JP4465448B2 - Thermostable enzymes with phosphate group intramolecular transfer activity in sugar phosphate compounds - Google Patents

Thermostable enzymes with phosphate group intramolecular transfer activity in sugar phosphate compounds Download PDF

Info

Publication number
JP4465448B2
JP4465448B2 JP2004236321A JP2004236321A JP4465448B2 JP 4465448 B2 JP4465448 B2 JP 4465448B2 JP 2004236321 A JP2004236321 A JP 2004236321A JP 2004236321 A JP2004236321 A JP 2004236321A JP 4465448 B2 JP4465448 B2 JP 4465448B2
Authority
JP
Japan
Prior art keywords
sugar
phosphate
monophosphate
glucose
hexaphosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004236321A
Other languages
Japanese (ja)
Other versions
JP2006050993A (en
Inventor
裕 河原林
純一 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004236321A priority Critical patent/JP4465448B2/en
Publication of JP2006050993A publication Critical patent/JP2006050993A/en
Application granted granted Critical
Publication of JP4465448B2 publication Critical patent/JP4465448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本願発明は、糖燐酸化合物における燐酸基分子内転移活性を有する耐熱性蛋白質、該蛋白質をコードするDNA、該DNAを含有する組み換え体DNA、該組み換え体DNAを保有する形質転換体、該形質転換体を用いた糖燐酸化合物燐酸基分子内転移活性を有する蛋白質の製造法、および該蛋白質あるいは該形質転換体を用いた糖燐酸化合物における燐酸基分子内転移体の製造法に関する。   The present invention relates to a heat-resistant protein having a phosphate group intramolecular transfer activity in a sugar phosphate compound, a DNA encoding the protein, a recombinant DNA containing the DNA, a transformant having the recombinant DNA, and the transformation The present invention relates to a method for producing a protein having phosphoric acid group intramolecular transfer activity using a saccharide, and a method for producing a phosphoric acid group intramolecular transferase in a sugar phosphoric acid compound using the protein or the transformant.

糖燐酸化合物における燐酸基分子内転移活性を有する酵素としては、シュードモナス菌(Pseudomonas aeruginosa) (非特許文献1参照)、ビブリオ菌(Vibrio furnissii) (非特許文献2参照)、スフィンゴモナス菌(Sphingomonas paucimobilis) (非特許文献3参照)由来のリン酸化マンノース-リン酸基分子内転移酵素・リン酸化グルコース-リン酸基分子内転移酵素(PMM/PGM)の詳しい性質がすでに報告されている。PMM/PGMはマンノース六燐酸及びグルコース六燐酸から、マンノース一燐酸及びグルコース一燐酸を合成するのに必須な酵素であり、マンノース六燐酸及びグルコース六燐酸を基質としてマンノース一燐酸及びグルコース一燐酸を生産する。その他にも、ヒトやウサギ、病原菌から糖燐酸化合物燐酸基分子内転移を行う酵素が見出されているが、その多くが常温生物由来のため室温以上では極めて不安定で、活性は80℃程度の加熱処理により速やかに失活する。このため、使用時に反応系を滅菌する等の処理が必要であったり、低温での注意深い保存が必要であった。   Examples of the enzyme having an intramolecular transfer activity of a phosphate group in a sugar phosphate compound include Pseudomonas aeruginosa (see Non-Patent Document 1), Vibrio furnissii (see Non-Patent Document 2), and Sphingomonas paucimobilis. The detailed properties of phosphorylated mannose-phosphate intramolecular transferase and phosphorylated glucose-phosphate intramolecular transferase (PMM / PGM) derived from (see Non-Patent Document 3) have already been reported. PMM / PGM is an essential enzyme for synthesizing mannose monophosphate and glucose monophosphate from mannose hexaphosphate and glucose hexaphosphate, and produces mannose monophosphate and glucose monophosphate using mannose hexaphosphate and glucose hexaphosphate as substrates. To do. In addition, enzymes that undergo intramolecular transfer of sugar phosphate compounds to phosphate groups have been found in humans, rabbits, and pathogenic bacteria, but many of them are derived from cold organisms, so they are extremely unstable at room temperature and above, and the activity is around 80 ° C. It is quickly deactivated by heat treatment. For this reason, treatment such as sterilization of the reaction system is necessary at the time of use, and careful storage at a low temperature is necessary.

Naught LE, Regni C, Beamer LJ, Tipton PA “Roles of active site residues in Pseudomonasaeruginosa phosphomannomutase/phosphoglucomutase” (2003) Biochemistry,42, 9946-9951.Naught LE, Regni C, Beamer LJ, Tipton PA “Roles of active site residues in Pseudomonasaeruginosa phosphomannomutase / phosphoglucomutase” (2003) Biochemistry, 42, 9946-9951. Kim SH, Ahn SH, Lee JH, Lee EM, Kim NH,Park KJ, Kong IS “Geneticanalysis of phosphomannomutase/phosphoglucomutase from Vibrio furnissii andcharacterization of its role in virulence” (2003) Archives ofMicrobiology, 180, 240-250.Kim SH, Ahn SH, Lee JH, Lee EM, Kim NH, Park KJ, Kong IS “Geneticanalysis of phosphomannomutase / phosphoglucomutase from Vibrio furnissii and characterization of its role in virulence” (2003) Archives of Microbiology, 180, 240-250. Videira PA, Cortes LL, Fialho AM,Sa-Correia I “Identificationof the pgmG gene, encoding a bifunctional protein with phosphoglucomutase andphosphomannomutase activities, in the gellan gum-producing strain Sphingomonaspaucimobilis ATCC 31461” (2000) Applied andEnvironmental Mictobiology, 66(5), 2252-2258.Videira PA, Cortes LL, Fialho AM, Sa-Correia I “Identificationof the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonaspaucimobilis ATCC 31461” (2000) Applied and Environmental Mictobiology, 66 (5) , 2252-2258.

糖燐酸化合物における燐酸基分子内転移活性を有し、且つ耐熱性を有する酵素は、極めて有用である。すなわち、このような酵素が発見されれば、糖鎖合成の基質で有る糖ヌクレオチドの元となる糖燐酸、特に糖一燐酸を安定的に生成させることが可能となる。また、糖鎖合成の際の基質として必要な糖ヌクレオチドを合成するために、糖を材料として耐熱性糖燐酸化酵素と組み合わせる事で、安価に糖燐酸化合物特に糖一燐酸を合成する事が可能となる。それらの反応を行う熱安定性を有する酵素は渇望されていた。   An enzyme having a phosphate group intramolecular transfer activity in a sugar phosphate compound and having heat resistance is extremely useful. That is, if such an enzyme is discovered, it becomes possible to stably produce sugar phosphates, particularly sugar monophosphates, which are the basis of sugar nucleotides which are sugar chain synthesis substrates. In addition, in order to synthesize sugar nucleotides necessary as a substrate for sugar chain synthesis, it is possible to synthesize sugar phosphate compounds, especially sugar monophosphate, at low cost by combining sugar with heat-resistant sugar phosphorylase. It becomes. Enthusiastic enzymes that perform these reactions have been craved.

したがって、本発明の課題は、耐熱性を有し、かつ糖燐酸を基質として糖燐酸の燐酸基を分子内転移することが可能な、新規酵素を提供することにある。   Accordingly, an object of the present invention is to provide a novel enzyme having heat resistance and capable of intramolecular transfer of the phosphate group of sugar phosphate using sugar phosphate as a substrate.

本発明は、以上のような課題を解決すべく、75−80℃で生育する超好熱古細菌Sulfolobus tokodaii に着目し、本酵素活性を有するタンパク質をコードする遺伝子を得た。さらに、大腸菌を用いてその遺伝子から該酵素を生産し、この酵素が高温(80℃)で安定に存在し、かつ糖燐酸化合物燐酸基分子内転移活性を示すことを確認し、さらに、本酵素を用いることにより糖燐酸化合物燐酸基分子内転移体を生産することも見出して、本発明を完成するに至ったものである。 In order to solve the above-mentioned problems, the present invention has focused on the hyperthermophilic archaeon Sulfolobus tokodaii that grows at 75-80 ° C., and has obtained a gene encoding a protein having this enzyme activity. Furthermore, the enzyme was produced from the gene using Escherichia coli, and it was confirmed that the enzyme was stably present at high temperature (80 ° C.) and exhibited a transphosphate activity of the sugar phosphate compound phosphate group. As a result, it was found that a sugar phosphate compound phosphoric acid group intramolecular transfer product is produced by using the above, and the present invention has been completed.

即ち、本発明は、以下の(1)〜(10)に係るものである。
(1) 配列番号1に記載のアミノ酸配列を有するか、あるいは、配列番号1に記載のアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列を有し、かつ糖燐酸化合物における燐酸基分子内転移活性を有することを特徴とする蛋白質。
(2) 上記(1)記載の蛋白質をコードするDNA。
(3) 上記(2)に記載の塩基配列を有することを特徴とするDNA。
(4) 配列番号2に記載のDNAとストリンジェントな条件下でハイブリダイズし、かつ糖燐酸化合物における燐酸基分子内転移活性を有する蛋白質をコードすることを特徴とするDNA。
(5) 上記(2)〜(4)のいずれかに記載のDNAがベクターに組み込まれていることを特徴とする組み換え体DNA。
(6) 上記(5)に記載の組み換え体DNAが宿主細胞に導入されていることを特徴とする形質転換体。
(7) 上記(6)に記載の形質転換体を培地に培養し、培養物から、糖燐酸化合物における燐酸基分子内転移活性を有する蛋白質を採取することを特徴とする、糖燐酸化合物における燐酸基分子内転移活性を有する蛋白質の製造法。
(8) 糖六燐酸または糖一燐酸に、上記(1)に記載の蛋白質を作用させ、それぞれ糖一燐酸または糖六燐酸に変換することを特徴とする、糖燐酸化合物における燐酸基分子内転移体の製造方法。
(9) 糖六燐酸または糖一燐酸に、上記(6)に記載の形質転換体の培養液あるいは培養物の処理物を作用させ、それぞれ糖一燐酸または糖六燐酸に変換することを特徴とする、糖燐酸酸化合物における燐酸基分子内転移体の製造方法。
(10) 糖六燐酸または糖一燐酸に、上記(3)又は(4)に記載のDNAにコードされる蛋白質を作用させ、それぞれ糖一燐酸または糖六燐酸に変換することを特徴とする、糖燐酸化合物における燐酸基分子内転移体の製造方法。
That is, the present invention relates to the following (1) to (10).
(1) has the amino acid sequence set forth in SEQ ID NO: 1, or has an amino acid sequence in which one or more amino acid residues are deleted, substituted, inserted or added in the amino acid sequence set forth in SEQ ID NO: 1, and A protein having phosphoric acid group intramolecular transfer activity in a sugar phosphate compound.
(2) DNA encoding the protein according to (1) above.
(3) DNA having the base sequence described in (2) above.
(4) A DNA that hybridizes with the DNA of SEQ ID NO: 2 under a stringent condition and encodes a protein having a phosphate group intramolecular transfer activity in a sugar phosphate compound.
(5) A recombinant DNA, wherein the DNA according to any one of (2) to (4) above is incorporated into a vector.
(6) A transformant, wherein the recombinant DNA according to (5) is introduced into a host cell.
(7) The phosphoric acid in a sugar phosphate compound, wherein the transformant according to (6) above is cultured in a medium, and a protein having a phosphate group intramolecular transfer activity in the sugar phosphate compound is collected from the culture. A method for producing a protein having intramolecular translocation activity.
(8) Phosphate group intramolecular transfer in a sugar phosphate compound, wherein the protein described in (1) above is allowed to act on sugar hexaphosphate or sugar monophosphate to convert to sugar monophosphate or sugar hexaphosphate, respectively. Body manufacturing method.
(9) It is characterized in that the transformant described in (6) above is allowed to act on sugar hexaphosphate or sugar monophosphate to convert it into sugar monophosphate or sugar hexaphosphate, respectively. A method for producing a phosphoric acid group intramolecular transfer body in a sugar phosphate compound.
(10) The protein encoded by the DNA described in (3) or (4) above is allowed to act on sugar hexaphosphate or sugar monophosphate to convert it to sugar monophosphate or sugar hexaphosphate, respectively. A method for producing a phosphoric acid group intramolecular transfer product in a sugar phosphate compound.

本発明により、試験管内で糖燐酸の燐酸基分子内転移を行うことが可能で、かつ熱等に安定な新規な糖燐酸の燐酸基分子内転移酵素が提供できた。その結果、新規な糖燐酸の燐酸基分子内転移が可能になった。一方、糖燐酸は糖蛋白質、糖脂質、多糖類の糖合成に糖提供体として機能する糖ヌクレオチド合成に必要な供与体として機能するものであり、これらの糖合成は、癌転移、器官発生あるいは細胞性免疫等に密接に関与するものとして近年注目されており、本発明はこれらの研究の発展において、その貢献度はきわめて大きい。   INDUSTRIAL APPLICABILITY According to the present invention, a novel phosphate group intramolecular transferase of sugar phosphate that can perform the phosphate group intramolecular transfer of sugar phosphate in a test tube and is stable to heat or the like can be provided. As a result, a novel sugar phosphate intramolecular transfer of the phosphate group became possible. On the other hand, sugar phosphate functions as a donor necessary for sugar nucleotide synthesis that functions as a sugar donor for glycosynthesis of glycoproteins, glycolipids, and polysaccharides. In recent years, it has been attracting attention as being closely related to cellular immunity and the like, and the present invention contributes extremely greatly in the development of these studies.

以下に、本願発明を具体的に説明する。
本発明で使用した超好熱古細菌は、好酸性好気性超好熱古細菌スルフォロバス、トーコーダイイ(JCM登録番号JCM10545)である。本超好熱古細菌の全ゲノム情報から本酵素活性を示すと推定した遺伝子領域を、PCR反応で増幅・抽出し、蛋白質発現プラスミドpET28aに挿入後、そのプラスミドにより形質転換した大腸菌を用いて本酵素の生産をおこなった。生産された酵素は加熱処理およびカラムクロマトグラムで単離精製した。精製された酵素は分子量が約50,000の蛋白質でマンノース一燐酸、グルコース一燐酸及びグルコース六燐酸の燐酸基分子内転移活性を有する酵素であることが判明した。
この酵素は50mM MOPS緩衝液(pH7.6)中で、80℃30分以上の加熱後も活性を有し、高い耐熱性を示した。
この好酸性好気性超好熱古細菌スルフォロバス、トーコーダイイが有するPMM/PGM (STPMM/PGM) のアミノ酸配列およびその遺伝子DNA(ST0242)の塩基配列を、それぞれ配列表の配列番号1および2に示す。
Below, this invention is demonstrated concretely.
The hyperthermophilic archaea used in the present invention is an acidophilic aerobic hyperthermophilic archaeon sulforobes, Toko Daii (JCM registration number JCM10545). The gene region estimated to show this enzyme activity from the whole genome information of this hyperthermophilic archaea was amplified and extracted by PCR reaction, inserted into the protein expression plasmid pET28a, and then transformed into this plasmid using E. coli transformed with that plasmid. Enzyme production was performed. The produced enzyme was isolated and purified by heat treatment and column chromatogram. The purified enzyme was found to be a protein having a molecular weight of about 50,000 and having phosphogroup intramolecular transfer activity of mannose monophosphate, glucose monophosphate and glucose hexaphosphate.
This enzyme was active in 50 mM MOPS buffer (pH 7.6) even after heating at 80 ° C. for 30 minutes or more, and showed high heat resistance.
The amino acid sequence of PMM / PGM (STPMM / PGM) possessed by the acidophilic aerobic hyperthermophilic archaea Sulfolobus and Tokodaii and the base sequence of the gene DNA (ST0242) are shown in SEQ ID NOs: 1 and 2, respectively.

本発明における酵素は、上記配列番号1に示されるアミノ酸配列を有するもののみに限定されず、該アミノ酸配列において、1以上のアミノ酸残基が欠失、置換、挿入又は付加されたアミノ酸配列であっても、このアミノ酸配列を有する蛋白質が、糖燐酸化合物燐酸基分子内転移活性を示すものも含む。また、本発明のこれら酵素遺伝子DNAについても、上記同配列番号2に示す塩基配列を有するもののみに限定されず、上記アミノ酸配列をコードするものを包含する。さらに上記配列番号2に示されるDNAにストリンジェントな条件下でハイブリダイズし、かつ糖燐酸化合物燐酸基分子内転移活性を有する蛋白質をコードするDNAも包含する The enzyme in the present invention is not limited to the one having the amino acid sequence shown in SEQ ID NO: 1 above, and is an amino acid sequence in which one or more amino acid residues are deleted, substituted, inserted or added in the amino acid sequence. However, the protein having this amino acid sequence includes those showing sugar phosphate compound phosphate group intramolecular transfer activity. In addition, these enzyme gene DNAs of the present invention are not limited to those having the base sequence shown in SEQ ID NO: 2 but include those encoding the amino acid sequence. Furthermore, DNA that hybridizes to the DNA shown in SEQ ID NO: 2 under stringent conditions and encodes a protein having a transphosphate activity of a phosphate group phosphoric acid group is also included .

本発明の酵素を得るには、通常の遺伝子工学的手法が適用でき、上記酵素遺伝子DNAを、例えばpET28a、pHY481等の蛋白質発現プラスミドベクター等に形質転換し、該形質転換体を培地で培養し、培養物、培養処理物あるいはこれら培養物から分離回収された形質転換体から、酵素を通常の蛋白質精製手段により精製し単離する。上記宿主細胞としては、大腸菌・枯草菌等が利用可能である。   In order to obtain the enzyme of the present invention, ordinary genetic engineering techniques can be applied. The enzyme gene DNA is transformed into a protein expression plasmid vector such as pET28a or pHY481, and the transformant is cultured in a medium. The enzyme is purified and isolated from the culture, culture-treated product, or transformant separated and recovered from these cultures by conventional protein purification means. As the host cell, Escherichia coli, Bacillus subtilis and the like can be used.

本発明においては、さらにこの酵素を用いて、燐酸基分子内転移した糖燐酸化合物を合成するが、この合成においては、糖六燐酸を含有する溶液に該酵素を添加し、反応温度60〜95℃で反応させて糖一燐酸を得る。また、糖一燐酸を含有する溶液に該酵素を添加し、反応温度60〜95℃で反応させて糖六燐酸を得る。
糖六燐酸としては、例えば、グルコース六燐酸等が挙げられ、糖一燐酸としては、マンノース一燐酸、グルコース一燐酸等が挙げられる。
In the present invention, this enzyme is further used to synthesize a phosphophosphate compound having a phosphate group intramolecularly transferred. In this synthesis, the enzyme is added to a solution containing saccharide hexaphosphate, and the reaction temperature is 60 to 95. Reaction is carried out at 0 ° C. to obtain sugar monophosphate. In addition, the enzyme is added to a solution containing sugar monophosphate and reacted at a reaction temperature of 60 to 95 ° C. to obtain sugar hexaphosphate.
Examples of the sugar hexaphosphate include glucose hexaphosphate, and examples of the sugar monophosphate include mannose monophosphate, glucose monophosphate, and the like.

この反応式として、グルコース六燐酸からグルコース一燐酸を合成する場合について以下に示す。
This reaction formula is shown below for the synthesis of glucose monophosphate from glucose hexaphosphate.

また、この反応においては、上記精製した酵素のみならず、粗酵素であってもよい。例えば、宿主として枯草菌等分泌型の系を用いる場合には、培養液中に本酵素が生成蓄積され、大腸菌等の非分泌型の系を用いる場合には、菌体内に生成されるので、本酵素を含有する培養液あるいはその処理物、もしくは菌体破砕物等の培養処理物を用いて、糖燐酸を合成してもよい。
以下に、本発明の実施例を示すが、本発明実施例により限定されるものではない。
In this reaction, not only the purified enzyme but also a crude enzyme may be used. For example, when a secretory system such as Bacillus subtilis is used as a host, the enzyme is produced and accumulated in the culture solution, and when a non-secretory system such as Escherichia coli is used, it is produced in the bacterial body. Sugar phosphate may be synthesized using a culture solution containing the present enzyme, a processed product thereof, or a cultured product such as a crushed bacterial cell.
Examples of the present invention will be shown below, but the present invention is not limited to the examples.

[実施例1]
糖燐酸化合物燐酸基分子内転移酵素の製造
(1) 菌の培養
好酸性好気性超好熱性古細菌スルフォロバス、トーコーダイイJCM10545は次の方法で培養した。
1.3g の(NH4)2SO4、0.28gのKH2PO4、0.25gのMgSO4・7H2O、0.07gのCaCl2・2H2O、0.02gのFeCl3・6H2O、1.8mgのMnCl2・4H2O、4.5mgのNa2B4O7・10H2O、0.22mgのZnSO4・7H2O、0.05mgのCuCl2・2H2O、0.03mgのNa2MoO4・2H2O、0.03mgのVoSO4・xH2O、0.01mgのCoSO4・7H2O、1.0gの酵母エキスを1リッターの蒸留水に溶かし、この溶液のpHを3.5に10規定H2SO4溶液で調製した。加圧殺菌した後、JCM10545を植菌した。この培養液を80℃で1〜2日培養し、その後遠心分離し集菌した。
[Example 1]
Production of sugar phosphate compound phosphate group intramolecular transferase (1) Bacterial culture The acidophilic aerobic superthermophilic archaeon sulforobes, Tokodaii JCM10545 were cultured by the following method.
1.3 g of (NH 4 ) 2 SO 4 , 0.28 g of KH 2 PO 4 , 0.25 g of MgSO 4 .7H 2 O, 0.07 g of CaCl 2 .2H 2 O, 0.02 g of FeCl 3 .6H 2 O, 1.8 mg MnCl 2 4H 2 O, 4.5 mg Na 2 B 4 O 7 · 10H 2 O, 0.22 mg ZnSO 4 · 7H 2 O, 0.05 mg CuCl 2 · 2H 2 O, 0.03 mg Na 2 MoO 4・ 2H 2 O, 0.03 mg VoSO 4 xH 2 O, 0.01 mg CoSO 4 .7H 2 O, 1.0 g yeast extract were dissolved in 1 liter of distilled water, and the pH of this solution was adjusted to 3.5 and 10N H 2 Prepared with SO 4 solution. After sterilization under pressure, JCM10545 was inoculated. This culture solution was cultured at 80 ° C. for 1-2 days, and then centrifuged to collect bacteria.

(2) 染色体DNAの調製
JCM10545の染色体DNAは以下の方法により調製した。
培養終了後5,000rpm、10分間の遠心分離により菌体を集菌する。菌体を10mM EDTA(pH 6.0)溶液で洗浄後、50mM Tris/HCl-50mM EDTA(pH8.5)溶液を加えて細胞を溶解させる。さらに、0.5% Na-lauroylsarcosinate、1mg/ml プロテアーゼKとなるように各々を加えた後、50℃で3時間保温する。フェノール処理を3回行った後、溶液を10mM EDTA (pH8.0)溶液に対して透析する。37℃で30分間のRNaseによるRNAの分解後、フェノールクロロフォルム溶液で処理した後、10mM Tris-1mM EDTA(pH8.0)で透析を行う。
(2) Preparation of chromosomal DNA
The chromosomal DNA of JCM10545 was prepared by the following method.
After culturing, the cells are collected by centrifugation at 5,000 rpm for 10 minutes. The cells are washed with 10 mM EDTA (pH 6.0) solution, and then 50 mM Tris / HCl-50 mM EDTA (pH 8.5) solution is added to lyse the cells. Furthermore, 0.5% Na-lauroylsarcosinate and 1 mg / ml protease K are added to each, and then the mixture is incubated at 50 ° C. for 3 hours. After three phenol treatments, the solution is dialyzed against 10 mM EDTA (pH 8.0) solution. After degradation of RNA with RNase at 37 ° C. for 30 minutes, treatment with phenol chloroform solution is followed by dialysis against 10 mM Tris-1 mM EDTA (pH 8.0).

(3) 染色体DNAを含むショットガンライブラリークローンの作製
上記(2)の工程で得られた染色体DNAを超音波処理することにより断片化した後、アガロースゲル電気泳動により1kb及び2kb長のDNA断片を回収した。この断片をプラスミドベクターpUC118のHincII制限酵素部位に挿入したショットガンライブラリーを作製した。各ショットガンクローンの末端塩基配列を、ABI社製自動塩基配列読み取り装置377を用いて解読していった。
(3) Preparation of shotgun library clones containing chromosomal DNA Fragmentation of the chromosomal DNA obtained in step (2) above by sonication followed by 1 kb and 2 kb long DNA fragments by agarose gel electrophoresis Was recovered. A shotgun library was prepared by inserting this fragment into the HincII restriction enzyme site of plasmid vector pUC118. The terminal base sequence of each shotgun clone was decoded using an automatic base sequence reader 377 manufactured by ABI.

(4) STPMM/PGM遺伝子の同定
上記手法で決定された好酸性好気性超好熱古細菌スルフォロバス、トーコーダイイのゲノム塩基配列の大型計算機による解析を行い、phosphomannomutase/phosphoglucomutase酵素の機能を含むであろう蛋白質をコードする遺伝子(ST0242)を同定した。この超好熱性古細菌スルフォロバス、トーコーダイイのST0242遺伝子の開始コドンはATGで、455アミノ酸残基の蛋白質をコードする遺伝子として同定された。
(4) Identification of the STPMM / PGM gene The genome sequence of the acidophilic aerobic hyperthermophilic archaeon Sulfolobus and Tokodaii determined by the above method will be analyzed by a large computer and may contain the functions of phosphomannomutase / phosphoglucomutase enzymes. A gene encoding the protein (ST0242) was identified. The start codon of the ST0242 gene of this hyperthermophilic archaeal sulfoborobus, Tokodaii was ATG, and was identified as a gene encoding a protein of 455 amino acid residues.

(5)発現プラスミドの構築
構造遺伝子領域の前後に制限酵素(NdeIとXhoI)サイトを構築する目的でDNAプライマーを合成し、PCRでその遺伝子の前後に制限酵素サイトを導入した。
(5) Construction of expression plasmid DNA primers were synthesized for the purpose of constructing restriction enzyme (NdeI and XhoI) sites before and after the gene region, and restriction enzyme sites were introduced before and after the gene by PCR.

Upper primer、
5’- TTAATTCCATATGGGTAAGCTTTTTGGTACTGAC -3’ (配列番号3)
(下線部はNdeIサイトを示す)
Lower primer、
5’- ATATACTCGAGTCATTTACCCTCTACAATC -3’ (配列番号4)
(下線部はXhoIサイトを示す)
Upper primer,
5'- TTAATTC CATATG GGTAAGCTTTTTGGTACTGAC -3 '(SEQ ID NO: 3)
(Underlined indicates NdeI site)
Lower primer,
5'- ATATA CTCGAG TCATTTACCCTCTACAATC -3 '(SEQ ID NO: 4)
(Underlined portion indicates XhoI site)

Upper primerとLower primerを組み合わせたPCR反応後、制限酵素(NdeIとXhoI)で完全分解(37℃で2時間)した後、その構造遺伝子領域断片を精製した。
制限酵素NdeIとXhoIで切断後精製したpET28a(Novagen社製)と上記の構造遺伝子(ST0242)領域断片とT4リガーゼを用いて16℃、2時間反応させることによって連結した。連結したDNAの一部を大腸菌DH5αのコンピテントセルに導入し形質転換体のコロニーを得た。得られたコロニーからプラスミドをQIAprep Spin Miniprep Kit(QIAGEN社製)で精製し、塩基配列を確認して発現プラスミド、pET28a/ST0242を得た。発現プラスミドpET28a/ST0242を用いるとSTPMM/PGMはN末端にヒスチジンタグが付加された融合蛋白質として生産される。
After the PCR reaction combining the upper primer and the lower primer, complete digestion with restriction enzymes (NdeI and XhoI) (2 hours at 37 ° C.), and then the structural gene region fragment was purified.
PET28a (manufactured by Novagen) purified after digestion with restriction enzymes NdeI and XhoI, the above structural gene (ST0242) region fragment, and T4 ligase were used to react at 16 ° C. for 2 hours. A part of the ligated DNA was introduced into competent cells of E. coli DH5α to obtain transformant colonies. From the obtained colonies, the plasmid was purified by QIAprep Spin Miniprep Kit (manufactured by QIAGEN), and the nucleotide sequence was confirmed to obtain an expression plasmid, pET28a / ST0242. When the expression plasmid pET28a / ST0242 is used, STPMM / PGM is produced as a fusion protein with a histidine tag added to the N-terminus.

(6)組み換え遺伝子の発現
大腸菌 BL21-CodonPlus(DE3)-RIL、(Novagen社製)のコンピテントセルを融解して、ファルコンチューブに0.1ml移す。その中に上記の発現プラスミド10ng分に相当する溶液を加え氷中に30分間放置した後、42℃でヒートショックを30秒間おこない、そこにSOC培地0.9mlを加え、37℃で1時間振とう培養する。その後、カナマイシンを含むLB寒天プレート上に適量まき、37℃で一晩培養し、形質転換体大腸菌BL21-CodonPus(DE3)-RIL/pET28a/ST0242を得た。
(6) Recombinant gene expression Thaw E. coli BL21-CodonPlus (DE3) -RIL (Novagen) competent cells and transfer 0.1 ml to a falcon tube. A solution corresponding to 10 ng of the above expression plasmid was added to the solution and allowed to stand in ice for 30 minutes. Then, heat shock was performed at 42 ° C. for 30 seconds, 0.9 ml of SOC medium was added thereto, and the mixture was shaken at 37 ° C. for 1 hour. Incubate. Thereafter, an appropriate amount was sprinkled on an LB agar plate containing kanamycin and cultured at 37 ° C. overnight to obtain transformant E. coli BL21-CodonPus (DE3) -RIL / pET28a / ST0242.

当該形質転換体をカナマイシン含有LB培地(2リットル)中で一晩37℃において振とう培養した後、IPTG(Isopropyl-β-D-thiogalacopyranoside)を1mMになるように加え、さらに30℃で5時間振とう培養した。培養後、遠心分離(6000rpm、20分間)により集菌をおこなった。   The transformant was cultured in a kanamycin-containing LB medium (2 liters) with shaking overnight at 37 ° C., and then IPTG (Isopropyl-β-D-thiogalacopyranoside) was added to 1 mM, and further at 30 ° C. for 5 hours. Cultured with shaking. After culture, the cells were collected by centrifugation (6000 rpm, 20 minutes).

(7)STPMM/PGM酵素の精製
2リットル培養液から集菌した菌体に2倍量の20mM燐酸ナトリウム塩緩衝液(pH7.4)、菌体1g あたり2mgのLysozyme(Wako社製)、0.1μgのDNase I(Takara社製)を加え懸濁液を得た。氷上で1時間放置後、超音波破砕し、遠心分離(20,000 x g、30分間)により上清液を得た。得られた上清液を80℃で30分間加熱した後、遠心分離(20,000 x g、30分間)により上清液を得た。この上清液を20mM燐酸ナトリウム塩緩衝液(pH7.4)0.5M NaClで平衡化したHiTrap phenyl sepharose(ファルマシア社製)カラムに吸着させ、同緩衝液中のイミダゾール濃度を0.0Mから0.5Mに増加させることにより目的蛋白質の溶出を行った。さらに、Amicon(R) Ultra(Millipore社製)で濃縮し、50mM MOPS緩衝液(pH7.6)に緩衝液の交換を行い、精製サンプルとした。
(7) Purification of STPMM / PGM enzyme
Bacteria collected from 2 liter culture solution are doubled in 20 mM sodium phosphate buffer (pH 7.4), 2 mg of Lysozyme (Wako) per gram of cell, 0.1 μg DNase I (Takara) Was added to obtain a suspension. After standing for 1 hour on ice, the mixture was sonicated and centrifuged (20,000 xg, 30 minutes) to obtain a supernatant. The obtained supernatant was heated at 80 ° C. for 30 minutes, and then centrifuged (20,000 × g, 30 minutes) to obtain a supernatant. This supernatant was adsorbed onto a HiTrap phenyl sepharose (Pharmacia) column equilibrated with 20 mM sodium phosphate buffer (pH 7.4) 0.5 M NaCl, and the imidazole concentration in the buffer was changed from 0.0 M to 0.5 M. The target protein was eluted by increasing it. Further, it was concentrated with Amicon® Ultra (manufactured by Millipore), and the buffer solution was exchanged with 50 mM MOPS buffer (pH 7.6) to obtain a purified sample.

[実施例2] グルコース一燐酸の燐酸基分子内転移
(1) 糖燐酸化合物燐酸基分子内転移反応
50mM MOPS緩衝液(pH7.6)、2mM MgSO4、10μM グルコース 1,6-ビス燐酸、1mM NADP(ニコチンアミドアデニンジヌクレオチド燐酸酸化型)、1unit グルコース六燐酸脱水素酵素、0.4mMグルコース一燐酸、からなる酵素反応溶液2,000μl中に実施例1で得られた精製酵素3.5μgを加えた。この酵素反応液を65℃で保温することにより、反応させた。この反応により、グルコース一燐酸の燐酸基が分子内転移しグルコース六燐酸が生成する。
[Example 2] Phosphorus group intramolecular transfer of glucose monophosphate (1) Phosphoric acid compound phosphoric group intramolecular transfer reaction
50 mM MOPS buffer (pH 7.6), 2 mM MgSO 4 , 10 μM glucose 1,6-bisphosphate, 1 mM NADP (nicotinamide adenine dinucleotide phosphate oxidation type), 1 unit glucose hexaphosphate dehydrogenase, 0.4 mM glucose monophosphate, 3.5 μg of the purified enzyme obtained in Example 1 was added to 2,000 μl of the enzyme reaction solution consisting of The enzyme reaction solution was kept at 65 ° C. for reaction. By this reaction, the phosphate group of glucose monophosphate is transferred intramolecularly to produce glucose hexaphosphate.

(2) 糖燐酸化合物燐酸基分子内転移反応の測定
本酵素を用いた反応の反応生成物であるグルコース六燐酸をグルコース六燐酸脱水素酵素により六燐酸グルコノラクトンに変換する際に、副反応としてニコチンアミドアデニンジヌクレオチド燐酸(NADP)が酸化型から還元型へ変化する。その変化量を340nmにおける吸光度の変化として紫外・可視分光光度計を用いて測定した。(非特許文献4参照)NADPの酸化型と還元型では波長に依存した吸光度プロファイルが全く異なる。特に340nmの吸光度が全く異なる事から、この波長の吸光度を利用して生成された還元型NADPの量を定量する。
そこで、(1)で反応させたサンプルに関しても、紫外・可視分光光度計による340nmの吸光度を用いて(1)の反応の解析を行った。
(2) Measurement of sugar phosphate compound phosphate group intramolecular transfer reaction When converting glucose hexaphosphate, which is a reaction product of the reaction using this enzyme, to hexaphosphate gluconolactone by glucose hexaphosphate dehydrogenase, side reaction As nicotinamide adenine dinucleotide phosphate (NADP) changes from oxidized to reduced. The amount of change was measured using an ultraviolet / visible spectrophotometer as a change in absorbance at 340 nm. (See Non-Patent Document 4) The NADP oxidized and reduced forms have completely different absorbance profiles depending on the wavelength. In particular, since the absorbance at 340 nm is completely different, the amount of reduced NADP produced using the absorbance at this wavelength is quantified.
Therefore, for the sample reacted in (1), the reaction in (1) was analyzed using absorbance at 340 nm by an ultraviolet / visible spectrophotometer.

Klingenberg M “Methods of Enzymatic Analysis” (1974) Weinheim-Academic Press, New York, vol. 4,pp. 2045.Klingenberg M “Methods of Enzymatic Analysis” (1974) Weinheim-Academic Press, New York, vol. 4, pp. 2045.

[実施例3] マンノース一燐酸の燐酸基分子内転移
(1)糖燐酸化合物燐酸基分子内転移反応
50mM MOPS緩衝液(pH7.6)、2mM MgSO4、10μM グルコース 1,6-ビス燐酸、1mM NADP、1unit グルコース六燐酸脱水素酵素、1unit マンノース六燐酸異性化酵素、1unit グルコース六燐酸異性化酵素、0.4mMマンノース一燐酸、からなる酵素反応溶液2,000μl中に実施例1で得られた精製酵素7.0μgを加えた。この酵素反応液を65℃で保温することにより、反応させた。この反応により、マンノース一燐酸の燐酸基が分子内転移しマンノース六燐酸が生成する。
[Example 3] Phosphorus group intramolecular transfer of mannose monophosphate (1) Sugar phosphate compound Phosphoric group intramolecular transfer reaction
50 mM MOPS buffer (pH 7.6), 2 mM MgSO 4 , 10 μM glucose 1,6-bisphosphate, 1 mM NADP, 1 unit glucose hexaphosphate dehydrogenase, 1 unit mannose hexaphosphate isomerase, 1 unit glucose hexaphosphate isomerase, 7.0 μg of the purified enzyme obtained in Example 1 was added to 2,000 μl of an enzyme reaction solution consisting of 0.4 mM mannose monophosphate. The enzyme reaction solution was kept at 65 ° C. for reaction. By this reaction, the phosphate group of mannose monophosphate is transferred intramolecularly to produce mannose hexaphosphate.

(2)糖燐酸化合物燐酸基分子内転移反応の測定
本酵素を用いた反応の反応生成物であるマンノース六燐酸をマンノース六燐酸異性化酵素によりフルクトース六燐酸に変換し、フルクトース六燐酸をグルコース6燐酸異性化酵素によりグルコース六燐酸に変換し、グルコース六燐酸脱水素酵素により六燐酸グルコノラクトンに変換する際に、副反応としてニコチンアミドアデニンジヌクレオチド燐酸(NADP)が酸化型から還元型へ変化する。その変化量を340nmにおける吸光度の変化として紫外・可視分光光度計を用いて測定した。(非特許文献4参照)NADPの酸化型と還元型では波長に依存した吸光度プロファイルが全く異なる。特に340nmの吸光度が全く異なる事から、この波長の吸光度を利用して生成された還元型NADPの量を定量する。
そこで、(1)で反応させたサンプルに関しても、紫外・可視分光光度計による340nmの吸光度を用いて(1)の反応の解析を行った。
(2) Measurement of sugar phosphate compound phosphate group intramolecular transfer reaction Mannose hexaphosphate, which is a reaction product of the reaction using this enzyme, is converted to fructose hexaphosphate by mannose hexaphosphate isomerase, and fructose hexaphosphate is converted to glucose 6 When converted to glucose hexaphosphate by phosphate isomerase and converted to hexaphosphate gluconolactone by glucose hexaphosphate dehydrogenase, nicotinamide adenine dinucleotide phosphate (NADP) changes from oxidized to reduced as a side reaction To do. The amount of change was measured using an ultraviolet / visible spectrophotometer as a change in absorbance at 340 nm. (See Non-Patent Document 4) The NADP oxidized and reduced forms have completely different absorbance profiles depending on the wavelength. In particular, since the absorbance at 340 nm is completely different, the amount of reduced NADP produced using the absorbance at this wavelength is quantified.
Therefore, for the sample reacted in (1), the reaction in (1) was analyzed using absorbance at 340 nm by an ultraviolet / visible spectrophotometer.

[実施例4] グルコース六燐酸の燐酸基分子内転移
(1) 糖燐酸化合物燐酸基分子内転移反応
50mM MOPS緩衝液(pH7.6)、2mM MgSO、10μl グルコース1,6ビス燐酸、0.4mM TTP、2.5μg スルフォロバス・トーコーダイイ由来のRmlA(glucose-1-phosphate thymidylyltransferase )、1mMグルコース六燐酸からなる酵素反応溶液2,000μl中に、実施例1で得られた精製酵素2.5μgを加えた。この酵素反応液を80℃で30分間保温することにより反応させた。反応後、100μlの500mM 燐酸二水素カリウム溶液を加えることにより反応を停止させた。この反応により、グルコース六燐酸の燐酸基が分子内転移しグルコース一燐酸が生成する。
[Example 4] Phosphorus group intramolecular transfer of glucose hexaphosphate (1) Phosphoric acid group phosphoric acid group intramolecular transfer reaction
Enzyme consisting of 50 mM MOPS buffer (pH 7.6), 2 mM MgSO 4 , 10 μl glucose 1,6 bisphosphate, 0.4 mM TTP, 2.5 μg Sulphorobus tokodaiii RmlA (glucose-1-phosphate thymidylyltransferase), 1 mM glucose hexaphosphate 2.5 μg of the purified enzyme obtained in Example 1 was added to 2,000 μl of the reaction solution. The enzyme reaction solution was allowed to react at 80 ° C. for 30 minutes. After the reaction, the reaction was stopped by adding 100 μl of 500 mM potassium dihydrogen phosphate solution. By this reaction, the phosphate group of glucose hexaphosphate is transferred intramolecularly to produce glucose monophosphate.

(2)糖燐酸化合物燐酸基分子内転移反応の測定
HPLCを用いて、反応性生物であるグルコース一燐酸をRmlAによりTDP-グルコースに変換し、TDP-グルコースの量をヌクレオチド部分の紫外線の吸収を目安に測定した。図1に示すように、標準物質であるTTPおよびTDP-グルコースは、HPLCにおいて溶出位置がまったく異なる。そこで、上記(1)で反応させたサンプルに関しても、HPLCで同様の解析をおこなった。その結果、図2に示すように、確かにTDP-グルコースが見出されたことから、該酵素は、グルコース六燐酸の分子内燐酸基を転移させたグルコース一燐酸を確かに生成している事が確認された。
(2) Measurement of sugar-phosphate compound phosphate group intramolecular transfer reaction
Using HPLC, glucose monophosphate, which is a reactive organism, was converted to TDP-glucose by RmlA, and the amount of TDP-glucose was measured based on the absorption of ultraviolet light at the nucleotide moiety. As shown in FIG. 1, TTP and TDP-glucose which are standard substances have completely different elution positions in HPLC. Therefore, the same analysis was performed on the sample reacted in (1) above by HPLC. As a result, as shown in FIG. 2, since TDP-glucose was surely found, the enzyme surely produced glucose monophosphate having the intramolecular phosphate group of glucose hexaphosphate transferred. Was confirmed.

[実施例5] 酵素の性質
(1) 蛋白質化学的性質
当該酵素は上記の精製プロセスで完全に精製され、SDS-PAGEで分子量約50KDaの単一バンドを示した(図3)。当該酵素は455アミノ酸残基より構成され(配列番号1)、そのアミノ酸配列から予測された分子量は50,102 Daであった。また、シュードモナスPMM/PGMとの相同性は低いが、活性中心、金属イオン結合、糖認識に関与するモチーフが保存されていた(図4)。
[Example 5] Properties of enzyme (1) Protein chemical properties The enzyme was completely purified by the above purification process, and showed a single band with a molecular weight of about 50 KDa by SDS-PAGE (Fig. 3). The enzyme was composed of 455 amino acid residues (SEQ ID NO: 1), and the molecular weight predicted from the amino acid sequence was 50,102 Da. Moreover, although the homology with Pseudomonas PMM / PGM is low, the active center, the metal ion bond, and the motif involved in sugar recognition were preserve | saved (FIG. 4).

(2)STPGM/PMMの糖燐酸の燐酸基分子内転移活性
実施例1により精製された該酵素を用いて、グルコース一燐酸及びマルトース一燐酸が有する燐酸基の分子内転移活性を実施例3,4に従って測定した。その結果、図5に有るように、基質であるグルコース一燐酸の濃度に依存した活性が65℃で検出された。また、図6に有るように、同様の活性がマンノース一燐酸を基質としたときにも検出されたことから、該酵素は耐熱性PGM/PMM活性を有する事が確認された。また、グルコース六燐酸を基質とした場合にも、実施例4の手法により、確かに分子内燐酸基が一位に転移している事が確認された。
(2) Phosphate group intramolecular transfer activity of sugar phosphate of STPGM / PMM Using the enzyme purified in Example 1, the intramolecular transfer activity of the phosphate group possessed by glucose monophosphate and maltose monophosphate was obtained in Example 3. Measured according to 4. As a result, as shown in FIG. 5, an activity depending on the concentration of glucose monophosphate as a substrate was detected at 65 ° C. Further, as shown in FIG. 6, since the same activity was detected when mannose monophosphate was used as a substrate, it was confirmed that the enzyme had thermostable PGM / PMM activity. In addition, even when glucose hexaphosphate was used as a substrate, it was confirmed by the method of Example 4 that the intramolecular phosphate group was certainly transferred to the first position.

(2) 金属イオン依存性
50mM MOPS緩衝液、10μM グルコース1,6ビス燐酸、1mM NADP酸化型、1unit グルコース六燐酸脱水素酵素、0.4mM グルコース一燐酸からなる酵素反応溶液2,000μl中の2mMの金属イオンを、マグネシウム、コバルト、マンガン、ニッケル、カルシウムに変化させた酵素反応溶液中に、実施例1で得られた精製酵素3.5μgを加えた。この酵素反応溶液を65℃で10分間反応させて340nmの吸光度の計時変化を実施例の2にあるように紫外・可視分光光度計で測定した。表1に示すように、本酵素の活性はマグネシウムが存在する条件において最も高い活性を示した。
(2) Metal ion dependence
50 mM MOPS buffer, 10 μM glucose 1,6 bisphosphate, 1 mM NADP oxidized, 1 unit glucose hexaphosphate dehydrogenase, 0.4 mM glucose monophosphate in an enzyme reaction solution of 2,000 μl, 2 mM metal ions, magnesium, cobalt, 3.5 μg of the purified enzyme obtained in Example 1 was added to the enzyme reaction solution changed to manganese, nickel, and calcium. This enzyme reaction solution was allowed to react at 65 ° C. for 10 minutes, and the change in absorbance at 340 nm was measured with an ultraviolet / visible spectrophotometer as in Example 2. As shown in Table 1, the activity of this enzyme showed the highest activity in the presence of magnesium.

TTP及びTDP-グルコースのHPLCでの分離・溶出パターンを示す図である。It is a figure which shows the separation / elution pattern in HPLC of TTP and TDP-glucose. TDP-グルコース生成の経時変化を示す図である。It is a figure which shows the time-dependent change of TDP-glucose production. 精製した該酵素のポリアクリルアミドゲル電気泳動パターンを示す図である。It is a figure which shows the polyacrylamide gel electrophoresis pattern of this purified enzyme. 保存されている活性中心等のモチーフ配列Conserved motifs such as active centers グルコース一燐酸を基質とした場合の波長340nmにおける吸光度の経時変化を示す図である。It is a figure which shows the time-dependent change of the light absorbency in wavelength 340nm when glucose monophosphate is used as a substrate. マンノース一燐酸を基質とした場合の波長340nmにおける吸光度の経時変化を示す図である。It is a figure which shows the time-dependent change of the light absorbency in wavelength 340nm when mannose monophosphate is used as a substrate.

Claims (6)

配列番号1に記載のアミノ酸配列からなる蛋白質、あるいは、配列番号1に記載のアミノ酸配列において1乃至数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列を有し、かつ糖燐酸化合物における燐酸基分子内転移活性を有する蛋白質を含むことを特徴とする、グルコース六燐酸、マンノース六燐酸、グルコース一燐酸及びマンノース一燐酸から選択されるいずれかの糖燐酸化合物の燐酸基分子内転移用酵素製剤A protein comprising the amino acid sequence set forth in SEQ ID NO: 1, or an amino acid sequence in which one to several amino acid residues have been deleted, substituted, inserted or added in the amino acid sequence set forth in SEQ ID NO: 1; characterized in that it comprises a white matter that have a phosphoric acid group intramolecular transfer activity in phosphate compounds, phosphate glucose six phosphate, mannose six phosphate, or sugar phosphate compound selected from glucose monophosphate and mannose monophosphate Enzyme preparation for group intramolecular transfer . 糖燐酸化合物における燐酸基分子内転移活性を有する蛋白質をコードし、下記(1)〜(3)のいずれかに記載の塩基配列を含むDNAが発現可能に制御されている組換えDNAを含むことを特徴とする、グルコース六燐酸、マンノース六燐酸、グルコース一燐酸及びマンノース一燐酸から選択されるいずれかの糖燐酸化合物の燐酸基分子内転移用酵素製剤製造のためのヌクレオチド製剤;
(1)配列番号1に記載のアミノ酸配列からなる蛋白質をコードするDNA、
(2)配列番号1に記載のアミノ酸配列に1乃至数個のアミノ酸残基が欠失、置換、挿入または付加されたアミノ酸配列を有し、かつ糖燐酸化合物における燐酸基分子内転移活性を有する蛋白質をコードするDNA、
(3)配列番号2に記載の塩基配列を有するDNA、もしくは当該DNAとストリンジェントな条件下でハイブリダイズし、かつ糖燐酸化合物における燐酸基分子内転移活性を有する蛋白質をコードするDNA
It contains a recombinant DNA that encodes a protein having a phosphate group intramolecular transfer activity in a sugar phosphate compound and that is controlled so that the DNA containing the base sequence described in any one of (1) to (3) below can be expressed. A nucleotide preparation for producing an enzyme preparation for transferring a phosphate group of a sugar phosphate compound selected from glucose hexaphosphate, mannose hexaphosphate, glucose monophosphate and mannose monophosphate;
(1) DNA encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 1,
(2) It has an amino acid sequence in which one to several amino acid residues are deleted, substituted, inserted or added to the amino acid sequence shown in SEQ ID NO: 1, and has a phosphate group intramolecular transfer activity in a sugar phosphate compound. DNA encoding a protein,
(3) A DNA having the base sequence of SEQ ID NO: 2 or a DNA that hybridizes with the DNA under stringent conditions and encodes a protein having a phosphate group intramolecular transfer activity in a sugar phosphate compound .
請求項2に記載のヌクレオチド製剤が導入された形質転換体、又はその培養液もしくはその処理物を含むことを特徴とする、グルコース六燐酸、マンノース六燐酸、グルコース一燐酸及びマンノース一燐酸から選択されるいずれかの糖燐酸化合物の燐酸基分子内転移用酵素製剤。It is selected from glucose hexaphosphate, mannose hexaphosphate, glucose monophosphate and mannose monophosphate, comprising a transformant introduced with the nucleotide preparation according to claim 2, or a culture solution or processed product thereof. An enzyme preparation for intramolecular transfer of a phosphate group of any sugar phosphate compound. 請求項2に記載のヌクレオチド製剤が導入された形質転換体を培地に培養し、培養物から採取された糖燐酸化合物における燐酸基分子内転移活性を有する蛋白質を含むことを特徴とする、グルコース六燐酸、マンノース六燐酸、グルコース一燐酸及びマンノース一燐酸から選択されるいずれかの糖燐酸化合物の燐酸基分子内転移用酵素製剤 Transformants nucleotides formulations described is introduced to claim 2 and culturing, characterized in that it comprises a protein having a phosphoric acid group intramolecular transfer activity in the sugar phosphate compounds taken from the culture, glucose six An enzyme preparation for intramolecular transfer of a phosphate group of any sugar phosphate compound selected from phosphoric acid, mannose hexaphosphate, glucose monophosphate and mannose monophosphate . 糖六燐酸または糖一燐酸に、請求項1、3又は4に記載の酵素製剤を作用させ、それぞれ糖一燐酸または糖六燐酸に変換することを特徴とする、糖燐酸化合物における燐酸基分子内転移体の製造方法であって、前記糖六燐酸がグルコース六燐酸もしくはマンノース六燐酸であり、前記糖一燐酸がグルコース一燐酸もしくはマンノース一燐酸である製造方法A phosphate group molecule in a sugar phosphate compound, wherein the enzyme preparation according to claim 1 , 3 or 4 is allowed to act on sugar hexaphosphate or sugar monophosphate to convert to sugar monophosphate or sugar hexaphosphate, respectively. A method for producing a transfer product , wherein the sugar hexaphosphate is glucose hexaphosphate or mannose hexaphosphate, and the sugar monophosphate is glucose monophosphate or mannose monophosphate . グルコース六燐酸、マンノース六燐酸、グルコース一燐酸及びマンノース一燐酸から選択されるいずれかの糖燐酸化合物に、請求項1、3又は4に記載の酵素製剤を作用させることを特徴とする、前記糖燐酸化合物における1位又は6位の位置の燐酸基に対して、1位と6位との間での分子内転移を起こさせる方法。 Glucose six phosphate, mannose six phosphate, any sugar phosphate compound selected from glucose monophosphate and mannose monophosphate, characterized in that the action of the enzyme preparation according to claim 1, 3 or 4, wherein the sugar A method of causing intramolecular transition between the 1-position and the 6-position with respect to the phosphate group at the 1-position or 6-position in a phosphoric acid compound .
JP2004236321A 2004-08-16 2004-08-16 Thermostable enzymes with phosphate group intramolecular transfer activity in sugar phosphate compounds Expired - Fee Related JP4465448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236321A JP4465448B2 (en) 2004-08-16 2004-08-16 Thermostable enzymes with phosphate group intramolecular transfer activity in sugar phosphate compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236321A JP4465448B2 (en) 2004-08-16 2004-08-16 Thermostable enzymes with phosphate group intramolecular transfer activity in sugar phosphate compounds

Publications (2)

Publication Number Publication Date
JP2006050993A JP2006050993A (en) 2006-02-23
JP4465448B2 true JP4465448B2 (en) 2010-05-19

Family

ID=36028854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236321A Expired - Fee Related JP4465448B2 (en) 2004-08-16 2004-08-16 Thermostable enzymes with phosphate group intramolecular transfer activity in sugar phosphate compounds

Country Status (1)

Country Link
JP (1) JP4465448B2 (en)

Also Published As

Publication number Publication date
JP2006050993A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
WO2002036779A1 (en) Novel glucose dehydrogenase and process for producing the dehydrogenase
US9193958B2 (en) Method of enzymatically synthesizing 3′-phosphoadenosine-5′-phosphosulfate
JP4272231B2 (en) Method for producing chiral hydroxyaldehyde compound
JP4465448B2 (en) Thermostable enzymes with phosphate group intramolecular transfer activity in sugar phosphate compounds
TW201732039A (en) New polyphosphate-dependent glucokinase and method for preparing glucose 6-phosphate using the same
JP4469954B2 (en) Thermostable enzyme having sugar nucleotide synthesis activity and phosphorylated sugar isomerization activity
WO2003072726A2 (en) Nad phosphite oxidoreductase a novel catalyst from bacteria for regeneration of nad(p)h
JP4469958B2 (en) Thermostable enzyme having acetylated amino sugar and acetylated amino sugar nucleotide synthesis activity
KR101694582B1 (en) A novel formaldehyde dehydrogenase and a method for formaldehyde production using the same
JP4224581B2 (en) Thermostable enzyme having sugar nucleotide synthesis activity and DNA encoding the enzyme
JP2009207372A (en) Dehydrogenase for saccharides and method for using the same
Jeon et al. Cloning and characterization of cycloinulooligosaccharide fructanotransferase (CFTase) from Bacillus polymyxa MGL21
KR101411920B1 (en) A novel ribitol dehydrogenase and L-ribulose production using the said enzyme
RU2413766C1 (en) Thermostable alcoholdehydrogenase from archaea thermococcus sibiricus
JP4533990B2 (en) Sugar nucleotide synthase mutant
CN113881728B (en) Preparation method of 7-aminomethyl-7-deazaguanine (PreQ 1)
KR101325057B1 (en) A nadh oxidase mutant improved in stability and activity
JP2005296010A (en) New heat-resistant protein having 2-isopropylmalate synthase activity
KR101479135B1 (en) L-Xylulose production by coupling of NADH oxidase and sorbitol dehydrogenase from Aspergillus flavus
WO2005109995A2 (en) Thermostable gluconate dehydratase and use thereof
JP2017216930A (en) Isomerase for amino sugar phosphate, dna, expression vector, transformant, process for producing isomerase, and process for producing galactosamine-6-phosphate
JP4239046B2 (en) Mutant hexokinase and method for producing the same
JP3762983B2 (en) DNA helicase
KR101479134B1 (en) A novel NADH oxidase from Streptococcus pyogenes and its coupling with L-arabinitol dehydrogenase for L-xylulose production
KR20200111588A (en) Epimerase enzyme of phosphorylated saccharide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees