JP4456779B2 - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber Download PDF

Info

Publication number
JP4456779B2
JP4456779B2 JP2001157083A JP2001157083A JP4456779B2 JP 4456779 B2 JP4456779 B2 JP 4456779B2 JP 2001157083 A JP2001157083 A JP 2001157083A JP 2001157083 A JP2001157083 A JP 2001157083A JP 4456779 B2 JP4456779 B2 JP 4456779B2
Authority
JP
Japan
Prior art keywords
level fluctuation
oil
oil level
pipe
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001157083A
Other languages
Japanese (ja)
Other versions
JP2002349629A (en
Inventor
雅則 小倉
崇 河相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2001157083A priority Critical patent/JP4456779B2/en
Publication of JP2002349629A publication Critical patent/JP2002349629A/en
Application granted granted Critical
Publication of JP4456779B2 publication Critical patent/JP4456779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば建築物の免震ダンパとして用いられる油圧緩衝器の改良に関するものである。
【0002】
【従来の技術】
従来、例えば特開平9−42347号公報に開示された油圧緩衝器は、一部にガス室を有するリザーバ室を備え、このリザーバ室に油面の変動を抑制する円盤状の油面変動抑制部材が取り付けられている。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の油圧緩衝器にあっては、円盤状の油面変動抑制部材がシリンダと直交するように配置されているため、油圧緩衝器がシリンダを略水平方向に延びるように用いられると、リザーバ室における油面の変動抑制効果がほとんど得られないという問題点があった。
【0004】
また、油面変動抑制部材をシリンダ等に固定して取り付ける構造のため、油面変動抑制部材に関連する加工、組立が複雑となり、製品のコストアップを招くという問題点があった。
【0005】
本発明は上記の問題点を鑑みてなされたものであり、略水平方向に延びる油圧緩衝器において、油面の変動抑制効果を高めることを目的とする。
【0006】
【課題を解決するための手段】
第1の発明は、ピストンを摺動可能に収装するインナーシリンダと、インナーシリンダの外側に一部にガス室を有するリザーバ室を画成するアウターシリンダと、リザーバ室の作動油をインナーシリンダ内に導く吸込ポートと、インナーシリンダ内の作動油をリザーバ室に導く吐出パイプとを備え、インナーシリンダの中心線が略水平方向に延びるように配置される油圧緩衝器に適用する。
【0007】
そして、リザーバ室にインナーシリンダと吸込ポートおよび吐出パイプを囲む筒状の油面変動抑制パイプを設けたことを特徴とするものとした。
【0008】
第2の発明は、第1の発明において、油面変動抑制パイプをアウターシリンダの底部に置いたことを特徴とするものとした。
【0009】
第3の発明は、第1または第2の発明において、油面変動抑制パイプを貫通する複数の穴を形成し、各穴を吸込ポートの近傍に配置したことを特徴とするものとした。
【0010】
【発明の作用および効果】
第1の発明によると、吐出パイプおよび吸込ポートを囲む油面変動抑制パイプが設けられることにより、吐出パイプを通ってリザーバ室に噴出する作動油が油面変動抑制パイプの内側に流入し、油面変動抑制パイプの内側に作動油が満たされ、吸込ポートからガスを吸込むことが防止され、所定の減衰波形特性が維持される。
【0011】
第2の発明によると、油面変動抑制パイプがアウターシリンダの底部に置かれる構造のため、油面変動抑制パイプを固定する手段や密封手段等を設ける必要がなく、油面変動抑制パイプに関連する加工や組立が複雑になることが回避され、製品のコストダウンがはかれる。
【0012】
第3の発明によると、吸込ポートから油面変動抑制パイプの内側の作動油を全て吸い込まれるほど急作動した場合でも、リザーバ室の作動油が油面変動抑制パイプに形成された複数の穴から吸込ポートに向かうように流入するため、吸込ポートからガスを吸込むことが防止され、所定の減衰波形特性が維持される。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
【0014】
図1は建築物の免震ダンパとして用いられる油圧緩衝器1を示している。この油圧緩衝器1は、そのピストンロッド2、インナーシリンダ3、アウターシリンダ4等の中心線Oが略水平に延びるように配置され、そのピストンロッド2の図示しない先端部が基礎(地面)側に連結され、アウターシリンダ4の基端部4aが建築物に連結され、地震発生時に基礎側が水平方向に振動するのに伴って伸縮作動して減衰力を発生する。
【0015】
図1の(a)図に示すように、インナーシリンダ3はアウターシリンダ4の内部に底板12を介して固定される。ピストンロッド2はその途中がアウターシリンダ4の軸受部11に摺動可能に支持される。ピストンロッド2の基端部にピストン5が連結され、ピストン5はインナーシリンダ3の内側に摺動自在に収装される。
【0016】
インナーシリンダ3の内部はピストン5によりロッド側油室7とエンド側油室8に仕切られる。インナーシリンダ3とアウターシリンダ4の間には一部にガス室を有するリザーバ室9が画成される。
【0017】
図3の(a)図、(b)図に示すように、リザーバ室9の内部でガスと作動油は上下に分かれ、作動油の溜まった油溜領域9Aとガスが溜まった気体溜領域(ガス室)9Bができる。
【0018】
軸受部11には減衰弁20が設けられる。油圧緩衝器1が伸縮作動する伸側行程と圧側行程で、ロッド側油室7からリザーバ室9へと流れる作動油は、減衰弁20を通過する。
【0019】
伸側行程と圧側行程で減衰弁20を通過する作動油流量を等しくするため、ピストンロッド2の外径とインナーシリンダ3の内径は1:√2の関係になっている。
【0020】
ピストン5にはチェック弁21が設けられる。油圧緩衝器1が収縮する圧側行程でエンド側油室8からロッド側油室7へと流れる作動油はチェック弁21を通過する。
【0021】
ピストン側の底板12にはチェック弁22が設けられる。油圧緩衝器1が伸張する伸側行程でリザーバ室9からエンド側油室8へと流れる作動油はチェック弁22を通過する。
【0022】
底板12を貫通する複数のポート13が形成され、各ポート13がチェック弁22によって開閉される。底板12とアウターシリンダ4の間には、リザーバ室9と各ポート13を結ぶ吸込ポート14が形成され、リザーバ室9に溜められた作動油が吸込ポート14、各ポート13を順に通ってエンド側油室8に流入する。
【0023】
吸込ポート14は底板12の最下部に開口し、その開口端がリザーバ室9に溜められた作動油中に臨むようになっている。
【0024】
軸受部11には減衰弁20の出口15に接続する吐出パイプ19が取り付けられる。吐出パイプ19はインナーシリンダ3と略平行に延び、インナーシリンダ3の下方に配置される。吐出パイプ19の開口端19aは、吸込ポート14の開口端に向けられ、吐出パイプ19からリザーバ室9に流出した作動油が吸込ポート14の向かって流れるようになっている。
【0025】
リザーバ室9にはインナーシリンダ3と吸込ポート14および吐出パイプ19を囲む筒状の油面変動抑制パイプ30が設けられ、この油面変動抑制パイプ30によってリザーバ室9における作動油の油面変動が抑される。
【0026】
図1の(b)図に示すように、油面変動抑制パイプ30はアウターシリンダ4の底部に置かれ、底板12等に対する固定手段や密封手段を持たない。インナーシリンダ3とアウターシリンダ4および油面変動抑制パイプ30はそれぞれ直円筒状に形成されている。油面変動抑制パイプ30は重力によりアウターシリンダ4の底部に置かれることにより、油面変動抑制パイプ30、インナーシリンダ3、アウターシリンダ4、吐出パイプ19の各中心が垂直線C上に並ぶ。
【0027】
油面変動抑制パイプ30の両端30a、30bとアウターシリンダ4の間に間隙16、17がそれぞれ設けられる。油面変動抑制パイプ30の天井部とインナーシリンダ3の上部に間に間隙18が設けられる。リザーバ室9における作動油がこれらの間隙16、17、18を通って油面変動抑制パイプ30の内側に出入りするようになっている。
【0028】
図2に示すように、油面変動抑制パイプ30にはこれを貫通する複数の穴31が形成される。各穴31は吸込ポート14の近傍に位置するように油面変動抑制パイプ30のエンド側端部に形成される。これにより、各穴31を通って油面変動抑制パイプ30の内側に流入する作動油が吸込ポート14に向かうようになっている。
【0029】
以上のように構成される本発明の実施の形態につき、次に作用を説明する。
【0030】
油圧緩衝器1の圧側行程では、エンド側のチェック弁22が閉弁する一方、ピストン側のチェック弁21が開弁し、図3の(a)図に矢印で示すように、作動油がエンド側油室8からチェック弁21を通ってロッド側油室7に流入するとともに、ロッド側油室7からピストンロッド2の侵入体積分の作動油が減衰弁20を通ってリザーバ室9に流入し、所定の減衰力が発生される。
【0031】
油圧緩衝器1の伸側行程では、ピストン側のチェック弁20が閉弁する一方、エンド側のチェック弁22が開弁し、図3の(b)図に矢印で示すように、作動油がリザーバ室9からチェック弁22を通ってエンド側油室8に流入するとともに、ロッド側油室7から減衰弁20を通ってリザーバ室9に流入し、圧側と同様の減衰力が発生される。
【0032】
このように伸側行程でのみリザーバ室9の作動油は吸込ポート14に吸い込まれるが、ピストン速度が高くなった場合、リザーバ室9の油面変動が生じる。
【0033】
ここで、リザーバ室9に油面変動抑制パイプ30が設けられない場合、油面変動によって吸込ポート14からガスを吸込み、所定の減衰波形特性が得られない原因になる。
【0034】
これに対して、本発明は吐出パイプ19および吸込ポート14を囲む油面変動抑制パイプ30が設けられることにより、吐出パイプ19を通ってリザーバ室9に噴出する作動油が油面変動抑制パイプ30の内側に流入し、油面変動抑制パイプ30の内側に作動油が満たされた状態が維持されるため、油面変動抑制パイプ30からガスを吸込むことが防止され、所定の減衰波形特性が維持される。
【0035】
吸込ポート14から油面変動抑制パイプ30の内側の作動油が全て吸い込まれるほど急作動した場合でも、リザーバ室9における作動油が油面変動抑制パイプ30に形成された複数の穴31から油面変動抑制パイプ30の内側に速やかに流入するため、油面変動抑制パイプ30内の作動油量が維持される。
【0036】
このとき、各穴31を通って油面変動抑制パイプ30の内側に流入する作動油が吸込ポート14に向かうように流入するため、吸込ポート14がガス中に出ることが防止され、所定の減衰波形特性が維持される。
【0037】
油面変動抑制パイプ30はアウターシリンダ4の底部に置かれる構造のため、底板12等に対する固定手段や密封手段等を設ける必要がなく、構造の簡素化がはかれる。
【0038】
また、必要に応じて油面変動抑制パイプ30を底板12等に固定して取り付ける構造としても良い。この場合、運搬時等に振動や騒音が発生することを防止できる。
【0039】
本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す油圧緩衝器の断面図。
【図2】同じく油面変動抑制パイプの斜視図。
【図3】同じく油圧緩衝器の作動を説明するための断面図。
【符号の説明】
1 油圧緩衝器
2 ピストンロッド
3 インナーシリンダ
4 アウターシリンダ
5 ピストン
7 ロッド側油室
8 エンド側油室
9 リザーバ室
14 吸込ポート
19 吐出パイプ
20 減衰弁
21 チェック弁
22 チェック弁
30 油面変動抑制パイプ
31 穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a hydraulic shock absorber used, for example, as a seismic isolation damper for a building.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a hydraulic shock absorber disclosed in, for example, Japanese Patent Application Laid-Open No. 9-42347 is provided with a reservoir chamber having a gas chamber in a part thereof, and a disk-shaped oil level fluctuation suppressing member that suppresses oil level fluctuation in the reservoir chamber. Is attached.
[0003]
[Problems to be solved by the invention]
However, in such a conventional hydraulic shock absorber, since the disk-shaped oil level fluctuation suppressing member is arranged so as to be orthogonal to the cylinder, the hydraulic shock absorber is used so that the cylinder extends substantially in the horizontal direction. When this is done, there is a problem that the oil level fluctuation suppressing effect in the reservoir chamber is hardly obtained.
[0004]
In addition, since the oil level fluctuation suppressing member is fixedly attached to a cylinder or the like, processing and assembly related to the oil level fluctuation suppressing member become complicated, resulting in an increase in product cost.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to enhance the effect of suppressing fluctuations in the oil level in a hydraulic shock absorber extending in a substantially horizontal direction.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an inner cylinder for slidably mounting a piston, an outer cylinder defining a reservoir chamber having a gas chamber partially outside the inner cylinder, and operating oil in the reservoir chamber in the inner cylinder. The present invention is applied to a hydraulic shock absorber that includes a suction port that leads to the inner cylinder and a discharge pipe that guides hydraulic oil in the inner cylinder to the reservoir chamber, and is arranged so that the center line of the inner cylinder extends in a substantially horizontal direction.
[0007]
The reservoir chamber is provided with a cylindrical oil level fluctuation suppressing pipe surrounding the inner cylinder, the suction port and the discharge pipe.
[0008]
According to a second invention, in the first invention, the oil level fluctuation suppressing pipe is placed at the bottom of the outer cylinder.
[0009]
The third invention is characterized in that, in the first or second invention, a plurality of holes penetrating the oil level fluctuation suppressing pipe are formed, and each hole is arranged in the vicinity of the suction port.
[0010]
Operation and effect of the invention
According to the first aspect of the present invention, the oil level fluctuation suppressing pipe surrounding the discharge pipe and the suction port is provided, so that the hydraulic oil ejected to the reservoir chamber through the discharge pipe flows into the oil level fluctuation suppressing pipe, The inside of the surface fluctuation suppressing pipe is filled with hydraulic oil, and gas is prevented from being sucked from the suction port, and a predetermined attenuation waveform characteristic is maintained.
[0011]
According to the second invention, since the oil level fluctuation suppressing pipe is placed at the bottom of the outer cylinder, there is no need to provide means for fixing the oil level fluctuation suppressing pipe, sealing means, etc. The complexity of processing and assembly is avoided, and the cost of the product is reduced.
[0012]
According to the third aspect of the invention, even when the hydraulic fluid inside the oil level fluctuation suppression pipe is suddenly operated so that all of the hydraulic oil inside the oil level fluctuation suppression pipe is sucked from the suction port, the hydraulic oil in the reservoir chamber is removed from the plurality of holes formed in the oil level fluctuation suppression pipe Since the gas flows in toward the suction port, the gas is prevented from being sucked from the suction port, and a predetermined attenuation waveform characteristic is maintained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0014]
FIG. 1 shows a hydraulic shock absorber 1 used as a seismic isolation damper for a building. The hydraulic shock absorber 1 is arranged such that the center line O of the piston rod 2, the inner cylinder 3, the outer cylinder 4 and the like extends substantially horizontally, and the tip (not shown) of the piston rod 2 is on the foundation (ground) side. The base end 4a of the outer cylinder 4 is connected to the building, and the base side vibrates in the horizontal direction when an earthquake occurs, thereby expanding and contracting to generate a damping force.
[0015]
As shown in FIG. 1A, the inner cylinder 3 is fixed inside the outer cylinder 4 via a bottom plate 12. The piston rod 2 is slidably supported by the bearing portion 11 of the outer cylinder 4 in the middle. A piston 5 is connected to the base end portion of the piston rod 2, and the piston 5 is slidably accommodated inside the inner cylinder 3.
[0016]
The inside of the inner cylinder 3 is partitioned by a piston 5 into a rod side oil chamber 7 and an end side oil chamber 8. A reservoir chamber 9 having a gas chamber in part is defined between the inner cylinder 3 and the outer cylinder 4.
[0017]
As shown in FIGS. 3A and 3B, the gas and the hydraulic oil are divided into upper and lower parts inside the reservoir chamber 9, and an oil reservoir area 9A in which the hydraulic oil is accumulated and a gas reservoir area in which the gas is accumulated ( Gas chamber) 9B is created.
[0018]
The bearing unit 11 is provided with a damping valve 20. The hydraulic oil flowing from the rod side oil chamber 7 to the reservoir chamber 9 passes through the damping valve 20 in the extension side stroke and the pressure side stroke in which the hydraulic shock absorber 1 is expanded and contracted.
[0019]
In order to equalize the flow rate of hydraulic oil passing through the damping valve 20 in the extension side stroke and the pressure side stroke, the outer diameter of the piston rod 2 and the inner diameter of the inner cylinder 3 have a relationship of 1: √2.
[0020]
The piston 5 is provided with a check valve 21. The hydraulic oil flowing from the end side oil chamber 8 to the rod side oil chamber 7 in the pressure side stroke in which the hydraulic shock absorber 1 contracts passes through the check valve 21.
[0021]
A check valve 22 is provided on the bottom plate 12 on the piston side. The hydraulic fluid that flows from the reservoir chamber 9 to the end side oil chamber 8 in the expansion side stroke in which the hydraulic shock absorber 1 extends passes through the check valve 22.
[0022]
A plurality of ports 13 penetrating the bottom plate 12 are formed, and each port 13 is opened and closed by a check valve 22. A suction port 14 that connects the reservoir chamber 9 and each port 13 is formed between the bottom plate 12 and the outer cylinder 4, and the hydraulic oil stored in the reservoir chamber 9 passes through the suction port 14 and each port 13 in this order to reach the end side It flows into the oil chamber 8.
[0023]
The suction port 14 opens at the lowermost portion of the bottom plate 12, and the opening end thereof faces the hydraulic oil stored in the reservoir chamber 9.
[0024]
A discharge pipe 19 connected to the outlet 15 of the damping valve 20 is attached to the bearing portion 11. The discharge pipe 19 extends substantially parallel to the inner cylinder 3 and is disposed below the inner cylinder 3. The opening end 19 a of the discharge pipe 19 is directed to the opening end of the suction port 14, and hydraulic oil that has flowed out of the discharge pipe 19 into the reservoir chamber 9 flows toward the suction port 14.
[0025]
The reservoir chamber 9 is provided with a cylindrical oil level fluctuation suppressing pipe 30 surrounding the inner cylinder 3, the suction port 14 and the discharge pipe 19, and the oil level fluctuation suppressing pipe 30 causes the oil level fluctuation of the hydraulic oil in the reservoir chamber 9. Be suppressed.
[0026]
As shown in FIG. 1B, the oil level fluctuation suppressing pipe 30 is placed at the bottom of the outer cylinder 4 and does not have a fixing means or a sealing means for the bottom plate 12 or the like. The inner cylinder 3, the outer cylinder 4, and the oil level fluctuation suppressing pipe 30 are each formed in a right cylindrical shape. The oil level fluctuation suppression pipe 30 is placed at the bottom of the outer cylinder 4 by gravity, so that the centers of the oil level fluctuation suppression pipe 30, the inner cylinder 3, the outer cylinder 4, and the discharge pipe 19 are aligned on the vertical line C.
[0027]
Gaps 16 and 17 are provided between both ends 30a and 30b of the oil level fluctuation suppression pipe 30 and the outer cylinder 4, respectively. A gap 18 is provided between the ceiling portion of the oil level fluctuation suppressing pipe 30 and the upper portion of the inner cylinder 3. The hydraulic oil in the reservoir chamber 9 enters and exits the oil level fluctuation suppressing pipe 30 through the gaps 16, 17 and 18.
[0028]
As shown in FIG. 2, the oil level fluctuation suppressing pipe 30 is formed with a plurality of holes 31 penetrating therethrough. Each hole 31 is formed at the end side end portion of the oil level fluctuation suppressing pipe 30 so as to be positioned in the vicinity of the suction port 14. As a result, the hydraulic oil flowing into the oil level fluctuation suppression pipe 30 through each hole 31 is directed toward the suction port 14.
[0029]
Next, the operation of the embodiment of the present invention configured as described above will be described.
[0030]
In the pressure side stroke of the hydraulic shock absorber 1, the end-side check valve 22 is closed, while the piston-side check valve 21 is opened, and as shown by an arrow in FIG. In addition to flowing from the side oil chamber 8 through the check valve 21 into the rod side oil chamber 7, hydraulic oil corresponding to the intrusion volume of the piston rod 2 flows from the rod side oil chamber 7 through the damping valve 20 into the reservoir chamber 9. A predetermined damping force is generated.
[0031]
In the extension stroke of the hydraulic shock absorber 1, the check valve 20 on the piston side is closed, while the check valve 22 on the end side is opened, and as shown by an arrow in FIG. While flowing from the reservoir chamber 9 through the check valve 22 into the end side oil chamber 8 and from the rod side oil chamber 7 through the damping valve 20 into the reservoir chamber 9, a damping force similar to that on the pressure side is generated.
[0032]
Thus, the hydraulic oil in the reservoir chamber 9 is sucked into the suction port 14 only in the extension side stroke. However, when the piston speed increases, the oil level of the reservoir chamber 9 varies.
[0033]
Here, when the oil level fluctuation suppressing pipe 30 is not provided in the reservoir chamber 9, gas is sucked from the suction port 14 due to oil level fluctuation, and a predetermined attenuation waveform characteristic cannot be obtained.
[0034]
In contrast, according to the present invention, the oil level fluctuation suppression pipe 30 surrounding the discharge pipe 19 and the suction port 14 is provided, so that the hydraulic oil jetted into the reservoir chamber 9 through the discharge pipe 19 is oil level fluctuation suppression pipe 30. Since the state in which hydraulic oil is filled inside the oil level fluctuation suppression pipe 30 is maintained, the intake of gas from the oil level fluctuation suppression pipe 30 is prevented, and a predetermined attenuation waveform characteristic is maintained. Is done.
[0035]
Even when the hydraulic fluid inside the oil level fluctuation suppression pipe 30 is suddenly operated so that all of the hydraulic oil inside the oil level fluctuation suppression pipe 30 is sucked from the suction port 14, the hydraulic oil in the reservoir chamber 9 flows from the plurality of holes 31 formed in the oil level fluctuation suppression pipe 30. Since the oil quickly flows into the fluctuation suppression pipe 30, the amount of hydraulic oil in the oil level fluctuation suppression pipe 30 is maintained.
[0036]
At this time, since the hydraulic oil flowing into the oil level fluctuation suppression pipe 30 through each hole 31 flows toward the suction port 14, the suction port 14 is prevented from entering the gas, and a predetermined attenuation is achieved. Waveform characteristics are maintained.
[0037]
Since the oil level fluctuation suppressing pipe 30 is placed at the bottom of the outer cylinder 4, there is no need to provide a fixing means or a sealing means for the bottom plate 12 or the like, and the structure can be simplified.
[0038]
Moreover, it is good also as a structure which fixes and attaches the oil level fluctuation suppression pipe 30 to the baseplate 12 grade | etc., As needed. In this case, it is possible to prevent vibration and noise from being generated during transportation.
[0039]
The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a hydraulic shock absorber according to an embodiment of the present invention.
FIG. 2 is a perspective view of an oil level fluctuation suppressing pipe.
FIG. 3 is a cross-sectional view for explaining the operation of the hydraulic shock absorber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydraulic buffer 2 Piston rod 3 Inner cylinder 4 Outer cylinder 5 Piston 7 Rod side oil chamber 8 End side oil chamber 9 Reservoir chamber 14 Suction port 19 Discharge pipe 20 Damping valve 21 Check valve 22 Check valve 30 Oil level fluctuation suppression pipe 31 hole

Claims (3)

ピストンを摺動可能に収装するインナーシリンダと、
インナーシリンダの外側に一部にガス室を有するリザーバ室を画成するアウターシリンダと、
リザーバ室の作動油をインナーシリンダ内に導く吸込ポートと、
インナーシリンダ内の作動油をリザーバ室に導く吐出パイプとを備え、
インナーシリンダの中心線が略水平方向に延びるように配置される油圧緩衝器において、
リザーバ室にインナーシリンダと吸込ポートおよび吐出パイプを囲む筒状の油面変動抑制パイプを設けたことを特徴とする油圧緩衝器。
An inner cylinder that slidably houses a piston;
An outer cylinder defining a reservoir chamber partially having a gas chamber outside the inner cylinder;
A suction port for guiding the hydraulic oil in the reservoir chamber into the inner cylinder;
A discharge pipe for guiding the hydraulic oil in the inner cylinder to the reservoir chamber,
In the hydraulic shock absorber arranged so that the center line of the inner cylinder extends in a substantially horizontal direction,
A hydraulic shock absorber characterized in that a cylindrical oil level fluctuation suppressing pipe surrounding an inner cylinder, a suction port and a discharge pipe is provided in the reservoir chamber.
前記油面変動抑制パイプを前記アウターシリンダの底部に置いたことを特徴とする請求項1に記載の油圧緩衝器。The hydraulic shock absorber according to claim 1, wherein the oil level fluctuation suppressing pipe is placed at a bottom portion of the outer cylinder. 前記油面変動抑制パイプを貫通する複数の穴を形成し、
各穴を前記吸込ポートの近傍に配置したことを特徴とする請求項1または2に記載の油圧緩衝器。
Forming a plurality of holes penetrating the oil level fluctuation suppressing pipe,
The hydraulic shock absorber according to claim 1 or 2, wherein each hole is arranged in the vicinity of the suction port.
JP2001157083A 2001-05-25 2001-05-25 Hydraulic shock absorber Expired - Fee Related JP4456779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157083A JP4456779B2 (en) 2001-05-25 2001-05-25 Hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157083A JP4456779B2 (en) 2001-05-25 2001-05-25 Hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JP2002349629A JP2002349629A (en) 2002-12-04
JP4456779B2 true JP4456779B2 (en) 2010-04-28

Family

ID=19000999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157083A Expired - Fee Related JP4456779B2 (en) 2001-05-25 2001-05-25 Hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP4456779B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113717A (en) * 2005-10-21 2007-05-10 Kayaba Ind Co Ltd Hydraulic shock absorber
JP5106054B2 (en) * 2007-11-12 2012-12-26 カヤバ工業株式会社 Shock absorber
JP5188882B2 (en) * 2008-05-29 2013-04-24 東日本旅客鉄道株式会社 Horizontal cylinder device
JP5324529B2 (en) * 2010-06-30 2013-10-23 カヤバ工業株式会社 Damping valve
JP5220907B2 (en) * 2011-08-25 2013-06-26 カヤバ工業株式会社 Shock absorber
JP5406894B2 (en) * 2011-08-25 2014-02-05 カヤバ工業株式会社 Shock absorber
JP5697706B2 (en) * 2013-03-22 2015-04-08 株式会社一条工務店 Hydraulic damper
JP6349153B2 (en) * 2014-05-30 2018-06-27 Kyb株式会社 Shock absorber
JP6353277B2 (en) * 2014-05-30 2018-07-04 Kyb株式会社 Horizontal shock absorber

Also Published As

Publication number Publication date
JP2002349629A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP4456779B2 (en) Hydraulic shock absorber
KR20190050837A (en) Damping valve for vibration damper
JP6853688B2 (en) Building collision prevention device
JP3052992B2 (en) Cable-stayed bridge anti-vibration structure
KR101942557B1 (en) Electronically controlled damping force variable damper
JP7150404B2 (en) Damper with pressure motor
JP6894769B2 (en) Seismic isolation damper
KR102614825B1 (en) Shock absorber
JP5233825B2 (en) 3D seismic isolation device
KR101262412B1 (en) Air damping mount of adjustable effective area type
JP3204238B2 (en) Restraint / release type vibration damping device
JP2000240318A (en) Base isolation and vibration control system
JP2001041271A (en) Hydraulic buffer
JP2006161912A (en) Vehicle suspension system
KR102692628B1 (en) Shock absorber
KR101305717B1 (en) Air damping mount having multiple damping structure
JP2000065117A (en) Front fork
JP3943259B2 (en) Two-stage telescopic hydraulic shock absorber
KR100775512B1 (en) Piston valve for use in a shock absorber
KR101794826B1 (en) Displacement variable type damper
JP3969226B2 (en) Uniform pressure control device
JP2811322B2 (en) Hydraulic shock absorber of telescopic front fork for motorcycle
KR20200069591A (en) Hydraulic engine mount
SU1010347A1 (en) Transport vehicle suspension assembly pneumatic flexible element
JPH02245531A (en) Viscous damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees