JP4459424B2 - Method for manufacturing thin film solar cell - Google Patents

Method for manufacturing thin film solar cell Download PDF

Info

Publication number
JP4459424B2
JP4459424B2 JP2000347918A JP2000347918A JP4459424B2 JP 4459424 B2 JP4459424 B2 JP 4459424B2 JP 2000347918 A JP2000347918 A JP 2000347918A JP 2000347918 A JP2000347918 A JP 2000347918A JP 4459424 B2 JP4459424 B2 JP 4459424B2
Authority
JP
Japan
Prior art keywords
solar cell
film solar
glass plate
thin film
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000347918A
Other languages
Japanese (ja)
Other versions
JP2002151711A (en
Inventor
将史 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2000347918A priority Critical patent/JP4459424B2/en
Publication of JP2002151711A publication Critical patent/JP2002151711A/en
Application granted granted Critical
Publication of JP4459424B2 publication Critical patent/JP4459424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は半導体薄膜太陽電池に関し、特に、裏面封止された薄膜太陽電池の製造方法に関するものである。
【0002】
【従来の技術】
図3は真空ラミネータを利用して薄膜太陽電池の裏面を封止する従来の方法を図解する模式的な断面図であり、図4はその方法によって裏面封止された薄膜太陽電池の一例を示す模式的な断面部分図である。なお本願の各図において、厚さ、長さ、および幅などは図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わしてはいない。また、各図における同一の参照符号は、同一部分または相当部分を表わしている。
【0003】
図4に示されているように、薄膜太陽電池においては、一般に厚さ4mm程度の透明なガラス基板1上に光電変換ユニット層2が形成される。光電変換ユニット層2は一般に数μm程度の非常に薄い厚さを有し、基板1上に順次積層された透明導電性酸化物の前面電極層、半導体光電変換層、および裏面金属電極層を含んでいる。光電変換ユニット層2の周辺部は、その端面を保護するために、ガラス基板1の周辺から5mm程度後退させられている。1つの基板1上に複数のサブモジュールを含む薄膜太陽電池では(特開2000−49369参照)、光電変換ユニット層2上に配置された内部電気配線部3を含んでいる。この内部配線部3は、局所的な絶縁シート3aとその上の金属箔3bを含んでいる。ここで、絶縁シート3aと金属箔3bは、たとえばそれぞれ0.2mmの厚さを有し、内部配線部3全体として0.4mm程度の厚さを有する。また、内部配線部3は電流取出用端子ボックス(図示せず)の位置などとの関係から、通常は基板1の1辺から40mm程度離れた位置に配置される。
【0004】
光電変換ユニット層2と内部配線部3は、接合樹脂4とそれによって接合される保護フィルム5aとを含む封止保護手段によって保護される。この封止保護手段は、薄膜太陽電池の裏面側が外界からの物理的または化学的影響を受けることによって光電変換特性が劣化することを防止するためのものであり、真空加熱圧着装置を用いて付与され得る。
【0005】
図3においては、真空加熱圧着装置の一例としての真空ラミネータが模式的な断面図で示されている。この真空ラミネータ100は下側容器11と上側容器12とを含んでおり、これらは気密シール13を介して互いに着脱可能である。下側容器11と上側容器12とはそれぞれ吸排気ポート11aと12aを含むとともに、上側容器12は合成ゴム製のダイヤフラム部12bをも含んでいる。
【0006】
下側容器11内には、ヒータを内蔵する載置台14が設けられており、これは加熱板として作用する。予め所定温度に加熱された載置台14上には、基板1が配置される。基板1上には既に光電変換ユニット層2と内部配線部3が形成されており、その上に接合樹脂シート(硬化剤を含む)4と保護材料の層5(図4の場合には保護フィルム5a)が重ねられる。この状態で、気密シール13を介して下側容器11と上側容器12とが結合させられ、これらの両容器の内部が吸排気ポート11aと12bを介してロータリーポンプ(図示せず)によって排気される。
【0007】
内蔵されたヒータで予め所定温度に昇温された載置台14によって接合樹脂シート4が加熱され、そのシート4は軟化して溶融する。この時点で吸排気ポート12aを介して上側容器12内に大気圧が導入され、ダイヤフラム12bは保護材料層5上にその大気圧で押圧させられる。この状態で、溶融した接合樹脂4の硬化は、真空ラミネータ100内で行なわしめることができる。
