JP4452878B2 - Method for forming a thin film circuit - Google Patents

Method for forming a thin film circuit Download PDF

Info

Publication number
JP4452878B2
JP4452878B2 JP2004105446A JP2004105446A JP4452878B2 JP 4452878 B2 JP4452878 B2 JP 4452878B2 JP 2004105446 A JP2004105446 A JP 2004105446A JP 2004105446 A JP2004105446 A JP 2004105446A JP 4452878 B2 JP4452878 B2 JP 4452878B2
Authority
JP
Japan
Prior art keywords
thin film
polymer
base material
irradiation
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004105446A
Other languages
Japanese (ja)
Other versions
JP2005290454A (en
Inventor
修 野田
秀和 中島
Original Assignee
財団法人近畿高エネルギー加工技術研究所
日成化学鍍金工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人近畿高エネルギー加工技術研究所, 日成化学鍍金工業株式会社 filed Critical 財団法人近畿高エネルギー加工技術研究所
Priority to JP2004105446A priority Critical patent/JP4452878B2/en
Publication of JP2005290454A publication Critical patent/JP2005290454A/en
Application granted granted Critical
Publication of JP4452878B2 publication Critical patent/JP4452878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、例えばパーソナルコンピュータやその関連機器、オーデオ及びビデオ用機器、インクジェットプリンタ、携帯電話の如き電子機器類、家庭用電気製品、産業用ロポット、自動生産ラインの制御装置、各種計測装置等に使用されるプリント配線板等に好適な薄膜回路の形成方法に関する。   The present invention can be applied to electronic devices such as personal computers and related devices, audio and video devices, inkjet printers, mobile phones, household electrical products, industrial pots, control devices for automatic production lines, various measuring devices, etc. The present invention relates to a method for forming a thin film circuit suitable for a printed wiring board to be used.

従来、フレキシブルプリント配線板として代表的な3層銅張り積層板は、一般的に図6(A)〜(F)に示す手順で製造されている。すなわち、(A)ポリイミドフィルム11の接着剤12を塗布した表面に、予め被着面13aを化学的又は物理的に粗面化した銅箔13を貼着して積層一体化し、(B)この積層体10の銅箔13側の表面にフォトレジスト14を塗布し、(C)該フォトレジスト14を回路パターンのマスク15を介して露光し、(D)現像して非露光部の未硬化レジストを剥離除去し、(E)銅箔13の露呈部分をエッチングによって除去し、(F)硬化レジストの除去によって回路を構成する銅層13bを露呈させる。なお、近年においては、(C)の露光工程で、マスク15を使用する代わりに、レーザ光を回路パターンに沿って照射するレーザ露光も行われている。   Conventionally, a typical three-layer copper-clad laminate as a flexible printed wiring board is generally manufactured according to the procedure shown in FIGS. That is, (A) a copper foil 13 whose surface to be coated 13a is chemically or physically roughened in advance is attached to the surface of the polyimide film 11 on which the adhesive 12 is applied, and laminated and integrated. A photoresist 14 is applied to the surface of the laminated body 10 on the copper foil 13 side, (C) the photoresist 14 is exposed through a circuit pattern mask 15, and (D) an uncured resist in an unexposed portion by development. (E) The exposed portion of the copper foil 13 is removed by etching, and (F) the copper layer 13b constituting the circuit is exposed by removing the cured resist. In recent years, instead of using the mask 15 in the exposure step (C), laser exposure is also performed in which laser light is irradiated along a circuit pattern.

しかしながら、上記従来のフレキシブルプリント配線板では、回路構成材料として用いる銅箔13がポリイミドフィルム11への貼着操作等の取扱いに耐える強度を確保するために数十〜百μmの厚さを有する上、エッチング時に側面浸食を生じることから、回路の配線幅は最小でも100μm程度となり、これによって回路パターンの高密度化に限界があり、今後の電子機器類の高性能化及び小型化の進展に最早対応できなくなっている。   However, in the above-mentioned conventional flexible printed wiring board, the copper foil 13 used as a circuit constituent material has a thickness of several tens to hundreds of μm in order to ensure the strength to withstand handling such as a sticking operation to the polyimide film 11. Since the side erosion occurs at the time of etching, the wiring width of the circuit is at least about 100 μm, which limits the density of the circuit pattern, and is the earliest advancement in the performance and miniaturization of electronic devices in the future. It is no longer available.

また、前記の製造方法では、工程的に非常に煩雑であることに加え、接着剤、フォトレジスト液、現像液、レジスト剥離液、エッチング液等の薬剤を消費することから、製作コストが極めて高く付いて少量多品種生産に不向きである上、使用後の現像液、レジスト剥離液、エッチング液等が環境への負荷となって廃液処理にもコストがかかり、しかも一般的に銅箔13として用いた銅の約80%がエッチングによって除去されるが、その回収にはコストが嵩むために通常は廃棄されており、省資源の観点からも問題が多い。   In addition, the manufacturing method described above is very complicated in process and consumes chemicals such as an adhesive, a photoresist solution, a developing solution, a resist stripping solution, and an etching solution, so that the manufacturing cost is extremely high. In addition, it is not suitable for low-volume, multi-product production, and after use, developing solution, resist stripping solution, etching solution, etc. become a burden on the environment and cost for waste liquid processing, and generally used as copper foil 13 About 80% of the copper that has been removed is removed by etching. However, the cost of collecting the copper is usually discarded because of high costs, and there are many problems from the viewpoint of saving resources.

本発明は、上述の情況に鑑み、プリント配線板等の回路の導体厚みを極薄に設定でき、もって従来に比較して回路パターンを格段に高密度化することを可能とし、しかも従来のような接着剤、フォトレジスト液、現像液、レジスト剥離液、エッチング液等を必要とせず、極めて簡素な工程によって基材に対する導体金属の被着強度が大きい高性能な薄膜回路を安価に且つ確実に形成でき、また環境に優しく省資源にも貢献できる方法を提供することを目的としている。   In view of the above-described circumstances, the present invention can set the conductor thickness of a circuit such as a printed wiring board to be extremely thin, thereby enabling a circuit pattern to be remarkably densified as compared with the prior art, and as in the prior art. High-performance thin-film circuits with high adhesion strength of conductive metal to the substrate by a very simple process without the need for an adhesive, photoresist solution, developing solution, resist stripping solution, etching solution, etc. The purpose is to provide a method that can be formed and that is environmentally friendly and can contribute to resource saving.

上記目的を達成するために、本発明では、特定の高分子基材の表面にレーザ光を照射することにより、高分子の化学結合部を選択的に解離させて照射域の基材表面部を親水性に改質し、無電解メッキによって前記照射域に金属薄膜を被着させて薄膜回路を形成するようにしている。   In order to achieve the above object, in the present invention, by irradiating the surface of a specific polymer substrate with a laser beam, the chemical bond part of the polymer is selectively dissociated so that the substrate surface part in the irradiation region is formed. The film is modified to be hydrophilic and a thin film circuit is formed by depositing a metal thin film on the irradiated area by electroless plating.

すなわち、請求項1の発明に係る薄膜回路の形成方法は、下記式(I);

Figure 0004452878

(mは2以上の整数)
で示す構造のポリイミドからなる高分子基材の表面に、その高分子基材よりもアブレーションしきい値が高い材料の微粒子を散布したのち、レーザ光を照射することにより、イミド環のC−N結合を選択的に解離させて照射域の基材表面部を親水性に改質すると同時に照射域に微細凹凸を形成し、次いで無電解メッキによって前記照射域に金属薄膜を被着させることを特徴としている。 That is, the method for forming a thin film circuit according to the invention of claim 1 includes the following formula (I):
Figure 0004452878

(M is an integer of 2 or more)
After spraying fine particles of a material having an ablation threshold higher than that of the polymer base material on the surface of the polymer base material made of polyimide having the structure shown in FIG. The bond is selectively dissociated to modify the surface of the substrate in the irradiated area to be hydrophilic, and at the same time, fine irregularities are formed in the irradiated area, and then a metal thin film is deposited on the irradiated area by electroless plating. It is said.

また、請求項2の発明に係る薄膜回路の形成方法は、下記式(II);

Figure 0004452878

(x及びyは2以上の整数)
で示す構造の耐熱性液晶ポリマーからなる高分子基材の表面に、その高分子基材よりもアブレーションしきい値が高い材料の微粒子を散布したのち、レーザ光を照射することにより、エステル結合のC−O結合部を選択的に解離させて照射域の基材表面部を親水性に改質すると同時に照射域に微細凹凸を形成し、次いで無電解メッキによって前記照射域に金属薄膜を被着させることを特徴としている。 In addition, a method for forming a thin film circuit according to the invention of claim 2 includes the following formula (II):
Figure 0004452878

(X and y are integers of 2 or more)
After spraying fine particles of a material having a higher ablation threshold than that of the polymer substrate on the surface of the polymer substrate composed of the heat-resistant liquid crystal polymer having the structure shown in FIG. By selectively dissociating the C—O bond part, the surface of the substrate in the irradiated area is modified to be hydrophilic, and at the same time fine irregularities are formed in the irradiated area, and then a metal thin film is deposited on the irradiated area by electroless plating. It is characterized by letting.

上記のように高分子基材よりもアブレーションしきい値が高い材料の微粒子を散布する手段として、請求項3の発明のように、高分子基材の表面に前処理としてレーザ光を照射し、この照射時のアブレーションにて飛散したカーボン微粒子を該高分子基材の表面に自然落下させる方法がある。また、レーザ光の照射パターンを回路パターンに設定するには、請求項の発明のようにレーザ光によって高分子基材の表面に回路パターンを描画する方法か、もしくは請求項の発明のように回路パターンに対応した光透過パターンを有するマスクを介してレーザ光を照射する方法を採用すればよい。 As a means for dispersing fine particles of a material having a higher ablation threshold than the polymer base as described above, the surface of the polymer base is irradiated with laser light as a pretreatment, as in the invention of claim 3, There is a method in which carbon fine particles scattered by ablation at the time of irradiation are naturally dropped onto the surface of the polymer substrate. In order to set the irradiation pattern of the laser beam as the circuit pattern, a method of drawing a circuit pattern on the surface of the polymer substrate by the laser beam as in the invention of claim 4 or as in the invention of claim 5 A method of irradiating a laser beam through a mask having a light transmission pattern corresponding to the circuit pattern may be employed.

請求項1及び請求項2に係る薄膜回路の形成方法によれば、本来が疎水性である特定の高分子基材の表面にレーザ光を照射することにより、照射域の基材表面部を親水性に改質し、次の無電解メッキによって該照射域に金属が析出付着して金属薄膜を生成するから、該高分子基材の表面に対するレーザ光の照射パターンを回路パターンに設定することにより、高分子基材の表面に配線幅が数μmから数十μmで極薄の導体金属からなる回路パターンを直接に形成でき、従来に比較して回路パターンを飛躍的に高密度化することが可能となる。またレーザ光の照射と無電解メッキのみで薄膜回路を形成できるため、プリント配線板等を極めて能率よく低コストで製作でき、少量多品種生産に適する上、導体金属を回路形成に必要な量だけ消費するため、無駄がなく省資源に貢献できると共に、廃液処理の負担が従来に比して著しく軽減され、プロセス全体を通して環境への負荷が極めて僅少となる。しかも、この薄膜回路の形成方法では、高分子基材の表面に、その高分子基材よりもアブレーションしきい値が高い材料の微粒子を散布したのち、前記レーザ光を照射することにより、前記化学結合部の選択的解離と同時に照射域に微細凹凸を形成するから、前記微粒子の蒸発を抑えて且つ高分子基材の表面部の蒸発を生じるように、レーザ光のエネルギー密度を調整することにより、その照射域の高分子基材表面に、各微粒子にてレーザ光が遮られる部分を凸部、遮られない部分を蒸発による凹部とする微細凹凸が形成され、この微細凹凸によって次の無電解メッキで形成される薄膜回路の導体金属層にアンカー効果がもたらされる。 According to the method for forming a thin film circuit according to claim 1 and claim 2, by irradiating the surface of a specific polymer base material, which is originally hydrophobic, with laser light, the surface portion of the base material in the irradiation region is made hydrophilic. Since the metal deposits and adheres to the irradiated area by the next electroless plating to form a metal thin film, by setting the irradiation pattern of the laser beam on the surface of the polymer substrate as a circuit pattern A circuit pattern made of a very thin conductor metal with a wiring width of several μm to several tens of μm can be directly formed on the surface of the polymer substrate, and the circuit pattern can be greatly densified compared to the conventional case. possible and that Do not. In addition , since thin film circuits can be formed only by laser light irradiation and electroless plating, printed wiring boards can be manufactured very efficiently and at low cost. to consume, Rutotomoni can contribute to resource conservation without waste, the burden of waste liquid treatment can be significantly reduced as compared with the conventional, the burden on the environment is extremely slight throughout the process. Moreover, in this thin film circuit forming method, fine particles of a material having an ablation threshold higher than that of the polymer base material are dispersed on the surface of the polymer base material, and then irradiated with the laser light. At the same time as the selective dissociation of the bond portion, fine irregularities are formed in the irradiation region, so that by adjusting the energy density of the laser beam so as to suppress the evaporation of the fine particles and to cause the evaporation of the surface portion of the polymer substrate The surface of the polymer substrate in the irradiated area is formed with fine irregularities with convex portions where the laser light is blocked by each fine particle and concave portions due to evaporation where the unobstructed portions are evaporated. An anchor effect is produced in the conductive metal layer of the thin film circuit formed by plating.

請求項3の発明によれば、上記の表面改質と同時に微細凹凸の形成を行うに当たり、高分子基材の表面に前処理としてレーザ光を照射することにより、飛散したカーボン微粒子を該高分子基材の表面に自然落下させることから、散布用の微粒子を別途に用意する必要がなく、その散布のための各別な装置も不要であり、もって材料コスト及び設備コストが低減されると共に、表面改質工程においてレーザ光の照射を複数回行うだけで済むという利点がある。 According to the invention of claim 3, in forming fine irregularities simultaneously with the above surface modification , the surface of the polymer base material is irradiated with laser light as a pre-treatment, so that the scattered carbon fine particles are Since it naturally drops on the surface of the base material, it is not necessary to separately prepare fine particles for spraying, and no separate device for the spraying is required, thereby reducing material costs and equipment costs, There is an advantage that it is only necessary to irradiate the laser beam a plurality of times in the surface modification step.

請求項4の発明によれば、上記の薄膜回路の形成方法において、高分子基材の表面にレーザ光で直接に配線パターンを描画することにより、無電解メッキ経て該パターン通りに金属薄膜が被着するから、複雑で精緻な薄膜回路でも極めて容易に形成できる。一方、請求項5の発明によれば、上記の薄膜回路の形成方法において、回路パターンに対応した光透過パターンを有するマスクを介してレーザ光を照射することから、必要とする回路パターンの一部又は全部を一括して表面改質でき、それだけ表面改質操作を能率よく行える。 According to the fourth aspect of the present invention, in the method for forming a thin film circuit described above , a wiring pattern is directly drawn with a laser beam on the surface of the polymer substrate, so that the metal thin film is covered in accordance with the pattern through electroless plating. Therefore, even complex and precise thin film circuits can be formed very easily. On the other hand, according to the invention of claim 5, in the method of forming a thin film circuit described above, since the laser beam is irradiated through a mask having a light transmission pattern corresponding to the circuit pattern, a part of the required circuit pattern Alternatively, the entire surface can be modified at once, and the surface modification operation can be performed efficiently.

以下、本発明に係る薄膜回路の形成方法の実施形態について、図面を参照して具体的に説明する。   Hereinafter, embodiments of a method for forming a thin film circuit according to the present invention will be specifically described with reference to the drawings.

図1に示す薄膜回路の形成方法では、同図(A)に示す高分子基材1の表面に、まず同図(B)の如く、該高分子基材1よりもアブレーションしきい値の高い材料からなる微粒子2…を散布する。しかる後、同図(C)の如く、この微粒子2…を散布した高分子基材1の表面に、例えば集束レンズSにて集束させたレーザ光Lを、スキャンニングヘッドHを介して所定の回路パターンに沿って照射する。次に、このレーザ照射後の高分子基材1を無電解メッキ処理に供することにより、高分子基材1の表面における前記レーザ光Lの照射域のみに金属薄膜3が被着し、もって薄膜回路30が形成される。   In the thin film circuit forming method shown in FIG. 1, the ablation threshold is first higher on the surface of the polymer substrate 1 shown in FIG. The fine particles 2 made of material are dispersed. Thereafter, as shown in FIG. 3C, a laser beam L focused by, for example, a focusing lens S on the surface of the polymer base material 1 on which the fine particles 2 are dispersed is passed through a scanning head H for a predetermined time. Irradiate along the circuit pattern. Next, the polymer thin film 1 after the laser irradiation is subjected to an electroless plating treatment, whereby the metal thin film 3 is deposited only on the laser light L irradiation region on the surface of the polymer base 1, and thus the thin film A circuit 30 is formed.

なお、レーザ光の走査は、スキャンニングヘッドを用いる代わりに、高分子基材を載せたXYテーブルを移動させる方法で行ってもよいし、スキャンニングヘッドによる光軸方向の移動とXYテーブルの移動とを組み合わせる方法で行うこともできる。   Laser beam scanning may be performed by a method of moving an XY table on which a polymer substrate is placed, instead of using a scanning head, or movement in the optical axis direction by the scanning head and movement of the XY table. It is also possible to do this by combining the two.

また、本発明の薄膜回路の形成方法では、上記のようにレーザ光の走査によって回路パターンを描画する方法に代えて、回路パターンに対応した光透過パターンを有するマスクを用い、このマスクを介して高分子基材の表面にレーザ光を一括照射する方法を採用してもよい。すなわち、このマスクを用いる方法では、必要とする回路パターンの一部又は全部を一括して表面改質できる。   In the thin film circuit forming method of the present invention, a mask having a light transmission pattern corresponding to the circuit pattern is used instead of the method of drawing the circuit pattern by scanning the laser beam as described above, and the mask is passed through this mask. A method of collectively irradiating the surface of the polymer substrate with laser light may be employed. That is, in the method using this mask, part or all of the required circuit patterns can be surface-modified at once.

ここで、前記の無電解メッキ処理により、高分子基材1の表面における前記レーザ光Lの照射域のみに金属薄膜3が被着するのは、高分子基材1の表面が本来的に疎水性(撥水性)であってメッキ液を弾くが、レーザ光Lの照射域では当該基材の高分子の化学結合部がレーザ光Lのエネルギによって選択的に解離し、親水性に改質されてメッキ液に対する親和性を示すため、メッキ浴の還元作用によって金属が該照射域に選択的に析出被着することによる。   Here, the surface of the polymer substrate 1 is inherently hydrophobic because the metal thin film 3 is deposited only on the surface of the polymer substrate 1 irradiated with the laser light L by the electroless plating process. Although it is repellent (water-repellent) and repels the plating solution, in the region irradiated with the laser beam L, the polymer chemical bond portion of the base material is selectively dissociated by the energy of the laser beam L and is modified to be hydrophilic. In order to show the affinity for the plating solution, the metal is selectively deposited on the irradiated region by the reducing action of the plating bath.

従って、高分子基材1は、ポリマー構造中に親水基を含まず、疎水性(撥水性)の表面を有することが必要であるが、これに加えてレーザ光照射による表面改質を行う上で高い耐熱性と、プリント配線板等の薄膜回路用基材としての適合性も要求される。しかして、本発明においては、これらの要求を満足できる高分子基材1として、下記の式(I)で示す化学構造を有するポリイミド、もしくは下記の式(II)で示す化学構造を有する耐熱性液晶ポリマーからなるものを使用する。   Therefore, the polymer base material 1 needs to have a hydrophobic (water-repellent) surface without containing a hydrophilic group in the polymer structure. In addition to this, surface modification by laser light irradiation is performed. Therefore, high heat resistance and compatibility as a substrate for a thin film circuit such as a printed wiring board are also required. Therefore, in the present invention, as the polymer substrate 1 that can satisfy these requirements, polyimide having a chemical structure represented by the following formula (I) or heat resistance having a chemical structure represented by the following formula (II): A liquid crystal polymer is used.

Figure 0004452878
(mは2以上の整数)
Figure 0004452878
(M is an integer of 2 or more)

Figure 0004452878
(x及びyは2以上の整数)
Figure 0004452878
(X and y are integers of 2 or more)

すなわち、適切な強度のレーザ光を照射することにより、上記式(I)のポリイミドではイミド環のC−N結合が選択的に解離し、また上記式(II)の耐熱性液晶ポリマーではエステル結合のC−O結合部が選択的に解離するから、これら解離部に例えばOH基の如き親水基を付加させることにより、強い親水性を発揮させることができる。なお、このように親水基を付加させるには、特に各別な処理を行う必要はなく、大気中でのレーザ光照射では照射を行った段階で空気中の水分に由来してOH基が自然に前記解離部に付加することになる。また、不活性ガス等の人工的雰囲気中でのレーザ光照射では、その雰囲気中に水蒸気等の親水基を生成し得るガス成分を混入しておけばよい。   That is, by irradiating a laser beam having an appropriate intensity, the CN bond of the imide ring is selectively dissociated in the polyimide of the above formula (I), and the ester bond in the heat resistant liquid crystal polymer of the above formula (II). Since the C—O bond portion of these is selectively dissociated, a strong hydrophilicity can be exhibited by adding a hydrophilic group such as an OH group to these dissociation portions. In addition, in order to add a hydrophilic group in this way, it is not necessary to perform a separate process. In the irradiation with laser light in the atmosphere, OH groups are naturally derived from moisture in the air at the stage of irradiation. To the dissociation part. In laser light irradiation in an artificial atmosphere such as an inert gas, a gas component that can generate a hydrophilic group such as water vapor may be mixed in the atmosphere.

一方、レーザ光Lの照射を行う前に、前記のように高分子基材1の表面に予め微粒子2…を散布しておくことにより、無電解メッキにおいて析出被着する金属薄膜3の当該基材1表面に対する被着強度及び密着性が向上する。これを図2によって説明すると、同図(A)の如く高分子基材1の表面に微粒子2…が散布された状態でレーザ光Lを照射する際、そのエネルギ密度を微粒子2…の蒸発を抑えて且つ高分子基材1の表面部の蒸発を生じるように調整することにより、レーザ光Lの照射域Lでは、該基材1表面における微粒子2…の各粒子の影になる部分はレーザ光が遮られるために蒸発が進まないのに対し、微粒子2…の存在しない部分の蒸発が進行する結果、照射後の表面には同図(B)の如く微粒子2の影になる部分が凸部、他の部分が凹部となった微細凹凸Gを生じる。しかして、この微細凹凸Gを有する照射域Zは前記のように親水性に転化しており、次の無電解メッキによって同図(C)の如く該微細凹凸Gを有する部分に金属薄膜3が析出被着することになるから、該金属薄膜3は微細凹凸Gによるアンカー効果によって基材1表面に対して優れた被着強度及び密着性を発揮する。   On the other hand, before the irradiation with the laser beam L, the base of the metal thin film 3 deposited and deposited in the electroless plating is preliminarily dispersed on the surface of the polymer substrate 1 as described above. The adhesion strength and adhesion to the surface of the material 1 are improved. This will be explained with reference to FIG. 2. When the laser beam L is irradiated with the fine particles 2 scattered on the surface of the polymer substrate 1 as shown in FIG. 2A, the energy density of the fine particles 2 is evaporated. In the irradiation region L of the laser beam L, the portion which becomes the shadow of each particle of the fine particles 2 on the surface of the base material 1 is controlled by adjusting so as to suppress and evaporate the surface portion of the polymer base material 1. While the light does not evaporate, the evaporation does not proceed. On the other hand, as a result of the evaporation of the part where the fine particles 2 do not exist, the shadowed part of the fine particles 2 is projected on the surface after irradiation as shown in FIG. This produces fine irregularities G in which other portions and other portions become concave portions. Thus, the irradiation zone Z having the fine unevenness G has been converted to hydrophilic as described above, and the metal thin film 3 is formed on the portion having the fine unevenness G as shown in FIG. Since the metal film 3 is deposited and deposited, the metal thin film 3 exhibits excellent adhesion strength and adhesion to the surface of the substrate 1 due to the anchor effect by the fine unevenness G.

高分子基材1の表面に上記微粒子2…を散布する手段としては、レーザ照射時のアブレーションによって生成・飛散するカーボン粒子を自然落下させる方法、アーク放電での電極からのカーボンナノ粒子の飛翔のような放電による飛翔散布、機械的な散布、ノズルからの噴霧、スパッタリング等、種々の方法を採用できる。なお、レーザ照射による方法は、既述した基材1表面を改質するためのレーザ光照射とは別に、前処理として該基材1表面に1回又は複数回のレーザ光照射を行うことにより、該該基材1の高分子のアブレーションによって生じたカーボン粒子が飛翔後、当該基材1表面に重力で自然に落下するのを利用するものであり、そのためのレーザ光は改質用のレーザ光照射と同じ所(パターン)に照射すればよい。   As means for dispersing the fine particles 2 on the surface of the polymer substrate 1, there are a method of spontaneously dropping carbon particles generated and scattered by ablation at the time of laser irradiation, and a method of flying carbon nanoparticles from an electrode in arc discharge. Various methods such as flying spraying by electrical discharge, mechanical spraying, spraying from a nozzle, and sputtering can be employed. In addition, the method by laser irradiation is different from laser beam irradiation for modifying the surface of the base material 1 described above by performing laser beam irradiation once or a plurality of times on the surface of the base material 1 as a pretreatment. The carbon particles generated by the ablation of the polymer of the base material 1 are used for the natural fall by gravity on the surface of the base material 1 after flying, and the laser beam for this purpose is a laser for modification. What is necessary is just to irradiate the same place (pattern) as light irradiation.

なお、微粒子2としては、前記カーボン粒子を始めとして、高分子基材1よりもアブレーションしきい値の高いものであれば特に制約なく使用できるが、機械的な散布やノズルからの噴霧による散布では、残留した当該微粒子による回路短絡を回避する上でセラミック、ガラス、岩石、鉱滓等の無機質の不導体材料の微粉末が好適である。ただし、無電解メッキの前に表面洗浄等で付着微粒子を確実に除去できる場合は、導体材料の微粉末も使用可能である。   The fine particles 2 can be used without particular limitation as long as they have a higher ablation threshold than the polymer substrate 1 including the carbon particles. However, in the case of mechanical spraying or spraying from a nozzle, In order to avoid a short circuit due to the remaining fine particles, fine powder of an inorganic non-conductive material such as ceramic, glass, rock, or iron is preferable. However, a fine powder of a conductive material can also be used if the adhered fine particles can be reliably removed by surface cleaning or the like before electroless plating.

高分子基材の表面改質に使用するレーザ光の照射源としては、高分子の選択的解離させるべき化学的結合の種類に対応した光子エネルギ強度を有するものを使用すればよいが、とりわけ紫外光(波長400μm以下)レーザが好適である。また、そのレーザ光の強度は、そのパワー密度を高分子基材のシブレーションしきい値以上に設定すべきである。しかして、レーザ光照射時の雰囲気は、特に制約はなく、大気中及び不活性ガス中のいずれでもよい。   As a laser beam irradiation source used for modifying the surface of a polymer substrate, one having a photon energy intensity corresponding to the type of chemical bond to be selectively dissociated from the polymer may be used. A light (wavelength 400 μm or less) laser is preferred. Further, the intensity of the laser beam should be set so that its power density is equal to or higher than the threshold value of the polymer substrate. Thus, the atmosphere at the time of laser light irradiation is not particularly limited, and may be either air or inert gas.

因みに、図3は、レーザ波長と光子エネルギとの関係を曲線Pにて表すと共に、この曲線P上に高分子の主な化学結合(C−N、C−C、C=C、C≡C、C≡N)の結合エネルギを示している。なお、C−C結合はベンゼン環のような芳香族環の構成部を除くものである。この図より、特定の化学結合を選択的解離させるには、その結合エネルギよりも高い光子エネルギを有する波長のレーザが必要であり、例えばポリイミドからなる高分子基材の前記表面改質ではC−N結合の選択的解離を行う上で紫外光レーザが有用であることが判る。ただし、可視光レーザであっても、近年開発されたフェムト(10-15 )秒レーザによれば、1光子のエネルギーが化学結合エネルギより小さくとも、多光子解離(2個以上の光子による解離)によって同様に表面改質を行うことができる。 Incidentally, FIG. 3 represents the relationship between the laser wavelength and the photon energy as a curve P, and the main chemical bonds (CN, C—C, C = C, C≡C) of the polymer on this curve P. , C≡N). The C—C bond excludes a constituent part of an aromatic ring such as a benzene ring. From this figure, in order to selectively dissociate a specific chemical bond, a laser having a wavelength having a photon energy higher than the bond energy is required. For example, in the surface modification of a polymer substrate made of polyimide, C- It can be seen that an ultraviolet laser is useful in performing selective dissociation of N bonds. However, even in the case of a visible light laser, a recently developed femto (10 -15 ) second laser has a multiphoton dissociation (dissociation by two or more photons) even if the energy of one photon is smaller than the chemical bond energy. Thus, surface modification can be performed in the same manner.

無電解メッキは、プラスチックへの導電金属のメッキに利用される一般的な手法に準じ、金属イオンを供給する金属塩、還元剤、金属キレートを形成するためのキレート剤、NaOH等のPH調整剤、安定剤を始めとする任意の助剤成分等を含むメッキ液を調製し、そのメッキ浴に前記の回路パターンに沿うレーザ照射を経た高分子基材1を所要時間浸漬すればよく、浴中の金属イオンが還元反応によって金属として高分子基材1の前記レーザ光の照射域Zのみに選択的に析出し、薄膜回路が形成されることになる。   Electroless plating follows general methods used for plating conductive metals on plastics, metal salts supplying metal ions, reducing agents, chelating agents for forming metal chelates, and pH adjusting agents such as NaOH. A plating solution containing an optional auxiliary component such as a stabilizer is prepared, and the polymer substrate 1 that has been subjected to laser irradiation along the circuit pattern described above may be immersed in the plating bath for a required time. As a result of the reduction reaction, the metal ions are selectively deposited only in the laser light irradiation zone Z of the polymer substrate 1 to form a thin film circuit.

薄膜回路を形成する金属としては、無電解メッキが可能で且つ導電性の高いものであればよく、通常は銅又は銅合金が採用される。そして、銅又は銅合金を採用する場合、メッキ厚を1μm以下とする薄付け用としては、例えば、金属塩に硫酸銅、還元剤にホルムアルデヒド、キレート剤にロッシェル塩がそれぞれ一般的に使用される。また、メッキ厚10μm以下までの厚付け用としては、例えば、金属塩に硫酸銅、還元剤にホルムアルデヒド、キレート剤にEDTAがそれぞれ一般的に使用される。   The metal forming the thin film circuit may be any metal that can be electrolessly plated and has high conductivity, and usually copper or a copper alloy is employed. When copper or a copper alloy is used, for example, copper sulfate is generally used as a metal salt, formaldehyde is used as a reducing agent, and Rochelle salt is used as a chelating agent, for example, for thinning with a plating thickness of 1 μm or less. . For thickening up to a plating thickness of 10 μm or less, for example, copper sulfate is generally used as a metal salt, formaldehyde is used as a reducing agent, and EDTA is used as a chelating agent.

本発明における無電解メッキ工程は、各別な条件設定を行う必要がなく、通常の無電解メッキプロセスに準じて処理すればよいから、一般的に汎用されている無電解メッキ装置により、メッキ金属の種類に応じた市販の無電解メッキ浴を用いて行える。例えば、無電解銅メッキでは、薄付け用又は厚付け用の無電解銅メッキ浴として市販されるものを支障なく使用できる。   The electroless plating process in the present invention does not require setting different conditions, and may be performed according to a normal electroless plating process. It is possible to use a commercially available electroless plating bath corresponding to the kind of the material. For example, in electroless copper plating, a commercially available electroless copper plating bath for thinning or thickening can be used without hindrance.

なお、無電解メッキにおいては、超音波等によって浴液に振動を与えるようにすれば、高分子基材の表面改質部に対する液の接触確率が高まることから、金属薄膜の形成効率が向上するという利点がある。   In electroless plating, if the bath liquid is vibrated by ultrasonic waves or the like, the contact probability of the liquid with respect to the surface modification portion of the polymer base material is increased, so that the formation efficiency of the metal thin film is improved. There is an advantage.

このような薄膜回路の形成方法によれば、微粒子の散布、レーザ光の照射、無電解メッキという僅か3工程で導体回路を形成できるため、プリント配線板等を極めて能率よく低コストで製作でき、多品種少量生産に適する。しかも、回路パターンは、レーザ光の照射域がそのまま金属薄膜の被着部になることから、配線幅を数μmから数十μmに設定可能であり、且つ無電解メッキによって被着する金属層の厚さを配線幅に対応した極薄に設定できるから、従来に比較して飛躍的に高密度化することが可能である。また、本方法では、導体金属を回路形成に必要な量だけ消費するため、従来のエッチングによる回路形成のような無駄がなく、省資源に貢献でき、しかも無電解メッキのメッキ浴は消費成分を補充して繰り返し使用できるから、廃液処理の負担が従来に比して著しく軽減され、プロセス全体を通して環境への負荷は極めて僅少となる。   According to such a method of forming a thin film circuit, a conductor circuit can be formed in only three steps of fine particle dispersion, laser light irradiation, and electroless plating, so that a printed wiring board can be manufactured extremely efficiently and at low cost. Suitable for high-mix low-volume production. In addition, since the circuit pattern has an irradiation area of the laser beam as it is, the metal thin film is deposited, the wiring width can be set from several μm to several tens of μm, and the metal layer deposited by electroless plating can be used. Since the thickness can be set to be extremely thin corresponding to the wiring width, it is possible to dramatically increase the density as compared with the conventional case. In addition, this method consumes only the amount of conductor metal necessary for circuit formation, so there is no waste as in conventional circuit formation by etching, contributing to resource savings, and the electroless plating bath has no consumption components. Since it can be replenished and used repeatedly, the burden of waste liquid treatment is remarkably reduced as compared with the prior art, and the burden on the environment is extremely small throughout the entire process.

なお、上述した実施形態では、無電解メッキで形成する金属薄膜の高分子基材に対する被着強度及び密着性を高めるために、レーザ光の照射前に基材の表面に微粒子を散布して微細凹凸を形成するようにしているが、本発明方法にあっては、金属薄膜の膜厚や回路パターンの形態等により、特に微細凹凸によるアンカー効果がなくとも充分な被着強度及び密着性が得られる場合は、微粒子の散布を省略してもよい。従って、この場合には、薄膜回路の形成をレーザ光の照射と無電解メッキの2工程で行え、プリント配線板等の更なる製造能率の向上と低コスト化を図ることができる。   In the above-described embodiment, in order to increase the adhesion strength and adhesion of the metal thin film formed by electroless plating to the polymer base material, fine particles are dispersed on the surface of the base material before laser irradiation. Although unevenness is formed, in the method of the present invention, sufficient adhesion strength and adhesion can be obtained even if there is no anchor effect due to fine unevenness depending on the film thickness of the metal thin film and the form of the circuit pattern. In such a case, the dispersion of fine particles may be omitted. Therefore, in this case, the formation of the thin film circuit can be performed in two steps of laser light irradiation and electroless plating, and the production efficiency of printed wiring boards and the like can be further improved and the cost can be reduced.

短パルスFGH(第四高調波)レーザ(MHI社製Meister1000DF、パルス幅3.5×10-9秒、波長266μm)を用い、厚さ50μmのポリイミドフィルム〔宇部興産社製ユーピレックスフィルム…前記式(I)で示す構造のポリイミド〕からなる基材の表面(上面)に、前処理として、照射面でのパワー密度をポリイミドのアブレーションしきい値以上に設定したレーザ光を照射スポット径20μmで直線状に走査させて照射し、アブレーションによって発生・飛散したカーボン粒子を自然落下によって当該基材表面に散布した。次いで、このカーボン粒子を散布した基材表面に、同レーザによってレーザ光を再び同条件で直線状に走査させて照射し、照射域を親水性に改質すると共に微細凹凸を形成した。なお、本実施例では、薄膜回路とする金属薄膜の形成状態を調べるために、模擬配線パターンとして直線パターンを採用した。 Using a short pulse FGH (fourth harmonic) laser (Meister 1000DF manufactured by MHI, pulse width 3.5 × 10 −9 seconds, wavelength 266 μm), a polyimide film of 50 μm thickness [Upilex film manufactured by Ube Industries, Ltd. On the surface (upper surface) of the base material made of the polyimide having the structure represented by formula (I), as a pretreatment, a laser beam whose power density on the irradiated surface is set to be equal to or higher than the ablation threshold of polyimide is irradiated with an irradiation spot diameter of 20 μm. Irradiated by scanning in a straight line, carbon particles generated and scattered by ablation were dispersed on the surface of the substrate by natural fall. Next, the surface of the base material on which the carbon particles were dispersed was irradiated with the laser by scanning the laser beam linearly again under the same conditions to modify the irradiation area to be hydrophilic and to form fine irregularities. In this example, a straight line pattern was used as a simulated wiring pattern in order to examine the formation state of the metal thin film to be a thin film circuit.

次に、上記のレーザ光の照射によって表面改質及び微細凹凸形成を行ったポリイミドフィルムについて、超音波洗浄槽を用い、薄付け用無電解銅メッキ浴(奥野製薬社製…以下の薬剤商品名も同様)により、常法に準じ、以下の手順による無電解銅メッキを行い、前記表面改質部に銅薄膜を被着させた。なお、以下において、ポリイミドフィルムの浴液には超音波による振動を与えるようにした。   Next, for the polyimide film that has been surface-modified and formed with fine irregularities by irradiation with the laser beam described above, using an ultrasonic cleaning tank, an electroless copper plating bath for thinning (Okuno Pharmaceutical Co., Ltd .... In the same manner, electroless copper plating was performed according to the following procedure in accordance with a conventional method, and a copper thin film was deposited on the surface modified portion. In the following, ultrasonic vibrations were applied to the polyimide film bath.

超音波洗浄槽において、上記のポリイミドフィルムを、まず液温65℃の脱脂用薬液(エースクリーンA220)中に5分間浸漬して脱脂を行い、スプレー水洗後にキャタリスト処理として35%HCl溶液とパラジウム触媒溶液(キャタリストC)との3:1混合液中に常温で4分間浸漬し、スプレー水洗後にアクセレータ処理として液温40℃の98%H2 SO4 溶液中に4分間浸漬し、更に水洗後に無電解メッキ浴剤(溶液OPC−700AとOPC−700Bとの1:1混合液)中に常温下で20分間浸漬して銅メッキを行った。 In an ultrasonic cleaning tank, the polyimide film described above is first degreased by immersing it in a degreasing chemical solution (A screen A220) at a liquid temperature of 65 ° C. After washing with spray water, 35% HCl solution and palladium are used as a catalyst treatment. Immerse in a 3: 1 mixture with the catalyst solution (Catalyst C) at room temperature for 4 minutes, spray water wash, and then as an accelerator treatment, soak in a 98% H 2 SO 4 solution at a liquid temperature of 40 ° C. for 4 minutes, and then rinse with water. Later, copper plating was performed by dipping for 20 minutes at room temperature in an electroless plating bath (a 1: 1 mixture of solution OPC-700A and OPC-700B).

高分子基材として、厚さ50μmの耐熱性液晶ポリマーフィルム〔クラレ社製ベクスターフィルム…前記式(II)で示す構造の液晶ポリマー〕を用いた以外は、実施例1と同様にして、前処理のレーザ光照射によるカーボン粒子の散布、本処理のレーザ光照射による親水性への改質と微細凹凸の形成、薄付け用無電解銅メッキ浴による無電解銅メッキ、を順次行って表面改質部に銅薄膜を形成した。   A pretreatment was performed in the same manner as in Example 1 except that a heat-resistant liquid crystal polymer film having a thickness of 50 μm was used as the polymer substrate (a Bexter film manufactured by Kuraray Co., Ltd., a liquid crystal polymer having a structure represented by the formula (II)). Surface modification by sequentially applying carbon particles by laser irradiation, reforming to hydrophilicity by laser irradiation, forming fine irregularities, and electroless copper plating using a thin electroless copper plating bath A copper thin film was formed on the part.

上記実施例1及び2の無電解銅メッキを施したフィルムについて、前記表面改質部を含む表面を顕微鏡で拡大(100倍)して調べたところ、両フィルム共に、銅薄膜の被着部が光源からの光を反射する白い直線として、レーザ光の照射幅に一致する20μmの幅でレーザ光が走査した全長にわたって連続していることが確認された。また、両フィルムについて、低真空SEM−EDX(エネルギ分散型X線分光器)による同定パターンを調べたところ、両フィルム共に、フィルム表面における銅の存在は幅20μmのレーザ光照射域のみであり、無電解銅メッキによって該照射域に選択的に銅が被着していることが確認された。   About the film which gave the electroless copper plating of the said Example 1 and 2, when the surface containing the said surface modification part was expanded and examined by the microscope (100 time), the adhesion part of the copper thin film was both films. It was confirmed that the laser beam continued as a white line reflecting light from the light source over the entire length scanned with a width of 20 μm, which coincided with the irradiation width of the laser beam. Moreover, when the identification pattern by low-vacuum SEM-EDX (energy dispersive X-ray spectrometer) was investigated about both films, as for both films, the presence of copper in the film surface was only a laser beam irradiation area with a width of 20 μm, It was confirmed that copper was selectively deposited on the irradiated area by electroless copper plating.

なお、レーザ光の照射域が親水性に改質されたことは前記無電解メッキによる該照射域への選択的な銅薄膜形成によって実証されるが、これを更に確認するため、前記実施例1及び実施例2におけるレーザ光の照射前後のフィルムについて、X線光電子分光装置(XPS)によるCisスペクトル分布計測を行った。図4(A)は実施例1のポリイミドフィルムのレーザ光照射前、図4(B)は同レーザ光照射後、図5(A)は実施例2の耐熱性液晶ポリマーフィルムのレーザ光照射前、図5(B)は同レーザ光照射後、のそれぞれCisスペクトル分布図を示す。   It should be noted that the laser beam irradiation area has been modified to be hydrophilic by the selective formation of a copper thin film on the irradiation area by the electroless plating. To further confirm this, Example 1 And about the film before and behind the irradiation of the laser beam in Example 2, Cis spectrum distribution measurement was performed by an X-ray photoelectron spectrometer (XPS). 4A shows the polyimide film of Example 1 before laser light irradiation, FIG. 4B shows the same laser light irradiation, and FIG. 5A shows the heat resistant liquid crystal polymer film of Example 2 before laser light irradiation. FIG. 5B shows a Cis spectrum distribution diagram after the laser light irradiation.

図4(A)(B)より、レーザ光照射前の前記式(I)で示すポリイミドの分子構造中のイミド環(O=C−N−C=O)のピーク(約288.2eV)がレーザ光照射後には低下しており、レーザ光の照射によって選択的にイミド環が開裂し、この解離部にOH基が付加したことが判る。また、図5(A)(B)より、レーザ光照射前の前記式(II)で示す液晶ポリマーにおけるエステル結合(O−C=O)のピークがレーザ光照射後には認められず、且つC−O結合のピークがレーザ光照射後には低下しており、レーザ光の照射によってエステル結合におけるC−O結合部が選択的に解離し、この解離部にOH基が付加したことが判る。   4A and 4B, the peak (about 288.2 eV) of the imide ring (O = C—N—C═O) in the molecular structure of the polyimide represented by the formula (I) before the laser beam irradiation is obtained. It is decreased after laser light irradiation, and it can be seen that the imide ring was selectively cleaved by laser light irradiation, and an OH group was added to this dissociation part. 5A and 5B, the peak of the ester bond (O—C═O) in the liquid crystal polymer represented by the formula (II) before laser light irradiation is not observed after laser light irradiation, and C It can be seen that the peak of —O bond is lowered after laser light irradiation, and the C—O bond part in the ester bond is selectively dissociated by the laser light irradiation, and an OH group is added to this dissociated part.

本発明の一実施形態に係る薄膜回路の形成方法を工程順に示す模式断面図であり、(A)は高分子基材、(B)は表面に微粒子を散布した高分子基材、(C)は該基材表面に対するレーザ光の照射状態、(D)は該基材表面に薄膜回路を形成した状態をそれぞれ示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic cross section which shows the formation method of the thin film circuit which concerns on one Embodiment of this invention in order of a process, (A) is a polymer base material, (B) is a polymer base material which disperse | distributed microparticles | fine-particles on the surface, (C) Is the laser beam irradiation state on the substrate surface, and (D) is the state where a thin film circuit is formed on the substrate surface. 同薄膜回路の形成における散布微粒子の作用を説明する模式断面図であり、(A)は微粒子を散布した高分子基材表面に対するレーザ光の照射状態、(B)はレーザ光照射後の高分子基材、(C)は該基材表面に導体金属層を形成した状態をそれぞれ示す。2A and 2B are schematic cross-sectional views for explaining the action of dispersed fine particles in the formation of the thin film circuit, wherein FIG. 3A is an irradiation state of a laser beam on the surface of a polymer substrate on which fine particles are dispersed, and FIG. A base material and (C) each show a state in which a conductive metal layer is formed on the surface of the base material. レーザ波長と光子エネルギとの相関図に、種々のレーザの波長と化学的結合の結合エネルギとを付記した説明図である。It is explanatory drawing which added the wavelength of various lasers, and the binding energy of a chemical bond to the correlation diagram of a laser wavelength and photon energy. 実施例2におけるレーザ光照射前後のポリイミドフィルムのX線光電子分光装置によるCisスペクトル分布を示し、(A)はレーザ光照射前のCisスペクトル分布図、(B)はレーザ光照射後のCisスペクトル分布図である。The Cis spectrum distribution by the X-ray photoelectron spectrometer of the polyimide film before and after laser beam irradiation in Example 2 is shown, (A) is a Cis spectrum distribution diagram before laser beam irradiation, and (B) is the Cis spectrum distribution after laser beam irradiation. FIG. 実施例1におけるレーザ光照射前後の耐熱性液晶ポリマーフィルムのX線光電子分光装置によるCisスペクトル分布を示し、(A)はレーザ光照射前のCisスペクトル分布図、(B)はレーザ光照射後のCisスペクトル分布図である。The Cis spectrum distribution by the X-ray photoelectron spectrometer of the heat-resistant liquid crystal polymer film before and after laser light irradiation in Example 1 is shown, (A) is the Cis spectrum distribution before laser light irradiation, and (B) is after laser light irradiation. It is a Cis spectrum distribution map. 従来における3層銅張りプリント配線板の製造方法を工程順に示す模式断面図であり、(A)はポリイミドフィルムと銅箔との貼着状態、(B)は貼着後の銅箔表面にフォトレジストを塗布した状態、(C)は露光状態、(D)は未効果レジストを除去した状態、(E)はエッチング後の状態、(E)は回路形成後の状態をそれぞれ示す。It is a schematic cross section which shows the manufacturing method of the conventional 3-layer copper-clad printed wiring board in order of a process, (A) is a sticking state of a polyimide film and copper foil, (B) is a photo on the copper foil surface after sticking. (C) is an exposed state, (D) is a state where an ineffective resist is removed, (E) is a state after etching, and (E) is a state after circuit formation.

符号の説明Explanation of symbols

1 高分子基材
2 微粒子
3 金属薄膜
30 薄膜回路
L レーザ光
Z 照射域
G 微細凹凸
DESCRIPTION OF SYMBOLS 1 Polymer base material 2 Fine particle 3 Metal thin film 30 Thin film circuit L Laser beam Z Irradiation area G Fine unevenness

Claims (5)

下記式(I);
Figure 0004452878

(mは2以上の整数)
で示す構造のポリイミドからなる高分子基材の表面に、その高分子基材よりもアブレーションしきい値が高い材料の微粒子を散布したのち、レーザ光を照射することにより、イミド環のC−N結合を選択的に解離させて照射域の基材表面部を親水性に改質すると同時に照射域に微細凹凸を形成し、次いで無電解メッキによって前記照射域に金属薄膜を被着させることを特徴とする薄膜回路の形成方法。









The following formula (I);
Figure 0004452878

(M is an integer of 2 or more)
After spraying fine particles of a material having an ablation threshold higher than that of the polymer base material on the surface of the polymer base material made of polyimide having the structure shown in FIG. The bond is selectively dissociated to modify the surface of the substrate in the irradiated area to be hydrophilic, and at the same time, fine irregularities are formed in the irradiated area, and then a metal thin film is deposited on the irradiated area by electroless plating. A method for forming a thin film circuit.









下記式(II);
Figure 0004452878

(x及びyは2以上の整数)
で示す構造の耐熱性液晶ポリマーからなる高分子基材の表面に、その高分子基材よりもアブレーションしきい値が高い材料の微粒子を散布したのち、レーザ光を照射することにより、エステル結合のC−O結合部を選択的に解離させて照射域の基材表面部を親水性に改質すると同時に照射域に微細凹凸を形成し、次いで無電解メッキによって前記照射域に金属薄膜を被着させることを特徴とする薄膜回路の形成方法。
Following formula (II);
Figure 0004452878

(X and y are integers of 2 or more)
After spraying fine particles of a material having a higher ablation threshold than that of the polymer substrate on the surface of the polymer substrate composed of the heat-resistant liquid crystal polymer having the structure shown in FIG. By selectively dissociating the C—O bond part, the surface of the substrate in the irradiated area is modified to be hydrophilic, and at the same time fine irregularities are formed in the irradiated area, and then a metal thin film is deposited on the irradiated area by electroless plating. A method for forming a thin film circuit, comprising:
高分子基材の表面に前処理としてレーザ光を照射し、この照射時のアブレーションにて飛散したカーボン微粒子を該高分子基材の表面に自然落下させることにより、前記微粒子の散布を行う請求項1又は2に記載の薄膜回路の形成方法。 Claims: The surface of the polymer base material is irradiated with laser light as a pretreatment, and the carbon fine particles scattered by the ablation at the time of irradiation are naturally dropped onto the surface of the polymer base material, thereby dispersing the fine particles. 3. A method for forming a thin film circuit according to 1 or 2. 前記レーザ光によって高分子基材の表面に回路パターンを描画することを特徴とする請求項1〜3のいずれかに記載の薄膜回路の形成方法。 The method for forming a thin film circuit according to claim 1, wherein a circuit pattern is drawn on the surface of the polymer substrate by the laser beam . 高分子基材の表面に、回路パターンに対応した光透過パターンを有するマスクを介して前記レーザ光を照射することを特徴とする請求項1〜3のいずれかに記載の薄膜回路の形成方法。 4. The method of forming a thin film circuit according to claim 1, wherein the surface of the polymer substrate is irradiated with the laser beam through a mask having a light transmission pattern corresponding to the circuit pattern .
JP2004105446A 2004-03-31 2004-03-31 Method for forming a thin film circuit Expired - Fee Related JP4452878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105446A JP4452878B2 (en) 2004-03-31 2004-03-31 Method for forming a thin film circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105446A JP4452878B2 (en) 2004-03-31 2004-03-31 Method for forming a thin film circuit

Publications (2)

Publication Number Publication Date
JP2005290454A JP2005290454A (en) 2005-10-20
JP4452878B2 true JP4452878B2 (en) 2010-04-21

Family

ID=35323722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105446A Expired - Fee Related JP4452878B2 (en) 2004-03-31 2004-03-31 Method for forming a thin film circuit

Country Status (1)

Country Link
JP (1) JP4452878B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339640B1 (en) 2013-04-02 2013-12-09 김한주 Method of laser direct structuring
JP2017106063A (en) * 2015-12-08 2017-06-15 キヤノン・コンポーネンツ株式会社 Resin product with plating film and method for manufacturing resin product

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272420A3 (en) * 1986-12-22 1989-11-02 General Electric Company Photopatterned aromatic polymeric substrates, method for making same and use
JPH02305969A (en) * 1989-05-18 1990-12-19 Mitsubishi Electric Corp Pretreatment for electroless plating
JPH0543664A (en) * 1991-08-09 1993-02-23 Kuraray Co Ltd Polyester film and its production
JP3098869B2 (en) * 1992-09-09 2000-10-16 三菱電機株式会社 Method for modifying resin surface, method for forming electroless plating, and small electronic circuit board manufactured using the method
JPH07196826A (en) * 1993-12-28 1995-08-01 Kuraray Co Ltd Improving method for friction resistance of liquid crystal polymer film
JPH0931309A (en) * 1995-07-20 1997-02-04 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JPH0967508A (en) * 1995-08-31 1997-03-11 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JP3827859B2 (en) * 1998-04-13 2006-09-27 三井化学株式会社 Polyimide-metal laminate and method for producing the same
JP3085529B2 (en) * 1998-05-19 2000-09-11 宇部興産株式会社 Method of forming metal thin film on polyimide film
JP2002335065A (en) * 2001-05-07 2002-11-22 Hitachi Metals Ltd Method for forming circuit
JP4940512B2 (en) * 2001-07-18 2012-05-30 トヨタ自動車株式会社 Method for forming electroless plating film of resin
JP2003145561A (en) * 2001-11-12 2003-05-20 Teijin Ltd Method for producing polyimide film
JP3567253B2 (en) * 2001-12-17 2004-09-22 独立行政法人産業技術総合研究所 Method for producing porous body coated with palladium or palladium alloy

Also Published As

Publication number Publication date
JP2005290454A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4126038B2 (en) BGA package substrate and manufacturing method thereof
KR100755192B1 (en) Method for forming inorganic thin film pattern on polyimide resin
CN1758829A (en) Printed circuit board and method of fabricating same
JP2006210891A (en) Forming method of inorganic thin film pattern for polyimide resin
TWI737852B (en) Integrated circuit wafer integration with catalytic laminate or adhesive
JP2005347424A (en) Multi-layer printed wiring board and manufacturing method thereof
WO2019102701A1 (en) Electronic component manufacturing method and electronic component
JP2005322868A (en) Method for electrolytic gold plating of printed circuit board
JP2008108791A (en) Multilayer printed wiring board and method of manufacturing the same
JP2008211060A (en) Method of manufacturing substrate having metal film
JP2010239057A (en) Method of fabricating circuit board
JP4775204B2 (en) Method for forming conductive pattern, method for manufacturing wiring board, and wiring board
JP2015156459A (en) Laminate, conductive pattern, and electronic circuit
JP2009094191A (en) Manufacturing method of multilayer wiring board
WO2022039062A1 (en) Method for manufacturing printed wiring board
JP4427262B2 (en) Method for forming a thin film circuit
JP2007109706A (en) Process for producing multilayer printed wiring board
JP4452878B2 (en) Method for forming a thin film circuit
JP4735464B2 (en) Circuit board and manufacturing method thereof
JP2006057059A (en) Method for producing surface-conductive material
JP5794740B2 (en) Printed wiring board manufacturing method and printed wiring board obtained by using the printed wiring board manufacturing method
WO2024055448A1 (en) Method for manufacturing circuit board by means of performing laser drilling and coarsening insulating base material according to pattern track
JP2005045236A (en) Inorganic thin film pattern forming method of polyimide resin
CN104661449A (en) Hole metallization method based on laser activation technology
JP4094965B2 (en) Method for forming via in wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees