JP3851378B2 - Automatic adjustment valve device - Google Patents

Automatic adjustment valve device Download PDF

Info

Publication number
JP3851378B2
JP3851378B2 JP13985396A JP13985396A JP3851378B2 JP 3851378 B2 JP3851378 B2 JP 3851378B2 JP 13985396 A JP13985396 A JP 13985396A JP 13985396 A JP13985396 A JP 13985396A JP 3851378 B2 JP3851378 B2 JP 3851378B2
Authority
JP
Japan
Prior art keywords
valve
main valve
pressure
pilot
valve device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13985396A
Other languages
Japanese (ja)
Other versions
JPH09317916A (en
Inventor
博 横田
哲也 谷本
邦雄 小倉
Original Assignee
株式会社横田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社横田製作所 filed Critical 株式会社横田製作所
Priority to JP13985396A priority Critical patent/JP3851378B2/en
Publication of JPH09317916A publication Critical patent/JPH09317916A/en
Application granted granted Critical
Publication of JP3851378B2 publication Critical patent/JP3851378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Details Of Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Safety Valves (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、流体輸送管路に設置する自動絞り調整流路を備えた自動調整弁装置に関するものであり、より詳しくは、特願平8−26828号「自動定圧弁装置」(以下「原発明」と呼称する)の改良に係わる。即ち、送水・配水等に便利な自動定圧弁装置として、管理上の手が掛からず、止水時の水密性に苦慮することなく、容易に大型化や高圧化も実施でき、又、パイロット弁装置部から例えばニードル弁やコック類等のような固定絞り調節流路を総て排除し、各弁部の目詰まり時には各弁体が自動的に開いて自掃流動を行う機能を持ち、更には、自動定圧弁としての機能のみならず、下流側への供給流量が所定量を超えないように、自動的に流量制限を行う機能をも併せ持つ、画期的な自動調整弁装置を得ようとするものである。
なお、本明細書中、「水」の言語は流体を総称的に代表するものとする。
【0002】
【従来の技術】
従来からの一般的な圧力調整弁装置としては、その出口管路系内の流体圧力を検知し、例えば、ニードル弁等の固定的な絞り調節流路で流量を絞りながら作用させたパイロット弁装置によって、主弁駆動用のピストンを作動させる構造のものが広く用いられて来た。
しかしながら、それら従来からの一般的な圧力調整弁装置においては、保守管理上の煩わしさや耐久性に対する懸念が多く、例えば、次のような困難な課題が存在した。
(1)主弁駆動用のピストンは、締切り時において漏水を許さない完璧な水密性を要する構造のものが多く、特に大型化、高圧化するほど、シール部分の耐久性や加工精度に困難を生じ、又、保守管理上も煩わしい。
(2)急激な流動変化による圧力脈動(ハンチング)を防止する目的で、主弁を緩徐に駆動させるために、主弁上流側の圧力の流体を主弁駆動用のピストンに導入する連通路の途中に、例えばニードル弁等の固定絞り流路を必要とし、この固定した精細な流路に砂粒・塵埃等の目詰まりを起こしやすい。
(3)又、所要の主弁下流側の圧力を設定するための調節が、ニードル弁等の固定絞り流路とパイロット弁装置の2個所の兼ね合いを見ながらの調節となり、運転、保守管理上の手が掛かる。
【0003】
これらの問題点を解決して、ニードル弁等の固定絞り流路を持たないパイロット弁装置により、目詰まり事故が無く、又、主弁装置の締切り時の漏水も無く、常に主弁下流側の圧力を所定値に維持することのできる、明快な仕組みの圧力調整弁装置を提案したのが、原発明の特願平8−26828号「自動定圧弁装置」である。
その構成は該特許願明細書の通りであり、その要旨は、(図3に例示)
主弁装置が、主弁箱1内に一体的に組み込まれた主弁体5と主弁駆動部材6からなり、主弁体5は主弁座3の上流側に位置して、その間に主弁開口部bを形成し、主弁駆動部材6は主弁箱1の円筒状内壁部8に対して滑動自在に嵌装されて、主弁箱蓋2との間に主弁駆動圧力室dを形成する構造に構成され、
パイロット弁装置は、主弁装置の下流側圧力と一個の所定付加外力手段との作用力のバランスによって作動する、同軸上のパイロットA弁部とB弁部からなり、主弁下流側圧力が所定値にあるときは共にほぼ閉鎖の状態を保ち、主弁下流側圧力が所定値より低くなれば開通するパイロットA弁部と、主弁下流側圧力が所定値より高くなれば開通するパイロットB弁部とが、主弁駆動圧力室dを介して、入口流路aと出口流路cとの間に直列的に連通されることによって、固定絞り流路を持たない主弁駆動用パイロット弁装置の構造に構成されている。
又、主弁装置の出口流路に可変のオリフィス12を備えてもよいとしている。
【0004】
【発明が解決しようとする課題】
この原発明は、定圧弁そのものとして見れば、よくその目的を達し、簡明かつ高性能の定圧弁として活用されているものであるが、しかしながら、現実の使用条件に照らすと依然として課題を残している。それは、現実の使用に際しては、通常使用時には定圧弁として機能させる一方、下流側の使用流量が過多となった時には流量を制限する定流量弁として機能させたいという要請が往々にしてあるからであり、その場合、この原発明による自動定圧弁装置のみでは対応できない。何故なら、該装置においては、下流側の使用流量が過多となって下流側に圧力降下を生じた場合に、その圧力降下を補償するという定圧弁本来の機能によって流量を増加させる方向に主弁装置が作動するためである。
なお、原発明では主弁装置の出口流路に可変のオリフィス12を設けることによって定流量を達成できるとしているが、これは管路の使用端末側に開閉弁や流量調整弁が存在しない場合に成立する理論であって、現実には管路端末の水の使用地点での流路開閉や流量調整を行うのが通常であり、その場合は該オリフィス12を設けただけでは定流量維持ができないことは勿論である。
この定圧弁としての機能と定流量弁としての機能を、簡明な構成で併存させることは困難と見られており、従来は、定圧弁と定流量弁を二連で配設したり、あるいは下流側の使用流量に応じて定圧弁と定流量弁の機能を切り替えるための高価なセンサーや切り替え装置を備えたりするのが通常であった。
【0005】
この発明は、上述のような原発明における残された課題を解決して、主弁装置の締切り時の漏水も無く、ニードル弁等の固定絞り流路を持たないために目詰まり事故が無く、又、各弁部に自掃作動の機能があって保守管理に手が係らない等の、原発明の利点は全て生かしつつ、定圧弁と定流量弁の両機能を矛盾なく両立させる便利な自動調整弁装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、この発明の自動調整弁装置は、
主弁装置が、それを流過する流体の圧力変化により作動するパイロット弁装置に連係して、駆動される自動調整弁装置において、
主弁装置は、主弁箱の内部に一体的に組み込まれた主弁体と該主弁体より大きい受圧面積を持つ主弁駆動部材とを有し、主弁体は主弁座の上流側に位置して、主弁座との間に絞り流路を形成し、主弁駆動部材は主弁箱の円筒状内壁部に対して滑動自在に嵌装されて、該内壁部との間に主弁駆動圧力室を形成し、
パイロット弁装置は、前記主弁装置の下流側圧力と所定付加外力手段との対向作用力のバランスによって作動する、同軸上のパイロットA弁部とパイロットB弁部とを有し、主弁下流側圧力が所定値にあるときは共にほぼ閉鎖の状態を保ち、主弁下流側圧力が所定値より低くなれば開通する該パイロットA弁部と、主弁下流側圧力が所定値より高くなれば開通する該パイロットB弁部とが、中間に前記主弁駆動圧力室を介して、前記主弁装置の入口流路と出口流路との間に直列的に連通され、
そして、前記主弁装置の流路内に付設されたオリフィスの前後差圧と所定付加外力手段との対向作用力のバランスによって作動する差圧シリンダー装置が、前記パイロット弁装置に付設され、該オリフィスの前後差圧が所定値より高くなれば、該差圧シリンダー装置のピストン軸が前記パイロット弁装置の弁軸をそのパイロット弁装置の所定付加外力手段の力に対向する方向に押す構造に構成されたことを特徴とする。
又、前記オリフィスは可変オリフィスであってもよい。
【0007】
【作用】
この発明に係る自動調整弁装置においては、通水時の下流側の使用流量の多寡などにより変化する主弁下流側圧力を受けて、主弁下流側圧力が所定値にあるときは共にほぼ閉鎖の状態を保ち、主弁下流側圧力が所定値より低くなれば開通するパイロットA弁部と、主弁下流側圧力が所定値より高くなれば開通するパイロットB弁部とが連係作動を行い、主弁駆動圧力室の内圧力を適宜に増減して、主弁体の開度を調整しながら所定の主弁下流側圧力を維持する。
この定圧弁として作動している状態下で、下流側の使用流量が所定量を超えない範囲であれば、差圧シリンダー装置のピストン軸はパイロット弁装置の弁軸からは離れており、パイロット弁装置の定圧弁としての作動には干渉しない。
一方、もし下流側の使用流量が過多となって所定量を超えそうな状態となった時には、それに伴う付設オリフィスの前後差圧の拡大によって、差圧シリンダー装置のピストン軸はパイロット弁装置の弁軸に当接し、該パイロット弁装置の所定付加外力手段の力に対向する方向に押し、定圧弁としての作動に優先して干渉して主弁体に閉鎖作動を行わせ、通過流量を所定量に維持する。
【0008】
下流側の使用が終わり、端末管路の締切り操作に入った場合は、それに伴う主弁下流側圧力の上昇により、パイロットA弁部は閉鎖し、B弁部は開通し、それによって主弁体を閉鎖させて、主弁下流側圧力を所定値に維持する。この時、端末管路の締切り操作に伴う流量の減少によって、付設オリフィスの前後差圧は減少しているので、差圧シリンダー装置のピストン軸はパイロット弁装置の弁軸から離れた状態に復帰しており、定圧弁としての作動には干渉しない。
【0009】
なお、この発明の構成により、主弁駆動部材のシール部材は粗雑な水密性のままにしておいても、主弁下流側圧力の異常昇圧は発生しない。又、主弁装置、パイロットA弁部、B弁部のいずれも、砂粒・塵埃等による目詰まりの発生に際しては、その目詰まりによって生ずる主弁下流側圧力等の変化によって、該弁が自動的に開弁作動を行い、自掃流動によって目詰まりを排除するという機能をも備えている。
【0010】
【実施例】
この発明の詳細を、一実施例を示した図1に基づいて説明する。
なお、以下便宜上の用語として、パイロットA弁部は「A弁部」、その弁体は「A弁体」、パイロットB弁部は「B弁部」、その弁体は「B弁体」、主弁上流側圧力は「1次圧力」、主弁下流側圧力は「2次圧力」と呼称する。
まず、図1中の主弁装置の図においては、1は入口流路aと出口流路c2を備えた主弁箱を示し、2は主弁箱蓋を示す。3は主弁座である。主弁箱1の中には、主弁座3に対して上流側に設けた主弁体5と、主弁箱1の円筒状内壁部8に対してシール部材6sを介して滑動自在に嵌装された主弁駆動部材6と、両部材5;6を一体的に組み合わせる主弁軸4とを備えている。そして、主弁駆動部材6と円筒状内壁部8及び主弁箱蓋2に包まれて袋室状の主弁駆動圧力室dが形成されており、その内圧力の増減により主弁体5が開閉駆動される。主弁体5と主弁駆動部材6との受圧面積の関係は、主弁駆動部材6の方を大きめに設定する。なお、主弁閉鎖時においても、主弁体5のシール部材5sとパイロット弁装置のA弁体24のシール部材24sとが、厳密な水密性の機能を受け持つので、主弁駆動部材6のシール部材6sは逸流阻止程度の粗雑な水密性で充分である。
【0011】
パイロット弁装置の図においては、21はA弁部、B弁部及び2次圧力室iを形成する弁箱を示し、22は弁箱蓋を示す。23は受圧板、28はシール部材、26はA弁体24及びB弁体25を受圧板23と一体的に組み合わせる弁軸を示す。又、弁箱蓋22のばね室jには所定付加外力手段としてのばね27が納めてある。A弁部の部分では、A弁室e、A弁体24、A弁座室fが配設されている。そして、A弁体24については、閉鎖時の厳密な水密性を示すため、シール部材24sが図示されている。B弁部の部分では、B弁室g(A弁室eと同居)、B弁体25、B弁座室hが配設されている。そして、B弁体25については、閉鎖時の厳密な水密性は必要なく、幾分洩れ気味であってもよいことが示されている。(勿論、B弁体25にも厳密な水密性を付加して何ら差し支えない。)そして、A弁部とB弁部は、作動時に、一方が開き一方が閉鎖するという状態のみならず、両弁部共にほぼ閉鎖する状態も生み出し得る位置間隔に配設される。
【0012】
差圧シリンダー装置の図においては、31はシリンダー本体を示し、32はシリンダーの蓋を示す。33はピストン、34はピストン33に固着されたピストン軸を示す。このピストン33の受圧面積は、パイロット弁装置の受圧板23の受圧面積よりも大きく設定する。又、ピストン軸34は所定付加外力手段としてのばね35により、パイロット弁軸26から遠ざかる方向に付勢されている。そして、ピストン33を挟んで、パイロット弁軸26から遠い側にはオリフィス前面圧力室u、パイロット弁軸26に近い側にはオリフィス後面圧力室wが形成されている。
なお、ピストン33については、シリンダー31の内壁との間の厳密な水密性は必要なく、幾分洩れ気味であってもよい。(勿論、ピストン33にも厳密な水密性を付加して何ら差し支えない。)
【0013】
パイロット弁装置のA弁座室fは連通路Pにより1次圧力の入口流路aに連通され、A弁室e(B弁室gと同居)は連通路Peにより主弁駆動圧力室dに連通され、B弁座室hは連通路Q2により2次圧力の出口流路c2に連通されている。又、2次圧力室iは連通路Q2を経由して2次圧力の出口流路c2に連通されている。
そして、差圧シリンダー装置のオリフィス前面圧力室uは連通路Q1によりオリフィス12の前面(入口側)の流路c1に連通され、オリフィス後面圧力室wは連通路Q2によりオリフィス12の後面(出口側)の流路c2に連通されている。
【0014】
この発明の作用の態様を、一実施例を示した図1に基づいて説明する。
図1のものを流体輸送管路に介装して通水すると、出口流路c2は未だ所定の圧力に到達せず、パイロット弁装置のばね27の力が2次圧力室iの2次圧力に勝っているので、A弁体24は開通していると同時に、B弁体25は閉鎖の状態であり、入口流路aからの1次圧力流水は連通路P→A弁座室f→A弁室e→連通路Peを経て主弁装置の主弁駆動圧力室dに流れ込む。この1次圧力流水は、主弁体5より大きい受圧面積を持つ主弁駆動部材6を、その面積差に伴う圧力の差をもって、主弁体5の全閉鎖の状態から全開の方向に徐々に推し開く。そして、流体は流路a→b→c1→c2を経て流動を始める。従って、この発明に係る主弁装置の構造は、送水ポンプ等の性急な直入起動においても、2次圧力の異常昇圧が発生しないという優れた作動特性を発揮する。
【0015】
次いで、2次圧力が所定値に達した後は、下流側の使用流量の多寡などにより変化する2次圧力を受けて、パイロット弁装置のA弁部、B弁部のA弁体24、B弁体25が応動し、主弁駆動圧力室dの内圧力を適宜に増減して、主弁体5の開度を調整しながら所定の2次圧力を維持する。2次圧力が均衡安定している時は、A弁体24、B弁体25共に、ほぼ閉鎖の状態で安定する。
【0016】
この定圧弁として作動している状態下で、下流側の使用流量が所定量を超えない範囲であれば、差圧シリンダー装置のばね35の力がオリフィス12の前後の差圧力に勝っているので、差圧シリンダー装置のピストン軸34はパイロット弁装置の弁軸26からは離れており、パイロット弁装置の定圧弁としての作動には干渉しない。
一方、もし下流側の使用流量が過多となって所定量を超えそうな状態となった時には、それにつれてオリフィス12の前後の差圧は拡大上昇し、差圧シリンダー装置のピストン33にかかる該差圧力はばね35の力に打ち勝って、ピストン軸34はパイロット弁装置の弁軸26に当接し、パイロット弁装置のばね27の力に対向する方向に押す(即ち定圧弁としての作動に優先して干渉する)。それによってA弁体24は閉鎖し、B弁体25は開通し、主弁装置の主弁駆動圧力室dの内圧力は2次圧力に向かって減圧し、主弁体5はその前後面に作用する推力の差によって閉鎖作動を行い、主弁開口部bは絞られ、通過流量を所定量に維持する。
【0017】
なお、パイロット弁装置のばね27の力をばね力調整部29によって調整するだけで、2次圧力を所期の値に設定でき、又、差圧シリンダー装置のばね35の力をばね力調整部36によって調整したり、オリフィス12をハンドル13等にて絞り操作するだけで、流量を所期の値に設定できる。
【0018】
下流側の使用が終わり、端末管路の締切り操作に入った場合は、それにつれて2次圧力は上昇して、パイロット弁装置の受圧板23にかかる2次圧力はばね27の力に打ち勝って、それを押し返す。そして、A弁体24は閉鎖し、B弁体25は開通し、主弁装置の主弁駆動圧力室dの内圧力は2次圧力に向かって減圧し、主弁体5は、その前後面に作用する推力の差によって閉鎖作動を行い、主弁開口部bは締め切られて流動は停止し、下流側の2次圧力は所定値を維持する。
このとき、端末管路の締切り操作に伴う流量の減少によってオリフィス12の前後の差圧は減少しているので、差圧シリンダー装置のばね35の力がオリフィス12の前後の差圧力に勝って、ピストン軸34はパイロット弁装置の弁軸26から離れた状態に復帰している。(即ち定圧弁としての作動には干渉しなくなっている)
【0019】
主弁装置が締切りを完了した時点では、この発明の構成により、厳密に水密性の機能を果たすべき部分は、主弁体5のシール部材5sとA弁体24のシール部材24sとであり、両者は、共に従来技術によって容易に水密性を達成できる部材である。一方、より精密製作の困難な主弁駆動部材6のシール部材6sの方は、粗雑な水密性のままにしておいても、主弁下流側の異常昇圧は発生しない。又、主弁装置、A弁部、B弁部のいずれも、砂粒・塵埃等による目詰まりの発生に際しては、その目詰まりによって生ずる2次圧力等の変化によって、該弁が自動的に開弁作動を行い、自掃流動によって目詰まりを排除するという優れた機能を備えている。従って、細目のストレーナー等が不要であり、保守管理も容易である。
【0020】
次に、図2の実施例について説明すると、これは、主弁駆動部材6が図1のものとは逆に主弁座3の上流側に設けられた実施例を示しており、それに伴って、主弁駆動部材6の作動方向が逆向きになり、A弁部とB弁部の位置も図1のものとは逆になる等、各要素の配設位置と作動方向が変わるが、その目的としている作用効果は図1のものと同様である。
【0021】
次に、その他の応用例について説明する。
パイロット弁装置の構造については、図1及び図2のいずれの実施例においても、A弁体24及びB弁体25を一本の弁軸26上に揃えて設け、一個の所定付加外力手段に対して一体的に連動させ、しかも両弁体24;25が互いに相手の作動を妨げない構造に構成させたものである。なお、図1においては、A弁体24とB弁体25とを弁室eに同居させたものを例示した。
パイロット弁装置及び差圧シリンダー装置の各室e;f;g;h;i;j;u;wの配置(位置関係)及び組み合わせ等については、この発明の意図する範囲において各種設計変更可能であり、この発明を上記の実施例に限定するものではない。
【0022】
パイロット弁装置や差圧シリンダー装置の所定付加外力手段については、各実施例のようなばね等の弾性部材を用いる方法の他にも、例えば、力の一定した重錘にリンクしたり、更に倍力機構を付加したり、気圧、液圧装置等の適用が容易にできることは勿論である。又、パイロット弁装置の受圧板23のシール手段については、各実施例のようなダイヤフラム式のシール部材28を用いる方法の他にも、ベローズ式としたり、受圧板の滑動面にOリング等を適用して水密性を保持させてもよい。なお、各実施例において、水密性を保持したい個所に夫々シール部材を配してあるが、直接接触により良好な水密性を保持できる設計・製作の場合は、該シール部材を省略できることは勿論である。
【0023】
主弁装置の構造については、各実施例において、主弁体5にはリフト弁形式を適用しているが、この発明の趣旨の範囲内で、その他の形式の開閉弁(例えば、バタフライ弁、ゲート弁、ボール弁など)を適用してもよいことは勿論である。円筒状内壁部8は、主弁箱1の材質がシリンダーの形成にとって適切な場合には、主弁箱1で兼用させて、省略することもできる。主弁ばね7は、最初の通水時の主弁体5の作動の安定上は望ましいものであるが、以後の作動には特に関係がないので、省略することもできる。なお、各実施例においては、主弁装置の構造を簡明にするために、a→b→c1→c2の主弁流路部と主弁駆動圧力室dの両方を主弁箱1内にコンパクトに収めたものを図示したが、その他にも、この主弁流路部と主弁駆動圧力室dを、2つに分割した主弁箱の夫々に収め、この2つの弁箱を貫通させた主弁軸の両端に主弁体5と主弁駆動部材6を固着する構造にしても差し支えない。
【0024】
仕様条件によっては、作動中の不意な流動変化による圧力脈動(ハンチング)を防止するために、パイロット弁装置や主弁装置を緩徐に作動させることが必要となる場合もあるが、その対処方法の一例として、図1には、主弁開口部bの形状を流量変化をスムーズにする鋸歯状の流路とした例が、又、図2には、主弁装置に緩衝装置14を設けたり、パイロット弁装置の2次圧力室iへの2次圧力連通路の途中に絞り弁を設けた例が示されている。その他、図示は省略するが、パイロット弁装置に緩衝装置を設ける等の方法もあることは勿論である。これらの対処方法は、いずれか1つを単独で採用しても、いくつかを組み合わせて採用してもよいし、それが必要とされない仕様条件下においては省略してもよい。
【0025】
オリフィス12については、一般的な開閉弁(例えば、バタフライ弁、ゲート弁、ボール弁、リフト弁等)も適用できる。又、このオリフィス12には、締切り水密性能は必須ではないので、その弁座に対するシールは省略可能である。そして、その操作については、ハンドル13による手動操作の他にも、各種アクチュエーターによって駆動することも、更にその駆動手順を自動化すること等も勿論可能である。
又、図1及び図2においてはオリフィス12を主弁の下流側に配置した例が示されているが、このオリフィス12の設置位置は基本的には主弁の上流側、下流側のどちらでもよい(主弁の上流側に設置した例は自明ゆえ図示は省略した)。下流側に設置した方が、差圧シリンダー装置に負荷される圧力が比較的低く設計しやすいという点では望ましく、一方、上流側に設置した方が、差圧シリンダー装置の作動が主弁体5の作動に伴う波動の影響をより受けにくいという点では望ましい。
なお、図1及び図2の実施例のように、差圧シリンダー装置の所定付加外力手段としてのばね35にばね力調整部36を設けた場合は、この所定付加外力の調整が即ち流量設定を意味するものであるから、オリフィス12の絞り操作による流量調節に限る必要はない。即ち、この場合は、差圧シリンダー装置の所定付加外力手段の調整部36のみで流量設定を行って、オリフィス12は固定オリフィスとしてもよく、特に開閉弁方式のオリフィスを装着した場合の乱流による前後差圧の検知誤差の発生を極力抑えたい場合などに有効である。
【0026】
図1及び図2のいずれも、更に設備の安全管理を期して、その出口流路側の適所には、その管路に適合した安全弁11が装着されたものが示されている。これは不要な場合には省略してもよい。
その他、この発明における弁装置を構成する各部材にわたり、従来技術の援用は何ら妨げるものではなく、又、この発明の趣旨の範囲内で種々設計変更可能であり、この発明を前記の各実施例に限定するものではない。
【0027】
【発明の効果】
この発明に係る自動調整弁装置は、パイロット弁装置部にニードル弁等の固定絞り流路がなく、弁装置の各弁体が適宜に開弁して自掃作動を行うので、砂粒・塵埃による目詰まり事故も無く、止水時の水密性も完璧で、送水時も止水時も2次圧力の異常昇圧を起こさずに作動する圧力調整機能を備えた、メンテナンス・フリーな弁装置であるのみならず、下流への流体供給量を自動的に所定量に制限できるので極めて便利である。又、パイロット弁装置の構造が簡潔で、2次圧力や流量の設定がワンタッチで簡単に行なえ、設計・製作・運転・保守管理に苦慮すべき部分もなく、信頼性と経済性の高い自動調整弁装置を得ることができて、その実施効果は極めて大きい。
【図面の簡単な説明】
【図1】この発明の一実施例を示す全体的縦断面図である。
【図2】この発明の他の一実施例を示す全体的縦断面図である。
【図3】従来技術による自動定圧弁装置の一例を示す全体的縦断面図である。
【符号の説明】
1…主弁箱 2…主弁箱蓋 3…主弁座 4…主弁軸
5…主弁体 5s…シール部材 6…主弁駆動部材 6s…シール部材
7…主弁ばね 8…円筒状内壁部 9…軸受 10…軸受
11…安全弁 12…オリフィス 13…ハンドル 14…緩衝装置
21…パイロット弁箱 22…パイロット弁箱蓋 23…パイロット受圧板
24…A弁体 24s…シール部材 25…B弁体
26…パイロット弁軸 27…ばね 28…シール部材
29…ばね力調整部 30…緩衝装置
31…差圧シリンダー 32…差圧シリンダー蓋 33…ピストン
34…ピストン軸 35…ばね 36…ばね力調整部
a…入口流路 b…主弁開口部 c(c1;c2)…出口流路
d…主弁駆動圧力室
e…A弁室 f…A弁座室 g…B弁室 h…B弁座室
i…2次圧力室 j…ばね室
u…オリフィス前面圧力室 w…オリフィス後面圧力室
P…連通路 Pe…連通路 Q(Q1;Q2)…連通路
[0001]
[Industrial application fields]
The present invention relates to an automatic adjustment valve device provided with an automatic throttle adjustment flow path installed in a fluid transportation pipeline, and more specifically, Japanese Patent Application No. 8-26828 “Automatic constant pressure valve device” (hereinafter “original invention”). ")". That is, as an automatic constant pressure valve device that is convenient for water supply / distribution, etc., it can be easily increased in size and pressure without the need for management and without having to worry about water tightness at the time of water stoppage. For example, all fixed throttle control channels such as needle valves and cocks are excluded from the device, and when each valve is clogged, each valve body automatically opens and has a function of performing a sweeping flow. Let's obtain an epoch-making automatic regulating valve device that not only functions as an automatic constant pressure valve, but also has a function of automatically restricting the flow rate so that the flow rate supplied to the downstream side does not exceed a predetermined amount It is what.
In the present specification, the term “water” generically represents fluid.
[0002]
[Prior art]
As a conventional general pressure regulating valve device, a pilot valve device that detects the fluid pressure in the outlet pipeline system and operates it while restricting the flow rate with a fixed throttle adjusting flow path such as a needle valve. Therefore, a structure for operating a piston for driving a main valve has been widely used.
However, in these conventional general pressure regulating valve devices, there are many concerns about the troublesomeness and durability in maintenance management, and for example, there are the following difficult problems.
(1) Many pistons for driving the main valve require a perfect water tightness that does not allow water leakage at the time of closing. Especially, as the size and pressure increase, the durability and processing accuracy of the seal part become difficult. It is also troublesome for maintenance management.
(2) In order to prevent pressure pulsation (hunting) due to a sudden flow change, in order to drive the main valve slowly, a communication passage that introduces a pressure fluid upstream of the main valve to the piston for driving the main valve A fixed throttle channel such as a needle valve is required on the way, and clogging such as sand particles and dust is likely to occur in the fixed fine channel.
(3) In addition, the adjustment to set the required downstream pressure of the main valve is an adjustment that takes into account the balance between the fixed throttle flow path such as the needle valve and the pilot valve device. It takes a hand.
[0003]
By solving these problems, the pilot valve device that does not have a fixed throttle flow path such as a needle valve prevents clogging accidents, and there is no water leakage when the main valve device is closed. Japanese Patent Application No. 8-26828 “Automatic constant pressure valve device” of the original invention proposed a pressure regulating valve device having a clear mechanism capable of maintaining the pressure at a predetermined value.
The configuration is as described in the patent application specification, and the gist is (illustrated in FIG. 3).
The main valve device comprises a main valve body 5 and a main valve drive member 6 which are integrally incorporated in the main valve box 1, and the main valve body 5 is located on the upstream side of the main valve seat 3 and between them. A valve opening b is formed, and the main valve drive member 6 is slidably fitted to the cylindrical inner wall portion 8 of the main valve box 1 so as to be slidable between the main valve box lid 2 and the main valve drive pressure chamber d. Configured to form a structure,
The pilot valve device is composed of a pilot A valve portion and a B valve portion on the same axis that are operated by a balance of the acting force between the downstream pressure of the main valve device and one predetermined additional external force means, and the main valve downstream pressure is predetermined. When the value is within the value, the pilot A valve portion that is kept almost closed and opened when the pressure on the downstream side of the main valve becomes lower than a predetermined value, and the pilot B valve that opens when the pressure on the downstream side of the main valve becomes higher than a predetermined value Is connected in series between the inlet channel a and the outlet channel c via the main valve driving pressure chamber d, so that the pilot valve device for driving the main valve does not have a fixed throttle channel It is configured in the structure.
In addition, a variable orifice 12 may be provided in the outlet flow path of the main valve device.
[0004]
[Problems to be solved by the invention]
This original invention, when viewed as a constant pressure valve itself, achieves its purpose well and is utilized as a simple and high-performance constant pressure valve, however, there still remains a problem in light of actual use conditions. . This is because, in actual use, there is often a request to function as a constant pressure valve during normal use, while functioning as a constant flow valve that restricts the flow rate when the downstream use flow rate becomes excessive. In such a case, the automatic constant pressure valve device according to the present invention cannot be used alone. This is because in this apparatus, when the downstream use flow rate is excessive and a pressure drop occurs on the downstream side, the main valve is increased in the direction of increasing the flow rate by the original function of the constant pressure valve to compensate for the pressure drop. This is because the device operates.
In the original invention, a constant flow rate can be achieved by providing a variable orifice 12 in the outlet flow path of the main valve device, but this is the case when there is no on-off valve or flow rate adjusting valve on the use terminal side of the pipeline. It is a theory that holds, and in reality, it is normal to perform flow channel opening and closing and flow rate adjustment at the point of use of the water at the pipe end. In that case, it is not possible to maintain a constant flow rate simply by providing the orifice 12. Of course.
It seems that it is difficult to combine the function as the constant pressure valve and the function as the constant flow valve with a simple configuration. Conventionally, the constant pressure valve and the constant flow valve are arranged in two or downstream. Usually, an expensive sensor or a switching device is provided for switching the functions of the constant pressure valve and the constant flow valve in accordance with the flow rate on the side.
[0005]
This invention solves the remaining problems in the original invention as described above, there is no leakage at the time of shutting off the main valve device, and there is no clogging accident because there is no fixed throttle channel such as a needle valve, In addition, each valve unit has a self-sweep function and maintenance is not involved. All the advantages of the original invention are fully utilized, and both the constant pressure valve and constant flow valve functions are compatible with each other. An object is to obtain a regulating valve device.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an automatic adjustment valve device according to the present invention provides:
In a self-regulating valve device in which a main valve device is driven in conjunction with a pilot valve device operated by a change in pressure of fluid flowing through it,
The main valve device has a main valve body integrally incorporated in the main valve box and a main valve drive member having a larger pressure receiving area than the main valve body, and the main valve body is located upstream of the main valve seat. The throttle valve is formed between the main valve seat and the main valve drive member is slidably fitted to the cylindrical inner wall portion of the main valve box, and between the inner wall portion and the main valve seat. Forming the main valve drive pressure chamber,
The pilot valve device has a pilot A valve portion and a pilot B valve portion on the same axis, which are operated by a balance of the opposing acting force between the downstream pressure of the main valve device and the predetermined additional external force means, and on the downstream side of the main valve When the pressure is at a predetermined value, both remain substantially closed, and the pilot A valve portion that opens when the pressure on the downstream side of the main valve becomes lower than the predetermined value, and opens when the pressure on the downstream side of the main valve becomes higher than the predetermined value And the pilot B valve portion that communicates in series between the inlet passage and the outlet passage of the main valve device via the main valve driving pressure chamber in the middle,
A differential pressure cylinder device that operates by a balance between the opposing differential force of the front and rear differential pressures of the orifice provided in the flow path of the main valve device and the predetermined additional external force means is attached to the pilot valve device, and the orifice If the differential pressure before and after becomes higher than a predetermined value, the piston shaft of the differential pressure cylinder device pushes the valve shaft of the pilot valve device in a direction opposite to the force of the predetermined additional external force means of the pilot valve device. It is characterized by that.
The orifice may be a variable orifice.
[0007]
[Action]
In the self-regulating valve device according to the present invention, when the pressure on the downstream side of the main valve changes due to a large amount of downstream use flow rate at the time of water flow, both are substantially closed when the pressure on the downstream side of the main valve is at a predetermined value. The pilot A valve portion that is opened when the pressure on the downstream side of the main valve is lower than a predetermined value, and the pilot B valve portion that is opened when the pressure on the downstream side of the main valve is higher than a predetermined value performs a linked operation. A predetermined main valve downstream pressure is maintained while adjusting the opening of the main valve body by appropriately increasing or decreasing the internal pressure of the main valve driving pressure chamber.
If the downstream operating flow rate does not exceed the specified amount under the condition of operating as a constant pressure valve, the piston shaft of the differential pressure cylinder device is separated from the valve shaft of the pilot valve device. It does not interfere with the operation of the device as a constant pressure valve.
On the other hand, if the flow rate on the downstream side is excessive and it is likely to exceed the predetermined amount, the piston shaft of the differential pressure cylinder device is controlled by the valve of the pilot valve device due to the expansion of the differential pressure across the attached orifice. Abuts against the shaft and pushes in a direction opposite to the force of the predetermined additional external force means of the pilot valve device, causing the main valve body to perform the closing operation by interfering with the operation as a constant pressure valve, and passing the flow rate by a predetermined amount To maintain.
[0008]
When the use on the downstream side ends and the terminal pipe line is closed, the pilot A valve portion is closed and the B valve portion is opened due to the accompanying increase in the pressure on the downstream side of the main valve, thereby opening the main valve body. Is closed to maintain the main valve downstream pressure at a predetermined value. At this time, since the differential pressure across the attached orifice decreases due to the decrease in the flow rate due to the closing operation of the terminal pipe line, the piston shaft of the differential pressure cylinder device returns to the state separated from the valve shaft of the pilot valve device. It does not interfere with the operation as a constant pressure valve.
[0009]
According to the configuration of the present invention, even if the seal member of the main valve driving member is left with rough watertightness, abnormal pressure increase of the main valve downstream pressure does not occur. In addition, when any of the main valve device, pilot A valve part, and B valve part is clogged with sand particles, dust, etc., the valve is automatically activated by the change in the pressure on the downstream side of the main valve caused by the clogging. It also has a function of opening the valve and eliminating clogging by self-cleaning flow.
[0010]
【Example】
Details of the present invention will be described with reference to FIG. 1 showing an embodiment.
In the following, for convenience, the pilot A valve part is “A valve part”, the valve body is “A valve body”, the pilot B valve part is “B valve part”, the valve body is “B valve body”, The main valve upstream pressure is referred to as “primary pressure”, and the main valve downstream pressure is referred to as “secondary pressure”.
First, in the figure of the main valve device in FIG. 1, 1 indicates a main valve box having an inlet channel a and an outlet channel c2, and 2 indicates a main valve box lid. 3 is a main valve seat. In the main valve box 1, a main valve body 5 provided on the upstream side with respect to the main valve seat 3 and a cylindrical inner wall portion 8 of the main valve box 1 are slidably fitted via a seal member 6s. The main valve drive member 6 mounted and the main valve shaft 4 that integrally combines the two members 5; 6 are provided. The main valve drive member 6, the cylindrical inner wall 8 and the main valve box lid 2 are wrapped to form a bag chamber-like main valve drive pressure chamber d. It is opened and closed. The relationship of the pressure receiving area between the main valve body 5 and the main valve driving member 6 is set so that the main valve driving member 6 is larger. Even when the main valve is closed, the seal member 5s of the main valve body 5 and the seal member 24s of the A valve body 24 of the pilot valve device have a strict watertight function. The member 6s is sufficient with a rough water-tightness to the extent of preventing current flow.
[0011]
In the figure of the pilot valve device, reference numeral 21 denotes a valve box forming the A valve part, the B valve part and the secondary pressure chamber i, and 22 denotes a valve box cover. Reference numeral 23 denotes a pressure receiving plate, 28 denotes a seal member, and 26 denotes a valve shaft that integrally combines the A valve body 24 and the B valve body 25 with the pressure receiving plate 23. A spring 27 as a predetermined additional external force means is accommodated in the spring chamber j of the valve box cover 22. In the A valve portion, an A valve chamber e, an A valve body 24, and an A valve seat chamber f are disposed. And about the A valve body 24, in order to show the exact | strict watertightness at the time of closure, 24 s sealing member is shown in figure. In the B valve portion, a B valve chamber g (same as the A valve chamber e), a B valve body 25, and a B valve seat chamber h are disposed. And it is shown that the B valve body 25 does not need strict water tightness at the time of closing, and may be somewhat leaky. (Of course, the B valve body 25 may be added with strict water tightness.) The A valve portion and the B valve portion are not only in a state where one is opened and the other is closed, but both Both valve parts are disposed at a position interval that can also produce a state of being substantially closed.
[0012]
In the drawing of the differential pressure cylinder device, 31 indicates a cylinder body, and 32 indicates a cylinder lid. Reference numeral 33 denotes a piston, and 34 denotes a piston shaft fixed to the piston 33. The pressure receiving area of the piston 33 is set larger than the pressure receiving area of the pressure receiving plate 23 of the pilot valve device. The piston shaft 34 is biased in a direction away from the pilot valve shaft 26 by a spring 35 as a predetermined additional external force means. An orifice front pressure chamber u is formed on the side far from the pilot valve shaft 26 with the piston 33 in between, and an orifice rear pressure chamber w is formed on the side near the pilot valve shaft 26.
Note that the piston 33 does not require strict watertightness between the inner wall of the cylinder 31 and may be somewhat leaky. (Of course, it is possible to add strict water tightness to the piston 33.)
[0013]
The A valve seat chamber f of the pilot valve device is communicated with the primary pressure inlet passage a through the communication passage P, and the A valve chamber e (same as the B valve chamber g) is communicated with the main valve drive pressure chamber d through the communication passage Pe. The B valve seat chamber h is communicated with the secondary pressure outlet channel c2 through the communication passage Q2. The secondary pressure chamber i communicates with the secondary pressure outlet channel c2 via the communication path Q2.
The orifice front pressure chamber u of the differential pressure cylinder device is communicated with the flow path c1 on the front surface (inlet side) of the orifice 12 through the communication passage Q1, and the orifice rear pressure chamber w is communicated with the rear surface (outlet side) of the orifice 12 through the communication passage Q2. ).
[0014]
The mode of operation of the present invention will be described with reference to FIG. 1 showing one embodiment.
When the fluid shown in FIG. 1 is inserted into the fluid transport pipe and the water is passed through, the outlet channel c2 does not reach the predetermined pressure yet, and the force of the spring 27 of the pilot valve device is the secondary pressure in the secondary pressure chamber i. Therefore, the A valve body 24 is opened, and at the same time, the B valve body 25 is closed, and the primary pressure flowing water from the inlet channel a is communicated with the communication path P → A valve seat chamber f → A valve chamber e → flows into the main valve drive pressure chamber d of the main valve device via the communication passage Pe. The primary pressure flowing water gradually moves the main valve driving member 6 having a pressure receiving area larger than that of the main valve body 5 from the fully closed state of the main valve body 5 to the fully opened direction with a pressure difference caused by the area difference. Open. Then, the fluid starts to flow through the flow paths a → b → c1 → c2. Therefore, the structure of the main valve device according to the present invention exhibits an excellent operation characteristic that an abnormal pressure increase of the secondary pressure does not occur even in a sudden direct start-up such as a water pump.
[0015]
Next, after the secondary pressure reaches a predetermined value, the secondary pressure that changes due to the amount of the downstream use flow rate is received, and the A valve body 24 of the pilot valve device, the A valve body 24 of the B valve portion, B The valve body 25 responds, and the internal pressure of the main valve drive pressure chamber d is appropriately increased or decreased to maintain a predetermined secondary pressure while adjusting the opening of the main valve body 5. When the secondary pressure is balanced and stable, both the A valve body 24 and the B valve body 25 are stabilized in a substantially closed state.
[0016]
If the downstream operating flow rate does not exceed a predetermined amount under the condition of operating as this constant pressure valve, the force of the spring 35 of the differential pressure cylinder device is superior to the differential pressure before and after the orifice 12. The piston shaft 34 of the differential pressure cylinder device is separated from the valve shaft 26 of the pilot valve device and does not interfere with the operation of the pilot valve device as a constant pressure valve.
On the other hand, if the downstream use flow rate becomes excessive and exceeds a predetermined amount, the differential pressure before and after the orifice 12 increases and rises accordingly, and the difference applied to the piston 33 of the differential pressure cylinder device. The pressure overcomes the force of the spring 35, and the piston shaft 34 abuts the valve shaft 26 of the pilot valve device and pushes it in a direction opposite to the force of the spring 27 of the pilot valve device (that is, prior to the operation as a constant pressure valve). have a finger in the pie). As a result, the A valve body 24 is closed, the B valve body 25 is opened, the internal pressure of the main valve drive pressure chamber d of the main valve device is reduced toward the secondary pressure, and the main valve body 5 is placed on the front and rear surfaces thereof. The closing operation is performed by the difference in the acting thrust, the main valve opening b is throttled, and the passing flow rate is maintained at a predetermined amount.
[0017]
The secondary pressure can be set to an intended value by simply adjusting the force of the spring 27 of the pilot valve device by the spring force adjusting portion 29, and the force of the spring 35 of the differential pressure cylinder device can be set to the spring force adjusting portion. The flow rate can be set to a desired value simply by adjusting with 36 or simply by restricting the orifice 12 with the handle 13 or the like.
[0018]
When the use on the downstream side is over and the terminal pipe is closed, the secondary pressure rises accordingly, and the secondary pressure applied to the pressure-receiving plate 23 of the pilot valve device overcomes the force of the spring 27, Push it back. The A valve body 24 is closed, the B valve body 25 is opened, the internal pressure of the main valve drive pressure chamber d of the main valve device is reduced toward the secondary pressure, and the main valve body 5 is The main valve opening b is closed and the flow is stopped, and the secondary pressure on the downstream side maintains a predetermined value.
At this time, since the differential pressure before and after the orifice 12 decreases due to the decrease in the flow rate due to the closing operation of the terminal pipe line, the force of the spring 35 of the differential pressure cylinder device overcomes the differential pressure before and after the orifice 12, The piston shaft 34 is returned to a state separated from the valve shaft 26 of the pilot valve device. (In other words, it does not interfere with the operation as a constant pressure valve)
[0019]
At the time when the main valve device completes the cutoff, according to the configuration of the present invention, the parts that should strictly perform the watertight function are the seal member 5s of the main valve body 5 and the seal member 24s of the A valve body 24, Both are members that can easily achieve water tightness by conventional techniques. On the other hand, even if the seal member 6s of the main valve drive member 6 which is more difficult to manufacture with precision is left with rough watertightness, abnormal pressure increase on the downstream side of the main valve does not occur. In addition, when any of the main valve device, the A valve portion, and the B valve portion is clogged with sand particles, dust, etc., the valve is automatically opened due to a change in secondary pressure or the like caused by the clogging. It has an excellent function of operating and eliminating clogging by self-cleaning flow. Therefore, a fine strainer or the like is not necessary, and maintenance management is easy.
[0020]
Next, the embodiment of FIG. 2 will be described. This shows an embodiment in which the main valve driving member 6 is provided on the upstream side of the main valve seat 3 as opposed to that of FIG. The operation direction of the main valve driving member 6 is reversed, the positions of the A valve portion and the B valve portion are reversed from those in FIG. The intended effect is the same as that of FIG.
[0021]
Next, other application examples will be described.
With regard to the structure of the pilot valve device, in any of the embodiments shown in FIGS. 1 and 2, the A valve body 24 and the B valve body 25 are provided on the single valve shaft 26 so that one predetermined additional external force means is provided. On the other hand, the two valve bodies 24; 25 are structured so as to be integrally interlocked with each other and do not interfere with each other's operation. In FIG. 1, an example in which the A valve body 24 and the B valve body 25 coexist in the valve chamber e is illustrated.
The design (positional relationship) and combination of the chambers e; f; g; h; i; j; u; w of the pilot valve device and the differential pressure cylinder device can be varied within the intended scope of the present invention. The present invention is not limited to the above embodiments.
[0022]
As for the predetermined additional external force means of the pilot valve device and the differential pressure cylinder device, in addition to the method of using an elastic member such as a spring as in each embodiment, for example, it is linked to a weight having a constant force, or further doubled. Needless to say, a force mechanism can be added, and an atmospheric pressure, hydraulic device, or the like can be easily applied. The sealing means for the pressure receiving plate 23 of the pilot valve device may be a bellows type or a O-ring or the like on the sliding surface of the pressure receiving plate in addition to the method using the diaphragm type sealing member 28 as in each embodiment. It may be applied to maintain watertightness. In each of the embodiments, a seal member is arranged at a place where it is desired to maintain water tightness. However, in the case of design and production capable of maintaining good water tightness by direct contact, it is of course possible to omit the seal member. is there.
[0023]
Regarding the structure of the main valve device, in each embodiment, a lift valve type is applied to the main valve body 5, but other types of opening / closing valves (for example, butterfly valves, Of course, gate valves, ball valves, etc.) may be applied. If the material of the main valve box 1 is appropriate for the formation of the cylinder, the cylindrical inner wall portion 8 can also be omitted by being shared by the main valve box 1. The main valve spring 7 is desirable in terms of the stability of the operation of the main valve body 5 at the time of the first water flow, but can be omitted because it is not particularly related to the subsequent operation. In each of the embodiments, in order to simplify the structure of the main valve device, both the main valve flow path part of a → b → c1 → c2 and the main valve drive pressure chamber d are compact in the main valve box 1. In addition, the main valve channel portion and the main valve driving pressure chamber d are accommodated in each of the main valve boxes divided into two, and the two valve boxes are penetrated. There may be a structure in which the main valve body 5 and the main valve drive member 6 are fixed to both ends of the main valve shaft.
[0024]
Depending on the specification conditions, it may be necessary to slowly operate the pilot valve device and main valve device to prevent pressure pulsation (hunting) due to unexpected flow changes during operation. As an example, FIG. 1 shows an example in which the shape of the main valve opening b is a serrated flow path that smoothes the flow rate change, and FIG. 2 shows that the main valve device is provided with a shock absorber 14. The example which provided the throttle valve in the middle of the secondary pressure communication path to the secondary pressure chamber i of a pilot valve apparatus is shown. In addition, although illustration is omitted, there is of course a method of providing a shock absorber in the pilot valve device. Any one of these countermeasures may be employed alone, or some may be employed in combination, or may be omitted under specification conditions where it is not required.
[0025]
For the orifice 12, a general on-off valve (for example, a butterfly valve, a gate valve, a ball valve, a lift valve, etc.) can also be applied. In addition, since the orifice 12 does not necessarily have a shut-off watertight performance, a seal with respect to the valve seat can be omitted. In addition to the manual operation by the handle 13, the operation can be driven by various actuators, and the driving procedure can be automated.
1 and 2 show an example in which the orifice 12 is arranged on the downstream side of the main valve. The installation position of the orifice 12 is basically either upstream or downstream of the main valve. It is good (the illustration of the installation on the upstream side of the main valve is omitted because it is obvious). The installation on the downstream side is desirable in that the pressure applied to the differential pressure cylinder device is relatively low and easy to design. On the other hand, the installation on the upstream side allows the operation of the differential pressure cylinder device to operate the main valve body 5. It is desirable in that it is less susceptible to the effects of waves associated with the operation of
1 and 2, when the spring force adjusting section 36 is provided on the spring 35 as the predetermined additional external force means of the differential pressure cylinder device, the adjustment of the predetermined additional external force, that is, the flow rate setting is performed. Therefore, it is not necessary to limit the flow rate adjustment by the orifice 12 throttle operation. That is, in this case, the flow rate is set only by the adjusting portion 36 of the predetermined additional external force means of the differential pressure cylinder device, and the orifice 12 may be a fixed orifice, and particularly due to turbulent flow when an on-off valve type orifice is mounted. This is effective when you want to suppress the occurrence of differential pressure detection error as much as possible.
[0026]
In both FIG. 1 and FIG. 2, a safety valve 11 suitable for the pipeline is mounted at an appropriate position on the outlet flow channel side for further safety management of the facility. This may be omitted if unnecessary.
In addition, over the members constituting the valve device of the present invention, the use of the prior art is not disturbed, and various design changes can be made within the scope of the present invention. It is not limited to.
[0027]
【The invention's effect】
In the automatic adjustment valve device according to the present invention, there is no fixed throttle channel such as a needle valve in the pilot valve device section, and each valve body of the valve device is appropriately opened to perform a self-cleaning operation. A maintenance-free valve device with no pressure clogging, perfect water tightness when water stops, and a pressure adjustment function that operates without causing an abnormal increase in secondary pressure during both water supply and water stoppages. Not only that, the amount of fluid supplied downstream can be automatically limited to a predetermined amount, which is very convenient. In addition, the structure of the pilot valve device is simple, the secondary pressure and flow rate can be easily set with a single touch, and there are no troublesome parts in design, production, operation and maintenance management, and automatic adjustment is highly reliable and economical. A valve device can be obtained, and its implementation effect is extremely large.
[Brief description of the drawings]
FIG. 1 is an overall longitudinal sectional view showing an embodiment of the present invention.
FIG. 2 is an overall longitudinal sectional view showing another embodiment of the present invention.
FIG. 3 is an overall longitudinal sectional view showing an example of a conventional automatic constant pressure valve device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Main valve box 2 ... Main valve box cover 3 ... Main valve seat 4 ... Main valve shaft 5 ... Main valve body 5s ... Seal member 6 ... Main valve drive member 6s ... Seal member 7 ... Main valve spring 8 ... Cylindrical inner wall Part 9 ... Bearing 10 ... Bearing 11 ... Safety valve 12 ... Orifice 13 ... Handle 14 ... Shock absorber 21 ... Pilot valve box 22 ... Pilot valve box cover 23 ... Pilot pressure receiving plate 24 ... A valve element 24s ... Seal member 25 ... B valve element 26 ... Pilot valve shaft 27 ... Spring 28 ... Seal member 29 ... Spring force adjustment part 30 ... Damping device 31 ... Differential pressure cylinder 32 ... Differential pressure cylinder lid 33 ... Piston 34 ... Piston shaft 35 ... Spring 36 ... Spring force adjustment part a ... Inlet channel b ... Main valve opening c (c1; c2) ... Outlet channel d ... Main valve drive pressure chamber e ... A valve chamber f ... A valve seat chamber g ... B valve chamber h ... B valve seat chamber i ... Secondary pressure chamber j ... Spring chamber u ... Orifice front pressure w ... orifice rear pressure chamber P ... communicating passage Pe ... communicating passage Q (Q1; Q2) ... communicating passage

Claims (2)

主弁装置が、それを流過する流体の圧力変化により作動するパイロット弁装置に連係して、駆動される自動調整弁装置において、
主弁装置は、主弁箱の内部に一体的に組み込まれた主弁体と該主弁体より大きい受圧面積を持つ主弁駆動部材とを有し、主弁体は主弁座の上流側に位置して、主弁座との間に絞り流路を形成し、主弁駆動部材は主弁箱の円筒状内壁部に対して滑動自在に嵌装されて、該内壁部との間に主弁駆動圧力室を形成し、
パイロット弁装置は、前記主弁装置の下流側圧力と所定付加外力手段との対向作用力のバランスによって作動する、同軸上のパイロットA弁部とパイロットB弁部とを有し、主弁下流側圧力が所定値にあるときは共にほぼ閉鎖の状態を保ち、主弁下流側圧力が所定値より低くなれば開通する該パイロットA弁部と、主弁下流側圧力が所定値より高くなれば開通する該パイロットB弁部とが、中間に前記主弁駆動圧力室を介して、前記主弁装置の入口流路と出口流路との間に直列的に連通され、
そして、前記主弁装置の流路内に付設されたオリフィスの前後差圧と所定付加外力手段との対向作用力のバランスによって作動する差圧シリンダー装置が、前記パイロット弁装置に付設され、該オリフィスの前後差圧が所定値より高くなれば、該差圧シリンダー装置のピストン軸が前記パイロット弁装置の弁軸をそのパイロット弁装置の所定付加外力手段の力に対向する方向に押す構造に構成されたことを特徴とする、自動調整弁装置。
In a self-regulating valve device in which a main valve device is driven in conjunction with a pilot valve device operated by a change in pressure of fluid flowing through it,
The main valve device has a main valve body integrally incorporated in the main valve box and a main valve drive member having a larger pressure receiving area than the main valve body, and the main valve body is located upstream of the main valve seat. The throttle valve is formed between the main valve seat and the main valve drive member is slidably fitted to the cylindrical inner wall portion of the main valve box, and between the inner wall portion and the main valve seat. Forming the main valve drive pressure chamber,
The pilot valve device has a pilot A valve portion and a pilot B valve portion on the same axis, which are operated by a balance of the opposing acting force between the downstream pressure of the main valve device and the predetermined additional external force means, and on the downstream side of the main valve When the pressure is at a predetermined value, both remain substantially closed, and the pilot A valve portion that opens when the pressure on the downstream side of the main valve becomes lower than the predetermined value, and opens when the pressure on the downstream side of the main valve becomes higher than the predetermined value And the pilot B valve portion that communicates in series between the inlet passage and the outlet passage of the main valve device via the main valve driving pressure chamber in the middle,
A differential pressure cylinder device that operates by a balance between the opposing differential force of the front and rear differential pressures of the orifice provided in the flow path of the main valve device and the predetermined additional external force means is attached to the pilot valve device, and the orifice If the differential pressure before and after becomes higher than a predetermined value, the piston shaft of the differential pressure cylinder device pushes the valve shaft of the pilot valve device in a direction opposite to the force of the predetermined additional external force means of the pilot valve device. An automatic adjustment valve device characterized by that.
前記オリフィスが可変オリフィスであることを特徴とする、請求項1記載の自動調整弁装置。  2. The automatic adjustment valve device according to claim 1, wherein the orifice is a variable orifice.
JP13985396A 1996-06-03 1996-06-03 Automatic adjustment valve device Expired - Lifetime JP3851378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13985396A JP3851378B2 (en) 1996-06-03 1996-06-03 Automatic adjustment valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13985396A JP3851378B2 (en) 1996-06-03 1996-06-03 Automatic adjustment valve device

Publications (2)

Publication Number Publication Date
JPH09317916A JPH09317916A (en) 1997-12-12
JP3851378B2 true JP3851378B2 (en) 2006-11-29

Family

ID=15255067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13985396A Expired - Lifetime JP3851378B2 (en) 1996-06-03 1996-06-03 Automatic adjustment valve device

Country Status (1)

Country Link
JP (1) JP3851378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080431B1 (en) * 2018-04-24 2020-05-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives FLUIDIC DEVICE FOR SUPPLYING INTEREST FLUID
CN108916434B (en) * 2018-07-18 2020-09-29 赵文轩 Safety valve for new nuclear
CN109611587A (en) * 2018-11-22 2019-04-12 河北金桥平衡阀门有限公司 The compensation device of valve opening and closing mechanism

Also Published As

Publication number Publication date
JPH09317916A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP4181222B2 (en) Automatic adjustment valve device
JP3790778B2 (en) Automatic adjustment valve device
EP2256391B1 (en) Pressure Management Control Valve Assembly
WO1995006834A1 (en) Automatic constant pressure lift valve device
US3974849A (en) Diaphragm valves
US6394135B2 (en) Balanced plug valve with contour wall
US5996606A (en) Four-port valve and three-way valve
JP3851378B2 (en) Automatic adjustment valve device
US3957073A (en) Pressure balancing valve
US4187873A (en) Pressure regulators
JP2005048796A (en) Automatic regulating valve apparatus
JP3111274B2 (en) Automatic constant pressure valve device
JP2004278563A (en) Automatic control valve device
JP3301060B2 (en) Pressure reducing valve
JP2000161529A (en) Automatic adjusting valve device
JPH04102780A (en) Automatic adjusting lift valve device
JPH03107685A (en) Automatic regulating lift valve device
JP2748083B2 (en) Self-cleaning type variable constant flow rate control lift valve device
JP2001173832A (en) Constant flow valve system with liquid level control mechanism
JPS647372Y2 (en)
JPH09126349A (en) Variable constant flow valve device
GB1582644A (en) Regulating valve
JPS60652Y2 (en) Pressure regulator for self-powered pressure reducing valve
JP2540361B2 (en) Coupling type variable constant flow rate control valve device
US3965929A (en) Conduit valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160908

Year of fee payment: 10

EXPY Cancellation because of completion of term