【0008】
なお、封止保護手段の形成のために真空ラミネータが利用される理由は、溶融させられた後に硬化させられる封止樹脂層4の境界や内部に気泡が混入することを防止するためである。
【0009】
【発明が解決しようとする課題】
図4に示されているような従来の封止法による薄膜太陽電池において、保護フィルム5aとしては、一般にアルミ箔をPVF(ポリフッ化ビニル)膜でサンドイッチした複合フィルムが用いられる。ここで、アルミ箔がサンドイッチされているのは、水分の透過を効果的に阻止するためである。ところが、このアルミ箔をサンドイッチしているPVF膜は薄いので、場合によってピンホールや傷が発生し、太陽電池の裏面においてアルミ箔を介するリーク電流を生じることがある。また、水分の存在下においてこのようなリーク電流が流れれば、アルミ箔の腐蝕が進行することがある。
【0010】
このような従来技術における課題に鑑み、本発明は、より信頼性が高い裏面封止された薄膜太陽電池の製造方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明によれば、ガラス基板上に形成された薄膜光電変換ユニット層上に配置された内部電気配線部を含み、接合樹脂シートと封止ガラス板により薄膜光電変換ユニット層の裏面が封止された薄膜太陽電池の製造方法において、その光電変換ユニット層の裏面全域を覆う接合樹脂シートと封止ガラス板を順に重ねた積層体を用意し、真空ラミネータの熱板上に積層体を載置するとともにその積層体の端部に所定厚さのスペーサを配置し、真空ラミネータを排気して接合樹脂シートの溶融後においてそのラミネータ内のダイヤフラムによって封止ガラス板を押圧し、その状態で接合樹脂を硬化させて裏面封止を行うことを特徴としている。
【0012】
スペーサは、接合樹脂の硬化後の内部配線部における基板の下面から封止ガラス板の上面までの厚さより0〜1mmの範囲内だけ増大させられた厚さを有していることが好ましい。
【0013】
真空ラミネータのダイヤフラムは、封止ガラス板を0.02MPaから大気圧の範囲内の圧力で押圧することが好ましい。
【0014】
【発明の実施の形態】
アルミ箔をPVF膜でサンドイッチした複合フィルム5aを利用して薄膜太陽電池の裏面を封止する従来の方法における前述の問題に鑑み、本発明者は、その複合保護フィルム5aの代わりに厚さ3〜4mm程度の保護ガラス板を利用する封止方法を検討した。なぜならば、ガラス板は複合保護フィルム5aに比べてはるかに丈夫であり、水分の透過に対しても優れた阻止能力を有しているからである。
【0015】
図2は、保護ガラス板を利用して裏面封止された薄膜太陽電池の一例を模式的な断面部分図で示している。図2の薄膜太陽電池においても、図4に類似して、ガラス基板1上に光電変換ユニット層2が形成される。光電変換ユニット層2上には、内部配線部3が配置される。そして、これらの光電変換ユニット層2と内部配線部3は、接合樹脂4とそれによって接合される保護ガラス板5bとを含む封止保護手段によって保護される。
【0016】
ところで、薄膜太陽電池の裏面封止のために保護フィルム5aの代わりに保護ガラス板5bを利用した場合には、別の付随的な問題が生じることが判明した。これは、保護フィルム5aと異なって、保護ガラス板5bが小さな弾性を有するとともに、脆性材料であることから生じる問題である。
【0017】
すなわち、図3の場合と同様に光電変換ユニット層2と内部配線部3が形成されたガラス基板1上に接合樹脂シート4と保護材料の層(ただし図2の薄膜太陽電池の場合は保護ガラス板5b)を重ねて、真空ラミネータ100内においてダイヤフラム12bでプレスした状態で接合樹脂層4を溶融から硬化させた後に薄膜太陽電池を取出した場合、その保護ガラス板5bがプレス中に弾性変形しているので、図2に示されているように、内部配線部3のような凸部Bからそれに近い基板1の端部Aにかけて保護ガラス板5bが少し湾曲した状態で固定されることになる。そして、この湾曲の度合が大きい場合には、封止後の何日か経過した後に保護ガラス板5bが割れるという遅れ破壊の現象が生じることがわかった。
【0018】
具体的には、図2を参照して、厚さ4mmのガラス基板1上に厚さ数μmの薄膜光電変換ユニット層2が形成された。光電変換ユニット層2上には、ガラス繊維不織布からなる厚さ0.2mmの局所的絶縁シート3aとその上の厚さ0.2mmの銅箔3bが配置された。そして、光電変換ユニット層2と内部配線部3とを覆うように、硬化剤を含むEVA(エチレン酢酸ビニル共重合体)接合樹脂シート4と厚さ3mmの保護ガラス板5bが重ねられた。この積層体が図3の真空ラミネータ内において165℃に加熱された載置台14上に置かれた。そして、真空ラミネータ100を真空排気して、EVA接合樹脂シート4が溶融した後に、上側容器12の吸排気孔12aを介して大気圧が導入され、ダイヤフラム12bによって保護ガラス板5aが押圧された。このダイヤフラムの押圧を20分間維持して接合樹脂層4を硬化させた後に、裏面封止された薄膜太陽電池がラミネート100から取出された。
【0019】
この場合に、基板端部Aと内部配線部Bとの距離は40mmであり、ガラス基板1の下面と保護ガラス板5bの上面までの厚さに関して、内部配線部Bと基板端部Aとの間で0.37mmの差があった。保護ガラス板5bを用いてこのような状態に裏面封止された薄膜太陽電池において、その封止後5日経過したときに保護ガラス板5bに割れが発生した。
【0020】
本発明者が見出した上述のような付随的な問題に鑑みて、本発明者はさらに種々の検討を行なった。
【0021】
その結果、図1に示されているように、真空ラミネータ100内で基板1の端部において所定厚さのスペーサ6を配置した状態で薄膜太陽電池の裏面封止を行なえば、保護ガラス板5bの遅れ破壊を防止し得ることがわかった。その場合に、スペーサ6の厚さは、接合樹脂層4の硬化後における内部配線部Bの厚さより0〜1.0mmだけ大きいことが望まれ、0.2〜1.0mmだけ大きいことがより好ましく、0.5〜1.0mmだけ大きいことがさらに好ましい。
【0022】
より具体的には、前述の図2を参照して説明された薄膜太陽電池と同様の条件の下において、8mmの厚さを有するスペーサ6を用いて図1に示されているような裏面封止を行なったところ、B部とA部との厚さの差は0.18mmに低減し、封止後6ヶ月経過の後おいても保護ガラス板5bに遅れ破壊が生じることはなかった。
【0023】
さらに検討したところでは、裏面封止の際にスペーサ6を配置するのみならず、ダイヤフラム12bのプレス圧を低減させることが好ましい。ダイヤフラム12bのプレス圧は、上側容器12の吸排気ポート12aに連結されている圧力調節弁(図示せず)によって調整することができる。具体的には、ダイヤフラム12bのプレス圧を大気圧より小さな0.05MPaに減少させた場合、B部とA部との厚さの差はさらに0.12mmに減少し、保護ガラス板5bの歪みがさらに緩和された。ただし、ダイヤフラム12bのプレス圧が0.02MPa未満になれば、内部配線部3の凸部近傍において接合樹脂層4中に気泡が残留し始めるので好ましくない。
【0024】
他方、上述と同様の条件の薄膜太陽電池において、スペーサ6を用いることなくダイヤフラム12bのプレス圧のみを0.05MPaに減少させた場合には、B部とA部との厚さの差は0.23mmになったが、封止後2日後において保護ガラス板5bに割れが発生した。ここで、前述のB部とA部との厚さの差が0.37mmの場合に封止後5日経過後に保護ガラス板5bに割れが発生したのに比べて、より短い封止後2日で割れが発生したのは、脆性材料である保護ガラス板5bにおける不均一性に基づくと考えられる。
【0025】
なお、以上の具体例においては載置台14の温度が165℃に設定されたが、その温度は160〜180℃の範囲内で好ましく設定され得る。この設定温度が高ければ接合樹脂4が早く溶融するとともに硬化も早く進行し、逆に低ければ接合樹脂4の溶融と硬化を遅らせることができる。
【0026】
また、以上の具体例では接合樹脂シートとしてEVAシートを用いた例が説明されたが、たとえば硬化剤を含むPVB(ポリビニルブチラール)シートのように他の適当な接合樹脂シートをも用いることができる。
【0027】
【発明の効果】
以上のように、本発明の製造方法によれば、従来に比べて信頼性の高い裏面が封止された薄膜太陽電池を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態による真空ラミネータを用いた薄膜太陽電池の裏面封止方法を図解する模式的な断面図である。
【図2】 保護ガラス板を用いて薄膜太陽電池の裏面封止した状態を示す模式的な断面部分図である。
【図3】 真空ラミネータを用いた従来の薄膜太陽電池の裏面封止方法を図解する模式的な断面図である。
【図4】 従来の方法によって裏面封止された薄膜太陽電池を示す模式的な断面部分図である。
【符号の説明】
1 ガラス基板、2 光電変換ユニット層、3 内部配線部、3a 局所的絶縁シート、3b 金属箔、4 接合樹脂層、5 保護材料の層、5a 複合保護フィルム、5b 封止ガラス板、11 下側容器、11a 吸排気ポート、12上側容器、12a 吸排気ポート、12b ダイヤフラム、13 気密シール、14 載置台、100 真空ラミネータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor thin film solar cell, and more particularly to a method for manufacturing a back surface sealed thin film solar cell.
[0002]
[Prior art]
FIG. 3 is a schematic cross-sectional view illustrating a conventional method of sealing the back surface of a thin film solar cell using a vacuum laminator, and FIG. 4 shows an example of the thin film solar cell sealed by the method. It is typical sectional fragmentary drawing. In each drawing of the present application, the thickness, length, width, and the like are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Further, the same reference numerals in the drawings represent the same or corresponding parts.
[0003]
As shown in FIG. 4, in the thin film solar cell, the photoelectric conversion unit layer 2 is generally formed on a transparent glass substrate 1 having a thickness of about 4 mm. The photoelectric conversion unit layer 2 generally has a very thin thickness of about several μm, and includes a front electrode layer of a transparent conductive oxide, a semiconductor photoelectric conversion layer, and a back metal electrode layer sequentially stacked on the substrate 1. It is out. The peripheral portion of the photoelectric conversion unit layer 2 is retracted about 5 mm from the periphery of the glass substrate 1 in order to protect the end face. A thin-film solar cell including a plurality of submodules on one substrate 1 (see JP 2000-49369 A) includes an internal electrical wiring portion 3 disposed on the photoelectric conversion unit layer 2. The internal wiring portion 3 includes a local insulating sheet 3a and a metal foil 3b thereon. Here, the insulating sheet 3a and the metal foil 3b each have a thickness of 0.2 mm, for example, and the entire internal wiring portion 3 has a thickness of about 0.4 mm. In addition, the internal wiring portion 3 is usually disposed at a position about 40 mm away from one side of the substrate 1 because of the relationship with the position of a current extraction terminal box (not shown).
[0004]
The photoelectric conversion unit layer 2 and the internal wiring part 3 are protected by sealing protection means including a bonding resin 4 and a protective film 5a bonded thereby. This sealing protection means is for preventing the photoelectric conversion characteristics from deteriorating due to physical or chemical influence from the outside on the back side of the thin film solar cell, and is applied using a vacuum thermocompression bonding apparatus. Can be done.
[0005]
In FIG. 3, a vacuum laminator as an example of a vacuum thermocompression bonding apparatus is shown in a schematic cross-sectional view. The vacuum laminator 100 includes a lower container 11 and an upper container 12, which are detachable from each other via an airtight seal 13. The lower container 11 and the upper container 12 include intake / exhaust ports 11a and 12a, respectively, and the upper container 12 also includes a diaphragm portion 12b made of synthetic rubber.
[0006]
In the lower container 11, a mounting table 14 incorporating a heater is provided, which acts as a heating plate. The substrate 1 is placed on the mounting table 14 that has been heated to a predetermined temperature in advance. A photoelectric conversion unit layer 2 and an internal wiring portion 3 are already formed on the substrate 1, and a bonding resin sheet (including a curing agent) 4 and a protective material layer 5 (a protective film in the case of FIG. 4) 5a) is superimposed. In this state, the lower container 11 and the upper container 12 are coupled via the hermetic seal 13, and the inside of these containers is exhausted by a rotary pump (not shown) via the intake / exhaust ports 11a and 12b. The
[0007]
The bonding resin sheet 4 is heated by the mounting table 14 that has been heated to a predetermined temperature by a built-in heater, and the sheet 4 is softened and melted. At this time, atmospheric pressure is introduced into the upper container 12 through the intake / exhaust port 12a, and the diaphragm 12b is pressed onto the protective material layer 5 at the atmospheric pressure. In this state, the molten bonding resin 4 can be cured in the vacuum laminator 100.
[0008]
The reason why the vacuum laminator is used for forming the sealing protection means is to prevent air bubbles from being mixed into the boundary or inside of the sealing resin layer 4 which is cured after being melted.
[0009]
[Problems to be solved by the invention]
In the conventional thin film solar cell by the sealing method as shown in FIG. 4, a composite film in which an aluminum foil is sandwiched between PVF (polyvinyl fluoride) films is generally used as the protective film 5a. Here, the reason why the aluminum foil is sandwiched is to effectively prevent the permeation of moisture. However, since the PVF film sandwiching the aluminum foil is thin, pinholes and scratches may occur in some cases, and a leakage current through the aluminum foil may occur on the back surface of the solar cell. Further, if such a leakage current flows in the presence of moisture, the corrosion of the aluminum foil may proceed.
[0010]
In view of such problems in the conventional technology, the present invention has an object to provide a method for manufacturing a back surface-sealed thin film solar cell with higher reliability.
[0011]
[Means for Solving the Problems]
According to the present invention, the back surface of the thin film photoelectric conversion unit layer is sealed by the bonding resin sheet and the sealing glass plate , including the internal electrical wiring portion disposed on the thin film photoelectric conversion unit layer formed on the glass substrate. In the method for manufacturing a thin film solar cell, a laminate in which a bonding resin sheet covering the entire back surface of the photoelectric conversion unit layer and a sealing glass plate are sequentially laminated is prepared, and the laminate is placed on a hot plate of a vacuum laminator. In addition, a spacer having a predetermined thickness is disposed at the end of the laminated body, the vacuum laminator is exhausted, and after the bonding resin sheet is melted, the sealing glass plate is pressed by the diaphragm in the laminator, and the bonding resin is put in this state. It is characterized in that it is cured to perform back surface sealing .
[0012]
It is preferable that the spacer has a thickness increased by 0 to 1 mm from the thickness from the lower surface of the substrate to the upper surface of the sealing glass plate in the internal wiring portion after the bonding resin is cured.
[0013]
The diaphragm of the vacuum laminator preferably presses the sealing glass plate with a pressure in the range of 0.02 MPa to atmospheric pressure.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In view of the above-mentioned problem in the conventional method of sealing the back surface of a thin film solar cell using a composite film 5a in which an aluminum foil is sandwiched with a PVF film, the present inventor has a thickness of 3 instead of the composite protective film 5a. A sealing method using a protective glass plate of about 4 mm was examined. This is because the glass plate is much stronger than the composite protective film 5a and has an excellent ability to block moisture permeation.
[0015]
FIG. 2 is a schematic partial sectional view showing an example of a thin film solar cell whose back surface is sealed using a protective glass plate. Also in the thin film solar cell of FIG. 2, the photoelectric conversion unit layer 2 is formed on the glass substrate 1 similarly to FIG. On the photoelectric conversion unit layer 2, an internal wiring portion 3 is disposed. And these photoelectric conversion unit layers 2 and the internal wiring part 3 are protected by the sealing protection means containing the joining resin 4 and the protective glass board 5b joined by it.
[0016]
By the way, when the protective glass board 5b was utilized instead of the protective film 5a for back surface sealing of a thin film solar cell, it turned out that another incidental problem arises. Unlike the protective film 5a, this is a problem caused by the protective glass plate 5b having a small elasticity and being a brittle material.
[0017]
That is, as in the case of FIG. 3, a bonding resin sheet 4 and a layer of protective material on the glass substrate 1 on which the photoelectric conversion unit layer 2 and the internal wiring part 3 are formed (however, in the case of the thin film solar cell of FIG. When the thin film solar cell is taken out after the joining resin layer 4 is cured from being melted in a state where the plate 5b) is stacked and pressed with the diaphragm 12b in the vacuum laminator 100, the protective glass plate 5b is elastically deformed during pressing. Therefore, as shown in FIG. 2, the protective glass plate 5b is fixed in a slightly curved state from the convex portion B such as the internal wiring portion 3 to the end portion A of the substrate 1 close thereto. . And when this bending degree was large, it turned out that the phenomenon of the delayed fracture that the protective glass plate 5b cracks after several days after sealing passes.
[0018]
Specifically, with reference to FIG. 2, a thin film photoelectric conversion unit layer 2 having a thickness of several μm was formed on a glass substrate 1 having a thickness of 4 mm. On the photoelectric conversion unit layer 2, a local insulating sheet 3a having a thickness of 0.2 mm made of a glass fiber nonwoven fabric and a copper foil 3b having a thickness of 0.2 mm thereon were disposed. And the EVA (ethylene vinyl acetate copolymer) joining resin sheet 4 containing a hardening | curing agent and the protective glass plate 5b of thickness 3mm were piled up so that the photoelectric conversion unit layer 2 and the internal wiring part 3 might be covered. This laminate was placed on a mounting table 14 heated to 165 ° C. in the vacuum laminator of FIG. Then, after the vacuum laminator 100 was evacuated and the EVA bonded resin sheet 4 was melted, atmospheric pressure was introduced through the intake / exhaust holes 12a of the upper container 12, and the protective glass plate 5a was pressed by the diaphragm 12b. After the pressure of the diaphragm was maintained for 20 minutes to cure the bonding resin layer 4, the back surface sealed thin film solar cell was taken out from the laminate 100.
[0019]
In this case, the distance between the substrate end A and the internal wiring portion B is 40 mm, and the thickness between the lower surface of the glass substrate 1 and the upper surface of the protective glass plate 5b is between the internal wiring portion B and the substrate end A. There was a difference of 0.37 mm between them. In the thin film solar cell whose back surface was sealed in such a state using the protective glass plate 5b, cracks occurred in the protective glass plate 5b when 5 days had passed after the sealing.
[0020]
In view of the above-mentioned incidental problems found by the present inventor, the present inventor further conducted various studies.
[0021]
As a result, as shown in FIG. 1, if the back surface sealing of the thin film solar cell is performed with the spacer 6 having a predetermined thickness disposed at the end of the substrate 1 in the vacuum laminator 100, the protective glass plate 5b It was found that the delayed destruction of can be prevented. In that case, the thickness of the spacer 6 is desirably 0 to 1.0 mm larger than the thickness of the internal wiring portion B after the bonding resin layer 4 is cured, and more preferably 0.2 to 1.0 mm. Preferably it is larger by 0.5 to 1.0 mm.
[0022]
More specifically, under the same conditions as those of the thin film solar cell described with reference to FIG. 2 described above, the back surface sealing as shown in FIG. 1 is performed using a spacer 6 having a thickness of 8 mm. When stopping, the difference in thickness between the B part and the A part was reduced to 0.18 mm, and the protective glass plate 5b was not delayed and destroyed even after 6 months had elapsed after sealing.
[0023]
Further examination shows that it is preferable to reduce the pressing pressure of the diaphragm 12b as well as the spacer 6 at the time of sealing the back surface. The press pressure of the diaphragm 12b can be adjusted by a pressure control valve (not shown) connected to the intake / exhaust port 12a of the upper container 12. Specifically, when the press pressure of the diaphragm 12b is reduced to 0.05 MPa, which is smaller than the atmospheric pressure, the difference in thickness between the B part and the A part is further reduced to 0.12 mm, and the distortion of the protective glass plate 5b. Was further relaxed. However, if the pressing pressure of the diaphragm 12b is less than 0.02 MPa, bubbles start to remain in the bonding resin layer 4 in the vicinity of the convex portion of the internal wiring portion 3, which is not preferable.
[0024]
On the other hand, in the thin film solar cell under the same conditions as described above, when only the press pressure of the diaphragm 12b is reduced to 0.05 MPa without using the spacer 6, the difference in thickness between the B part and the A part is 0. Although it became 23 mm, a crack occurred in the protective glass plate 5b two days after sealing. Here, in the case where the difference in thickness between the B part and the A part is 0.37 mm, the protective glass plate 5b is cracked after 5 days after the sealing, and after the sealing, a shorter 2 It is considered that the cracks occurred on the basis of the non-uniformity in the protective glass plate 5b, which is a brittle material.
[0025]
In the above specific example, the temperature of the mounting table 14 is set to 165 ° C., but the temperature can be preferably set within a range of 160 to 180 ° C. If the set temperature is high, the bonding resin 4 is melted quickly and curing proceeds rapidly. Conversely, if the set temperature is low, the melting and curing of the bonding resin 4 can be delayed.
[0026]
Moreover, although the example which used the EVA sheet | seat as a joining resin sheet was demonstrated in the above specific example, another suitable joining resin sheet can also be used like a PVB (polyvinyl butyral) sheet | seat containing a hardening | curing agent, for example. .
[0027]
【The invention's effect】
As described above, according to the manufacturing method of the present invention, it is possible to backside reliable than the conventional to provide a thin film solar cell sealed.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a back surface sealing method of a thin film solar cell using a vacuum laminator according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional partial view showing a state where a back surface of a thin film solar cell is sealed using a protective glass plate.
FIG. 3 is a schematic cross-sectional view illustrating a conventional back surface sealing method for a thin film solar cell using a vacuum laminator.
FIG. 4 is a schematic partial sectional view showing a thin-film solar cell whose back surface is sealed by a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass substrate, 2 Photoelectric conversion unit layer, 3 Internal wiring part, 3a Local insulation sheet, 3b Metal foil, 4 Bonding resin layer, 5 Layer of protective material, 5a Composite protective film, 5b Sealing glass plate, 11 Lower side Vessel, 11a intake / exhaust port, 12 upper vessel, 12a intake / exhaust port, 12b diaphragm, 13 hermetic seal, 14 mounting table, 100 vacuum laminator.

Claims (3)

ガラス基板上に形成された薄膜光電変換ユニット層上に配置された内部電気配線部を含み、接合樹脂シートと封止ガラス板により薄膜光電変換ユニット層の裏面が封止された薄膜太陽電池の製造方法において、
前記光電変換ユニット層の裏面全域を覆う接合樹脂シートと封止ガラス板を順に重ねた積層体を用意し、
真空ラミネータの熱板上に前記積層体を載置するとともにその積層体の端部に所定厚さのスペーサを配置し、
前記真空ラミネータを真空排気して、前記接合樹脂シートの溶融後において、そのラミネータ内のダイヤフラムによって前記封止ガラス板を押圧し、その状態で前記接合樹脂を硬化させて裏面封止を行うことを特徴とする薄膜太陽電池の製造方法。
The internal electric wiring portion disposed on formed on a glass substrate thin film photoelectric conversion unit layer seen including, by bonding a resin sheet and the sealing glass plate of thin-film solar cell rear surface is sealed thin film photoelectric conversion unit layer In the manufacturing method,
Prepare a laminate in which a bonding resin sheet and a sealing glass plate covering the entire back surface of the photoelectric conversion unit layer are stacked in order,
Place the laminate on the hot plate of the vacuum laminator and place a spacer with a predetermined thickness at the end of the laminate,
The vacuum laminator is evacuated, and after the bonding resin sheet is melted, the sealing glass plate is pressed by a diaphragm in the laminator, and the bonding resin is cured in that state to perform back surface sealing. A method for producing a thin-film solar cell.
前記スペーサは、前記接合樹脂の硬化後の前記内部配線部における前記基板の下面から前記封止ガラス板の上面までの厚さより0〜1mmの範囲内だけ増大された厚さを有していることを特徴とする請求項1に記載の薄膜太陽電池の製造方法。The spacer has a thickness that is increased by a range of 0 to 1 mm from a thickness from a lower surface of the substrate to an upper surface of the sealing glass plate in the internal wiring portion after the bonding resin is cured. The manufacturing method of the thin film solar cell of Claim 1 characterized by these. 前記ダイヤフラムは前記封止ガラス板を0.02MPaから大気圧の範囲内の圧力で押圧することを特徴とする請求項1または2に記載の薄膜太陽電池の製造方法。The method of manufacturing a thin-film solar cell according to claim 1 or 2, wherein the diaphragm presses the sealing glass plate with a pressure within a range of 0.02 MPa to atmospheric pressure.
JP2000347918A 2000-11-15 2000-11-15 Method for manufacturing thin film solar cell Expired - Lifetime JP4459424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347918A JP4459424B2 (en) 2000-11-15 2000-11-15 Method for manufacturing thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347918A JP4459424B2 (en) 2000-11-15 2000-11-15 Method for manufacturing thin film solar cell

Publications (2)

Publication Number Publication Date
JP2002151711A JP2002151711A (en) 2002-05-24
JP4459424B2 true JP4459424B2 (en) 2010-04-28

Family

ID=18821576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347918A Expired - Lifetime JP4459424B2 (en) 2000-11-15 2000-11-15 Method for manufacturing thin film solar cell

Country Status (1)

Country Link
JP (1) JP4459424B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375112A (en) 2006-01-17 2009-02-25 索利安特能源公司 A hybrid primary optical component for optical concentrators
WO2008112180A2 (en) * 2007-03-11 2008-09-18 Soliant Energy, Inc. Heat transfer and wiring considerations for a photo voltaic receiver for solar concentrator applications
CN102089887B (en) 2008-05-16 2014-12-31 昂科公司 Solar systems that include one or more shade-tolerant wiring schemes
US20100065105A1 (en) * 2008-09-12 2010-03-18 Francois Andre Koran Thin Film Photovoltaic Module Having a Contoured Substrate
JP5385666B2 (en) * 2009-04-08 2014-01-08 株式会社ブリヂストン Manufacturing method of solar cell module
JP2011040182A (en) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd Manufacturing device of organic light-emitting panel and method for manufacturing organic light-emitting panel
CN102959729A (en) * 2010-06-30 2013-03-06 夏普株式会社 Method for manufacturing solar cell module, and solar cell module manufactured by the method
JP2013219066A (en) * 2010-08-05 2013-10-24 Sanyo Electric Co Ltd Method for manufacturing photoelectric conversion device
JP2014003170A (en) * 2012-06-19 2014-01-09 Honda Motor Co Ltd Sealing method of solar cell module and vacuum lamination device
JP2014184717A (en) * 2013-02-25 2014-10-02 Panasonic Corp Laminate device
KR102626360B1 (en) * 2021-08-04 2024-01-17 한국에너지기술연구원 Laminating method and device for g2g solar module

Also Published As

Publication number Publication date
JP2002151711A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
US4067764A (en) Method of manufacture of solar cell panel
JP4401649B2 (en) Manufacturing method of solar cell module
JP4459424B2 (en) Method for manufacturing thin film solar cell
JP2012099818A (en) Photovoltaic module and method for production thereof
JPH0992867A (en) Solar cell module manufacturing method
US8877540B2 (en) Solar cell module and manufacturing method of solar cell module
CN111409330A (en) Sandwich light modulation glass
CN110320697A (en) A kind of production method of dimming laminated glass
WO1998030511A1 (en) Process for the production of laminated glass
JPS63276542A (en) Laminating and bonding apparatus
JP2002118276A (en) Solar battery module and its manufacturing method
JP2002151710A (en) Rear surface sealing method of thin-film solar cell
JP2001077387A (en) Solar battery module
JP2004179261A (en) Device and method for manufacturing solar battery module
CN111847906A (en) Laminated glass and preparation method thereof
JP2004311571A (en) Method of manufacturing solar cell module
JP3649912B2 (en) Method for manufacturing solar cell module
JP4650971B2 (en) Thin film solar cell backside sealing method
JPS6246077B2 (en)
KR100474646B1 (en) Laminated body manufacturing method and laminated body pressurizing device
CN111863990A (en) Thermal lamination method of thin film solar cell module
JP2004179397A (en) Method for manufacturing solar cell module
JPH09312408A (en) Manufacture of solar battery module
JP2003282920A (en) Method of manufacturing solar cell module
CN111987178A (en) Vacuum photovoltaic module and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term