression plasmid pET21b / ST0452-2 is used, it is produced as a protein without a histidine tag added to the C terminus. The

(6)組換え遺伝子の発現
大腸菌(E. coli BL21(DE3) CodonPlus RIL,、Novagen社製)のコンピテントセルを融解して、二本のファルコンチューブに各々0.1 mlづつ移す。その中に上記の2種の発現プラスミド10 ng分に相当する溶液を別々に加え氷中に30分間放置した後42℃でヒートショックを30秒間行い、そこにSOC培地0.9 mlを加え、37℃で1時間振とう培養する。その後、アンピシリンを含むLB寒天プレート上に適量まき、37℃で一晩培養し、形質転換体大腸菌 BL21(DE3) CodonPlus RIL/pET21b/ST0452-1及び形質転換体大腸菌 BL21(DE3) CodonPlus RIL/pET21b/ST0452-2を得た。
(6) Recombinant gene expression Thaw competent cells of E. coli BL21 (DE3) CodonPlus RIL, manufactured by Novagen, and transfer 0.1 ml each to two falcon tubes. The solution corresponding to 10 ng of the above-mentioned two expression plasmids was added separately, and left on ice for 30 minutes, followed by heat shock at 42 ° C. for 30 seconds, and then 0.9 ml of SOC medium was added to the solution at 37 ° C. Incubate for 1 hour with shaking. Thereafter, an appropriate amount is sprinkled on an LB agar plate containing ampicillin and cultured at 37 ° C. overnight. / ST0452-2 was obtained.

当該形質転換体をアンピシリンを含むLB培地(2リットル)中で一晩37℃において培養した後、Isopropyl-b-D-thiogalactopyranoside(IPTG)を1 mMになるように加え、さらに30℃で5時間培養した。培養後遠心分離(6,000 rpm,20 分)により集菌を行った。   The transformant was cultured overnight at 37 ° C in LB medium (2 liters) containing ampicillin, then Isopropyl-bD-thiogalactopyranoside (IPTG) was added to 1 mM, and further cultured at 30 ° C for 5 hours. . Bacteria were collected after centrifugation by centrifugation (6,000 rpm, 20 minutes).

(7)本バイファンクショナル酵素の精製
8リットル培養液から集菌した菌体に2倍量の40 mMトリス塩酸緩衝液(pH 8.0)、1錠のプロテアーゼ阻害剤(Complete EDTA-free, Roche社製)、0.5 mgのDNase RQ1(プロメガ社製)を加え懸濁液を得た。得られた懸濁液を超音波破砕し、75℃で10分保温した後、遠心分離(11,000 rpm、20分)により上清液を得た。この上清液を用いNi-カラム(Novagen, His・Bind metal chelation resin & His・Bind buffer kitを使用)による親和性クロマトグラムを行った。ここで得られた0.5 Mイミダゾール溶出画分(20 ml)を、再度75℃で10分加熱処理し、遠心分離(11,000 rpm、20分)により上清液を得た。次に、セントリプレップYM-50 (アミコン社)で2 mlまで濃縮し、これを20 mMトリス塩酸緩衝液(pH 8.0)で透析し、精製サンプルとした。
(7) Purification of this bifunctional enzyme
Cells collected from an 8 liter culture are doubled in 40 mM Tris-HCl buffer (pH 8.0), 1 tablet protease inhibitor (Complete EDTA-free, manufactured by Roche), 0.5 mg DNase RQ1 (Promega To obtain a suspension. The obtained suspension was sonicated and incubated at 75 ° C. for 10 minutes, and then a supernatant was obtained by centrifugation (11,000 rpm, 20 minutes). The supernatant was used for affinity chromatography using a Ni-column (using Novagen, His • Bind metal chelation resin & His • Bind buffer kit). The 0.5 M imidazole elution fraction (20 ml) obtained here was again heat-treated at 75 ° C. for 10 minutes, and a supernatant was obtained by centrifugation (11,000 rpm, 20 minutes). Next, the solution was concentrated to 2 ml with Centriprep YM-50 (Amicon) and dialyzed with 20 mM Tris-HCl buffer (pH 8.0) to obtain a purified sample.

アセチル化アミノ糖の合成
(1)アミノ糖アセチル化反応(アセチルCoAからアミノ糖へのアセチル基の転移反応)
50 mM Tris緩衝液(pH7.5)、2 mM MgCl2、2 mM グルコサミン-1-リン酸又はガラクトサミン-1-リン酸、2 mM アセチルCoAからなる酵素反応液10 μlを2分間80℃でプレインキュベーションした後、その反応液中に実施例1で得られた精製酵素0.05 μgを加えた。この反応液を80℃で2分間保温することにより、反応を進行させた。40 μl の50 mM Tris緩衝液(pH 7.5)、6.4 M グアニジン塩酸を加えて反応を終了させた後に、50 μl の50 mM Tris緩衝液(pH7.5)、1 mM EDTA、0.5 mM 5,5’-dithio-bis(2-nitrobenzoic acid) [DTNB]を加えた。
Synthesis of acetylated amino sugar (1) Amino sugar acetylation reaction (Transition reaction of acetyl group from acetyl CoA to amino sugar)
Prepare 10 μl of enzyme reaction solution consisting of 50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 2 mM glucosamine-1-phosphate or galactosamine-1-phosphate, 2 mM acetyl-CoA for 2 minutes at 80 ° C. After incubation, 0.05 μg of the purified enzyme obtained in Example 1 was added to the reaction solution. The reaction was allowed to proceed by incubating the reaction solution at 80 ° C. for 2 minutes. After adding 40 μl of 50 mM Tris buffer (pH 7.5) and 6.4 M guanidine hydrochloride to terminate the reaction, 50 μl of 50 mM Tris buffer (pH 7.5), 1 mM EDTA, 0.5 mM 5,5 '-dithio-bis (2-nitrobenzoic acid) [DTNB] was added.

(2)アミノ糖アセチル化反応(アセチルCoAからアミノ糖へのアセチル基の転移反応)の測定
上記(1)の反応では、DTNBがCoAと反応し、4-ニトロチオフェノレートを生成するが、この分子は412 nmでの吸収の増大として検出できる。図1に示すように標準物質であるCoAを基質として加えた反応液では、CoAの量に比例した412 nmでの吸収の増大が見られた。標準CoAサンプル添加量を変化させたときの、吸光度と標準物質量は正確な比例関係にあり、この検量線を用いることにより反応生成物を定量出来る事が示された。さらに、図2に示すように、本バイファンクショナル酵素を添加後の時間に従った412 nmの吸光度の増幅が見られた事から、本酵素はグルコサミン-1-リン酸のアセチル化活性を有する事が確認された。
(2) Measurement of amino sugar acetylation reaction (transfer reaction of acetyl group from acetyl CoA to amino sugar) In the reaction of (1) above, DTNB reacts with CoA to produce 4-nitrothiophenolate. This molecule can be detected as an increase in absorption at 412 nm. As shown in FIG. 1, in the reaction solution to which CoA as a standard substance was added as a substrate, an increase in absorption at 412 nm proportional to the amount of CoA was observed. When the amount of standard CoA sample added was changed, the absorbance and the amount of standard substance were in an exact proportional relationship, and it was shown that the reaction product can be quantified by using this calibration curve. Furthermore, as shown in FIG. 2, since the absorbance at 412 nm was amplified according to the time after the addition of the bifunctional enzyme, the enzyme has glucosamine-1-phosphate acetylation activity. Things were confirmed.

アセチル化アミノ糖ヌクレオチド(アセチル化アミノ糖−ヌクレオシド二リン酸結合体)の合成
(1)アセチル化アミノ糖ヌクレオチド(NDP-GlcNAc)合成反応(アセチル化アミノ糖とヌクレオチド結合反応)
50 mM Tris緩衝液(pH7.5)、2 mM MgCl2、2 mM N-アセチルグルコサミン-1-リン酸、1
mM TTPまたはUTPからなる酵素反応液10μlを2分間80℃でプレインキュベーションした後、その反応液中に実施例1で得られた精製酵素0.05 μgを加えた。この反応液を80℃で5分間保温することにより、反応を進行させた。5分後に100 μl の500 mM KH2PO4溶液を加える事により反応を停止させた。
Synthesis of acetylated amino sugar nucleotide (acetylated amino sugar-nucleoside diphosphate conjugate) (1) Acetylated amino sugar nucleotide (NDP-GlcNAc) synthesis reaction (acetylated amino sugar and nucleotide binding reaction)
50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 2 mM N-acetylglucosamine-1-phosphate, 1
10 μl of enzyme reaction solution consisting of mM TTP or UTP was preincubated for 2 minutes at 80 ° C., and 0.05 μg of the purified enzyme obtained in Example 1 was added to the reaction solution. The reaction was allowed to proceed by incubating the reaction solution at 80 ° C. for 5 minutes. After 5 minutes, the reaction was stopped by adding 100 μl of 500 mM KH 2 PO 4 solution.

(2)アセチル化アミノ糖ヌクレオチド(NDP-GlcNAc)合成反応(アセチル化アミノ糖とヌクレオチドの結合反応)の測定
HPLCを用いて、反応生成物であるNDP-GlcNAcの量を、ヌクレオチド部分の紫外線の吸収を目安に測定した。図3に示すように標準物質であるUTP及びUDP-GlcNAcは、HPLCにおいて溶出位置が全く異なる。さらに、図4に示すように標準サンプル添加量を変化させた時の、ピークの面積と標準物質量は正確な比例関係にあり、この検量線を用いることにより反応生成物を定量出来る事が示された。
そこで、上記(1)で反応させたサンプルに関しても、HPLCで同様の解析を行った。
(2) Measurement of acetylated amino sugar nucleotide (NDP-GlcNAc) synthesis reaction (binding reaction between acetylated amino sugar and nucleotide)
Using HPLC, the amount of NDP-GlcNAc as a reaction product was measured based on the absorption of ultraviolet light at the nucleotide portion. As shown in FIG. 3, the standard substances UTP and UDP-GlcNAc have completely different elution positions in HPLC. Furthermore, as shown in Fig. 4, the peak area and the amount of the standard substance when the amount of the standard sample added is changed are in an accurate proportional relationship, and it is shown that the reaction product can be quantified by using this calibration curve. It was done.
Therefore, the same analysis was performed on the sample reacted in (1) above by HPLC.

(3)アセチル化アミノ糖ヌクレオチド(NDP-GalNAc)合成の逆反応(アセチル化アミノ糖ヌクレオチド分離反応)
50 mM Tris緩衝液(pH 7.5)、2 mM MgCl2、2 mM UDP-GalNAc、1 mM ピロリン酸からなる酵素反応液10 μlを2分間80℃でプレインキュベーションした後、その反応液中に実施例1で得られた精製酵素0.05 μgを加えた。この反応液を80℃で5分間保温することにより、反応を進行させた。5分後に100 μl の500 mM KH2PO4溶液を加える事により反応を停止させた。
(3) Reverse reaction of acetylated amino sugar nucleotide (NDP-GalNAc) synthesis (acetylated amino sugar nucleotide separation reaction)
10 μl of enzyme reaction solution consisting of 50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 2 mM UDP-GalNAc, and 1 mM pyrophosphate was preincubated for 2 minutes at 80 ° C. 0.05 μg of the purified enzyme obtained in 1 was added. The reaction was allowed to proceed by incubating the reaction solution at 80 ° C. for 5 minutes. After 5 minutes, the reaction was stopped by adding 100 μl of 500 mM KH 2 PO 4 solution.

(4)アセチル化アミノ糖ヌクレオチド(NDP-GalNAc)合成の逆反応(アセチル化アミノ糖ヌクレオチドの分離反応)の測定
HPLCを用いて、反応生成物であるUTPの量を、ヌクレオチド部分の紫外線の吸収を目安に測定した。図5に示すように標準物質であるUTP及びUDP-GalNAcは、HPLCにおいて溶出位置が全く異なる。さらに、図6に示すように標準UTPサンプル添加量を変化させたときの、ピークの面積と標準物質量は正確な比例関係にあり、この検量線を用いることにより反応生成物を定量出来る事が示された。
そこで、上記(1)で反応させたサンプルに関しても、HPLCで同様の解析を行った。
(4) Measurement of reverse reaction of acetylated amino sugar nucleotide (NDP-GalNAc) synthesis (separation reaction of acetylated amino sugar nucleotide)
Using HPLC, the amount of UTP as a reaction product was measured based on the absorption of ultraviolet light at the nucleotide portion. As shown in FIG. 5, the standard substances UTP and UDP-GalNAc have completely different elution positions in HPLC. Furthermore, as shown in FIG. 6, when the amount of standard UTP sample added is changed, the peak area and the amount of standard substance are in an accurate proportional relationship, and the reaction product can be quantified by using this calibration curve. Indicated.
Therefore, the same analysis was performed on the sample reacted in (1) above by HPLC.

酵素の性質
(1)タンパク質化学的性質
当該酵素は上記の精製プロセスで完全に精製され、SDS-PAGEで分子量約44 KDaの単一バンドを示した(図7)。当該酵素は401アミノ酸残基より構成され(配列番号4)、そのアミノ酸配列から予測される分子量は44,000 Daであった。
Properties of enzyme (1) Protein chemistry The enzyme was completely purified by the above purification process and showed a single band with a molecular weight of about 44 KDa on SDS-PAGE (FIG. 7). The enzyme was composed of 401 amino acid residues (SEQ ID NO: 4), and the molecular weight predicted from the amino acid sequence was 44,000 Da.

(2)アミノ糖アセチル化合物合成活性(アミノ糖へのアセチルCoAのアセチル基の転移活性)
当該酵素は、図8に有るように80℃においては、グルコサミン-1-リン酸及びガラクトサミン-1-リン酸を基質としたどちらの場合にも高い活性を示した。
(2) Amino sugar acetyl compound synthesis activity (Transition activity of acetyl group of acetyl CoA to amino sugar)
As shown in FIG. 8, the enzyme showed high activity at 80 ° C. in both cases using glucosamine-1-phosphate and galactosamine-1-phosphate as substrates.

(3)アミノ糖アセチル化反応におけるアミノ糖-1-リン酸基質の多様性
50 mM Tris緩衝液(pH 7.5)、2 mM MgCl2、2 mM アミノ糖-1-リン酸及び2 mM アセチルCoAからなる酵素反応液10μlを2分間80℃でプレインキュベーションした後、その反応液中に実施例1で得られた精製酵素0.05 μgを加えた。この反応液を80℃で2分間保温することにより、反応を進行させた。反応の進行は、実施例2の(2)に有るように412 nmの吸光度で測定した。結果を表1に示す。表1から明らかなように、本酵素はグルコサミン-1-リン酸以外にガラクトサミン-1-リン酸も基質として利用出来るが他の糖リン酸は利用出来ないことが示された。
(3) Diversity of amino sugar-1-phosphate substrates in amino sugar acetylation reaction
10 μl of enzyme reaction solution consisting of 50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 2 mM amino sugar-1-phosphate and 2 mM acetyl-CoA was preincubated for 2 minutes at 80 ° C., and then in the reaction solution Was added with 0.05 μg of the purified enzyme obtained in Example 1. The reaction was allowed to proceed by incubating the reaction solution at 80 ° C. for 2 minutes. The progress of the reaction was measured by absorbance at 412 nm as in Example 2 (2). The results are shown in Table 1. As is apparent from Table 1, it was shown that this enzyme can use galactosamine-1-phosphate in addition to glucosamine-1-phosphate as a substrate, but cannot use other sugar phosphates.

(4)アセチル化アミノ糖ヌクレオチド合成活性(アセチル化アミノ糖とヌクレオチドの結合活性)
当該酵素は、図9に有るように80℃においてはN-アセチルグルコサミン-1-リン酸及びUDP-GalNAcとピロリン酸を基質とした場合に、酵素活性を示した。
(4) Acetylated amino sugar nucleotide synthesis activity (acetylated amino sugar-nucleotide binding activity)
As shown in FIG. 9, the enzyme exhibited enzyme activity at 80 ° C. when N-acetylglucosamine-1-phosphate, UDP-GalNAc and pyrophosphate were used as substrates.

(5)アセチル化アミノ糖ヌクレオチド合成活性に於けるアセチル化アミノ糖-1-リン酸基質の多様性
50 mM Tris緩衝液(pH 7.5)、2 mM MgCl2、1 mM UTP、2 mM N-アセチルグルコサミン-1-リン酸からなる酵素反応液10 μlを2分間80℃でプレインキュベーションした後、その反応液中に実施例1で得られた精製酵素0.05 μgを加えた。この酵素反応液を80℃で2分間保温することにより反応させた後、100 μl の500 mM KH2PO4溶液を加える事により反応を停止させた。反応の進行は、実施例3の(2)に有るようにHPLCで測定した。
50 mM Tris緩衝液(pH 7.5)、2 mM MgCl2、1 mM UTP、2 mM N-アセチルガラクトサミン-1-リン酸、1 mM ピロ燐酸からなる酵素反応液10 μlを2分間80℃でプレインキュベーションした後、その反応液中に実施例1で得られた精製酵素0.05 μgを加えた。この酵素反応液を80℃で2分間保温することにより反応させた後、100 μl の500 mM KH2PO4溶液を加える事により反応を停止させた。反応の進行は、実施例3の(4)に有るようにHPLCで測定した。
表2に示すように、本酵素はN-アセチルグルコサミン-1-リン酸以外にN-アセチルガラクトサミン-1-リン酸をアミノ糖ヌクレオチド合成活性の基質として利用出来ることが示された。
(5) Diversity of acetylated amino sugar-1-phosphate substrates in acetylated amino sugar nucleotide synthesis activity
Preincubation of 10 μl of enzyme reaction solution consisting of 50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 1 mM UTP, 2 mM N-acetylglucosamine-1-phosphate for 2 minutes at 80 ° C. 0.05 μg of the purified enzyme obtained in Example 1 was added to the liquid. The enzyme reaction solution was allowed to react at 80 ° C. for 2 minutes, and then the reaction was stopped by adding 100 μl of a 500 mM KH 2 PO 4 solution. The progress of the reaction was measured by HPLC as in Example 3 (2).
Preincubation of 10 μl of enzyme reaction solution consisting of 50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 1 mM UTP, 2 mM N-acetylgalactosamine-1-phosphate and 1 mM pyrophosphate for 2 minutes at 80 ° C Then, 0.05 μg of the purified enzyme obtained in Example 1 was added to the reaction solution. The enzyme reaction solution was allowed to react at 80 ° C. for 2 minutes, and then the reaction was stopped by adding 100 μl of a 500 mM KH 2 PO 4 solution. The progress of the reaction was measured by HPLC as in Example 3 (4).
As shown in Table 2, it was shown that this enzyme can use N-acetylgalactosamine-1-phosphate in addition to N-acetylglucosamine-1-phosphate as a substrate for amino sugar nucleotide synthesis activity.

(6)アセチル化アミノ糖ヌクレオチド合成活性に於けるヌクレオシド三リン酸基質の多様性
50 mM Tris緩衝液(pH 7.5)、2 mM MgCl2、1 mM NTP、及び2 mM N-アセチルグルコサミン-1-リン酸からなる酵素反応液10μl中に実施例1で得られた精製酵素0.05 μgを加えた。この酵素反応液を80℃で5分間保温することにより反応を進行させた後に、100 μl の500 mM KH2PO4溶液に加える事により反応を停止させた。反応の進行は、実施例3の(2)に有るようにHPLCで測定した。
または50 mM Tris緩衝液(pH 7.5)、2 mM MgCl2、1 mM NTP、2 mMガラクトサミン-1-リン酸、2 mMアセチルCoAからなる酵素反応液10μl中に実施例1で得られた精製酵素0.05 μgを加えた。この酵素反応液を80℃で5分間保温することにより反応を進行させた後に、100 μl の500 mM KH2PO4溶液に加える事により反応を停止させた。反応の進行は、実施例3の(2)に有るようにHPLCで測定した。
表3に示すように、本酵素はN-アセチルグルコサミン-1-リン酸を基質にする場合にはdTTPとUTPを、N-アセチルガラクトサミン-1-リン酸を基質とする場合にはUTPのみを基質として利用出来ることが示された。
(6) Diversity of nucleoside triphosphate substrates in acetylated amino sugar nucleotide synthesis activity
0.05 μg of the purified enzyme obtained in Example 1 in 10 μl of enzyme reaction solution consisting of 50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 1 mM NTP, and 2 mM N-acetylglucosamine-1-phosphate Was added. The reaction was allowed to proceed by incubating the enzyme reaction solution at 80 ° C. for 5 minutes, and then the reaction was stopped by adding it to 100 μl of a 500 mM KH 2 PO 4 solution. The progress of the reaction was measured by HPLC as in Example 3 (2).
Alternatively, the purified enzyme obtained in Example 1 in 10 μl of an enzyme reaction solution consisting of 50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 1 mM NTP, 2 mM galactosamine-1-phosphate, 2 mM acetyl CoA 0.05 μg was added. The reaction was allowed to proceed by incubating the enzyme reaction solution at 80 ° C. for 5 minutes, and then the reaction was stopped by adding it to 100 μl of a 500 mM KH 2 PO 4 solution. The progress of the reaction was measured by HPLC as in Example 3 (2).
As shown in Table 3, the enzyme uses dTTP and UTP when N-acetylglucosamine-1-phosphate is used as a substrate, and only UTP when N-acetylgalactosamine-1-phosphate is used as a substrate. It was shown that it can be used as a substrate.

(7)熱安定性
50mM Tris緩衝液(pH7.5)、2 mM MgCl2、2 mM N-アセチルグルコサミン-1-リン酸、1
mM UTPからなる酵素反応液10 μl中に、あらかじめ80℃で5分10分20分30分40分60分90分120分180分間加熱した実施例1で得られた精製酵素0.05 μgを加えた。この酵素反応液を80℃で5分間保温することにより反応させた後に、100 μl の500 mM KH2PO4溶液に加える事により反応を停止させた。反応の進行は、実施例3の(2)に有るようにHPLCで測定した。その結果、図10に示すように、本酵素は80℃による180分間の加熱処理後でも、50%以上の活性を残すことから非常に安定で耐熱性が高いことが示された。
(7) Thermal stability
50 mM Tris buffer (pH 7.5), 2 mM MgCl 2 , 2 mM N-acetylglucosamine-1-phosphate, 1
0.05 μg of the purified enzyme obtained in Example 1 previously heated at 80 ° C. for 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 60 minutes, 90 minutes, 120 minutes and 180 minutes was added to 10 μl of the enzyme reaction solution composed of mM UTP. . The enzyme reaction solution was allowed to react at 80 ° C. for 5 minutes, and then the reaction was stopped by adding it to 100 μl of 500 mM KH 2 PO 4 solution. The progress of the reaction was measured by HPLC as in Example 3 (2). As a result, as shown in FIG. 10, the present enzyme remained highly stable and highly heat resistant because it remained active at 50% or more even after heat treatment at 80 ° C. for 180 minutes.

DTNB試薬と標準CoAを反応させた場合の412nmでの吸収との関係を示す図である。It is a figure which shows the relationship with the absorption in 412 nm at the time of making DTNB reagent and standard CoA react. 該酵素による時間に従った反応の進行(◆)及び酵素を加えない場合には反応が進行しないこと(◇)を示す図である。It is a figure which shows that a reaction does not advance ((double-circle)) when a reaction progresses (♦) according to the time by this enzyme, and an enzyme is not added. HPLCによる、UTP、及びUDP-GlcNAc混合物の分離パターンを測定した図である。It is the figure which measured the separation pattern of UTP and UDP-GlcNAc mixture by HPLC. HPLCを用いたUDP-GlcNAcの検量線を示す図である。It is a figure which shows the calibration curve of UDP-GlcNAc using HPLC. HPLCによる、UTP、及びUDP-GalNAc混合物の分離パターンを測定した図である。It is the figure which measured the separation pattern of UTP and UDP-GalNAc mixture by HPLC. HPLCを用いたUTPの検量線を示す図である。It is a figure which shows the calibration curve of UTP using HPLC. 精製されたST0452蛋白質のSDS-PAGEパターンを示す写真である。It is a photograph which shows the SDS-PAGE pattern of purified ST0452 protein. ST0452酵素のグルコサミン-1-リン酸(○)及びガラクトサミン-1-リン酸(●)を基質として用いた場合の80℃におけるアセチル化活性量を示す図である。It is a figure which shows the acetylation activity amount in 80 degreeC at the time of using glucosamine-1-phosphate ((circle)) and galactosamine-1-phosphate ((circle)) of ST0452 enzyme as a substrate. ST0452酵素の80℃におけるアセチル化アミノ糖ヌクレオチド合成活性を示す図である。It is a figure which shows the acetylated amino sugar nucleotide synthetic activity in 80 degreeC of ST0452 enzyme. ST0452蛋白質の80℃(○)及び95℃(●)での熱処理後における残存活性量を示す図である。It is a figure which shows the residual activity amount after heat processing of 80 degreeC ((circle)) and 95 degreeC (-) of ST0452 protein.

Claims (10)

配列番号4に記載のアミノ酸配列からなる蛋白質、あるいは、配列番号4に記載のアミノ酸配列に乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつアセチル化アミノ糖合成活性を有する蛋白質を含むことを特徴とする、N−アセチルグルコサミン−1−リン酸及び/又はN−アセチルガラクトサミン−1−リン酸の合成用酵素製剤A protein comprising the amino acid sequence set forth in SEQ ID NO: 4 or an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added to the amino acid sequence set forth in SEQ ID NO: 4; characterized in that it comprises a white matter that have a amino sugar synthesis activity, N- acetylglucosamine-1-phosphate and / or N- acetylgalactosamine -1-enzyme preparation of phosphoric acid. アセチル化アミノ糖合成活性を有する蛋白質をコードするDNAであって、下記(1)〜(3)のいずれかに記載の塩基配列を含むDNAが発現可能に制御されている組換えDNAを含むことを特徴とする、N−アセチルグルコサミン−1−リン酸及び/又はN−アセチル化ガラクトサミン−1−リン酸の合成用酵素製剤を製造するためのヌクレオチド製剤;
(1)配列番号4に記載のアミノ酸配列からなる蛋白質をコードするDNA、
(2)配列番号4に記載のアミノ酸配列に1乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつアセチル化アミノ糖合成活性を有する蛋白質をコードするDNA、
(3)配列番号5に記載の塩基配列を有するDNA、もしくは当該DNAとストリンジェントな条件下でハイブリダイズし、かつアセチル化アミノ糖合成活性を有する蛋白質をコードするDNA
A DNA encoding a protein having an acetylated amino sugar synthesis activity, comprising a recombinant DNA in which a DNA containing the base sequence described in any one of (1) to (3) below is controlled to be expressed. A nucleotide preparation for producing an enzyme preparation for synthesis of N-acetylglucosamine-1-phosphate and / or N-acetylated galactosamine-1-phosphate,
(1) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 4,
(2) encodes a protein having an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added to the amino acid sequence of SEQ ID NO: 4 and having acetylated amino sugar synthesis activity DNA,
(3) DNA having the base sequence of SEQ ID NO: 5 or DNA encoding a protein that hybridizes with the DNA under stringent conditions and has acetylated amino sugar synthesis activity .
グルコサミン−1−リン酸及び/又はガラクトサミン−1−リン酸に、アセチルCoA存在下、配列番号4に記載のアミノ酸配列からなる蛋白質、あるいは、配列番号4に記載のアミノ酸配列に1乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつアセチル化アミノ糖合成活性を有する蛋白質を作用させることを特徴とする、N−アセチルグルコサミン−1−リン酸及び/又はN−アセチルガラクトサミン−1−リン酸の製造方法。 In the presence of acetyl CoA in glucosamine-1-phosphate and / or galactosamine-1-phosphate, a protein consisting of the amino acid sequence shown in SEQ ID NO: 4 or 1 to several amino acids in the amino acid sequence shown in SEQ ID NO: 4 N-acetylglucosamine-1-phosphate having an amino acid sequence in which an amino acid residue is deleted, substituted, inserted or added and having an acetylated amino sugar synthesis activity, and / or Alternatively, a method for producing N-acetylgalactosamine-1-phosphate. グルコサミン−1−リン酸及び/又はガラクトサミン−1−リン酸に、アセチルCoA存在下、アセチル化アミノ糖合成活性を有する蛋白質をコードするDNAであって、下記(1)〜(3)のいずれかに記載の塩基配列を含むDNAを用いて形質転換された形質転換体の培養液あるいは培養物の処理物を作用させることを特徴とする、N−アセチルグルコサミン−1−リン酸及び/又はN−アセチルガラクトサミン−1−リン酸の製造方法
(1)配列番号4に記載のアミノ酸配列からなる蛋白質をコードするDNA、
(2)配列番号4に記載のアミノ酸配列に1乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつアセチル化アミノ糖合成活性を有する蛋白質をコードするDNA、
(3)配列番号5に記載の塩基配列を有するDNA、もしくは当該DNAとストリンジェントな条件下でハイブリダイズし、かつアセチル化アミノ糖合成活性を有する蛋白質をコードするDNA
A DNA encoding a protein having acetylated amino sugar synthesis activity in the presence of acetyl CoA in glucosamine-1-phosphate and / or galactosamine-1-phosphate, and any one of the following (1) to (3): N-acetylglucosamine-1-phosphate and / or N-, characterized by allowing a culture solution of a transformant transformed with DNA containing the base sequence described in the above or a treated product of the culture to act. A process for producing acetylgalactosamine-1-phosphate ;
(1) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 4,
(2) encodes a protein having an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added to the amino acid sequence of SEQ ID NO: 4 and having acetylated amino sugar synthesis activity DNA,
(3) DNA having the base sequence of SEQ ID NO: 5 or DNA encoding a protein that hybridizes with the DNA under stringent conditions and has acetylated amino sugar synthesis activity .
配列番号4に記載のアミノ酸配列からなる蛋白質、あるいは、配列番号4に記載のアミノ酸配列に乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつUDP−N−アセチルガラクトサミンの合成活性を有する蛋白質を含むことを特徴とする、UDP−N−アセチルガラクトサミン合成用酵素製剤A protein comprising the amino acid sequence set forth in SEQ ID NO: 4, or an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added to the amino acid sequence set forth in SEQ ID NO: 4, and UDP - characterized in that it comprises a white matter that have a synthesis activity of N- acetyl galactosamine, UDP-N- acetylgalactosamine synthesizing enzyme preparation. UDP−N−アセチルガラクトサミン合成活性を有する蛋白質をコードするDNAであって、下記(1)〜(3)のいずれかに記載の塩基配列を含むDNAが発現可能に制御されている組換えDNAを含むことを特徴とする、UDP−N−アセチルガラクトサミン合成用酵素製剤を製造するためのヌクレオチド製剤;
(1)配列番号4に記載のアミノ酸配列からなる蛋白質をコードするDNA、
(2)配列番号4に記載のアミノ酸配列に1乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつUDP−N−アセチルガラクトサミン合成活性を有する蛋白質をコードするDNA、
(3)配列番号5に記載の塩基配列を有するDNA、もしくは当該DNAとストリンジェントな条件下でハイブリダイズし、かつUDP−N−アセチルガラクトサミン合成活性を有する蛋白質をコードするDNA
A DNA encoding a protein having UDP-N-acetylgalactosamine-synthesizing activity, a recombinant DNA which DNA comprising the nucleotide sequence of any one of the following (1) to (3) are capable of controlled expression A nucleotide preparation for producing an enzyme preparation for the synthesis of UDP-N-acetylgalactosamine, comprising:
(1) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 4,
(2) a protein having an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added to the amino acid sequence of SEQ ID NO: 4 and having UDP-N-acetylgalactosamine synthesis activity; DNA to encode,
(3) DNA having the base sequence of SEQ ID NO: 5 or DNA encoding a protein that hybridizes with the DNA under stringent conditions and has UDP-N-acetylgalactosamine synthesis activity .
N−アセチルガラクトサミン−1−リン酸に、ウリジントリフォスフェート(UTP)の存在下、配列番号4に記載のアミノ酸配列からなる蛋白質、あるいは、配列番号4に記載のアミノ酸配列に1乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつUDP−N−アセチルガラクトサミンの合成活性を有する蛋白質を作用させることを特徴とする、UDP−N−アセチルガラクトサミンの製造方法。 In N -acetylgalactosamine-1-phosphate, in the presence of uridine triphosphate (UTP) , a protein consisting of the amino acid sequence shown in SEQ ID NO: 4 or 1 to several amino acids in the amino acid sequence shown in SEQ ID NO: 4 amino acid residues are deleted, substituted, has an insertion or added in the amino acid sequence, and UDP- characterized in that the action of white matter that have a synthesis activity of N- acetyl galactosamine, UDP-N- A method for producing acetylgalactosamine . N−アセチルガラクトサミン−1−リン酸に、ウリジントリフォスフェート(UTP)の存在下、UDP−N−アセチルガラクトサミンの合成活性を有する蛋白質をコードするDNAであって、下記(1)〜(3)のいずれかに記載の塩基配列を含むDNAを用いて形質転換された形質転換体の培養液あるいは培養物の処理物を作用させることを特徴とする、UDP−N−アセチルガラクトサミンの製造方法
(1)配列番号4に記載のアミノ酸配列からなる蛋白質をコードするDNA、
(2)配列番号4に記載のアミノ酸配列に1乃至数個のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列を有し、かつUDP−N−アセチルガラクトサミン合成活性を有する蛋白質をコードするDNA、
(3)配列番号5に記載の塩基配列を有するDNA、もしくは当該DNAとストリンジェントな条件下でハイブリダイズし、かつUDP−N−アセチルガラクトサミン合成活性を有する蛋白質をコードするDNA
To N- acetylgalactosamine 1-phosphate in the presence of uridine triphosphate (UTP), a DNA encoding the white matter that have a synthesis activity of UDP-N- acetyl galactosamine, following (1) A culture solution of a transformant transformed with a DNA containing the base sequence according to any one of (3) to (3) or a treated product of the transformant is allowed to act on UDP-N-acetylgalactosamine Manufacturing method ;
(1) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 4,
(2) a protein having an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added to the amino acid sequence of SEQ ID NO: 4 and having UDP-N-acetylgalactosamine synthesis activity; DNA to encode,
(3) DNA having the base sequence of SEQ ID NO: 5 or DNA encoding a protein that hybridizes with the DNA under stringent conditions and has UDP-N-acetylgalactosamine synthesis activity .
グルコサミン−1−リン酸及び/又はガラクトサミン−1−リン酸に対し、アセチルCoA及びUTPの存在下で、請求項1又は5に記載の酵素製剤を作用させることを特徴とする、UDP−N−アセチルグルコサミン及び/又はUDP−N−アセチルガラクトサミンの製造方法。UDP-N-, characterized in that the enzyme preparation according to claim 1 or 5 is allowed to act on glucosamine-1-phosphate and / or galactosamine-1-phosphate in the presence of acetyl CoA and UTP. A method for producing acetylglucosamine and / or UDP-N-acetylgalactosamine. グルコサミン−1−リン酸及び/又はガラクトサミン−1−リン酸に対し、アセチルCoA及びUTPの存在下で、請求項2又は6に記載のヌクレオチド製剤を用いて形質転換された形質転換体の培養液あるいは培養物の処理物を作用させることを特徴とする、UDP−N−アセチルグルコサミン及び/又はUDP−N−アセチルガラクトサミンの製造方法。A culture solution of a transformant transformed with glucosamine-1-phosphate and / or galactosamine-1-phosphate using the nucleotide preparation according to claim 2 or 6 in the presence of acetyl CoA and UTP. Alternatively, a method for producing UDP-N-acetylglucosamine and / or UDP-N-acetylgalactosamine, wherein a treated product of the culture is allowed to act.
JP2006337443A 2006-12-14 2006-12-14 Thermostable enzyme having acetylated amino sugar and acetylated amino sugar nucleotide synthesis activity Expired - Fee Related JP4469958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337443A JP4469958B2 (en) 2006-12-14 2006-12-14 Thermostable enzyme having acetylated amino sugar and acetylated amino sugar nucleotide synthesis activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337443A JP4469958B2 (en) 2006-12-14 2006-12-14 Thermostable enzyme having acetylated amino sugar and acetylated amino sugar nucleotide synthesis activity

Publications (2)

Publication Number Publication Date
JP2008148584A JP2008148584A (en) 2008-07-03
JP4469958B2 true JP4469958B2 (en) 2010-06-02

Family

ID=39651501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337443A Expired - Fee Related JP4469958B2 (en) 2006-12-14 2006-12-14 Thermostable enzyme having acetylated amino sugar and acetylated amino sugar nucleotide synthesis activity

Country Status (1)

Country Link
JP (1) JP4469958B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112704913B (en) * 2020-12-25 2022-08-05 杭州华安生物技术有限公司 Affinity chromatographic column and preparation method and application thereof

Also Published As

Publication number Publication date
JP2008148584A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
TWI695888B (en) A composition for producing tagatose and methods for producing tagatose using the same
EP2100967B1 (en) Method for producing lacto-n-biose i or galacto-n-biose
US9193958B2 (en) Method of enzymatically synthesizing 3′-phosphoadenosine-5′-phosphosulfate
US20200032308A1 (en) Fermentation process for producing monosaccharides in free form from nucleotide-activated sugars
EP1816206B1 (en) Method of producing uridine 5 -diphospho-n-acetylgalactosamine
TWI719140B (en) New polyphosphate-dependent glucokinase and method for preparing glucose 6-phosphate using the same
JP4469958B2 (en) Thermostable enzyme having acetylated amino sugar and acetylated amino sugar nucleotide synthesis activity
JP3764755B2 (en) "Production Method of Adenosine 5'-Triphosphate and Its Application"
De Luca et al. Overexpression, one-step purification and characterization of UDP-glucose dehydrogenase and UDP-N-acetylglucosamine pyrophosphorylase
US6890739B1 (en) Use of uridine diphosphate glucose 4-epimerase
Jeon et al. Cloning and characterization of cycloinulooligosaccharide fructanotransferase (CFTase) from Bacillus polymyxa MGL21
JP4224581B2 (en) Thermostable enzyme having sugar nucleotide synthesis activity and DNA encoding the enzyme
JP4469954B2 (en) Thermostable enzyme having sugar nucleotide synthesis activity and phosphorylated sugar isomerization activity
JP4533990B2 (en) Sugar nucleotide synthase mutant
JPH06303971A (en) New protein having nitrile hydratase activity, gene coding the protein and production of amide from nitrile using transformant containing the gene
WO2005109995A2 (en) Thermostable gluconate dehydratase and use thereof
KR100370882B1 (en) Recombinant enzyme from Thermus caldophilus GK24 and process for preparation of α-1,4-amylose using the same
JP4465448B2 (en) Thermostable enzymes with phosphate group intramolecular transfer activity in sugar phosphate compounds
JP4280826B2 (en) Novel thermostable protein having cystathionine-γ-synthase activity
JP2004261127A (en) METHOD FOR PRODUCING GlcNAc NUCLEOTIDE AND GalNAc NUCLEOTIDE
JP2005065565A (en) Modified enzyme
JP2017216930A (en) Isomerase for amino sugar phosphate, dna, expression vector, transformant, process for producing isomerase, and process for producing galactosamine-6-phosphate
JP2004261128A (en) METHOD FOR PRODUCING Gal NUCLEOTIDE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4469958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees