JP4462858B2 - Automatic adjustment valve device - Google Patents

Automatic adjustment valve device Download PDF

Info

Publication number
JP4462858B2
JP4462858B2 JP2003203423A JP2003203423A JP4462858B2 JP 4462858 B2 JP4462858 B2 JP 4462858B2 JP 2003203423 A JP2003203423 A JP 2003203423A JP 2003203423 A JP2003203423 A JP 2003203423A JP 4462858 B2 JP4462858 B2 JP 4462858B2
Authority
JP
Japan
Prior art keywords
valve
valve device
main valve
pressure
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003203423A
Other languages
Japanese (ja)
Other versions
JP2005048796A (en
Inventor
邦雄 小倉
正博 河本
浩一 政重
研二 高橋
Original Assignee
株式会社横田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社横田製作所 filed Critical 株式会社横田製作所
Priority to JP2003203423A priority Critical patent/JP4462858B2/en
Publication of JP2005048796A publication Critical patent/JP2005048796A/en
Application granted granted Critical
Publication of JP4462858B2 publication Critical patent/JP4462858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、流体輸送管路に設置する自動調整弁装置に関するものであり、より詳しくは、主弁上流側の管路内圧力を自動的に所定値に維持する1次圧力調整弁に関するものである。なお、本明細書中、「水」や「液」の語は流体を総称的に代表するものとする。
【0002】
【従来の技術】
従来から、中高層ビルの空調、冷暖房設備においては、地下に設置された熱交換器によって製造された冷水や温水を、ポンプによって各階の空調機器に循環させることが、一般的に行われている。
その一例として、循環回路が開放回路(回路の一部が大気開放されている)の場合を示したのが図8である。この場合、各階の空調機器101の温度コントロール(空調機器101に付随する開閉弁102の開閉調節)によって循環回路の負荷が変動しても、熱交換器103やポンプ104が定流量で運転できるようにしておくことが必要であり、このため、循環回路の往路107と帰路108の圧力を一定に保つための装備として、往路107と帰路108にそれぞれ1次圧力調整弁を設置することが多い。
【0003】
このうち、往路107側に設置する1次圧力調整弁V’は、ポンプ104の運転中に所定限度を超えた圧力上昇分を循環回路外に逃がして、往路107内の圧力を一定に保つという役割があるので、一般的に「リリーフ弁」とも称されており、一方、帰路108側に設置する1次圧力調整弁Vは、ポンプ104の運転中に各階の空調機器101経過後の帰路108の圧力を一定に保つという役割と共に、ポンプ104の停止時に帰路108中の冷温水が地下の貯液槽110に抜け落ちるのを防止し、ひいてはポンプ104の再起動時の配管ウォーターハンマーを防止するという役割もあるので、一般的に「落水防止弁」とも称されている。
【0004】
従来から一般的に、1次圧力調整弁としては、主弁上流側の管路内圧力(1次圧力)を検知し、例えばニードル弁のような固定的な絞り調節流路で流量を絞りながら作用させたパイロット弁によって、主弁駆動用のピストンやダイヤフラムを作動させる構造のものが広く用いられて来た。
【0005】
従来の1次圧力調整弁の典型的な構成は、図9に示したように、主弁装置Mにおいては、入口流路aと出口流路cとその連通流路中に主弁座4を備えた主弁箱1の内部に、一体的に組み合わされた主弁体5と該主弁体5より大きい受圧面積を持つ主弁駆動部材6とが主弁軸7を介して進退自在に設けられ、主弁駆動部材6は主弁箱の円筒状壁部3に対して滑動自在に嵌装されて、該壁部3及び主弁箱蓋2との間に主弁駆動圧力室dを形成し、そして、主弁上流側圧力が所定値より高くなれば開通し、低くなれば閉鎖するパイロット弁装置Pが付設され、主弁駆動圧力室dは、固定絞り調節弁10を介して主弁上流側の入口流路aに連通されると共に、パイロット弁装置Pを介して主弁下流側の出口流路cに連通されている。パイロット弁装置Pにおいては、受圧板を挟んだ一方には主弁上流側圧力が導入され、反対側には所定圧力手段としてのばねが装着されて、その主弁上流側圧力とばね付勢力とのバランスによって作動する弁体がパイロット流路を開閉するようになっている。
そしてこの構成によって、主弁上流側圧力が所定値より高くなった場合には、パイロット弁装置Pが開通し、主弁駆動圧力室dの内圧が主弁下流側圧力に向かって低下し、主弁体5が開弁作動し、一方、主弁上流側圧力が所定値より低くなった場合には、パイロット弁装置Pが閉鎖し、主弁駆動圧力室dの内圧が主弁上流側圧力に向かって上昇し、主弁体5が閉鎖作動し、これらの自動開閉作動によって主弁装置Mの通過流量を調節して主弁上流側圧力を一定に保つというものである。
【0006】
【発明が解決しようとする課題】
しかし、この従来技術による1次圧力調整弁には、次のような問題がある。
(1)主弁駆動部材6が円筒状壁部3に接する部分のシール部材6sは、主弁締切り時において漏れを許さない完璧な密封性を要する構造のものが多く、種々のシール手段を追求し、更にベローズやダイヤフラム等を採用してその課題を解決しようとしているが、特に大型化・高圧化するほど、シール部分の耐久性や加工精度に困難を生じ、また、保守管理上も煩わしさが残る。即ち、主弁締切り時の下流側への液漏れが発生しやすい。
(2)1次圧力調整中の急激な流動変化による圧力脈動の影響(いわゆる「チャタリング」や「ハンチング」)を防止するために、従来技術のものでは、主弁上流側の液を導入する連通路の途中に、例えばニードル弁のような固定絞り調節弁10を必要とし、この固定した精細な流路がスケール・異物等の目詰まり事故の原因となる。そのためにストレーナー等が必要で、清浄液以外では扱いにくいものである。
(3)所定の1次圧力を設定するための調節が、ニードル弁等の固定絞り調節弁10とパイロット弁装置Pの2箇所の兼ね合いを見ながらの調節となり、運転・保守管理上の手が掛かる。
(4)主弁駆動圧力室dの圧力増減制御は、専らパイロット弁装置Pを介して出口流路cに排出するパイロット液の増減制御によってなされており、その間も、固定絞り調節弁10を介して入口流路aから常にパイロット液が流入しているため、主弁駆動圧力室dの圧力増減制御が迅速には行いにくい。
(5)しかも、この固定絞り調節弁10を介して流入している流量は、少量に固定されているから、前述のようなポンプ停止時に管内水の抜け落ち防止のために急速に主弁を閉鎖しなくてはならない場合には、主弁駆動圧力室dへのパイロット液の供給が遅すぎて対応できず、「落水防止」という要求を満たすことができない。
【0007】
なお、このパイロット弁装置と主弁装置を一体化した「直動型」の1次圧力調整弁も広く用いられているが、この直動型においても、同様の技術的思想に依拠しているため、やはり上記(1)〜(5)の問題を有している。
【0008】
上記問題の内の(5)の点に関しては、ポンプ停止時の主弁閉鎖時間を短縮する方法として、図10に示したような、主弁駆動圧力室dへのパイロット液の補給を行うサブパイロット弁装置Sを追加装備したものも広く使用されている。
即ち、主弁駆動圧力室dは、固定絞り調節弁10よりも大きい通路を備えたサブパイロット弁装置Sを介して主弁上流側の入口流路aに連通されている。サブパイロット弁装置Sにおいては、受圧板を挟んだ一方には主弁上流側圧力が導入され、反対側には所定圧力手段としてのばねが装着されて、その主弁上流側圧力とばね付勢力とのバランスによって作動する弁体がパイロット流路を開閉するようになっている。
そしてこの構成によって、主弁上流側圧力が所定値より高い場合には、サブパイロット弁装置Sが閉鎖状態を維持しているが、主弁上流側圧力が所定値より低くなった場合には、サブパイロット弁装置Sが開通し、その通過流量が固定絞り調節弁10よりも大きいことから主弁駆動圧力室dの内圧が主弁上流側圧力に向かって速く上昇し、主弁体5が速く閉鎖作動して、落水防止の機能を果たすというものである。
【0009】
しかし、この装置は、追加のサブパイロット弁装置Sを十分に大きくするならば上記(5)の問題を一応解決できるとはいうものの、スペースをとる上、このサブパイロット弁装置Sによるパイロット液の補給が、上記(2)に述べた固定絞り調節弁10によるパイロット液の流入規制の効果を減殺してチャタリングやハンチングを引き起こす原因となりかねないため、安定的な運転のためには、サブパイロット弁装置Sの圧力設定や流量設定が極めて微妙となるなどの煩わしさが残る。そして、いずれにしても、残る(1)〜(4)の問題は未解決のまま残している。
【0010】
そこで、本発明は、1次圧力調整弁としての優れた自動調整機能を発揮するのみならず、締切り密封機能も完璧であり、パイロット弁装置部からニードル弁等の固定的な絞り調節流路を排除し、パイロット弁装置部の自掃作動による目詰まり防止機能も備え、作動が迅速でありながらチャタリングやハンチングが起こりにくく、更には、給液ポンプの停止などによって主弁上流側圧力が急速に低下した場合にはただちに閉鎖して液の流過を阻止する「落水防止弁」としての機能も発揮する、取扱い簡単で便利な自動調整弁装置を得ることを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、
主流路を開閉する主弁装置がパイロット弁装置に連係して駆動される自動調整弁装置において、
主弁装置は、主弁箱の内部に一体的に組み込まれた主弁体と該主弁体より大きい受圧面積を持つ主弁駆動部材とを備え、主弁体は主弁座の上流側に位置して、主弁座との間に絞り流路を形成し、主弁駆動部材は主弁箱の円筒状壁部に対して滑動自在に嵌装されて、該壁部との間に主弁駆動圧力室を形成し、
パイロット弁装置は、
前記主弁装置の上流側圧力と所定圧力手段との対向作用力のバランスによって作動し、主弁上流側圧力が所定値より高くなれば閉鎖し、低くなれば開通するパイロットA弁装置と、
前記主弁装置の上流側圧力と所定圧力手段との対向作用力のバランスによって作動し、主弁上流側圧力が所定値より高くなれば開通し、低くなれば閉鎖するパイロットB弁装置と、
前記主弁装置の上流側圧力と所定圧力手段との対向作用力のバランスによって作動し、主弁上流側圧力が所定値より高くなれば閉鎖し、低くなれば開通するパイロットC弁装置とからなり、
前記パイロットA弁装置と前記パイロットB弁装置とが、中間に前記主弁駆動圧力室を介して、前記主弁装置の上流側と下流側との間に連通路によって直列的に連通されると共に、前記主弁装置の主流路と前記主弁駆動圧力室との間に更に設けられた連通路中に前記パイロットC弁装置が介設されたことを特徴とする。
【0012】
この発明においては、前記パイロットA弁装置と前記パイロットB弁装置の両弁体が同軸上に設けられ、前記主弁装置の上流側圧力と1個の所定圧力手段との対向作用力のバランスによって、両弁体が連動して作動する構造に構成されてもよい。
又、前記パイロットA弁装置、前記パイロットB弁装置、前記パイロットC弁装置の3弁体が同軸上に設けられ、前記主弁装置の上流側圧力と1個の所定圧力手段との対向作用力のバランスによって、3弁体が連動して作動する構造に構成されてもよい。
【0013】
上記の構成に基づいて、本発明の自動調整弁装置は、主弁装置の上流側圧力の変化によって開閉するパイロットA弁装置とパイロットB弁装置とが、連動作動を行い、主弁駆動圧力室の内圧を適宜に増減して、主弁体の開度を調整しながら通過流量を自動制御し、1次圧力調整弁としての優れた自動調整機能を発揮する。又、締切り密封性も容易に達成できる。
又、パイロットA弁装置、B弁装置のいずれにもニードル弁等の固定的な絞り調節流路がないので、スケール・異物等による目詰まりは発生しにくく、又、万一目詰まりが発生しても、その目詰まりによって生ずる圧力変化によって、その弁体が自動的に開弁する自掃作動を行い、目詰まりを排除するという機能も備えている。
又、パイロットA弁装置、B弁装置の両弁体が一体的に連動して、パイロット弁装置内で主弁上流側圧力と主弁下流側圧力の混合を行い、その合成圧力を主弁駆動圧力室に送り込んで流況変化に速やかに対応する仕組みとなっているので、作動が迅速である。しかも、チャタリングやハンチングが発生しにくい。
【0014】
そして、給液ポンプの停止などによって主弁上流側圧力が急速に低下した場合には、パイロットA弁装置、B弁装置、C弁装置の協動により、主弁をただちに閉鎖して、液の流過を阻止する「落水防止弁」としての機能を発揮する
【0015】
【発明の実施の形態】
本発明の詳細を、実施例を示した図面に基づいて説明する。
なお、以下便宜上の用語として、パイロットA弁装置は「A弁装置」、その弁体は「A弁体」、パイロットB弁装置は「B弁装置」、その弁体は「B弁体」、パイロットC弁装置は「C弁装置」、その弁体は「C弁体」、主弁上流側圧力は「1次圧力」、主弁下流側圧力は「2次圧力」と呼称する。又、各図において共通の役割をする部材には共通の図面符号を付してある。
【0016】
まず、第1実施例を示した図1に基づいて説明すると、その主弁装置Mの図においては、1は入口流路aから出口流路cへの主流路を備えた主弁箱を示し、2は主弁箱蓋を示す。4は主弁座である。主弁箱1の中には、主弁座4に対して上流側に設けられた主弁体5と、主弁箱1の円筒状壁部3に対してシール部材6s(このシールは逸流阻止程度の粗雑な密封性で充分である)を介して滑動自在に嵌装された主弁駆動部材6と、両部材5;6を一体的に組み合わせる主弁軸7とを備えている。この主弁軸7は軸受9によって進退自在に支持されている。そして、主弁駆動部材6と円筒状壁部3及び主弁箱蓋2に包まれて袋室状の主弁駆動圧力室dが形成されており、その内圧の増減により主弁体5が駆動され、主弁座4との間の主弁開口部bを開閉する。主弁体5と主弁駆動部材6との受圧面積の関係は、主弁駆動部材6の方を大きめに設定する。
なお、図中の主弁ばね8は、最初の通液時の主弁体5の作動の安定上は望ましいものではあるが、以後の作動には特に関係がないので省略してもよい。
【0017】
そして、1次圧力の変化に対応して、その1次圧力が所定値より高くなれば閉鎖し、低くなれば開通するA弁装置と、1次圧力が所定値より高くなれば開通し、低くなれば閉鎖するB弁装置とが、その中間に主弁駆動圧力室dを介して、主弁上流側と主弁下流側との間に連通路によって直列的に連通され、更に、1次圧力が所定値より高くなれば閉鎖し、低くなれば開通するC弁装置が、主流路(本実施例においては主弁上流側)と主弁駆動圧力室dとの間に別途設けられた連通路中に介設されることによって、主弁駆動圧力室dが主弁駆動の作動圧力室として機能するよう構成されている。
【0018】
パイロットA弁装置及びB弁装置の図においては、21は弁箱、22は弁箱蓋を示す。弁箱21の中には、A弁装置のA弁室f、B弁装置のB弁室h、A弁装置とB弁装置の間の中間室g、1次圧力室kが形成されている。A弁室fの中にはA弁体24が配設され、B弁室hの中にはB弁体25が配設され、A弁室fとB弁室hの間に中間室gが配設されている。そして、A弁体24とB弁体25は同軸上にあって連動し、且つ、互いに相手の作動を妨げないよう、シリンダー・ピストン様式の弁開閉機構が適用されている。又、その作動時に、一方が開き一方が閉鎖するという状態のみならず、両弁体24;25共にほぼ閉鎖する状態も生み出し得る位置間隔に配設されている。23は受圧板、23sはシール部材、26は両弁体24;25を受圧板23と一体的に組み合わせる弁軸を示す。又、弁箱蓋22の側には所定圧力手段としてのばね27(例示したものは圧縮コイルばね)が付設されている。
なお、B弁体25については、閉鎖時の厳密な密封性を示すため、シール部材が図示されている。そして、A弁体24については、閉鎖時の厳密な密封性は必要なく、幾分洩れ気味であってもよいことが図示されている。勿論、A弁体24にも厳密な密封性を付加しても何ら差し支えない。又、締切り密封機能を必要としない仕様の場合には、両弁体24;25共に、閉鎖時の厳密な密封性は必要ない。
【0019】
1次圧力室kは連通路rにより入口流路aの1次圧力に連通されている。A弁室fは連通路pにより入口流路aに連通され、中間室gは連通路mにより主弁駆動圧力室dに連通され、そしてB弁室hは連通路qにより出口流路cに連通されている。
【0020】
パイロットC弁装置の図においては、31は弁箱、32は弁箱蓋を示す。弁箱31の中には、C弁室i、室j、1次圧力室k’が形成されている。C弁室iの中にはC弁体34が配設されている。33は受圧板、33sはシール部材、36はC弁体34を受圧板33と一体的に組み合わせる弁軸を示す。又、弁箱蓋32の側には所定圧力手段としてのばね37(例示したものは圧縮コイルばね)が付設されている。
C弁体34については、シール部材が図示されており、C弁体34の開閉作動を明解にするためにはこのようなシール部材を装着することが好ましいものの、主弁体5の閉鎖時の厳密な水密性は、主弁体5のシール部材5sとB弁体25のシール部材によって達成されているので、このC弁体34については、閉鎖時の厳密な密封性は必須ではなく、幾分洩れ気味であっても差し支えない。
【0021】
1次圧力室k’は連通路r’により入口流路aの1次圧力に連通されている。C弁室iは連通路p’により入口流路aに連通され、そして室jは連通路m’により主弁駆動圧力室dに連通されている。この連通路配管は、逆向きに(即ちC弁室iを主弁駆動圧力室dに、室jを入口流路aに)連通させてもよいことは勿論である。
【0022】
なお、このC弁装置の弁体34および連通路p’;m’は、A弁装置;B弁装置の弁体24;25および連通路p;m;qよりも口径を大きく設定するほうが、本装置の「落水防止弁」としての明解な作動のためには好ましく、図中においても、連通路p’;m’の方を連通路p;m;qよりも太い一点鎖線にて表示している。
又、ばね27;37の力は、所要の1次圧力と均衡できる範囲値のものを選定しておくことは勿論であるが、本装置の明解な作動のためにはC弁装置のばね37の設定圧力をA弁装置;B弁装置のばね27の設定圧力よりも低めに設定しておくことが好ましい。
【0023】
次に、本発明の作用について説明する。
図8に例示された循環回路(貯液槽110及び熱交換器103→ポンプ104、逆止弁105、開閉弁106等の送液機器→循環往路107→空調機器101、開閉弁102、空気抜き弁109等の各階設備→循環帰路108→貯液槽110及び熱交換器103)において、循環往路107と循環帰路108の圧力を一定に維持するために、往路107のバイパス配管と帰路108に第1実施例(図1)の自動調整弁装置をそれぞれ介設して、その作動を観察するものとする。
なお、ポンプ運転時には、帰路108側の弁装置Vはほぼ開弁しているのに対し、往路107側の弁装置V’はほぼ閉鎖しているのが通常状態であるから、両弁装置の設定1次圧力には若干の差を設けておく(V’の方をVより高めにする)のが通常である。
【0024】
まず、循環帰路108に介設された自動調整弁装置Vの方について観察する。
ポンプの運転を開始してから1次圧力が未だ所定値に達していない段階では、パイロットA弁装置;B弁装置においては、ばね27の力が1次圧力室kの内圧(1次圧力)に勝っており、受圧板23は、ばね27が伸びる方向(即ち図中の右方向)に押されている。従って、A弁体24は開通、B弁体25は閉鎖している。又、C弁装置においては、ばね37の力が1次圧力室k’の内圧(1次圧力)に勝っており、受圧板33は、ばね37が伸びる方向(即ち図中の下方向)に押されている。従って、C弁体34は開通している。
これら弁体24;25;34の働きにより、主弁駆動圧力室dは入口流路aとは連通され、出口流路cとは遮断され、主弁駆動圧力室dの内圧は1次圧力となっているので、主弁体5はその前後面に作用する圧力の差によって閉鎖し、主弁体5のシール部材5sとB弁体25のシール部材が密封性を保っている。
【0025】
次に、1次圧力が上昇して所定値に達すると、パイロットA弁装置;B弁装置においては、1次圧力室kの内圧(1次圧力)が、ばね27の力に勝ち、受圧板23は、ばね27を縮める方向(即ち図中の左方向)に押し返される。従って、A弁体24は閉鎖、B弁体25は開通する。又、C弁装置においては、1次圧力室k’の内圧(1次圧力)が、ばね37の力に勝ち、受圧板33は、ばね37を縮める方向(即ち図中の上方向)に押し返される。従って、C弁体34は閉鎖する。
これら弁体24;25;34の働きにより、主弁駆動圧力室dは入口流路aとはほぼ遮断され、出口流路cとは連通され、主弁駆動圧力室dの内圧は2次圧力に向かって低下するので、主弁体5とそれより大きい受圧面積を持つ主弁駆動部材6との面積差に伴う推力の差により、主弁体5は推し開かれ、流れは入口流路a→主弁開口部b→出口流路cの方向に流動を始める。
【0026】
1次圧力が所定値に達した後は、各階の空調機器での使用流量の多寡などにより変化する1次圧力の変化を受けて、A弁体24とB弁体25が応動し、主弁駆動圧力室dの内圧を適宜に増減して、主弁体5の開度を調整しながら所定の1次圧力を維持する。
A弁体24とB弁体25は、一本の弁軸26上に揃えて設けられ、一個の所定圧力手段(ばね27)に対して一体的に連動して、パイロット弁装置内で1次圧力と2次圧力の混合を行い、その合成圧力を主弁駆動圧力室dに送り込んで流況変化に速やかに対応するという、簡明かつ合理的な仕組みとなっており、このため作動が迅速である。しかも両弁体24;25は、作動時に、一方が開通し一方が閉鎖するという状態のみならず、両弁体共にほぼ閉鎖する状態も生み出し得る位置間隔に配設され、流況が安定しているときは、両弁体共にほぼ閉鎖の状態で安定する仕組みとなっており、このため、弁体が振動するチャタリングやハンチングは発生しにくい。これらによって、本装置は1次圧力調整弁としての優れた自動調整機能を発揮する。
【0027】
A弁装置;B弁装置のいずれにも、ニードル弁等の固定的な絞り調節流路がないので、スケール・異物等による目詰まりは発生しにくい。又、万一目詰まりが発生しても、その目詰まりによって生ずる圧力変化によって、その弁体24;25が自動的に開弁する自掃作動を行う。即ち、例えばA弁体24に目詰まりが発生したとすると、連通路pから主弁駆動圧力室dへの1次圧力の導入が妨げられるので、主弁駆動圧力室dの内圧は低下し、主弁体5は開弁方向に作動して通過流量が増大し、それによって1次圧力が減少し、その結果、A弁体24が開弁方向に移動して、目詰まりを自動的に排除する。この自掃作動によって目詰まりを排除するという優れた機能を備えているので、細目のストレーナー等は不要であり、保守管理も容易である。
【0028】
このA弁装置;B弁装置が1次圧力調整作動を行っているとき、C弁装置においては、C弁体34は閉鎖状態を維持しており、A弁体24;B弁体25の1次圧力調整作動には干渉しない。特に、前述のようにC弁装置のばね37の設定圧力をA弁装置;B弁装置のばね27の設定圧力よりも低めに設定しておくと、1次圧力に若干の変動があってもC弁体34は確実に閉鎖状態を維持しているので、安定的かつ精妙な調整作動を行えるA弁装置;B弁装置に専ら1次圧力調整の役割を担わせることができ、スムーズな調整ができて好都合である。
【0029】
ポンプの運転を停止したときには、1次圧力は急速に低下するが、このとき、パイロットA弁装置;B弁装置においては、受圧板23は、ばね27が伸びる方向(即ち図中の右方向)に押され、A弁体24は開通、B弁体25は閉鎖する。又、C弁装置においては、受圧板33は、ばね37が伸びる方向(即ち図中の下方向)に押され、C弁体34は開通する。
これら弁体24;25;34の働きにより、主弁駆動圧力室dは入口流路aとは連通され、出口流路cとは遮断され、主弁駆動圧力室dの内圧は1次圧力に向かって急速に上昇するので、主弁体5はただちに閉鎖し、液の流過を阻止する。
【0030】
本発明においては、パイロットA弁装置;B弁装置が連動開閉するという構成によって、A弁装置;B弁装置のみでも主弁閉鎖は十分に迅速に作動するものであるが、特にC弁装置を設けてあるので、このC弁装置がパイロット作動液を主流路(入口流路a)から一気に主弁駆動圧力室dに追加供給することとなり、極めて迅速に主弁閉鎖を行うことができ、「落水防止弁」として高度な性能を発揮することとなる。
なお、本発明におけるC弁装置は、既に主弁閉鎖を十分に迅速に作動させ得るA弁装置;B弁装置の働きを加勢するものであるから、従来技術の主弁閉鎖加速用サブパイロット弁装置に比べればコンパクトで済むことは言うまでもない。
【0031】
主弁体5の閉鎖時に、厳密に密封性の機能を果たす部分は、主弁体5のシール部材5sとB弁体25のシール部材であり、これらは従来技術によって容易に密封性を達成できる部材である。一方、主弁駆動部材6のシール部材6sその他のシール部材は、粗雑な密封性のままにしておいても、下流側への液漏れの原因とはならない。
【0032】
以上の作動によって、循環帰路108に介設した自動調整弁装置Vは、各階の空調機器101経過後の帰路108の圧力を一定に保つという「1次圧力調整弁」としての優れた自動調整機能を果たすと共に、ポンプ104の停止時に帰路108中の冷温水が貯液槽110に抜け落ちるのを防止するという「落水防止弁」としての的確な機能も果たすものである。
【0033】
なお、ばね27;37を調整ねじ28;38にてワンタッチで調整することにより、所要の圧力設定値を調整することができる。
又、連通路q中に介設されている開閉弁29は、パイロット弁装置の作動に拘わりなく別途強制的に主弁装置Mを閉鎖させたい場合に用いるもので、常時は開通状態にしておく。主弁装置Mを閉鎖させたい場合は、開閉弁29を閉弁操作すればよく、それによって主弁駆動圧力室dの内圧は1次圧力に向かって上昇し、主弁体5を閉鎖させる。この開閉弁29は、手動操作でもよいし、各種アクチュエーター等を用いて遠隔操作してもよい。一方、別途強制的に主弁装置Mを開弁させる必要がある場合は、図示は省略したが、主弁駆動圧力室dと出口流路cとの間に別途の開閉弁を介設しておき(常時は閉鎖状態にしておく)、それを開弁操作すればよい。
【0034】
一方、図8に例示された循環往路107のバイパス配管に介設された自動調整弁装置V’の方は、帰路108側に介設された自動調整弁装置Vと同じ開閉作動を行うが、その役割は若干異なっており、主弁装置Mは上流側圧力(1次圧力)が所定値範囲に納まっているときにはほぼ閉鎖しているが、1次圧力が上昇して所定値を超えそうな状態になったときには、主弁体5が推し開かれ、流れが入口流路a→主弁開口部b→出口流路cの方向に流れて、1次圧力の上昇を抑える。即ち、往路107内の所定値以上の圧力上昇分をバイパスして逃がす「リリーフ弁」の役割をすることによって、往路107内の圧力を一定に保つという「1次圧力調整弁」としての機能を果たす。
【0035】
なお、往路107側は、帰路108側とは異なり、ポンプ停止時に往路107中の冷温水が貯液槽110に抜け落ちるのを防止するという「落水防止」の機能は逆止弁105によって容易に達成できるので、この自動調整弁装置V’には特にパイロットC弁装置が装着されていなくても用は足りることとなる。勿論、C弁装置が装着されていても差し支えないので、説明の簡単のために図8中では、帰路108側の弁装置Vと同型のものを例示している。
【0036】
次に、その他の実施例について説明する。
図2の第2実施例は、第1実施例のA弁体24とB弁体25を中間室gの中に同居させたものである。その部分的変更に伴って、連通路配管も第1実施例のものとは若干異なっているが、その他の構成及び作用効果は第1実施例と同様なので、詳述は省略する。
なお、この図2中のC弁装置については、各室i;j内でC弁体34周りに発生する偏圧を解消して、設定圧力に対してC弁装置を正確に反応作動させるために、弁軸36およびC弁体34を完全バランス構造にする一例が示してある。
【0037】
図3の第3実施例は、第1実施例の主弁駆動部材6を、第1実施例のものとは逆に主弁座4の下流側に設け、ばね27の作動方向を第1実施例のものとは逆向きにしたものである。それらの部分的変更に伴って、主弁駆動部材6及び主弁体5の作動方向が第1実施例のものとは逆向きになり(主弁体5は、主弁駆動圧力室dの内圧が1次圧力に向かって上昇したときに開弁し、内圧が2次圧力に向かって低下したときに閉鎖する)、A弁装置とB弁装置の配置及び入口流路aと出口流路cへの夫々の連通路配管も第1実施例のものとは逆になり、そして、C弁装置の設置位置も、連通路m’;q’を介して主弁駆動圧力室dと出口流路cとの間となる(落水防止の際は、C弁装置がパイロット作動液を主弁駆動圧力室dから一気に出口流路cに排出させることによって主弁体5を急閉鎖させることとなる)など、各構成要素の配設位置や作動方向が第1実施例の場合とは異なってくるが、その作用効果は第1実施例と同じであり、その他の構成も第1実施例と同様なので、詳述は省略する。
【0038】
図4の第4実施例は、第1実施例のA;B弁装置とC弁装置とを向かい合わせに合体して、A;B;C連合パイロット弁装置としたものである。但し、A弁体24;B弁体25の弁軸26とC弁体34の弁軸36とは、相互に独立した運動ができ、所要の圧力設定値も調整ねじ28;38によって夫々独立して調整できる構造にしてある。A;B;C連合パイロット弁装置に合体したのに伴って、夫々の連通路配管も第1実施例のものとは若干異なっているが、その他の構成及び作用効果は第1実施例と同様なので、詳述は省略する。
【0039】
図5の第5実施例は、第4実施例のA弁体24とB弁体25を中間室gの中に同居させたものである。その部分的変更に伴い、ばね27の作動方向が第4実施例のものとは逆向きになり、連通路配管も第4実施例のものとは若干異なっているが、その他の構成及び作用効果は第4実施例と同様なので、詳述は省略する。
【0040】
図6の第6実施例は、第4実施例のA;B;C連合パイロット弁装置の弁軸を1つにし、所定圧力手段も1つのものを共有させることによって、第4実施例のものと同様の機能を果たさせつつ、更にコンパクトな装置にしたものである。
A弁体24;B弁体25;C弁体34は同軸上に設けられ、1次圧力とばね27との対向作用力のバランスによって、この3弁体24;25;34が連動して作動し、且つ互いの作動を妨げない仕組みとなっている。即ち、C弁体34及び対応する弁座もシリンダー・ピストン様式としてある。又、前述のように、C弁体34の作動のための圧力設定値は、A弁体24;B弁体25の圧力設定値とは若干の差異をもたせるのが通常であるが、本実施例においては、その差異は、C弁体34の開閉位置とA弁体24;B弁体25の開閉位置に若干の「ずれ」を設けることによって実現している。この「ずれ」の度合は、ねじ等によって調整可能にしてもよいことは勿論である。
以上によって、第4実施例のものと同様の制御が可能となるものである。その他の構成及び作用効果は第4実施例と同様なので、詳述は省略する。
【0041】
図7の第7実施例は、第6実施例のA弁体24とB弁体25を中間室gの中に同居させたものである。その部分的変更に伴い、ばね27の作動方向が第6実施例のものとは逆向きになり、連通路配管も第6実施例のものとは若干異なっているが、その他の構成及び作用効果は第6実施例と同様なので、詳述は省略する。
なお、この図7には、主弁体5と主弁駆動部材6を一体構造にした例が図示され、又、点検・保守等のために主弁駆動圧力室dの中の水抜きを適時に行えるように、開閉弁11付きのサイフォン配管を付設した例も図示されている。
【0042】
次に、本発明の各実施例に共通の事項について説明する。
パイロットA弁装置;B弁装置については、いずれの実施例においても、A弁体24とB弁体25が連動し、且つ、互いに相手の作動を妨げないようにする仕組みの一例として、シリンダー・ピストン様式の弁開閉機構が例示されているが、このシリンダー・ピストン様式以外の様式を用いてもよいし、A弁装置;B弁装置を分けて弁体24;25を別個の弁軸上に夫々設けてもよい。
C弁装置についても同様に、A弁装置;B弁装置と協動し、且つ、互いに相手の作動を妨げないよう、A弁装置;B弁装置とは別個の弁軸上に設けてもよいし、図6〜図7のようなシリンダー・ピストン様式の弁開閉機構を用いてもよいし、目的に叶う適宜の様式を用いてよい。
A弁装置;B弁装置;C弁装置いずれについても、弁体周りに発生する偏圧を解消して設定圧力に対して正確に反応作動させるために、図2のC弁装置において例示したような完全バランス構造を適用してもよい。
その他にも、パイロット弁装置の各室f;g;h;i;j;k;k’の配置(位置関係)及び組み合わせ、それに伴う連通路配管等、この発明の趣旨の範囲内で設計変更可能であり、パイロット弁装置の構造を前記の各実施例に限定するものではない。
【0043】
パイロット弁装置の所定圧力手段については、各実施例のようなばね27;37を用いる方法の他にも、他の弾性部材を用いたり、重錘にリンクしたり、倍力機構を付加したり、気圧、液圧装置等の適用が容易にできることは勿論である。
【0044】
主弁装置Mについては、各実施例においては、主弁体5にリフト弁形式を適用しているが、この発明の趣旨の範囲内で、その他の形式の開閉弁(例えば、バタフライ弁、ゲート弁、ボール弁等)を適用してもよい。又、図7に例示したような主弁体5と主弁駆動部材6の一体構造を適用してもよい。なお、各実施例においては、主弁装置Mの構造を簡明にするために、a→b→cの主流路部と主弁駆動圧力室dの両方を主弁箱1内にコンパクトに収めたものを図示したが、その他にも、この主流路部と主弁駆動圧力室dを、2つに分割した主弁箱の夫々に収め、この2つの弁箱を貫通させた主弁軸の両端に主弁体5と主弁駆動部材6を装着する等の構造にしても差し支えない。
【0045】
仕様条件によっては、1次圧力調整作動中の不意の流動変化による圧力脈動の影響(チャタリングやハンチング)を防止する必要があるが、その対処方法の例として、各実施例に示したように、主弁開口部bの形状を流量変化をスムーズにする鋸歯状の流路としたり、その他にも、パイロットA弁装置;B弁装置に制動装置を設けたり、適宜にA弁装置;B弁装置の連通路を絞るなどしてもよい。なお、「落水防止弁」としての急閉鎖作動を阻害しない範囲で主弁装置Mを緩徐に作動させることが必要となる場合には、主弁装置Mに片効きの制動装置(主弁の開弁方向のみ制動)を設けてもよい。それらの対処方法は、いずれかを単独で採用しても、いくつかを組み合わせて採用してもよいし、それが必要とされない仕様条件下においては省略してもよい。
【0046】
各実施例にわたり、密封性を要する箇所に装着されるシール部材については、現地の仕様に合わせて適宜にOリング、シールリング、ダイヤフラム、ベローズ等を適用してよく、又、直接接触により良好な密封性を保持できる場合は、該シール部材を省略してもよい。なお、高速流が通過する可能性のある箇所には、キャビテーション防止等の目的で櫛歯状突起や整流格子等を形成してもよいことは勿論である。
その他、この発明における弁装置を構成する各部材にわたり、従来技術の援用は何ら妨げるものではなく、又、この発明の趣旨の範囲内で種々設計変更可能であり、この発明を前記の各実施例に限定するものではない。
【0047】
【発明の効果】
本発明の自動調整弁装置は、1次圧力調整弁としての優れた自動調整機能を発揮するのみならず、締切り密封機能も完璧であり、又、パイロット弁装置部にニードル弁等の固定的な絞り調節流路がなく、且つパイロット弁装置部が目詰まりしてもその弁体が自動的に開弁する自掃作動を行うので、スケール・異物等による目詰まり事故を防止するメンテナンス・フリーの利点も備えている。又、作動が迅速でありながらチャタリングやハンチングが起こりにくい。更には、給液ポンプの停止などによって主弁上流側圧力(1次圧力)が急速に低下した場合にはただちに閉鎖して液の流過を阻止する「落水防止弁」としての的確な機能も発揮する。そして、パイロット弁装置部をはじめ構造が簡潔で、大型化や高圧化も容易であり、所要の1次圧力設定・調整もワンタッチで簡単に行なえ、設計・製作・運転・保守管理に苦慮すべき部分もなく、信頼性と経済性の高い便利な自動調整弁装置を得ることができたものであり、その実施効果は極めて大きい。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す縦断面図である。
【図2】本発明の第2実施例を示す縦断面図である。
【図3】本発明の第3実施例を示す縦断面図である。
【図4】本発明の第4実施例を示す縦断面図である。
【図5】本発明の第5実施例を示す縦断面図である。
【図6】本発明の第6実施例を示す縦断面図である。
【図7】本発明の第7実施例を示す縦断面図である。
【図8】1次圧力調整弁の設置例を示す説明図である。
【図9】従来技術の1次圧力調整弁の一例を示す縦断面図である。
【図10】従来技術の1次圧力調整弁の他の一例を示す縦断面図である。
【符号の説明】
V…自動調整弁装置 V’…自動調整弁装置
M…主弁装置
1…主弁箱 2…主弁箱蓋
3…円筒状壁部
4…主弁座 5…主弁体 5s…シール部材
6…主弁駆動部材 6s…シール部材
7…主弁軸 8…主弁ばね
9…軸受 10…固定絞り調節弁 11…開閉弁
A…パイロットA弁装置 B…パイロットB弁装置
21…弁箱 22…弁箱蓋
23…受圧板 23s…シール部材
24…A弁体 25…B弁体
26…弁軸 27…ばね 28…調整ねじ
29…開閉弁
C…パイロットC弁装置
31…弁箱 32…弁箱蓋
33…受圧板 33s…シール部材
34…C弁体
36…弁軸 37…ばね 38…調整ねじ
a…入口流路 b…主弁開口部
c…出口流路 d…主弁駆動圧力室
f…A弁室 g…中間室 h…B弁室
i…C弁室 j…室
k;k’…1次圧力室
m;m’;p;p’;q;q’;r;r’…連通路
P…パイロット弁装置 S…サブパイロット弁装置
101…空調機器 102…開閉弁
103…熱交換器 104…ポンプ
105…逆止弁 106…開閉弁
107…循環往路 108…循環帰路
109…空気抜き弁 110…貯液槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic adjustment valve device installed in a fluid transportation pipeline, and more particularly to a primary pressure adjustment valve that automatically maintains a pressure in a pipeline on the upstream side of a main valve at a predetermined value. is there. In the present specification, the terms “water” and “liquid” generically represent fluids.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in air conditioning and heating / cooling facilities for high-rise buildings, it is common practice to circulate cold water or hot water produced by a heat exchanger installed underground to the air conditioning equipment on each floor by a pump.
As an example, FIG. 8 shows a case where the circulation circuit is an open circuit (a part of the circuit is open to the atmosphere). In this case, the heat exchanger 103 and the pump 104 can be operated at a constant flow rate even if the load on the circulation circuit fluctuates due to temperature control of the air conditioning equipment 101 on each floor (opening / closing control of the on / off valve 102 associated with the air conditioning equipment 101). For this reason, primary pressure regulating valves are often installed in the forward path 107 and the return path 108 as equipment for maintaining a constant pressure in the forward path 107 and the return path 108 of the circulation circuit.
[0003]
Among these, the primary pressure regulating valve V ′ installed on the forward path 107 side releases the pressure increase exceeding the predetermined limit during the operation of the pump 104 to the outside of the circulation circuit, and keeps the pressure in the forward path 107 constant. The primary pressure regulating valve V installed on the return path 108 side is generally referred to as a “relief valve” because of its role. In addition to keeping the pressure of the pump 104 constant, the hot and cold water in the return path 108 is prevented from dropping into the underground storage tank 110 when the pump 104 is stopped, thereby preventing a piping water hammer when the pump 104 is restarted. Since it also has a role, it is generally referred to as a “fall prevention valve”.
[0004]
In general, as a primary pressure regulating valve, a pressure in a pipe line (primary pressure) on the upstream side of a main valve is detected and the flow rate is throttled by a fixed throttle adjusting flow path such as a needle valve. A structure in which a piston or a diaphragm for driving a main valve is operated by an actuated pilot valve has been widely used.
[0005]
As shown in FIG. 9, a typical configuration of a conventional primary pressure regulating valve is such that, in the main valve device M, the main valve seat 4 is disposed in the inlet channel a, the outlet channel c, and the communication channel. A main valve body 5 and a main valve driving member 6 having a pressure receiving area larger than the main valve body 5 are provided in a main valve box 1 provided in an integrated manner through a main valve shaft 7 so as to freely advance and retract. The main valve driving member 6 is slidably fitted to the cylindrical wall portion 3 of the main valve box to form a main valve driving pressure chamber d between the wall portion 3 and the main valve box lid 2. A pilot valve device P is provided that opens when the pressure on the upstream side of the main valve becomes higher than a predetermined value and closes when the pressure becomes lower. The main valve driving pressure chamber d is connected to the main valve via the fixed throttle control valve 10. It communicates with the upstream inlet passage a and also with the outlet passage c downstream of the main valve via the pilot valve device P. In the pilot valve device P, the main valve upstream pressure is introduced into one side of the pressure receiving plate, and a spring as a predetermined pressure means is mounted on the opposite side, and the main valve upstream pressure and the spring biasing force are A valve element that operates according to the balance of the valve opens and closes the pilot flow path.
With this configuration, when the main valve upstream pressure becomes higher than a predetermined value, the pilot valve device P is opened, and the internal pressure of the main valve drive pressure chamber d decreases toward the main valve downstream pressure, When the valve body 5 is opened, on the other hand, when the main valve upstream pressure becomes lower than a predetermined value, the pilot valve device P is closed, and the internal pressure of the main valve driving pressure chamber d becomes the main valve upstream pressure. The main valve body 5 is closed, and the automatic valve opening / closing operation adjusts the flow rate of the main valve device M to keep the main valve upstream pressure constant.
[0006]
[Problems to be solved by the invention]
However, the conventional primary pressure regulating valve has the following problems.
(1) The seal member 6s where the main valve drive member 6 is in contact with the cylindrical wall portion 3 has many structures that require a perfect sealing property that does not allow leakage when the main valve is closed, and pursues various sealing means. In addition, we are trying to solve the problem by adopting bellows and diaphragms, but the larger the size and the higher the pressure, the more difficult the durability and processing accuracy of the seal part, and the more troublesome maintenance management is. Remains. That is, liquid leaks to the downstream side easily when the main valve is closed.
(2) In order to prevent the influence of pressure pulsation (so-called “chattering” or “hunting”) due to a sudden flow change during the primary pressure adjustment, the conventional technology uses a continuous introduction of liquid upstream of the main valve. A fixed throttle control valve 10 such as a needle valve is required in the middle of the passage, and this fixed fine flow path causes a clogging accident such as a scale or a foreign substance. For this reason, a strainer or the like is necessary, and it is difficult to handle other than the cleaning liquid.
(3) The adjustment for setting a predetermined primary pressure is an adjustment while observing the balance between the fixed throttle control valve 10 such as a needle valve and the pilot valve device P. It takes.
(4) The pressure increase / decrease control of the main valve drive pressure chamber d is performed exclusively by the increase / decrease control of the pilot liquid discharged to the outlet flow path c via the pilot valve device P, and during that time also via the fixed throttle control valve 10 Since the pilot liquid always flows from the inlet channel a, the pressure increase / decrease control of the main valve driving pressure chamber d is difficult to perform quickly.
(5) In addition, since the flow rate flowing through the fixed throttle control valve 10 is fixed to a small amount, the main valve is quickly closed to prevent the pipe water from falling off when the pump is stopped as described above. In the case where it is necessary to supply the pilot fluid to the main valve drive pressure chamber d, the supply of the pilot fluid is too slow to cope with it, and the requirement of “prevention of falling water” cannot be satisfied.
[0007]
A “direct acting” primary pressure regulating valve in which the pilot valve device and the main valve device are integrated is also widely used, but this direct acting type relies on the same technical idea. Therefore, it still has the problems (1) to (5).
[0008]
Regarding the point (5) among the above problems, as a method of shortening the main valve closing time when the pump is stopped, the sub-supply for supplying the pilot fluid to the main valve driving pressure chamber d as shown in FIG. Those equipped with an additional pilot valve device S are also widely used.
That is, the main valve drive pressure chamber d is communicated with the inlet flow path a on the upstream side of the main valve via the sub pilot valve device S having a passage larger than the fixed throttle control valve 10. In the sub-pilot valve device S, the main valve upstream pressure is introduced into one side of the pressure receiving plate, and a spring as a predetermined pressure means is mounted on the opposite side, and the main valve upstream pressure and the spring biasing force are installed. A valve element that operates according to the balance with the valve opens and closes the pilot flow path.
And, by this configuration, when the main valve upstream pressure is higher than a predetermined value, the sub pilot valve device S maintains a closed state, but when the main valve upstream pressure becomes lower than the predetermined value, Since the sub-pilot valve device S is opened and its passing flow rate is larger than that of the fixed throttle control valve 10, the internal pressure of the main valve drive pressure chamber d rises rapidly toward the upstream pressure on the main valve, and the main valve body 5 becomes faster. It closes and performs the function of preventing water fall.
[0009]
However, although this device can solve the problem (5) once if the additional sub-pilot valve device S is made sufficiently large, it takes up space and the pilot liquid by the sub-pilot valve device S can be reduced. Since replenishment may cause chattering and hunting by reducing the effect of the pilot fluid inflow restriction by the fixed throttle control valve 10 described in (2) above, the sub pilot valve is necessary for stable operation. Troubles such as the pressure setting and flow rate setting of the device S becoming very delicate remain. In any case, the remaining problems (1) to (4) remain unsolved.
[0010]
Therefore, the present invention not only exhibits an excellent automatic adjustment function as a primary pressure adjustment valve, but also has a perfect sealing function, and a fixed throttle adjustment flow path such as a needle valve is provided from the pilot valve device. Equipped with a function to prevent clogging due to the self-sweep operation of the pilot valve device part, chattering and hunting are unlikely to occur while the operation is quick, and the main valve upstream pressure is rapidly increased by stopping the feed pump, etc. The purpose is to obtain an easy-to-use and easy-to-use self-regulating valve device that also functions as a “falling prevention valve” that immediately closes to prevent the liquid from flowing through when it drops.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides:
In the automatic adjustment valve device in which the main valve device that opens and closes the main flow path is driven in conjunction with the pilot valve device,
The main valve device includes a main valve body integrated into the main valve box and a main valve driving member having a larger pressure receiving area than the main valve body, and the main valve body is located upstream of the main valve seat. And a throttle flow path is formed between the main valve seat and the main valve drive member. The main valve drive member is slidably fitted to the cylindrical wall portion of the main valve box, and the main valve drive member is interposed between the main wall and the main valve seat. Forming a valve-driven pressure chamber,
The pilot valve device
A pilot A valve device that operates by the balance of the opposing acting force between the upstream pressure of the main valve device and the predetermined pressure means, and closes when the main valve upstream pressure becomes higher than a predetermined value, and opens when the pressure becomes lower;
A pilot B valve device that operates according to the balance of the opposing acting force between the upstream pressure of the main valve device and the predetermined pressure means, and opens when the main valve upstream pressure becomes higher than a predetermined value, and closes when the pressure becomes lower;
The pilot C valve device is operated by the balance of the counter acting force between the upstream pressure of the main valve device and the predetermined pressure means, and is closed when the main valve upstream pressure becomes higher than a predetermined value, and opened when the pressure becomes lower. ,
The pilot A valve device and the pilot B valve device are connected in series by a communication path between the upstream side and the downstream side of the main valve device via the main valve driving pressure chamber in the middle. The pilot C valve device is interposed in a communication path further provided between the main flow path of the main valve device and the main valve driving pressure chamber.
[0012]
In the present invention, both valve bodies of the pilot A valve device and the pilot B valve device are provided on the same axis, and the balance of the counter acting force between the upstream pressure of the main valve device and one predetermined pressure means is provided. The valve body may be configured to operate in conjunction with each other.
Further, the three valve bodies of the pilot A valve device, the pilot B valve device, and the pilot C valve device are provided on the same axis, and the opposing action force between the upstream pressure of the main valve device and one predetermined pressure means. Depending on the balance, the three valve bodies may be configured to operate in conjunction with each other.
[0013]
Based on the above configuration, in the automatic adjustment valve device of the present invention, the pilot A valve device and the pilot B valve device that are opened and closed by a change in the upstream pressure of the main valve device perform an interlocking operation, and the main valve drive pressure chamber The internal flow pressure is appropriately increased and decreased, and the passage flow rate is automatically controlled while adjusting the opening of the main valve body, thereby exhibiting an excellent automatic adjustment function as a primary pressure adjustment valve. Moreover, the cut-off hermeticity can be easily achieved.
Also, since neither the pilot A valve device nor the B valve device has a fixed throttle adjustment flow path such as a needle valve, clogging due to scale and foreign matter is unlikely to occur, and clogging may occur. However, it also has a function of eliminating clogging by performing a self-cleaning operation in which the valve body automatically opens due to a pressure change caused by the clogging.
In addition, the pilot A valve device and the B valve device are integrated together to mix the main valve upstream pressure and the main valve downstream pressure in the pilot valve device, and drive the resultant pressure to the main valve. The system is quick to respond to changes in flow conditions by sending it to the pressure chamber. In addition, chattering and hunting are less likely to occur.
[0014]
When the main valve upstream pressure drops rapidly due to the stoppage of the feed pump, etc., the main valve is immediately closed by the cooperation of the pilot A valve device, the B valve device, and the C valve device. Demonstrates the function of a “falling prevention valve” that prevents flowover
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described with reference to the drawings showing examples.
For convenience, the pilot A valve device is “A valve device”, the valve body is “A valve body”, the pilot B valve device is “B valve device”, the valve body is “B valve body”, The pilot C valve device is called “C valve device”, its valve body is called “C valve body”, the main valve upstream pressure is called “primary pressure”, and the main valve downstream pressure is called “secondary pressure”. In addition, members having a common role in the respective drawings are denoted by common drawing symbols.
[0016]
First, referring to FIG. 1 showing the first embodiment, in the figure of the main valve device M, 1 shows a main valve box having a main flow path from an inlet flow path a to an outlet flow path c. Reference numeral 2 denotes a main valve box lid. 4 is a main valve seat. In the main valve box 1, a main valve body 5 provided on the upstream side with respect to the main valve seat 4 and a seal member 6 s (this seal is a current flow) with respect to the cylindrical wall portion 3 of the main valve box 1. The main valve drive member 6 is slidably fitted via a main valve shaft 7 in which the two members 5; 6 are integrally combined. The main valve shaft 7 is supported by a bearing 9 so as to freely advance and retract. The main valve drive member 6, the cylindrical wall 3 and the main valve box cover 2 are wrapped to form a bag-like main valve drive pressure chamber d, and the main valve body 5 is driven by increasing or decreasing the internal pressure. Then, the main valve opening b between the main valve seat 4 is opened and closed. The relationship of the pressure receiving area between the main valve body 5 and the main valve driving member 6 is set so that the main valve driving member 6 is larger.
The main valve spring 8 in the figure is desirable for the stability of the operation of the main valve body 5 at the time of the first liquid passage, but may be omitted because it is not particularly related to the subsequent operation.
[0017]
In response to a change in the primary pressure, the A valve device is closed when the primary pressure becomes higher than a predetermined value, and opened when the primary pressure becomes lower, and opened when the primary pressure becomes higher than the predetermined value. In this case, the B valve device to be closed is communicated in series between the upstream side of the main valve and the downstream side of the main valve via the main valve driving pressure chamber d in the middle thereof, and further the primary pressure. The C valve device that closes when the pressure becomes higher than a predetermined value and opens when the pressure becomes lower is a communication path separately provided between the main flow path (in the present embodiment, the main valve upstream side) and the main valve driving pressure chamber d. By being interposed inside, the main valve drive pressure chamber d is configured to function as a main valve drive operating pressure chamber.
[0018]
In the drawings of the pilot A valve device and the B valve device, 21 indicates a valve box, and 22 indicates a valve box lid. In the valve box 21, an A valve chamber f of the A valve device, a B valve chamber h of the B valve device, an intermediate chamber g between the A valve device and the B valve device, and a primary pressure chamber k are formed. . An A valve body 24 is disposed in the A valve chamber f, a B valve body 25 is disposed in the B valve chamber h, and an intermediate chamber g is provided between the A valve chamber f and the B valve chamber h. It is arranged. The A-valve body 24 and the B-valve body 25 are coaxial and interlocked, and a cylinder / piston style valve opening / closing mechanism is applied so as not to interfere with each other's operation. Further, at the time of the operation, not only the state in which one is opened but the other is closed, as well as the state in which both the valve bodies 24; Reference numeral 23 denotes a pressure receiving plate, 23 s denotes a seal member, and 26 denotes a valve shaft for combining both valve bodies 24; 25 integrally with the pressure receiving plate 23. Further, a spring 27 (the illustrated example is a compression coil spring) as a predetermined pressure means is attached to the valve box cover 22 side.
In addition, about the B valve body 25, in order to show the exact sealing performance at the time of closing, the sealing member is illustrated. Further, it is shown that the A valve body 24 does not need to be strictly sealed when closed and may be somewhat leaky. Of course, there is no problem even if a strict sealing property is added to the A valve body 24. Further, in the case of a specification that does not require the shut-off sealing function, both the valve bodies 24; 25 do not require strict sealing when closed.
[0019]
The primary pressure chamber k communicates with the primary pressure of the inlet channel a through the communication path r. The A valve chamber f communicates with the inlet flow path a through the communication path p, the intermediate chamber g communicates with the main valve drive pressure chamber d through the communication path m, and the B valve chamber h communicates with the outlet flow path c through the communication path q. It is communicated.
[0020]
In the figure of the pilot C valve device, 31 indicates a valve box and 32 indicates a valve box lid. A C valve chamber i, a chamber j, and a primary pressure chamber k ′ are formed in the valve box 31. A C valve element 34 is disposed in the C valve chamber i. Reference numeral 33 denotes a pressure receiving plate, 33 s denotes a seal member, and 36 denotes a valve shaft that combines the C valve body 34 with the pressure receiving plate 33 integrally. A spring 37 (illustrated is a compression coil spring) as a predetermined pressure means is attached to the valve box cover 32 side.
For the C valve body 34, a seal member is shown, and in order to clarify the opening and closing operation of the C valve body 34, it is preferable to install such a seal member, but when the main valve body 5 is closed. Strict water tightness is achieved by the seal member 5s of the main valve body 5 and the seal member of the B valve body 25. Therefore, the strict sealability at the time of closing is not essential for the C valve body 34. It doesn't matter if it is leaking.
[0021]
The primary pressure chamber k ′ is communicated with the primary pressure of the inlet channel a through the communication path r ′. The C valve chamber i communicates with the inlet channel a through the communication passage p ′, and the chamber j communicates with the main valve drive pressure chamber d through the communication passage m ′. Of course, this communication pipe may be communicated in the opposite direction (that is, the C valve chamber i communicates with the main valve drive pressure chamber d and the chamber j communicates with the inlet channel a).
[0022]
The valve body 34 and the communication passage p ′; m ′ of the C valve device are set to have a larger diameter than the valve body 24; 25 and the communication passage p; m; q of the A valve device; This device is preferable for clear operation as a “falling prevention valve” of the present apparatus, and in the figure, the communication path p ′; m ′ is indicated by a dashed line thicker than the communication path p; m; q. ing.
Of course, the force of the springs 27 and 37 is selected so that the force can be balanced with the required primary pressure, but for the clear operation of the device, the spring 37 of the C valve device is used. Is preferably set lower than the set pressure of the spring 27 of the A valve device; B valve device.
[0023]
Next, the operation of the present invention will be described.
The circulation circuit illustrated in FIG. 8 (liquid storage tank 110 and heat exchanger 103 → pump 104, check valve 105, open / close valve 106 and other liquid feeding equipment → circulation forward path 107 → air conditioner 101, open / close valve 102, air vent valve 109, etc. → circulation return path 108 → storage tank 110 and heat exchanger 103), in order to keep the pressure of the circulation forward path 107 and the circulation return path 108 constant, the bypass pipe of the forward path 107 and the return path 108 are first The automatic adjustment valve device of the embodiment (FIG. 1) is interposed, and the operation thereof is observed.
During the pump operation, the valve device V on the return path 108 side is almost open, whereas the valve device V ′ on the forward path 107 side is almost closed. Usually, a slight difference is set in the set primary pressure (V ′ is made higher than V).
[0024]
First, the automatic adjustment valve device V provided in the circulation return path 108 is observed.
In the stage where the primary pressure has not yet reached the predetermined value since the start of the pump operation, in the pilot A valve device; the B valve device, the force of the spring 27 is the internal pressure (primary pressure) of the primary pressure chamber k. The pressure receiving plate 23 is pushed in the direction in which the spring 27 extends (that is, in the right direction in the figure). Accordingly, the A valve body 24 is opened and the B valve body 25 is closed. In the C valve device, the force of the spring 37 is greater than the internal pressure (primary pressure) of the primary pressure chamber k ′, and the pressure receiving plate 33 extends in the direction in which the spring 37 extends (ie, downward in the figure). It has been pushed. Therefore, the C valve body 34 is opened.
By the action of these valve bodies 24; 25; 34, the main valve drive pressure chamber d is communicated with the inlet flow path a, is disconnected from the outlet flow path c, and the internal pressure of the main valve drive pressure chamber d is the primary pressure. Therefore, the main valve body 5 is closed by the difference in pressure acting on the front and back surfaces thereof, and the seal member 5s of the main valve body 5 and the seal member of the B valve body 25 maintain the sealing performance.
[0025]
Next, when the primary pressure rises and reaches a predetermined value, in the pilot A valve device; B valve device, the internal pressure (primary pressure) of the primary pressure chamber k wins over the force of the spring 27, and the pressure receiving plate 23 is pushed back in the direction in which the spring 27 is contracted (that is, in the left direction in the figure). Therefore, the A valve body 24 is closed and the B valve body 25 is opened. Further, in the C valve device, the internal pressure (primary pressure) of the primary pressure chamber k ′ overcomes the force of the spring 37, and the pressure receiving plate 33 pushes the spring 37 in the contracting direction (that is, upward in the figure). returned. Therefore, the C valve body 34 is closed.
By the action of these valve bodies 24; 25; 34, the main valve driving pressure chamber d is substantially cut off from the inlet flow path a, and is communicated with the outlet flow path c. The internal pressure of the main valve driving pressure chamber d is the secondary pressure. Therefore, the main valve body 5 is pushed open by the difference in thrust due to the difference in area between the main valve body 5 and the main valve drive member 6 having a larger pressure receiving area, and the flow flows into the inlet channel a. → Starts flow in the direction of the main valve opening b → the outlet channel c.
[0026]
After the primary pressure reaches a predetermined value, the A valve body 24 and the B valve body 25 react in response to changes in the primary pressure that change due to the amount of flow used in the air conditioning equipment on each floor, and the main valve A predetermined primary pressure is maintained while adjusting the opening degree of the main valve body 5 by appropriately increasing / decreasing the internal pressure of the driving pressure chamber d.
The A valve body 24 and the B valve body 25 are provided so as to be aligned on a single valve shaft 26, and are integrally linked to a predetermined pressure means (spring 27) so as to be primary in the pilot valve device. It is a simple and rational mechanism that mixes the pressure and secondary pressure and sends the combined pressure to the main valve drive pressure chamber d to quickly respond to changes in the flow state. is there. In addition, both valve bodies 24; 25 are arranged at a position interval that can produce not only a state in which one is opened and the other is closed but also a state in which both the valve bodies are almost closed during operation, so that the flow condition is stable. When the valve body is in a closed state, both valve bodies are stabilized in a substantially closed state, and therefore chattering and hunting in which the valve bodies vibrate are unlikely to occur. By these, this apparatus exhibits the outstanding automatic adjustment function as a primary pressure regulation valve.
[0027]
Neither the A-valve device nor the B-valve device has a fixed throttle adjustment channel such as a needle valve, so clogging due to scale, foreign matter, etc. is unlikely to occur. In addition, even if clogging occurs, a self-cleaning operation is performed in which the valve bodies 24; 25 are automatically opened due to a pressure change caused by the clogging. That is, for example, if the A valve body 24 is clogged, the introduction of the primary pressure from the communication path p to the main valve driving pressure chamber d is hindered, so that the internal pressure of the main valve driving pressure chamber d decreases, The main valve body 5 operates in the valve opening direction to increase the passage flow rate, thereby reducing the primary pressure, and as a result, the A valve body 24 moves in the valve opening direction to automatically eliminate clogging. To do. Since this self-cleaning operation has an excellent function of eliminating clogging, a fine strainer or the like is unnecessary and maintenance management is easy.
[0028]
When the A valve device; B valve device is performing the primary pressure adjustment operation, the C valve body 34 is kept closed in the C valve device, and the A valve body 24; It does not interfere with the next pressure adjustment operation. In particular, as described above, if the set pressure of the spring 37 of the C valve device is set lower than the set pressure of the A valve device; the spring 27 of the B valve device, even if there is a slight fluctuation in the primary pressure. Since the C-valve element 34 is securely maintained in the closed state, the A valve device capable of performing a stable and precise adjustment operation; the B valve device can exclusively play the role of primary pressure adjustment, and smooth adjustment Is convenient.
[0029]
When the operation of the pump is stopped, the primary pressure rapidly decreases. At this time, in the pilot A valve device; the B valve device, the pressure receiving plate 23 extends in the direction in which the spring 27 extends (that is, in the right direction in the figure). The A valve body 24 is opened, and the B valve body 25 is closed. In the C valve device, the pressure receiving plate 33 is pushed in the direction in which the spring 37 extends (that is, the downward direction in the figure), and the C valve body 34 is opened.
By the action of these valve bodies 24; 25; 34, the main valve drive pressure chamber d communicates with the inlet flow path a, is disconnected from the outlet flow path c, and the internal pressure of the main valve drive pressure chamber d becomes the primary pressure. The main valve body 5 immediately closes to prevent the liquid from flowing through.
[0030]
In the present invention, the pilot A valve device; the B valve device opens and closes in an interlocked manner, so that the main valve closing operation can be performed sufficiently quickly with only the A valve device; the B valve device. Since the C valve device is provided, the pilot hydraulic fluid is additionally supplied from the main flow path (inlet flow path a) to the main valve drive pressure chamber d at once, and the main valve can be closed very quickly. It will exhibit advanced performance as a “fall-off prevention valve”.
The C-valve device according to the present invention has already added the function of the A-valve device; B-valve device that can operate the main valve closing sufficiently quickly. It goes without saying that it is compact compared to the device.
[0031]
When the main valve body 5 is closed, the portion that strictly functions as a seal is the seal member 5s of the main valve body 5 and the seal member of the B valve body 25, which can easily achieve the sealability according to the prior art. It is a member. On the other hand, even if the sealing member 6s and other sealing members of the main valve driving member 6 are left with a rough sealing property, they do not cause liquid leakage downstream.
[0032]
By the above operation, the automatic adjustment valve device V interposed in the circulation return path 108 has an excellent automatic adjustment function as a “primary pressure adjustment valve” that keeps the pressure of the return path 108 constant after the passage of the air-conditioning equipment 101 on each floor. In addition to the above, it also serves an accurate function as a “water fall prevention valve” that prevents the cold / hot water in the return path 108 from falling into the liquid storage tank 110 when the pump 104 is stopped.
[0033]
In addition, a required pressure set value can be adjusted by adjusting the springs 27; 37 with the adjustment screws 28;
The on-off valve 29 provided in the communication path q is used when the main valve device M is forcibly closed separately regardless of the operation of the pilot valve device, and is always open. . In order to close the main valve device M, the on-off valve 29 may be closed, whereby the internal pressure of the main valve drive pressure chamber d increases toward the primary pressure, and the main valve body 5 is closed. This on-off valve 29 may be operated manually or remotely using various actuators. On the other hand, when it is necessary to forcibly open the main valve device M separately, although not shown, a separate on-off valve is interposed between the main valve drive pressure chamber d and the outlet flow path c. It is sufficient to keep the valve closed (always closed) and open it.
[0034]
On the other hand, the automatic adjustment valve device V ′ interposed in the bypass piping of the circulation forward path 107 illustrated in FIG. 8 performs the same opening / closing operation as the automatic adjustment valve device V interposed on the return path side. The roles are slightly different, and the main valve device M is almost closed when the upstream pressure (primary pressure) is within the predetermined value range, but the primary pressure is likely to rise and exceed the predetermined value. When the state is reached, the main valve body 5 is pushed forward and the flow flows in the direction of the inlet flow path a → the main valve opening b → the outlet flow path c, thereby suppressing an increase in the primary pressure. In other words, it functions as a “primary pressure regulating valve” that keeps the pressure in the forward path 107 constant by acting as a “relief valve” that bypasses and releases the pressure increase in the forward path 107 beyond a predetermined value. Fulfill.
[0035]
Note that, unlike the return path 108 side, the “prevention of water falling” function for preventing the cold / hot water in the forward path 107 from falling into the liquid storage tank 110 when the pump is stopped is easily achieved by the check valve 105. Therefore, the automatic adjustment valve device V ′ is sufficient even if the pilot C valve device is not particularly mounted. Of course, since the C valve device may be mounted, for the sake of simplicity, FIG. 8 shows the same type as the valve device V on the return path 108 side.
[0036]
Next, other embodiments will be described.
In the second embodiment of FIG. 2, the A valve body 24 and the B valve body 25 of the first embodiment are coexisting in an intermediate chamber g. With this partial change, the communication passage pipe is slightly different from that of the first embodiment, but the other configurations and functions and effects are the same as those of the first embodiment, so detailed description thereof will be omitted.
In addition, with respect to the C valve device in FIG. 2, the bias pressure generated around the C valve body 34 in each chamber i; j is eliminated, and the C valve device reacts accurately with respect to the set pressure. 1 shows an example in which the valve shaft 36 and the C-valve body 34 are made to have a perfect balance structure.
[0037]
In the third embodiment of FIG. 3, the main valve drive member 6 of the first embodiment is provided on the downstream side of the main valve seat 4 contrary to that of the first embodiment, and the operating direction of the spring 27 is the first embodiment. It is the reverse of the example. With these partial changes, the operating directions of the main valve drive member 6 and the main valve body 5 are opposite to those of the first embodiment (the main valve body 5 is the internal pressure of the main valve drive pressure chamber d). Is opened when the pressure increases toward the primary pressure, and is closed when the internal pressure decreases toward the secondary pressure), the arrangement of the A valve device and the B valve device, and the inlet flow path a and the outlet flow path c. The communication passage pipes to each other are also opposite to those in the first embodiment, and the installation position of the C valve device is also connected to the main valve drive pressure chamber d and the outlet passage via the communication passages m ′; q ′. (When water is prevented from falling, the C valve device causes the pilot valve fluid to be discharged from the main valve drive pressure chamber d to the outlet passage c at once, thereby closing the main valve body 5 abruptly). Although the arrangement positions and operating directions of the respective components are different from those in the first embodiment, the operational effects are the same as those in the first embodiment. Ri, since other configurations similar to the first embodiment, detailed description thereof is omitted.
[0038]
In the fourth embodiment of FIG. 4, the A; B valve device and the C valve device of the first embodiment are combined face to face to form an A; B; C combined pilot valve device. However, the valve shaft 26 of the A valve body 24; the B valve body 25 and the valve shaft 36 of the C valve body 34 can move independently of each other, and the required pressure set values are also independent by the adjusting screws 28; 38, respectively. Can be adjusted. As each of the A, B, and C combined pilot valve devices is combined, each of the communication passage pipes is slightly different from that of the first embodiment, but the other configurations and operational effects are the same as those of the first embodiment. Therefore, detailed description is omitted.
[0039]
In the fifth embodiment of FIG. 5, the A valve body 24 and the B valve body 25 of the fourth embodiment are coexisting in the intermediate chamber g. With the partial change, the operating direction of the spring 27 is opposite to that of the fourth embodiment, and the communication passage piping is slightly different from that of the fourth embodiment. Since is the same as that of the fourth embodiment, detailed description thereof is omitted.
[0040]
The sixth embodiment of FIG. 6 is the same as that of the fourth embodiment by having one valve shaft of the A; B; C combined pilot valve device of the fourth embodiment and sharing one predetermined pressure means. The device is made more compact while performing the same function as the above.
The A valve body 24; the B valve body 25; and the C valve body 34 are provided on the same axis, and the three valve bodies 24; 25; And it is a mechanism that does not interfere with each other's operation. That is, the C valve body 34 and the corresponding valve seat are also in a cylinder / piston manner. In addition, as described above, the pressure set value for the operation of the C valve body 34 is usually slightly different from the pressure set values of the A valve body 24 and the B valve body 25. In the example, the difference is realized by providing a slight “deviation” between the opening / closing position of the C valve body 34 and the opening / closing position of the A valve body 24; Of course, the degree of this “deviation” may be adjustable by a screw or the like.
As described above, the same control as that of the fourth embodiment is possible. Since other configurations and operational effects are the same as those of the fourth embodiment, detailed description thereof is omitted.
[0041]
In the seventh embodiment of FIG. 7, the A valve body 24 and the B valve body 25 of the sixth embodiment are coexisting in the intermediate chamber g. With the partial change, the operating direction of the spring 27 is opposite to that of the sixth embodiment, and the communication pipe is slightly different from that of the sixth embodiment. Since this is the same as that of the sixth embodiment, detailed description thereof is omitted.
FIG. 7 shows an example in which the main valve body 5 and the main valve drive member 6 are integrated, and the drainage of the main valve drive pressure chamber d is performed at an appropriate time for inspection and maintenance. The example which attached siphon piping with the on-off valve 11 so that it can be performed is also shown in figure.
[0042]
Next, matters common to the embodiments of the present invention will be described.
As for the pilot A valve device; the B valve device, in any embodiment, as an example of a mechanism in which the A valve body 24 and the B valve body 25 are interlocked and do not interfere with each other's operation, Although a piston-type valve opening / closing mechanism is illustrated, a mode other than the cylinder / piston mode may be used, or the A valve device; the B valve device is divided and the valve body 24; 25 is placed on a separate valve shaft. Each may be provided.
Similarly, the C valve device may be provided on a separate valve shaft from the A valve device; the B valve device so as to cooperate with the A valve device; the B valve device and not interfere with each other's operation. In addition, a cylinder / piston type valve opening / closing mechanism as shown in FIGS. 6 to 7 may be used, or an appropriate type meeting the purpose may be used.
The A valve device; the B valve device; and the C valve device, as illustrated in the C valve device of FIG. A perfect balance structure may be applied.
In addition, the design of the chambers f; g; h; i; j; k; k 'of the pilot valve device is arranged (positional relationship) and combined, and associated passage pipes are designed within the scope of the present invention. It is possible, and the structure of the pilot valve device is not limited to the above embodiments.
[0043]
As for the predetermined pressure means of the pilot valve device, in addition to the method using the springs 27 and 37 as in the respective embodiments, other elastic members are used, linked to the weight, and a booster mechanism is added. Needless to say, application of an atmospheric pressure device, a hydraulic device, or the like can be easily performed.
[0044]
As for the main valve device M, the lift valve type is applied to the main valve body 5 in each embodiment, but other types of on-off valves (for example, butterfly valves, gates, etc.) are within the scope of the present invention. Valve, ball valve, etc.) may be applied. Further, an integral structure of the main valve body 5 and the main valve driving member 6 as illustrated in FIG. 7 may be applied. In each of the embodiments, in order to simplify the structure of the main valve device M, both the main flow path portion a → b → c and the main valve driving pressure chamber d are housed in the main valve box 1 in a compact manner. In addition, although the main flow path portion and the main valve drive pressure chamber d are housed in each of the main valve boxes divided into two, both ends of the main valve shaft passing through the two valve boxes are shown. Alternatively, the main valve body 5 and the main valve driving member 6 may be mounted.
[0045]
Depending on the specification conditions, it is necessary to prevent the influence of pressure pulsation (chattering and hunting) due to unexpected flow changes during the primary pressure adjustment operation, but as an example of how to deal with it, as shown in each example, The shape of the main valve opening b is a serrated flow path that makes the flow rate change smooth. Besides, a pilot A valve device; a B valve device is provided with a braking device; You may squeeze the communication path. If it is necessary to slowly operate the main valve device M within a range that does not impede the sudden closing operation as the “falling prevention valve”, the main valve device M has a one-effect braking device (opening of the main valve). (Brake only in the valve direction) may be provided. Any one of these countermeasures may be employed alone, or some may be employed in combination, or may be omitted under specification conditions where it is not required.
[0046]
Throughout each embodiment, O-rings, seal rings, diaphragms, bellows, etc. may be applied as appropriate according to local specifications for seal members that are installed in places that require tightness. If the sealing property can be maintained, the sealing member may be omitted. Needless to say, comb-shaped protrusions, rectifying grids, and the like may be formed in places where high-speed flow may pass for the purpose of preventing cavitation.
In addition, over the members constituting the valve device of the present invention, the use of the prior art is not disturbed, and various design changes can be made within the scope of the present invention. It is not limited to.
[0047]
【The invention's effect】
The automatic adjustment valve device of the present invention not only exhibits an excellent automatic adjustment function as a primary pressure adjustment valve, but also has a perfect shut-off sealing function, and is fixed to a pilot valve device portion such as a needle valve. Since there is no throttle adjustment flow path, and the pilot valve unit is clogged, the valve body automatically performs a self-cleaning operation that prevents clogging accidents due to scale, foreign matter, etc. There are also advantages. In addition, chattering and hunting hardly occur while the operation is quick. Furthermore, when the main valve upstream pressure (primary pressure) drops rapidly due to the stoppage of the feed pump, etc., it also closes immediately and prevents the liquid from flowing through. Demonstrate. The pilot valve device and other parts are simple in structure, easy to increase in size and pressure, can easily set and adjust the required primary pressure with a single touch, and should be difficult to design, manufacture, operate and maintain. There was no part, and it was possible to obtain a convenient automatic adjustment valve device that is highly reliable and economical, and its implementation effect is extremely large.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a second embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing a third embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing a fourth embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing a fifth embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing a sixth embodiment of the present invention.
FIG. 7 is a longitudinal sectional view showing a seventh embodiment of the present invention.
FIG. 8 is an explanatory view showing an installation example of a primary pressure regulating valve.
FIG. 9 is a longitudinal sectional view showing an example of a conventional primary pressure regulating valve.
FIG. 10 is a longitudinal sectional view showing another example of a primary pressure regulating valve according to the prior art.
[Explanation of symbols]
V ... Automatic adjustment valve device V '... Automatic adjustment valve device
M ... Main valve device
1 ... Main valve box 2 ... Main valve box cover
3 ... Cylindrical wall
4 ... Main valve seat 5 ... Main valve body 5s ... Seal member
6 ... Main valve drive member 6s ... Seal member
7 ... Main valve shaft 8 ... Main valve spring
9 ... Bearing 10 ... Fixed throttle control valve 11 ... Open / close valve
A ... Pilot A valve device B ... Pilot B valve device
21 ... Valve box 22 ... Valve box cover
23 ... Pressure receiving plate 23s ... Sealing member
24 ... A valve body 25 ... B valve body
26 ... Valve shaft 27 ... Spring 28 ... Adjustment screw
29 ... Open / close valve
C ... Pilot C valve device
31 ... Valve box 32 ... Valve box cover
33 ... Pressure receiving plate 33s ... Sealing member
34 ... C valve body
36 ... Valve shaft 37 ... Spring 38 ... Adjustment screw
a ... Inlet channel b ... Main valve opening
c ... Outlet channel d ... Main valve drive pressure chamber
f ... A valve chamber g ... Intermediate chamber h ... B valve chamber
i ... C valve chamber j ... Chamber
k; k '... Primary pressure chamber
m; m ′; p; p ′; q; q ′; r;
P ... Pilot valve device S ... Sub pilot valve device
101 ... Air conditioning equipment 102 ... Open / close valve
103 ... Heat exchanger 104 ... Pump
105 ... Check valve 106 ... Open / close valve
107 ... circulation outbound route 108 ... circulation return route
109 ... Air vent valve 110 ... Liquid storage tank

Claims (3)

主流路を開閉する主弁装置がパイロット弁装置に連係して駆動される自動調整弁装置において、
主弁装置は、主弁箱の内部に一体的に組み込まれた主弁体と該主弁体より大きい受圧面積を持つ主弁駆動部材とを備え、主弁体は主弁座の上流側に位置して、主弁座との間に絞り流路を形成し、主弁駆動部材は主弁箱の円筒状壁部に対して滑動自在に嵌装されて、該壁部との間に主弁駆動圧力室を形成し、
パイロット弁装置は、
前記主弁装置の上流側圧力と所定圧力手段との対向作用力のバランスによって作動し、主弁上流側圧力が所定値より高くなれば閉鎖し、低くなれば開通するパイロットA弁装置と、
前記主弁装置の上流側圧力と所定圧力手段との対向作用力のバランスによって作動し、主弁上流側圧力が所定値より高くなれば開通し、低くなれば閉鎖するパイロットB弁装置と、
前記主弁装置の上流側圧力と所定圧力手段との対向作用力のバランスによって作動し、主弁上流側圧力が所定値より高くなれば閉鎖し、低くなれば開通するパイロットC弁装置とからなり、
前記パイロットA弁装置と前記パイロットB弁装置とが、中間に前記主弁駆動圧力室を介して、前記主弁装置の上流側と下流側との間に連通路によって直列的に連通されると共に、前記主弁装置の主流路と前記主弁駆動圧力室との間に更に設けられた連通路中に前記パイロットC弁装置が介設されたことを特徴とする、自動調整弁装置。
In the automatic adjustment valve device in which the main valve device that opens and closes the main flow path is driven in conjunction with the pilot valve device,
The main valve device includes a main valve body integrated into the main valve box and a main valve driving member having a larger pressure receiving area than the main valve body, and the main valve body is located upstream of the main valve seat. And a throttle flow path is formed between the main valve seat and the main valve drive member. The main valve drive member is slidably fitted to the cylindrical wall portion of the main valve box, and the main valve drive member is interposed between the main wall and the main valve seat. Forming a valve-driven pressure chamber,
The pilot valve device
A pilot A valve device that operates by the balance of the opposing acting force between the upstream pressure of the main valve device and the predetermined pressure means, and closes when the main valve upstream pressure becomes higher than a predetermined value, and opens when the pressure becomes lower;
A pilot B valve device that operates according to the balance of the opposing acting force between the upstream pressure of the main valve device and the predetermined pressure means, and opens when the main valve upstream pressure becomes higher than a predetermined value, and closes when the pressure becomes lower;
The pilot C valve device is operated by the balance of the counter acting force between the upstream pressure of the main valve device and the predetermined pressure means, and is closed when the main valve upstream pressure becomes higher than a predetermined value, and opened when the pressure becomes lower. ,
The pilot A valve device and the pilot B valve device are connected in series by a communication path between the upstream side and the downstream side of the main valve device via the main valve driving pressure chamber in the middle. An automatic adjustment valve device, wherein the pilot C valve device is interposed in a communication passage further provided between a main flow path of the main valve device and the main valve drive pressure chamber.
前記パイロットA弁装置と前記パイロットB弁装置の両弁体が同軸上に設けられ、前記主弁装置の上流側圧力と1個の所定圧力手段との対向作用力のバランスによって、両弁体が連動して作動することを特徴とする、請求項1記載の自動調整弁装置。Both valve bodies of the pilot A valve device and the pilot B valve device are provided on the same axis, and both valve bodies are formed by the balance of the counteracting force between the upstream pressure of the main valve device and one predetermined pressure means. 2. The automatic adjustment valve device according to claim 1, wherein the automatic adjustment valve device operates in conjunction. 前記パイロットA弁装置、前記パイロットB弁装置、前記パイロットC弁装置の3弁体が同軸上に設けられ、前記主弁装置の上流側圧力と1個の所定圧力手段との対向作用力のバランスによって、3弁体が連動して作動することを特徴とする、請求項1記載の自動調整弁装置。Three valve bodies of the pilot A valve device, the pilot B valve device, and the pilot C valve device are provided on the same axis, and the balance of the counteracting force between the upstream pressure of the main valve device and one predetermined pressure means is provided. The automatically adjusting valve device according to claim 1, wherein the three valve bodies are operated in conjunction with each other.
JP2003203423A 2003-07-29 2003-07-29 Automatic adjustment valve device Expired - Fee Related JP4462858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203423A JP4462858B2 (en) 2003-07-29 2003-07-29 Automatic adjustment valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203423A JP4462858B2 (en) 2003-07-29 2003-07-29 Automatic adjustment valve device

Publications (2)

Publication Number Publication Date
JP2005048796A JP2005048796A (en) 2005-02-24
JP4462858B2 true JP4462858B2 (en) 2010-05-12

Family

ID=34262773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203423A Expired - Fee Related JP4462858B2 (en) 2003-07-29 2003-07-29 Automatic adjustment valve device

Country Status (1)

Country Link
JP (1) JP4462858B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935454B1 (en) 2007-12-26 2010-01-06 주식회사 대흥이엔텍 Pilot Type Relief Valve
DE102011101187B4 (en) * 2011-05-11 2014-09-04 Magna Steyr Fahrzeugtechnik Ag & Co Kg pressure reducer
KR101122763B1 (en) * 2011-09-19 2012-03-23 조진식 Valve system of proportional pressure control related to liquid flow rate
KR101472062B1 (en) 2013-09-04 2014-12-16 재단법인한국조선해양기자재연구원 A relief valve with a test gag
JP6530177B2 (en) 2014-11-06 2019-06-12 株式会社コスメック Relief valve device
KR101782422B1 (en) 2015-10-28 2017-10-23 주식회사 코밸 Control device of relief valve with test gag
KR101782426B1 (en) 2015-10-28 2017-10-23 주식회사 코밸 Control device of relief valve with test gag
DK179156B9 (en) * 2016-11-22 2018-04-03 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A relief valve for a large turbocharged two-stroke compression-ignited internal combustion engine
KR102024226B1 (en) * 2018-02-22 2019-09-23 조광아이엘아이주식회사 Pilot operated safety valve system

Also Published As

Publication number Publication date
JP2005048796A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4181222B2 (en) Automatic adjustment valve device
JP3790778B2 (en) Automatic adjustment valve device
US6179570B1 (en) Variable pump control for hydraulic fan drive
JP4462858B2 (en) Automatic adjustment valve device
US7441563B2 (en) Thermostatic expansion valve with check valve
US5735308A (en) Automatic constant-pressure regulating lift device
EP1305684A1 (en) Thermostatic mixing valve
JP4462835B2 (en) Automatic adjustment valve device
US7434597B2 (en) Thermostatic expansion valve with check valve
WO2002012766A1 (en) Valve device and pipeline system
RU2570485C2 (en) Heat exchanger valve device
JP3851378B2 (en) Automatic adjustment valve device
JP2000161529A (en) Automatic adjusting valve device
JP3111274B2 (en) Automatic constant pressure valve device
JP6502326B2 (en) System for conditioning liquid in circuit
JP2001173832A (en) Constant flow valve system with liquid level control mechanism
US20240003450A1 (en) Hydrostatically Adjustable Valve and Associated System
JP2757212B2 (en) Emergency shut-off valve
JPH03107685A (en) Automatic regulating lift valve device
JPH04102780A (en) Automatic adjusting lift valve device
JP4494172B2 (en) Discharge / Air vent integrated valve
JPH08128559A (en) Flow rate regulating valve
JP2000002358A (en) Automatic regulating valve apparatus
JP2542768B2 (en) Water pressure control valve
JP2693710B2 (en) Constant flow control lift valve device with liquid level control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190226

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees