JP4462835B2 - Automatic adjustment valve device - Google Patents

Automatic adjustment valve device Download PDF

Info

Publication number
JP4462835B2
JP4462835B2 JP2003067260A JP2003067260A JP4462835B2 JP 4462835 B2 JP4462835 B2 JP 4462835B2 JP 2003067260 A JP2003067260 A JP 2003067260A JP 2003067260 A JP2003067260 A JP 2003067260A JP 4462835 B2 JP4462835 B2 JP 4462835B2
Authority
JP
Japan
Prior art keywords
main valve
valve device
valve
pilot
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003067260A
Other languages
Japanese (ja)
Other versions
JP2004278563A (en
Inventor
邦雄 小倉
正博 河本
浩一 政重
研二 高橋
Original Assignee
株式会社横田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社横田製作所 filed Critical 株式会社横田製作所
Priority to JP2003067260A priority Critical patent/JP4462835B2/en
Publication of JP2004278563A publication Critical patent/JP2004278563A/en
Application granted granted Critical
Publication of JP4462835B2 publication Critical patent/JP4462835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Fluid-Driven Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体輸送管路に設置する自動調整弁装置に関するものであり、より詳しくは、弁前後の差圧を自動的に所定値に維持する差圧調整弁に関するものである。なお、本明細書中、「水」や「液」の語は流体を総称的に代表するものとする。
【0002】
【従来の技術】
従来から、中高層ビルの空調、冷暖房設備においては、地下に設置された熱交換器によって製造された冷水や温水を、ポンプによって各階の空調機器に循環させることが、一般的に行われている。
その一例として、循環回路が密閉回路の場合を示したのが図である。この場合、各階の空調機器101の温度コントロール(空調機器101に付随する開閉弁102の開閉調節)によって循環回路の負荷が変動しても、熱交換器103やポンプ104が定流量で運転できるようにしておくことが必要であり、このため、循環回路の往路107と帰路108との差圧、もしくはポンプ104の前後の差圧を一定に保つための自動調整弁装置V(いわゆる「差圧調整弁」)を介設することが多い。
従来から一般的に、差圧調整弁としては、その前後の管路内圧力の差を検知し、例えばニードル弁のような固定的な絞り調節流路で流量を絞りながら作用させたパイロット弁によって、主弁駆動用のピストンやダイヤフラムを作動させる構造のものが広く用いられて来た。
【0003】
従来の差圧調整弁の典型的な構成は、図に示したように、主弁装置Mにおいては、入口流路aと出口流路cとその連通流路中に主弁座4を備えた主弁箱1の内部に、一体的に組み合わされた主弁体5と該主弁体5より大きい受圧面積を持つ主弁駆動部材6とが主弁軸7を介して進退自在に設けられ、主弁駆動部材6は主弁箱の円筒状壁部3に対して滑動自在に嵌装されて、主弁箱蓋2との間に主弁駆動圧力室dを形成し、そして、主弁装置Mの前後差圧が所定値より高くなれば開通し、低くなれば閉鎖するパイロット弁装置Pが付設され、主弁駆動圧力室dは固定絞り調節弁11を介して主弁上流側の入口流路aに連通されると共に、パイロット弁装置Pを介して主弁下流側の出口流路cに連通されている。パイロット弁装置Pにおいては、受圧板を挟んだ一方には主弁上流側圧力、反対側には主弁下流側圧力が導入され、主弁装置Mの前後差圧とばね付勢力とのバランスによって作動する弁体がパイロット流路を開閉するようになっている。
そしてこの構成によって、主弁装置Mの前後差圧が所定値より高くなった場合には、パイロット弁装置Pが開通し、主弁駆動圧力室dの内圧が主弁下流側圧力に向かって低下し、主弁体5が開弁作動し、一方、主弁装置Mの前後差圧が所定値より低くなった場合には、パイロット弁装置Pが閉鎖し、主弁駆動圧力室dの内圧が主弁上流側圧力に向かって上昇し、主弁体5が閉鎖作動し、これらの自動開閉作動によって主弁装置Mの通過流量を調節して前後差圧を一定に保つというものである。
【0004】
【発明が解決しようとする課題】
しかし、この従来技術による差圧調整弁は、次のような保守管理上の煩わしさや耐久性に対する問題点がある。
(1)主弁駆動部材6が円筒状壁部3に接する部分のシール部材6sは、主弁締切り時において漏れを許さない完璧な密封性を要する構造のものが多く、種々のシール手段を追求し、更にベローズやダイヤフラム等を採用してその課題を解決しようとしているが、特に大型化・高圧化するほど、シール部分の耐久性や加工精度に困難を生じ、また、保守管理上も煩わしさが残る。即ち、主弁締切り時の下流側への液漏れが発生しやすい。
(2)急激な流動変化による圧力脈動の影響(いわゆる「チャタリング」や「ハンチング」)を防止する目的で、主弁装置Mを緩徐に駆動させることも必要であるが、そのために従来技術のものでは、主弁上流側の液を導入する連通路の途中に、例えばニードル弁のような固定絞り調節弁11を必要とし、この固定した精細な流路がスケール・異物等の目詰まり事故の原因となる。そのためにストレーナー等が必要で、清浄液以外では扱いにくいものである。
(3)主弁駆動圧力室dの圧力増減制御は、専らパイロット弁装置Pを介して出口流路cに排出するパイロット液の増減制御によってなされており、その間も、固定絞り調節弁11を介して入口流路aから常にパイロット液が流入しているため、主弁駆動圧力室dの圧力増減制御が迅速には行いにくい。
(4)所定の差圧を設定するための調節が、ニードル弁等の固定絞り調節弁11とパイロット弁装置Pの2箇所の兼ね合いを見ながらの調節となり、運転・保守管理上の手が掛かる。
【0005】
なお、このパイロット弁装置と主弁装置を一体化した「直動型」の差圧調整弁も広く用いられているが、この直動型においても、同様の技術的思想に依拠しているため、やはり上記(1)〜(4)の問題を有している。
そこで、本発明は、差圧調整弁としての優れた自動調整機能を発揮するのみならず、締切り密封機能も完璧であり、更に、パイロット弁装置部からニードル弁等の固定的な絞り調節流路を排除し、且つパイロット弁装置部の自掃作動による目詰まり防止機能も備え、そして、作動が迅速でありながらチャタリングやハンチングが起こりにくい、取扱い簡単で便利な自動調整弁装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、
主弁装置がパイロット弁装置に連係して駆動される自動調整弁装置において、
主弁装置は、主弁箱の内部に一体的に組み込まれた主弁体と該主弁体より大きい受圧面積を持つ主弁駆動部材とを備え、主弁体は主弁座の上流側に位置して、主弁座との間に絞り流路を形成し、主弁駆動部材は主弁座の上流側に配置され主弁箱の円筒状壁部に対して滑動自在に嵌装されて、該円筒状壁部内に主弁駆動圧力室を形成し、
パイロット弁装置は、前記主弁装置の前後差圧と所定圧力手段との対向作用力のバランスによって連動作動するパイロットA弁装置とパイロットB弁装置とからなり、該パイロットA弁装置は、前記主弁装置の前後差圧が所定値より高くなれば閉鎖し、低くなれば開通し、該パイロットB弁装置は、前記主弁装置の前後差圧が所定値より高くなれば開通し、低くなれば閉鎖し、該パイロットA弁装置と該パイロットB弁装置の両弁体は、同軸上で対向して配置されて前記主弁装置の前後差圧の変化に応じて互いに反対方向に開閉作動し、
前記主弁装置の上流側と前記主弁駆動圧力室とが前記パイロットA弁装置を介して連通されると共に、前記主弁装置の下流側と前記主弁駆動圧力室とが前記パイロットB弁装置を介して連通されたことを特徴とする。
【0007】
上記の構成に基づいて、本発明の自動調整弁装置は、主弁装置の前後差圧の変化によって開閉するパイロットA弁装置とパイロットB弁装置とが、連動作動を行い、主弁駆動圧力室の内圧を適宜に増減して、主弁体の開度を調整しながら通過流量を自動制御し、差圧調整弁としての優れた自動調整機能を発揮する。又、締切り密封性も容易に達成できる。
又、パイロットA弁装置、B弁装置のいずれにもニードル弁等の固定的な絞り調節流路がないので、スケール・異物等による目詰まりは発生しにくく、又、万一目詰まりが発生しても、その目詰まりによって生ずる圧力変化によって、その弁体が自動的に開弁する自掃作動を行い、目詰まりを排除するという機能も備えている。
そして、パイロットA弁装置、B弁装置の両弁体が一体的に連動して、パイロット弁装置内で主弁上流側圧力と主弁下流側圧力の混合を行い、その合成圧力を主弁駆動圧力室に送り込んで流況変化に速やかに対応する仕組みとなっているので、作動が迅速である。しかも、チャタリングやハンチングが発生しにくい。
【0008】
【発明の実施の形態】
本発明の詳細を、実施例を示した図面に基づいて説明する。
なお、以下便宜上の用語として、パイロットA弁装置は「A弁装置」、その弁体は「A弁体」、パイロットB弁装置は「B弁装置」、その弁体は「B弁体」、主弁装置の上流側の圧力は「1次圧力」、主弁装置の下流側の圧力は「2次圧力」と呼称する。又、各図において共通の役割をする部材には共通の図面符号を付してある。
まず、第1実施例を示した図1に基づいて説明すると、その主弁装置Mの図においては、1は入口流路aと出口流路cを備えた主弁箱を示し、2は主弁箱蓋を示す。4は主弁座である。主弁箱1の中には、主弁座4に対して上流側に設けられた主弁体5と、主弁箱1の円筒状壁部3に対してシール部材6s(このシールは逸流阻止程度の粗雑な密封性で充分である)を介して滑動自在に嵌装された主弁駆動部材6と、両部材5;6を一体的に組み合わせる主弁軸7とを備えている。この主弁軸7は軸受10によって進退自在に支持されている。そして、主弁駆動部材6と円筒状壁部3及び主弁箱蓋2に包まれて袋室状の主弁駆動圧力室dが形成されており、その内圧の増減により主弁体5が駆動され、主弁座4との間の主弁開口部bを開閉する。主弁体5と主弁駆動部材6との受圧面積の関係は、主弁駆動部材6の方を大きめに設定する。
【0009】
そして、主弁装置Mの前後差圧の変化に対応して、その主弁装置Mの前後差圧が所定値より高くなれば閉鎖し、低くなれば開通するA弁装置と、主弁装置Mの前後差圧が所定値より高くなれば開通し、低くなれば閉鎖するB弁装置とが、その中間に主弁駆動圧力室dを介して、主弁上流側と主弁下流側との間に連通路によって直列的に連通されることによって、主弁駆動圧力室dが主弁駆動の作動圧力室として機能する基本的構造に構成されている。
【0010】
パイロット弁装置の図においては、21は弁箱、22は弁箱蓋を示す。弁箱21の中には、A弁装置のA弁室f、B弁装置のB弁室h、A弁装置とB弁装置の間の中間室g、2次圧力室jが形成されている。A弁室fの中にはA弁体24が配設され、B弁室hの中にはB弁体25が配設され、A弁室fとB弁室hの間に中間室gが配設されている。そして、A弁体24とB弁体25は同軸上にあって連動し、且つ、互いに相手の作動を妨げないよう、シリンダー・ピストン様式の弁開閉機構が適用されている。又、その作動時に、一方が開き一方が閉鎖するという状態のみならず、両弁体24;25共にほぼ閉鎖する状態も生み出し得る位置間隔に配設されている。23は受圧板、23sはシール部材、26は両弁体24;25を受圧板23と一体的に組み合わせる弁軸を示す。又、弁箱蓋22の側には1次圧力室iが形成され、所定圧力手段としてのばね27(例示したものは圧縮コイルばね)が付設されている。
【0011】
なお、B弁体25については、閉鎖時の厳密な密封性を示すため、シール部材が図示されている。そして、A弁体24については、閉鎖時の厳密な密封性は必要なく、幾分洩れ気味であってもよいことが図示されている。勿論、A弁体24にも厳密な密封性を付加しても何ら差し支えない。又、締切り密封機能を必要としない仕様の場合には、両弁体24;25共に、閉鎖時の厳密な密封性は必要ない。
1次圧力室iは連通路r1により入口流路aの1次圧力に連通され、2次圧力室jは連通路r2により出口流路cの2次圧力に連通されている。A弁室fは連通路pにより入口流路aに連通され、中間室gは連通路mにより主弁駆動圧力室dに連通され、そしてB弁室hは連通路qにより出口流路cに連通されている。
【0012】
次に、本発明の作用について説明する。
に例示された循環回路(熱交換器103→ポンプ104、逆止弁105、開閉弁106等の送液機器→循環往路107→空調機器101、開閉弁102等の各階設備→循環帰路108→熱交換器103)において、循環往路107と循環帰路108との差圧を一定に維持するために、この循環往路107と循環帰路108の間にバイパス配管を施し、そのバイパス配管に第1実施例(図1)の自動調整弁装置Vを介設して、その作動の態様を見るものとする。
まず、ポンプの運転を開始してから主弁装置Mの前後差圧が所定値に達するまでの段階では、パイロット弁装置(A弁装置;B弁装置)においては、ばね27の力が、1次圧力室iと2次圧力室jの内圧の差(即ち、主弁装置Mの前後差圧)に勝っており、受圧板23はばね27が伸びる方向(即ち図中の左方向)に押されている。従って、A弁体24は開通、B弁体25は閉鎖しており、それによって主弁駆動圧力室dの内圧は1次圧力となっているので、主弁体5はその前後面に作用する圧力の差によって閉鎖し、主弁体5のシール部材5sとB弁体25のシール部材が密封性を保っている。
なお、ばね27の力は、主弁装置Mの所要の前後差圧と均衡できる範囲値のものを選定しておくことは勿論である。
【0013】
次に、主弁装置Mの前後差圧が増大して所定値を超える状態となったときには、パイロット弁装置においては、1次圧力室iと2次圧力室jの内圧の差(即ち、主弁装置Mの前後差圧)が、ばね27の力に勝ち、受圧板23はばね27を縮める方向(即ち図中の右方向)に押し返される。そして、A弁体24は閉鎖、B弁体25は開通し、それによって主弁駆動圧力室dの内圧は2次圧力に向かって低下し、主弁体5とそれより大きい受圧面積を持つ主弁駆動部材6との面積差に伴う圧力の差により、主弁体5は推し開かれ、流れは入口流路a→主弁開口部b→出口流路cの方向に流れて、主弁装置Mの前後差圧の上昇を抑える。
次いで、主弁装置Mの前後差圧が所定値に戻った後は、各階の空調機器での使用流量の多寡などにより変化する主弁装置Mの前後差圧の変化を受けて、A弁体24とB弁体25が応動し、主弁駆動圧力室dの内圧を適宜に増減して、主弁体5の開度を調整しながら所定の前後差圧を維持する。主弁装置Mの前後差圧が安定しているときは、両弁体24;25共に、ほぼ閉鎖の状態で安定し、主弁体5も振動することなく安定する。
【0014】
ポンプの運転を停止したときには、主弁装置Mの前後差圧は消失するため、パイロット弁装置においては、受圧板23はばね27の伸びる方向(即ち図中の左方向)に押され、A弁体24は開通、B弁体25は閉鎖し、従って主弁体5は閉鎖する。
このような主弁体5の閉鎖時に、厳密に密封性の機能を果たす部分は、主弁体5のシール部材5sとB弁体25のシール部材であり、これらは従来技術によって容易に密封性を達成できる部材である。一方、主弁駆動部材6のシール部材6sは、粗雑な密封性のままにしておいても、下流側への液漏れの原因とはならない。
以上の作動によって、差圧調整弁としての的確な機能を果たすものである。なお、ばね27を調整ねじ28によりワンタッチで調整することにより、所要の差圧設定値を調整することができる。
【0015】
A弁装置、B弁装置のいずれにも、ニードル弁等の固定的な絞り調節流路がないので、スケール・異物等による目詰まりは発生しにくい。又、万一目詰まりが発生しても、その目詰まりによって生ずる圧力変化によって、その弁体24;25が自動的に開弁する自掃作動を行う。即ち、例えばA弁体24に目詰まりが発生したとすると、連通路pから主弁駆動圧力室dへの1次圧力の導入が妨げられるので、主弁駆動圧力室dの内圧は低下し、主弁体5は開弁方向に作動して通過流量が増大し、それによって主弁装置Mの前後差圧が減少し、その結果、A弁体24が開弁方向に移動して、目詰まりを自動的に排除する。この自掃作動によって目詰まりを排除するという優れた機能を備えているので、細目のストレーナー等は不要であり、保守管理も容易である。
そして、A弁体24とB弁体25が一本の弁軸26上に揃えて設けられ、一個の所定圧力手段(ばね27)に対して一体的に連動して、パイロット弁装置内で1次圧力と2次圧力の混合を行い、その合成圧力を主弁駆動圧力室dに送り込んで流況変化に速やかに対応するという、簡明かつ合理的な仕組みとなっており、このため作動が迅速である。しかも両弁体24;25は、作動時に、一方が開通し一方が閉鎖するという状態のみならず、両弁体共にほぼ閉鎖する状態も生み出し得る位置間隔に配設され、流況が安定しているときは、両弁体共にほぼ閉鎖の状態で安定する仕組みとなっており、このため、弁体が振動するチャタリングやハンチングは発生しにくい。
【0016】
なお、この図1には、不意の流動変化による主弁装置Mのチャタリングやハンチングを確実に抑制したい場合の対処方法の一例として、主弁装置Mにシリンダー部材とピストン部材とからなる制動装置8(ダンパー)を設けたものが示されている。
又、連通路q中に介設されている開閉弁29は、パイロット弁装置の作動に拘わりなく別途強制的に主弁装置Mを閉鎖させたい場合に用いるもので、常時は開通状態にしておく。主弁装置Mを閉鎖させたい場合は、開閉弁29を閉弁操作すればよく、それによって主弁駆動圧力室dの内圧は1次圧力に向かって上昇し、主弁体5を閉鎖させる。この開閉弁29は、手動操作でもよいし、各種アクチュエーター等を用いて遠隔操作してもよい。一方、別途強制的に主弁装置Mを開弁させる必要がある場合は、図示は省略したが、連通路mと連通路qとの間に別途の開閉弁を介設しておき(常時は閉鎖状態にしておく)、それを開弁操作すればよい。
【0017】
次に、図2の第2実施例は、第1実施例のA弁体24とB弁体25を中間室gの中に同居させ、ばね27の作動方向を第1実施例のものとは逆向きにしたものである。それらの部分的変更に伴って、連通路配管も第1実施例のものとは若干異なっているが、その他の構成及び作用効果は第1実施例と同様なので、詳述は省略する。
なお、この図2には、主弁体5を主弁駆動部材6と一体化させた例が図示され、更に、不意の流動変化によるチャタリングやハンチングを確実に抑制したい場合の対処方法の一例として、この主弁駆動部材6自体に制動装置(ダンパー)を形成したものも図示されている。その構造は、主弁箱1の円筒状壁部3には同芯のシリンダー部3a及びシリンダー縮径部3bを備え、主弁駆動部材6の外周部には同芯のピストン部6a及びピストン拡径部6bを備え、そして、主弁駆動部材6の進退運動の内の所定区間(主弁体5が主弁座4に接近した区間)において、シリンダー部3aに対してはピストン拡径部6bが対向摺接し、シリンダー縮径部3bに対してはピストン部6aが対向摺接することによって、ピストン拡径部6bとシリンダー縮径部3bとの間に、主弁駆動部材6の進退運動を制動するダンパー室8が形成されたものである。円筒状壁部3と主弁駆動部材6との間隙の形状の設計を適切に行い、あるいはダンパー室8の内外を連通しかつ通過流量を調整できる小孔を穿設するなどの方法によって、制動開始のタイミングの設定や制動力の調節などが行えることは言うまでもない。
又、この図2には、点検・保守等のために、主弁駆動圧力室dの中の水抜きを適時に行えるように、開閉弁12付きのサイフォン配管を付設した例も図示されている
0018
次に、本発明の各実施例に共通の技術事項について説明する。
パイロット弁装置については、いずれの実施例においても、A弁体24とB弁体25が連動し、且つ、互いに相手の作動を妨げないようにする仕組みの一例として、シリンダー・ピストン様式の弁開閉機構が例示されているが、このシリンダー・ピストン様式以外の様式を用いてもよいし、該弁体24;25を別個の弁軸上に夫々設けてもよい。その他にも、パイロット弁装置の各室f;g;h;i;jの配置(位置関係)及び組み合わせ、それに伴う連通路配管等、この発明の趣旨の範囲内で設計変更可能であり、パイロット弁装置の構造を前記の各実施例に限定するものではない。
パイロット弁装置の所定圧力手段については、各実施例のようなばね27を用いる方法の他にも、他の弾性部材を用いたり、重錘にリンクしたり、倍力機構を付加したり、気圧、液圧装置等の適用が容易にできることは勿論である。
0019
主弁装置Mについては、各実施例においては、主弁体5にリフト弁形式を適用しているが、この発明の趣旨の範囲内で、その他の形式の開閉弁(例えば、バタフライ弁、ゲート弁、ボール弁等)を適用してもよい。又、第2実施例に示したように、主弁体5と主弁駆動部材6とは、一体部材に形成してもよい。なお、各実施例においては、主弁装置Mの構造を簡明にするために、a→b→cの主弁流路部と主弁駆動圧力室dの両方を主弁箱1内にコンパクトに収めたものを図示したが、その他にも、この主弁流路部と主弁駆動圧力室dを、2つに分割した主弁箱の夫々に収め、この2つの弁箱を貫通させた主弁軸の両端に主弁体5と主弁駆動部材6を装着する等の構造にしても差し支えない。
0020
仕様条件によっては、不意の流動変化による圧力脈動の影響(チャタリングやハンチング)を防止するために、主弁装置Mを緩徐に作動させることが必要となる場合もあるが、その対処方法の例として、各実施例に示したように、主弁開口部bの形状を流量変化をスムーズにする鋸歯状の流路としたり、主弁装置Mにシリンダー部材とピストン部材とからなる制動装置8(ダンパー)を設けたり、主弁駆動部材6自体に制動装置8(ダンパー)を形成してもよい。その他、図示は省略するが、パイロット弁装置に制動装置を設けたり、適宜に連通路を絞ったりする等の方法もある。それらの対処方法は、いずれかを単独で採用しても、いくつかを組み合わせて採用してもよいし、それが必要とされない仕様条件下においては省略してもよい。
0021
各実施例にわたり、密封性を要する箇所に装着されるシール部材については、現地の仕様に合わせて適宜にOリング、シールリング、ダイヤフラム、ベローズ等を適用してよく、又、直接接触により良好な密封性を保持できる場合は、該シール部材を省略してもよい。なお、高速流が通過する可能性のある箇所には、キャビテーション防止等の目的で櫛歯状突起や整流格子等を形成してもよいことは勿論である。
その他、この発明における弁装置を構成する各部材にわたり、従来技術の援用は何ら妨げるものではなく、又、この発明の趣旨の範囲内で種々設計変更可能であり、この発明を前記の各実施例に限定するものではない。
0022
【発明の効果】
本発明の自動調整弁装置は、差圧調整弁としての優れた自動調整機能を発揮するのみならず、締切り密封機能も完璧であり、又、パイロット弁装置部にニードル弁等の固定的な絞り調節流路がなく、且つパイロット弁装置部が目詰まりしてもその弁体が自動的に開弁する自掃作動を行うので、スケール・異物等による目詰まり事故を防止するメンテナンス・フリーの利点も備えている。そして、作動が迅速でありながらチャタリングやハンチングが起こりにくい。更に、パイロット弁装置部をはじめ構造が簡潔で、大型化や高圧化も容易であり、所要の差圧設定・調整もワンタッチで簡単に行なえ、設計・製作・運転・保守管理に苦慮すべき部分もなく、信頼性と経済性の高い便利な自動調整弁装置を得ることができたものであり、その実施効果は極めて大きい。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示す縦断面図である。
【図2】 本発明の第2実施例を示す縦断面図である
図3】 差圧調整弁の設置例を示す説明図である。
図4】 従来技術の差圧調整弁の一例を示す縦断面図である。
【符号の説明】
V…自動調整弁装置
M…主弁装置
1…主弁箱 2…主弁箱蓋
3…円筒状壁部
3a…シリンダー部 3b…シリンダー縮径部
4…主弁座 5…主弁体 5s…シール部材
6…主弁駆動部材
6a…ピストン部 6b…ピストン拡径部
6s…シール部材
7…主弁軸 8…制動装置(ダンパー室
10…軸受 11…固定絞り調節弁 12…開閉弁
P…パイロット弁装置
A…パイロットA弁装置 B…パイロットB弁装置
21…弁箱 22…弁箱蓋
23…受圧板 23s…シール部材
24…A弁体 25…B弁体
26…弁軸 27…ばね 28…調整ねじ
29…開閉弁
a…入口流路 b…主弁開口部
c…出口流路 d…主弁駆動圧力室
f…A弁室 g…中間室 h…B弁室
i…1次圧力室 j…2次圧力室
m;p;q;r1;r2…連通路
101…空調機器 102…開閉弁
103…熱交換器 104…ポンプ
105…逆止弁 106…開閉弁
107…循環往路 108…循環帰路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic adjustment valve device installed in a fluid transportation pipeline, and more particularly to a differential pressure adjustment valve that automatically maintains a differential pressure before and after the valve at a predetermined value. In the present specification, the terms “water” and “liquid” generically represent fluids.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in air conditioning and heating / cooling facilities for high-rise buildings, it is common practice to circulate cold water or hot water produced by a heat exchanger installed underground to the air conditioning equipment on each floor by a pump.
As an example, FIG. 3 shows a case where the circulation circuit is a sealed circuit. In this case, the heat exchanger 103 and the pump 104 can be operated at a constant flow rate even if the load on the circulation circuit fluctuates due to temperature control of the air conditioning equipment 101 on each floor (opening / closing control of the on / off valve 102 associated with the air conditioning equipment 101). For this reason, an automatic adjustment valve device V (so-called “differential pressure adjustment” for keeping the differential pressure between the forward path 107 and the return path 108 of the circulation circuit or the differential pressure before and after the pump 104 constant. Valve ”) is often provided.
Conventionally, as a differential pressure regulating valve, a differential pressure regulating valve is generally detected by a pilot valve that detects a difference in pressure in the pipe before and after the pressure and operates while restricting the flow rate with a fixed throttle regulating flow path such as a needle valve. A structure for operating a piston or diaphragm for driving a main valve has been widely used.
[0003]
As shown in FIG. 4 , a typical configuration of a conventional differential pressure regulating valve includes a main valve seat 4 in an inlet channel a, an outlet channel c, and a communication channel in the main valve device M. The main valve body 5 and the main valve driving member 6 having a larger pressure receiving area than the main valve body 5 are provided in the main valve box 1 through the main valve shaft 7 so as to be movable forward and backward. The main valve drive member 6 is slidably fitted to the cylindrical wall 3 of the main valve box to form a main valve drive pressure chamber d between the main valve box cover 2 and the main valve. A pilot valve device P is provided that opens when the differential pressure across the device M becomes higher than a predetermined value, and closes when the differential pressure becomes lower. The main valve driving pressure chamber d is connected to the upstream side of the main valve via the fixed throttle control valve 11. In addition to communicating with the flow path a, it communicates with the outlet flow path c on the downstream side of the main valve via the pilot valve device P. In the pilot valve device P, the main valve upstream pressure is introduced into one side across the pressure receiving plate, and the main valve downstream pressure is introduced into the opposite side, and the balance between the front-rear differential pressure of the main valve device M and the spring biasing force The actuated valve body opens and closes the pilot flow path.
With this configuration, when the differential pressure across the main valve device M becomes higher than a predetermined value, the pilot valve device P is opened, and the internal pressure of the main valve drive pressure chamber d decreases toward the main valve downstream pressure. When the main valve body 5 is opened and the differential pressure across the main valve device M is lower than a predetermined value, the pilot valve device P is closed and the internal pressure of the main valve drive pressure chamber d is increased. The pressure rises toward the pressure upstream of the main valve, the main valve body 5 is closed, and the flow rate of the main valve device M is adjusted by these automatic opening and closing operations to keep the front-rear differential pressure constant.
[0004]
[Problems to be solved by the invention]
However, the differential pressure regulating valve according to this conventional technique has the following problems in terms of maintenance troublesomeness and durability.
(1) The seal member 6s where the main valve drive member 6 is in contact with the cylindrical wall portion 3 has many structures that require a perfect sealing property that does not allow leakage when the main valve is closed, and pursues various sealing means. In addition, we are trying to solve the problem by adopting bellows and diaphragms, but the larger the size and the higher the pressure, the more difficult the durability and processing accuracy of the seal part, and the more troublesome maintenance management is. Remains. That is, liquid leaks to the downstream side easily when the main valve is closed.
(2) For the purpose of preventing the influence of pressure pulsation (so-called “chattering” and “hunting”) due to a sudden flow change, it is necessary to drive the main valve device M slowly. Then, a fixed throttle control valve 11 such as a needle valve is required in the middle of the communication path for introducing the liquid upstream of the main valve, and this fixed fine flow path is a cause of clogging accidents such as scale and foreign matter. It becomes. For this reason, a strainer or the like is necessary, and it is difficult to handle other than the cleaning liquid.
(3) The pressure increase / decrease control of the main valve drive pressure chamber d is performed exclusively by the increase / decrease control of the pilot liquid discharged to the outlet flow path c via the pilot valve device P, and during that time also via the fixed throttle control valve 11 Since the pilot liquid always flows from the inlet channel a, the pressure increase / decrease control of the main valve driving pressure chamber d is difficult to perform quickly.
(4) The adjustment for setting a predetermined differential pressure is an adjustment while observing the balance between the fixed throttle control valve 11 such as a needle valve and the pilot valve device P, which takes time in operation and maintenance management. .
[0005]
A “direct acting” differential pressure regulating valve in which the pilot valve device and the main valve device are integrated is also widely used. However, this direct acting type also relies on the same technical idea. Also, it has the problems (1) to (4).
Therefore, the present invention not only exhibits an excellent automatic adjustment function as a differential pressure adjustment valve, but also has a perfect shut-off sealing function, and further, a fixed throttle adjustment flow path such as a needle valve from the pilot valve device section. The purpose is to obtain an easy-to-use and easy-to-use self-regulating valve device that has a function to prevent clogging due to the self-cleaning operation of the pilot valve device, and that is quick in operation but less susceptible to chattering and hunting. And
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides:
In the automatic adjustment valve device in which the main valve device is driven in conjunction with the pilot valve device,
The main valve device includes a main valve body integrated into the main valve box and a main valve driving member having a larger pressure receiving area than the main valve body, and the main valve body is located upstream of the main valve seat. And a throttle passage is formed between the main valve seat and the main valve drive member is disposed upstream of the main valve seat and is slidably fitted to the cylindrical wall of the main valve box. Forming a main valve drive pressure chamber in the cylindrical wall,
The pilot valve device includes a pilot A valve device and a pilot B valve device that operate in conjunction with each other by a balance of opposing acting forces between the differential pressure across the main valve device and a predetermined pressure means, and the pilot A valve device includes the main valve device. When the differential pressure across the valve device becomes higher than a predetermined value, the valve is closed. When the differential pressure across the main valve device becomes higher than a predetermined value, the pilot B valve device is opened. Both the pilot A valve device and the pilot B valve device are coaxially arranged opposite to each other and open and close in opposite directions in accordance with a change in the differential pressure across the main valve device,
The upstream side of the main valve device and the main valve drive pressure chamber communicate with each other via the pilot A valve device, and the downstream side of the main valve device and the main valve drive pressure chamber communicate with the pilot B valve device. It is characterized by being communicated through.
[0007]
Based on the above configuration, in the automatic adjustment valve device of the present invention, the pilot A valve device and the pilot B valve device that open and close according to the change in the differential pressure across the main valve device perform interlocking operations, and the main valve drive pressure chamber The internal flow pressure is appropriately increased and decreased, and the passage flow rate is automatically controlled while adjusting the opening of the main valve body, and an excellent automatic adjustment function as a differential pressure adjustment valve is exhibited. Moreover, the cut-off hermeticity can be easily achieved.
Also, since neither the pilot A valve device nor the B valve device has a fixed throttle adjustment flow path such as a needle valve, clogging due to scale and foreign matter is unlikely to occur, and clogging may occur. However, it also has a function of eliminating clogging by performing a self-cleaning operation in which the valve body automatically opens due to a pressure change caused by the clogging.
Then, both the pilot A valve device and the B valve device are integrally interlocked to mix the main valve upstream pressure and the main valve downstream pressure in the pilot valve device, and drive the resultant pressure to the main valve. The system is quick to respond to changes in flow conditions by sending it to the pressure chamber. In addition, chattering and hunting are less likely to occur.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described with reference to the drawings showing examples.
For convenience, the pilot A valve device is “A valve device”, the valve body is “A valve body”, the pilot B valve device is “B valve device”, the valve body is “B valve body”, The upstream pressure of the main valve device is referred to as “primary pressure”, and the downstream pressure of the main valve device is referred to as “secondary pressure”. In addition, members having a common role in the respective drawings are denoted by common drawing symbols.
First, referring to FIG. 1 showing the first embodiment, in the figure of the main valve device M, 1 denotes a main valve box having an inlet channel a and an outlet channel c, and 2 denotes a main valve box. The valve box lid is shown. 4 is a main valve seat. In the main valve box 1, a main valve body 5 provided on the upstream side with respect to the main valve seat 4 and a seal member 6 s (this seal is a current flow) with respect to the cylindrical wall portion 3 of the main valve box 1. The main valve drive member 6 is slidably fitted via a main valve shaft 7 in which the two members 5; 6 are integrally combined. The main valve shaft 7 is supported by a bearing 10 so as to freely advance and retract. The main valve drive member 6, the cylindrical wall 3 and the main valve box cover 2 are wrapped to form a bag-like main valve drive pressure chamber d, and the main valve body 5 is driven by increasing or decreasing the internal pressure. Then, the main valve opening b between the main valve seat 4 is opened and closed. The relationship of the pressure receiving area between the main valve body 5 and the main valve driving member 6 is set so that the main valve driving member 6 is larger.
[0009]
In response to the change in the differential pressure across the main valve device M, the A valve device is closed when the differential pressure across the main valve device M is higher than a predetermined value, and is opened when the pressure difference is lower, and the main valve device M. The B valve device that opens when the differential pressure before and after becomes higher than a predetermined value and closes when the differential pressure decreases becomes lower between the upstream side of the main valve and the downstream side of the main valve via the main valve drive pressure chamber d. The main valve drive pressure chamber d is configured in a basic structure that functions as a main valve drive working pressure chamber by communicating with each other in series.
[0010]
In the figure of a pilot valve device, 21 indicates a valve box and 22 indicates a valve box lid. In the valve box 21, an A valve chamber f of the A valve device, a B valve chamber h of the B valve device, an intermediate chamber g between the A valve device and the B valve device, and a secondary pressure chamber j are formed. . An A valve body 24 is disposed in the A valve chamber f, a B valve body 25 is disposed in the B valve chamber h, and an intermediate chamber g is provided between the A valve chamber f and the B valve chamber h. It is arranged. The A-valve body 24 and the B-valve body 25 are coaxial and interlocked, and a cylinder / piston style valve opening / closing mechanism is applied so as not to interfere with each other's operation. Further, at the time of the operation, not only the state in which one is opened but the other is closed, as well as the state in which both the valve bodies 24; Reference numeral 23 denotes a pressure receiving plate, 23 s denotes a seal member, and 26 denotes a valve shaft for combining both valve bodies 24; 25 integrally with the pressure receiving plate 23. Further, a primary pressure chamber i is formed on the valve box cover 22 side, and a spring 27 (the illustrated example is a compression coil spring) is attached as a predetermined pressure means.
[0011]
In addition, about the B valve body 25, in order to show the exact sealing performance at the time of closing, the sealing member is illustrated. Further, it is shown that the A valve body 24 does not need to be strictly sealed when closed and may be somewhat leaky. Of course, there is no problem even if a strict sealing property is added to the A valve body 24. Further, in the case of a specification that does not require the shut-off sealing function, both the valve bodies 24; 25 do not require strict sealing when closed.
The primary pressure chamber i communicates with the primary pressure in the inlet channel a through the communication path r1, and the secondary pressure chamber j communicates with the secondary pressure in the outlet channel c through the communication path r2. The A valve chamber f communicates with the inlet flow path a through the communication path p, the intermediate chamber g communicates with the main valve drive pressure chamber d through the communication path m, and the B valve chamber h communicates with the outlet flow path c through the communication path q. It is communicated.
[0012]
Next, the operation of the present invention will be described.
The circulation circuit illustrated in FIG. 3 (heat exchanger 103 → liquid feeding equipment such as pump 104, check valve 105, on-off valve 106 → circulation forward path 107 → equipment on each floor such as air conditioning equipment 101, on-off valve 102 → circulation return path 108 → In the heat exchanger 103), in order to maintain a constant pressure difference between the circulation forward path 107 and the circulation return path 108, a bypass pipe is provided between the circulation forward path 107 and the circulation return path 108, and the bypass pipe is subjected to the first implementation. The operation mode of the automatic adjustment valve device V of the example (FIG. 1) will be seen.
First, in the stage from the start of the operation of the pump until the differential pressure across the main valve device M reaches a predetermined value, the force of the spring 27 is 1 in the pilot valve device (A valve device; B valve device). The internal pressure difference between the secondary pressure chamber i and the secondary pressure chamber j (that is, the differential pressure across the main valve device M) is overcome, and the pressure receiving plate 23 is pushed in the direction in which the spring 27 extends (that is, in the left direction in the figure). Has been. Accordingly, the A valve body 24 is opened, and the B valve body 25 is closed. As a result, the internal pressure of the main valve driving pressure chamber d is the primary pressure, so that the main valve body 5 acts on the front and rear surfaces thereof. The seal member 5s of the main valve body 5 and the seal member of the B valve body 25 are kept sealed by the pressure difference.
Needless to say, the force of the spring 27 is selected so as to have a range value that can balance the required differential pressure across the main valve device M.
[0013]
Next, when the differential pressure across the main valve device M increases and exceeds a predetermined value, in the pilot valve device, the internal pressure difference between the primary pressure chamber i and the secondary pressure chamber j (that is, the main pressure device j) The differential pressure across the valve device M) overcomes the force of the spring 27, and the pressure receiving plate 23 is pushed back in the direction in which the spring 27 is contracted (ie, in the right direction in the figure). Then, the A valve body 24 is closed and the B valve body 25 is opened, whereby the internal pressure of the main valve driving pressure chamber d decreases toward the secondary pressure, and the main valve body 5 and the main pressure receiving area larger than that are obtained. The main valve body 5 is pushed open by the pressure difference due to the area difference with the valve drive member 6, and the flow flows in the direction of the inlet flow path a → the main valve opening b → the outlet flow path c, and the main valve device Suppresses the rise in differential pressure across M.
Next, after the front-rear differential pressure of the main valve device M returns to a predetermined value, the A-valve body receives the change of the front-rear differential pressure of the main valve device M, which changes due to the amount of flow used in the air conditioning equipment on each floor. 24 and the B valve body 25 respond to each other, and the internal pressure of the main valve drive pressure chamber d is appropriately increased or decreased to maintain a predetermined front-rear differential pressure while adjusting the opening of the main valve body 5. When the differential pressure across the main valve device M is stable, both valve bodies 24; 25 are stable in a substantially closed state, and the main valve body 5 is also stabilized without vibration.
[0014]
When the operation of the pump is stopped, the differential pressure across the main valve device M disappears. Therefore, in the pilot valve device, the pressure receiving plate 23 is pushed in the direction in which the spring 27 extends (that is, the left direction in the figure), and the A valve The body 24 is opened and the B-valve body 25 is closed, so that the main valve body 5 is closed.
When the main valve body 5 is closed, the portion that strictly functions as a seal is the seal member 5s of the main valve body 5 and the seal member of the B valve body 25, which can be easily sealed by conventional techniques. It is a member that can achieve. On the other hand, even if the sealing member 6s of the main valve driving member 6 is left with a rough sealing property, it does not cause a liquid leak to the downstream side.
With the above operation, an accurate function as a differential pressure regulating valve is achieved. It should be noted that the required differential pressure set value can be adjusted by adjusting the spring 27 with the adjustment screw 28 with one touch.
[0015]
Since neither the A valve device nor the B valve device has a fixed throttle adjustment channel such as a needle valve, clogging due to scale, foreign matter, etc. is unlikely to occur. In addition, even if clogging occurs, a self-cleaning operation is performed in which the valve bodies 24; 25 are automatically opened due to a pressure change caused by the clogging. That is, for example, if the A valve body 24 is clogged, the introduction of the primary pressure from the communication path p to the main valve driving pressure chamber d is hindered, so that the internal pressure of the main valve driving pressure chamber d decreases, The main valve body 5 operates in the valve opening direction to increase the passage flow rate, thereby reducing the differential pressure across the main valve device M. As a result, the A valve body 24 moves in the valve opening direction and becomes clogged. Is automatically eliminated. Since this self-cleaning operation has an excellent function of eliminating clogging, a fine strainer or the like is unnecessary and maintenance management is easy.
The A valve body 24 and the B valve body 25 are provided so as to be aligned on one valve shaft 26, and are integrally linked to one predetermined pressure means (spring 27), and 1 in the pilot valve device. It is a simple and rational mechanism that mixes the secondary pressure and the secondary pressure and sends the combined pressure to the main valve drive pressure chamber d to quickly respond to changes in the flow state. It is. In addition, both valve bodies 24; 25 are arranged at a position interval that can produce not only a state in which one is opened and the other is closed but also a state in which both the valve bodies are almost closed during operation, so that the flow condition is stable. When the valve body is in a closed state, both valve bodies are stabilized in a substantially closed state, and therefore chattering and hunting in which the valve bodies vibrate are unlikely to occur.
[0016]
In FIG. 1, as an example of a countermeasure method when it is desired to reliably suppress chattering or hunting of the main valve device M due to an unexpected flow change, the braking device 8 including a cylinder member and a piston member is included in the main valve device M. The one provided with (damper) is shown.
The on-off valve 29 provided in the communication path q is used when the main valve device M is forcibly closed separately regardless of the operation of the pilot valve device, and is always open. . In order to close the main valve device M, the on-off valve 29 may be closed, whereby the internal pressure of the main valve drive pressure chamber d increases toward the primary pressure, and the main valve body 5 is closed. This on-off valve 29 may be operated manually or remotely using various actuators. On the other hand, when it is necessary to forcibly open the main valve device M separately, although not shown, a separate on-off valve is provided between the communication path m and the communication path q (always). It can be opened).
[0017]
Next, in the second embodiment of FIG. 2, the A valve body 24 and the B valve body 25 of the first embodiment coexist in the intermediate chamber g, and the operating direction of the spring 27 is the same as that of the first embodiment. It is the reverse. With these partial changes, the communication passage piping is also slightly different from that of the first embodiment, but the other configurations and functions and effects are the same as those of the first embodiment, so detailed description thereof will be omitted.
FIG. 2 shows an example in which the main valve body 5 is integrated with the main valve drive member 6. Further, as an example of a coping method when it is desired to reliably suppress chattering and hunting due to unexpected flow changes. Also shown is a brake device (damper) formed on the main valve drive member 6 itself. In the structure, the cylindrical wall portion 3 of the main valve box 1 is provided with a concentric cylinder portion 3a and a cylinder diameter-reducing portion 3b, and the outer peripheral portion of the main valve drive member 6 is provided with a concentric piston portion 6a and a piston expansion portion. In the predetermined section (section in which the main valve body 5 approaches the main valve seat 4) in the forward / backward movement of the main valve drive member 6, the piston expanded diameter section 6b is provided for the cylinder section 3a. Slidably contact each other, and the piston portion 6a faces and slidably contacts the cylinder reduced diameter portion 3b, thereby braking the forward / backward movement of the main valve drive member 6 between the piston enlarged diameter portion 6b and the cylinder reduced diameter portion 3b. A damper chamber 8 is formed. Braking is performed by appropriately designing the shape of the gap between the cylindrical wall portion 3 and the main valve driving member 6 or by forming a small hole that allows the inside and outside of the damper chamber 8 to communicate and the flow rate of the passage to be adjusted. It goes without saying that the start timing can be set and the braking force can be adjusted.
FIG. 2 also shows an example in which a siphon pipe with an on-off valve 12 is attached so that water can be drained from the main valve driving pressure chamber d in a timely manner for inspection and maintenance. .
[ 0018 ]
Next, technical matters common to the embodiments of the present invention will be described.
As for the pilot valve device, in any embodiment, as an example of a mechanism in which the A valve body 24 and the B valve body 25 are interlocked and do not interfere with each other's operation, a cylinder / piston type valve opening / closing Although a mechanism is illustrated, a mode other than the cylinder / piston mode may be used, and the valve bodies 24; 25 may be provided on separate valve shafts. In addition, the arrangement (positional relationship) and combination of the chambers f; g; h; i; j of the pilot valve device, the associated communication pipes, and the like can be modified within the scope of the present invention. The structure of the valve device is not limited to the above embodiments.
As for the predetermined pressure means of the pilot valve device, in addition to the method using the spring 27 as in each embodiment, other elastic members are used, linked to a weight, a booster mechanism is added, Of course, application of a hydraulic device or the like can be easily performed.
[ 0019 ]
As for the main valve device M, the lift valve type is applied to the main valve body 5 in each embodiment, but other types of on-off valves (for example, butterfly valves, gates, etc.) are within the scope of the present invention. Valve, ball valve, etc.) may be applied. Further, as shown in the second embodiment, the main valve body 5 and the main valve drive member 6 may be formed as an integral member. In each of the embodiments, in order to simplify the structure of the main valve device M, both the main valve flow path part a → b → c and the main valve drive pressure chamber d are made compact in the main valve box 1. In addition to this, the main valve flow path section and the main valve drive pressure chamber d are stored in each of the main valve boxes divided into two, and the two valve boxes are penetrated. There may be a structure in which the main valve body 5 and the main valve driving member 6 are mounted on both ends of the valve shaft.
[ 0020 ]
Depending on the specification conditions, it may be necessary to operate the main valve device M slowly in order to prevent the effects of pressure pulsation (chattering or hunting) due to unexpected flow changes. As shown in each of the embodiments, the shape of the main valve opening b is a sawtooth flow path that makes the flow rate change smooth, or the main valve device M includes a braking device 8 (damper) that includes a cylinder member and a piston member. ) Or a brake device 8 (damper) may be formed on the main valve drive member 6 itself. In addition, although illustration is omitted, there are other methods such as providing a brake device in the pilot valve device and appropriately narrowing the communication path. Any one of these countermeasures may be employed alone, or some may be employed in combination, or may be omitted under specification conditions where it is not required.
[ 0021 ]
Throughout each embodiment, O-rings, seal rings, diaphragms, bellows, etc. may be applied as appropriate according to local specifications for seal members that are installed in places that require tightness. If the sealing property can be maintained, the sealing member may be omitted. Needless to say, comb-shaped protrusions, rectifying grids, and the like may be formed in places where high-speed flow may pass for the purpose of preventing cavitation.
In addition, over the members constituting the valve device of the present invention, the use of the prior art is not disturbed, and various design changes can be made within the scope of the present invention. It is not limited to.
[ 0022 ]
【The invention's effect】
The automatic adjustment valve device of the present invention not only exhibits an excellent automatic adjustment function as a differential pressure adjustment valve, but also has a perfect shut-off sealing function, and a fixed throttle such as a needle valve in the pilot valve device section. There is no adjustment flow path, and even if the pilot valve device is clogged, the valve body automatically performs a self-cleaning operation that prevents the occurrence of clogging accidents due to scale, foreign matter, etc. It also has. Further, chattering and hunting hardly occur while the operation is quick. In addition, the pilot valve device and other parts are simple in structure, easy to increase in size and pressure, and can easily set and adjust the required differential pressure with a single touch, making it difficult to design, manufacture, operate and maintain. As a result, a convenient automatic adjustment valve device having high reliability and economy can be obtained, and its effect is extremely large.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a second embodiment of the present invention .
FIG. 3 is an explanatory view showing an installation example of a differential pressure regulating valve.
FIG. 4 is a longitudinal sectional view showing an example of a differential pressure regulating valve according to the prior art.
[Explanation of symbols]
V ... Automatic adjustment valve device M ... Main valve device 1 ... Main valve box 2 ... Main valve box cover 3 ... Cylindrical wall portion 3a ... Cylinder portion 3b ... Cylinder reduced diameter portion 4 ... Main valve seat 5 ... Main valve body 5s ... Seal member 6 ... main valve drive member 6a ... piston part 6b ... piston enlarged diameter part 6s ... seal member 7 ... main valve shaft 8 ... braking device (damper chamber )
DESCRIPTION OF SYMBOLS 10 ... Bearing 11 ... Fixed throttle control valve 12 ... On-off valve P ... Pilot valve apparatus A ... Pilot A valve apparatus B ... Pilot B valve apparatus 21 ... Valve box 22 ... Valve box cover 23 ... Pressure receiving plate 23s ... Seal member 24 ... A Valve body 25 ... B valve body 26 ... Valve shaft 27 ... Spring 28 ... Adjustment screw 29 ... Open / close valve a ... Inlet passage b ... Main valve opening c ... Outlet passage d ... Main valve drive pressure chamber f ... A valve chamber g ... Intermediate chamber h ... B valve chamber i ... Primary pressure chamber j ... Secondary pressure chamber m; p; q; r1; r2 ... Communication passage 101 ... Air conditioner 102 ... Open / close valve 103 ... Heat exchanger 104 ... Pump 105 ... Check valve 106 ... On-off valve 107 ... Circulation forward path 108 ... Circulation return path

Claims (1)

主弁装置がパイロット弁装置に連係して駆動される自動調整弁装置において、
主弁装置は、主弁箱の内部に一体的に組み込まれた主弁体と該主弁体より大きい受圧面積を持つ主弁駆動部材とを備え、主弁体は主弁座の上流側に位置して、主弁座との間に絞り流路を形成し、主弁駆動部材は主弁座の上流側に配置され主弁箱の円筒状壁部に対して滑動自在に嵌装されて、該円筒状壁部内に主弁駆動圧力室を形成し、
パイロット弁装置は、前記主弁装置の前後差圧と所定圧力手段との対向作用力のバランスによって連動作動するパイロットA弁装置とパイロットB弁装置とからなり、該パイロットA弁装置は、前記主弁装置の前後差圧が所定値より高くなれば閉鎖し、低くなれば開通し、該パイロットB弁装置は、前記主弁装置の前後差圧が所定値より高くなれば開通し、低くなれば閉鎖し、該パイロットA弁装置と該パイロットB弁装置の両弁体は、同軸上で対向して配置されて前記主弁装置の前後差圧の変化に応じて互いに反対方向に開閉作動し、
前記主弁装置の上流側と前記主弁駆動圧力室とが前記パイロットA弁装置を介して連通されると共に、前記主弁装置の下流側と前記主弁駆動圧力室とが前記パイロットB弁装置を介して連通されたことを特徴とする、自動調整弁装置。
In the automatic adjustment valve device in which the main valve device is driven in conjunction with the pilot valve device,
The main valve device includes a main valve body integrated into the main valve box and a main valve driving member having a larger pressure receiving area than the main valve body, and the main valve body is located upstream of the main valve seat. And a throttle passage is formed between the main valve seat and the main valve drive member is disposed upstream of the main valve seat and is slidably fitted to the cylindrical wall of the main valve box. Forming a main valve drive pressure chamber in the cylindrical wall,
The pilot valve device includes a pilot A valve device and a pilot B valve device that operate in conjunction with each other by a balance of opposing acting forces between the differential pressure across the main valve device and a predetermined pressure means, and the pilot A valve device includes the main valve device. When the differential pressure across the valve device becomes higher than a predetermined value, the valve is closed. When the differential pressure across the main valve device becomes higher than a predetermined value, the pilot B valve device is opened. Both the pilot A valve device and the pilot B valve device are coaxially arranged opposite to each other and open and close in opposite directions in accordance with a change in the differential pressure across the main valve device,
The upstream side of the main valve device and the main valve drive pressure chamber communicate with each other via the pilot A valve device, and the downstream side of the main valve device and the main valve drive pressure chamber communicate with the pilot B valve device. A self-regulating valve device characterized by being communicated via
JP2003067260A 2003-03-12 2003-03-12 Automatic adjustment valve device Expired - Fee Related JP4462835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067260A JP4462835B2 (en) 2003-03-12 2003-03-12 Automatic adjustment valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067260A JP4462835B2 (en) 2003-03-12 2003-03-12 Automatic adjustment valve device

Publications (2)

Publication Number Publication Date
JP2004278563A JP2004278563A (en) 2004-10-07
JP4462835B2 true JP4462835B2 (en) 2010-05-12

Family

ID=33284922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067260A Expired - Fee Related JP4462835B2 (en) 2003-03-12 2003-03-12 Automatic adjustment valve device

Country Status (1)

Country Link
JP (1) JP4462835B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865622B2 (en) * 2007-04-13 2012-02-01 三菱重工業株式会社 Mini flow valve
KR100921663B1 (en) 2009-05-15 2009-10-15 신우공업 주식회사 Pressure reducing valve
KR101471631B1 (en) * 2013-06-04 2014-12-11 주식회사 삼양발브종합메이커 Complex set fluid valve
EP2886834A1 (en) 2013-12-20 2015-06-24 IMI Hydronic Engineering International SA A valve and a method of controlling a valve in a fluid conduit
CN105020415B (en) * 2014-04-19 2018-09-07 良工阀门集团有限公司 A kind of multi-functional adjustable cut-off valve
CN103982664B (en) * 2014-05-12 2016-08-24 美国阿达姆斯流体有限公司 A kind of integrate decompression, hold pressure and the control valve of cutting function and application thereof
CN105628391B (en) * 2015-12-30 2018-02-27 北京航天三发高科技有限公司 A kind of application method of the pressure-regulating valve of test bay gas handling system series connection
CN106763961B (en) * 2017-03-28 2023-12-15 扬州大学 Agricultural irrigation large-caliber pressure reducing valve with pilot valve based on pressure distribution principle and application method thereof

Also Published As

Publication number Publication date
JP2004278563A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4181222B2 (en) Automatic adjustment valve device
JP3790778B2 (en) Automatic adjustment valve device
JP4290200B2 (en) Pressure reducing valve
CA2601074A1 (en) Fluid flow control device
EP3067772B1 (en) Automatic balancing valve
JP4462835B2 (en) Automatic adjustment valve device
JP4462858B2 (en) Automatic adjustment valve device
JP6909369B2 (en) Balanced double-seat ball valve with flexible plug
WO1995006834A1 (en) Automatic constant pressure lift valve device
US20070193629A1 (en) Thermostatic expansion valve with check valve
US5655748A (en) Metering valve
EP2109742B1 (en) Automatic filling unit for hydraulic systems with a closed circuit like heating systems and similar
WO2012172499A1 (en) Hydraulic valve
JP2000161529A (en) Automatic adjusting valve device
JP3988829B2 (en) Safety shut-off device
JP3851378B2 (en) Automatic adjustment valve device
JP3111274B2 (en) Automatic constant pressure valve device
JPH0645740Y2 (en) Flow controllable control valve
JP3728546B2 (en) Variable constant flow valve device
JP2001173832A (en) Constant flow valve system with liquid level control mechanism
US20240353015A1 (en) Check valve, and associated systems and methods
JP2757212B2 (en) Emergency shut-off valve
WO2011065548A1 (en) Seal structure for a flow control valve
JPH08128559A (en) Flow rate regulating valve
JPH07127752A (en) Flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190226

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees