JP4452868B2 - 磁気式モーションキャプチャ装置における計測方式 - Google Patents

磁気式モーションキャプチャ装置における計測方式 Download PDF

Info

Publication number
JP4452868B2
JP4452868B2 JP33850598A JP33850598A JP4452868B2 JP 4452868 B2 JP4452868 B2 JP 4452868B2 JP 33850598 A JP33850598 A JP 33850598A JP 33850598 A JP33850598 A JP 33850598A JP 4452868 B2 JP4452868 B2 JP 4452868B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
measurement
magnetic sensor
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33850598A
Other languages
English (en)
Other versions
JP2000146509A (ja
Inventor
一也 横山
元 小木
央一 阿刀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, National Institute of Advanced Industrial Science and Technology AIST filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP33850598A priority Critical patent/JP4452868B2/ja
Publication of JP2000146509A publication Critical patent/JP2000146509A/ja
Application granted granted Critical
Publication of JP4452868B2 publication Critical patent/JP4452868B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、計測空間内に位置する測定対象の座標または姿勢を計測するに際し、空間内に生成した磁場の向きと強度を、測定対象に設置した磁気センサによって検知し、得られた磁場の向きと強度により磁気センサーの座標または姿勢を計測するところの、磁気式モーションキャプチャ装置における座標・姿勢の計測方式に関するものである。
【0002】
【従来の技術】
従来の磁気式モーションキャプチャ装置は、いくつかの送信コイルを時分割や周波数分割によって励磁して、所定の計測空間内に識別可能な磁場の何通りかをつくり、これを測定対象の計測部位に取り付けた磁気センサで受信したデータから、磁気センサの座標と姿勢の6自由度を算出するものである。
現在実用に供されているものとして、Polhemus社のものがある(F.H.Raab,E.B.Blood,T.O.Steiner,H.R.Jones:"Magnetic Position Tracker",IEEE Trans.,Vol.AES-15,No.5,709/717(1979))。この場合の計測方式は、中心が同一で、軸が直交する3個の送信コイルを時分割励磁して磁場をつくり、この送信コイルの配置に依存して、オイラー角から磁気センサの座標と姿勢の6自由度を求めるものである。
【0003】
しかしながら、この方式では、計測可能な空間は、送信コイルの中心を中心とする球状の範囲に限定されている。
また、計測範囲が送信コイルを中心とする球状の範囲に限定されるため、その中心に対して大きい動径をもつ標点位置の決定には高精度でオイラー角を得なければならない。そのため、磁気センサに用いるコイルは、フェライトの精密削り出し加工などによる高価な3軸直交コイルが必要である。
さらに、磁場の強度は距離の3乗に比例して減衰するため、計測可能な範囲を拡大するためには、範囲の3乗に比例して磁場の強度を大きくしなければならない。従来方式では、この計測可能範囲を拡大するために、送信コイルが発生する磁場の強度を大きくする方法が取られてきた。
【0004】
一方、従来方式の送信コイルの配置方式を変えないで計測可能範囲を拡大するには、磁気センサの感度を高める方法が考えられる。しかし、いずれの場合も、CRT等の電子装置が発生する磁場や、鉄等の導体による磁場の歪みによる影響を受けやすい。実際の計測では、磁気式モーションキャプチャ装置以外の計測装置や、躯体に鉄等を用いた建造物、鉄材を用いた設備機器等を使っている環境下で計測を行うため、現実的な範囲拡大方法とは言い難い。
【0005】
【発明が解決しようとする課題】
本発明は、上記の従来の技術のもつ問題を解決しようとするもので、その技術的な課題は、基本的には、測定対象が移動する計測空間の範囲と形状において、求める精度と分解能が得られるように、空間内の異なる位置に複数の送信コイルを設置する設置パターンを決め、その設置パターンにおいて送信コイルを時分割で励磁する励磁パターンを構成し、それに基づいて必要な計測空間において高精度に座標・姿勢を計測することができる計測方式を提供することにある。
また、本発明の他の技術的課題は、特殊な加工技術を用いないで、一般に流通する電子部品で、磁気式モーションキャプチャ装置をハードウェア化することができるような座標・姿勢の計測方式を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明の磁気式モーションキャプチャ装置における座標・姿勢の計測方式では、以下に述べるように、少なくとも3箇所の送信コイルにより磁場が形成された計測空間内のどの位置においても十分な強度をもち、かつ少なくとも二つの送信コイルの磁場の向きが計測空間内のどの位置でも互いに従属しないように、送信コイルの配置パターンと励磁パターンを構成し、磁気センサにより3次元座標・姿勢を計測する手段を採用している。
【0007】
[磁気センサの座標を計測する方式]
計測空間内の異なる3箇所以上の位置に送信コイルを設置し、その送信コイルを3通りの異なる組み合わせで励磁したときの磁場強度を、それぞれ上記空間内に位置する磁気センサによって計測し、それぞれの励磁に対する座標を独立変数、磁場強度を従属変数とする式の従属変数にそれぞれの計測値を代入して得られた3つの式からなる3元連立方程式の解として、上記磁気センサの座標を求めることを特徴とする磁気式モーションキャプチャ装置における計測方式。
【0008】
[磁気センサの姿勢を計測する方式]
計測空間内の異なる2箇所以上の位置に送信コイルを設置し、その送信コイルを2通りの異なる組み合わせで励磁したときの磁場の向きを、それぞれ上記空間内に位置する磁気センサによって磁気センサの局所座標軸に対して計測し、それぞれの励磁についての既知の座標における磁場の向きと計測した磁場の向きが等しくなるような局所座標軸の回転行列によって磁気センサの姿勢を求めることを特徴とする磁気式モーションキャプチャ装置における計測方式。
【0009】
[点走査方式]
計測空間内の平面上の格子点の位置に、軸を上記平面に鉛直とした複数の送信コイルを設置し、それらのコイルを1つずつ順に励磁して、それぞれの送信コイルを励磁したときの磁場強度および磁気センサの局所座標軸に対する磁場の向きを3軸磁気センサによって計測し、このうちから3通りの磁場強度計測値を選んで、座標を独立変数、それぞれ対応する送信コイルのつくる磁場強度を従属変数とする式の従属変数にそれぞれの計測値を代入して得られた3つの式からなる3元連立方程式の数値解を、ニュートン法によって得ることにより、上記磁気センサの座標を求め、かつ2通りの磁場の向きの計測値を選んで、既知の座標における対応する送信コイルのつくる磁場の向きと計測した磁場の向きが等しくなるような局所座標軸の回転行列によって磁気センサの姿勢を求めることを特徴とする磁気式モーションキャプチャ装置における計測方式。
【0010】
【発明の実施の形態】
以下において、本発明についてさらに具体的に説明する。
本発明において用いる送信コイルは、電磁気学でいうところの磁気双極子である。z軸上に軸をもち、原点におかれた磁気双極子による磁場は、周知のごとくz軸に対して円対称で、各点におけるz軸に平行な成分の大きさは、
(x2 +y2 −2z2 )/(x2 +y2 +z25/2
半径方向の成分の大きさは、
3(x2 +y21/2 z/(x2 +y2 +z25/2
にそれぞれ比例する。
また、原点からの距離をrとすると、磁場の大きさは距離の3乗に比例して減衰する。
【0011】
ここで、3次元空間にN個の送信コイルD1,D2,… ,DN を配置し、それぞれ双極子能率がm1,m2,… ,mN になるように励磁する場合について考察する。ベクトルM=(m1,m2,… ,mn )を励磁パターンと呼び、独立なEとおりの励磁パターンを、M1,M2,… ,ME とする。Eを励磁自由度と呼ぶ。
また、空間V内の点(x,y,z)において、それぞれの励磁パターンについてx,y,zの関数として得られる磁場ベクトルをHj(x,y,z) とし(1≦j≦E)、Λを未知の回転行列とする。いま、Sj =Hj Λ-1を知ることによって、x,y,zおよびΛを知るものとする。x,y,zを標点座標、Λを標点姿勢、Sj を受信ベクトルと呼ぶ。さらに、uvw座標系を標点に固定された局所座標系とし、Sj の要素をsju,jv,jwとする。
【0012】
このとき、標点座標が計測空間内のどの位置にあっても、受信ベクトルSj から標点座標x,y,zと標点姿勢Λを知ることが可能であるような、それぞれの送信コイルDk (1≦k≦N)の座標と向き、各励磁パターンMj (1≦j≦E)、さらにSj =Hj Λ-1から標点座標と標点姿勢を計算するアルゴリズムを得ることができれば、与えられた計測空間Vにおける磁気式モーションキャプチャ装置の送信コイルの配置パターンならびに励磁パターンが決定できる。
【0013】
ただし、上記の決定において、次のようなハードウェア化の制約条件を考慮しなければならない。
(1)励磁自由度の制限
問題の未知自由度は6であり、Sj 一つから得られる自由度は3であるから、励磁自由度はE≧2である。また、E≧3として少し過剰な励磁自由度を用いて、各Sj またはその2次量のうち、使いやすいものを選択して標点座標と標点姿勢の計算に用いたほうが、実用的な解を得やすい。一方、サンプリングレートとセンサ回路の応答時間により、励磁自由度Eが制限される。
【0014】
(2)受信ベクトルの大きさの範囲の制限
受信ベクトルの絶対的な大きさはコイルの励振強度によって設定できる。送信コイルによって発生される磁場が距離の3乗に比例して減衰するため、利得切換機構を用いるが、その性能によって、計算に利用できる受信ベクトルの大きさの最大値と最小値の比が制限される。そのため、標点姿勢と標点位置の計算に用いているいずれかのSj の大きさ |Sj|が空間V内でとり得る最大の値と、空間V内でとり得る最小の値の比ρを、定数ρ0 以下としなければならない。
【0015】
(3)標点姿勢と標点座標の計算に用いるSj について、sju/|Sj|,sjv/|Sj|,sjw/|Sj|から標点座標および標点姿勢に至る感度が、V内部のすべての点で一定値以下とする。ハードウェア化に際して、小さな刻みで利得切り替えを行っていることを前提に、分解能は近似的に相対値でよいため、標点座標および標点姿勢の絶対分解能が十分得られることを意味する。
(4)実用場面で測定対象の動きや配置を妨害しないように、空間Vの内部に送信コイルDk を置くことができない場合が多い。
【0016】
次に、送信コイルの配置パターンと励磁パターンの一般的構成法について説明する。
本発明では、次の二点について、解を得る手段の分離、逐次化を行い、この手段にしたがう範囲内で解を探すことによって、比較的容易に解に到達する方法を示す。この方法の利点は、最適解ではないが、必要な精度と分解能を持つ解にすぐに到達できる点である。
【0017】
(1)コイル配置および対応する励磁パターンの案を仮に定める。
(2)V内部の各点について、Hj(x,y,z) の大きさと向きを求める順方向の計算を行う。
(3)Sj =Hj (1≦j≦E)とし、その大きさおよびSi とSj (1≦i,j≦E)のなす平面角の中から、ρ≦ρ0 を満足し、かつ∂x,∂y,∂z のどんな1次結合に対しても、必ず1つ以上の量は十分大きな感度をもつように、三つの量を選ぶ。これらを、あらためてq1,q2,q3 とする。上記の量を使い分けてもよいが、例えばqi =max(|Sj| |Sk|) のように、それらの量の値だけに依存して使い分けを決める。もし、空間V内に、上記を満足するq1,q2,q3 が選べない領域があれば、(1)の案を変更してやり直す。
【0018】
(4)同じくSj =Hj とし、(3)と共通にρ≦ρ0 を満足し、かつ向きが十分大きく異なるSi ,Sj の組が空間V内のすべての領域で少なくとも一つは存在するかをチェックする。すべてのSj =Hj がほぼ同じ向きになる領域があれば、(1)の案を変更してやり直す。
(5)空間V内部の点について、順方向の計算で得たq1,q2,q3 から、ニュートン法でx、y、zへの逆算の数値実験を行ってみる。q1,q2,q3 が条件によって選択されていれば、ニュートン法の中で使う表式も連動して切換える。初期値はq1,q2,q3 の値に依存して決め、収束性を上げてもよい。収束しない領域、q1,q2,q3 からx,y,zへの感度が大きすぎる領域がないことを確認する。
【0019】
本方式の利点は次の点である。
▲1▼.以上の手順では、順計算による(1)から(4)までの部分と(5)の逆計算の部分は分離される。
▲2▼.逆算アルゴリズムには、ニュートン法を利用する。この方法は一般的に、順方向の計算ができれば利用できる。ここで、逆算に必要なのは、双極子磁場を計算して標点座標から受信ベクトルを求める順方向の関係と、そのヤコビアンだけでよい。逆行列は、そのつど数値的に得ればよい。すなわち、コイル配置に特異的に依存する関係は必要とせず、コイル配置は逆算アルゴリズムに先行して独立に考えられる。
【0020】
▲3▼.受信ベクトルの要素sjk(1≦j≦E,k=u,v,w)から作られる2次量のうち、Λに依存しないものだけを用いて、x,y,zの逆算を先に行い、Λの決定は、順計算によるHj(x,y,z) の向きをSj Λの向きに等置してΛを求める問題として、後で別個に行うことにする。Λに依存しない量には、受信ベクトルSj の大きさ |Sj|=(sju 2 +sjv 2 +sjw 21/2 、Si とSj のなす平面角がある。
【0021】
次に、上記点走査方式における送信コイルの配置パターンと励磁パターンについて説明する。
本方式によって構成される送信コイルの配置ならびに励磁パターンの一つとして点走査方式を構成する。点走査方式は、同一平面上に格子状に配置した送信コイルに対する磁場の励磁パターンを決定する方式である。図1に、2×2の送信コイルの配置を示す。図1の計測領域は、0≦x≦L,0≦y≦L,0.6L≦z≦2Lの直方体である。ρは約26 程度である。符号を含めて12ビットの相対分解能でのHj Λ-1の計測により、0.001L程度の分解能を得ることができる。コイルは計測空間内部に置かない。
【0022】
この解における励磁パターンは、単にそれぞれのコイルを一つずつ、同じ双極子能率で励磁するものである。物理的定数を除けば、
1 =(1,0,0,0), M2 =(0,1,0,0)
3 =(0,0,1,0), M4 =(0,0,0,1)
である。これより、この解を「点走査方式」と呼ぶことにする。
点走査方式では、N=E=(a+1)(b+1)とすることにより、ρ、磁気センサの感度、およびzの範囲を不変としたまま、計測領域を0≦x≦aL、0≦y≦bLのように拡大できる。これはq1,q2,q3 として |Sj|の大きいほうから3個を選択していることによる。
【0023】
上記点走査方式の利点は、次のような点にある。
従来の方法では、大きい動径に対する標点位置の決定は高精度でオイラー角を得なければならず、そのためにフェライトの精密削り出し加工などによる高価な3軸直交コイルが必要であった。これに対して点走査方式は、原理上特殊な精密部品を必要とせず、安価なハードウェアによって高い標点位置精度が得られるというメリットを有する。これは、本発明における標点姿勢が標点座標の算出に影響しないことのほかに、点走査方式固有の送信コイルの配置パターンによる。
また、点(x,y,z)における磁場強度|H(x,y,z)|は、(x2 +y2 +4z21/2 /(x2 +y2 +z22 である。x=r cosθ,y=0,z=r sinθでは、(1+3 sin2 θ)1/2 /r3 である。この式より直ちに、|H(x,y,z)|は双極子からの距離に対する依存性が大きく、方位に対する依存性が小さいことがわかる。点走査方式は、互いに十分離れた位置にある3個の双極子による磁場強度を用いて標点座標を算出しているので、本質的には3点からの距離の基づく測量に近い。しかもこのときの磁場強度の変化は、逆3乗則によって、単なるユークリッド距離よりも相対変化が拡大されている。
【0024】
ところが、方位に対する磁場強度の感度は、1°当たり高々1.5%である。このため、双極子コイルの方位の誤差は、少なくとも標点座標の算出には重大な誤差をもたらさない。すなわち、点走査方式似用いるコイルは、単純な1軸のものでよいだけではなく、その取付けにも厳密な方位精度を必要としない。また、センサ側の受信コイルの直交度の誤差も、 |Sj|=(sju 2 +sjv 2 +sjw 21/2 に与える影響は小さく、1°について1%程度にすぎない。すなわち、標点座標の算出を目的とする限り、センサ側の微小な3軸コイルも、精密加工をする必要はない。
【0025】
また、標点姿勢に対しては、双極子コイルの方位誤差および受信コイルの角度誤差がほぼ感度1で伝達される。標点姿勢の算出結果は、標点位置の計算には影響しないので、双極子コイルの取付け精度やセンサの加工精度は、標点姿勢の要求精度に見合ったものとすればよい。以上より、点走査方式は、従来よりはるかに安価で堅牢な磁気式モーションキャプチャ装置の基礎とするのに適した解である。
【0026】
以下に、N=4での点走査方式の実施例を述べる。
N=4の点走査方式のコイル配置と計測領域は、図1に示す通りである。
|S1|=(s1u 2 +s1v 2 +s1w 21/2
|S2|=(s2u 2 +s2v 2 +s2w 21/2
|S3|=(s3u 2 +s3v 2 +s3w 21/2
|S4|=(s4u 2 +s4v 2 +s4w 21/2
の中の大きい3者を、それぞれq1,q2,q3 とする。ρ=56.1である。
Nの拡張は、z=0の面内の格子点に送信コイルを増やしていくだけで、q1,q2,q3 はやはり |Sj|の大きいものから3者とするので、各送信コイル毎についての標点座標の計算では、添え字とx,yのオフセット以外変わらない。
【0027】
以上により、標点座標の算出については、q1 = |S1|,q2 = |S2|,q3 = |S3|とし、D1,D2,D3 のつくる直角三角形の真下の三角柱のうちの計測領域に含まれる部分について示せば十分で、一般性を失うことはない。
1,D2,D3 のそれぞれの位置は、
(xD1,yD1,zD1)=(0,0,0)
(xD2,yD2,zD2)=(L,0,0)
(xD3,yD3,zD3)=(0,L,0)
である。
【0028】
標点座標は、ニュートン法によって、次の計算を反復して得る。
Δq1 =q1 −q1n(xn,yn,zn
Δq2 =q2 −q2n(xn,yn,zn
Δq3 =q3 −q3n(xn,yn,zn
(xn+1,yn+1,zn+1 )=(xn,yn,zn )+(Δq1,Δq2,Δq3 )J-1
L=1として、qk (k=1,2,3)は次のように与えられる。
Figure 0004452868
次に、ヤコビアンJの表式にxn,yn,zn を代入してから、数値的に逆行列を計算すればよい。初期点は固定点(x0,y0,z0 )=(0.5L,0.5L,0.6L)である。
【0029】
標点姿勢の計算は次の通りである。
標点座標x,y,zはすでに得られ、H1 とH2 は平行(0°または180°)ではないとする。もし、平行または平行に近ければ、別の組み合わせを選択する。対応する受信ベクトル、
1 =H1 Λ-1
2 =H2 Λ-1
を標点姿勢Λの計算に用いる。これは1自由度の過剰拘束問題である。
1 /|S1|,S2 /|S2|,H1 /|H1|,H2 /|H2|を、それぞれ、(u1,v1,w1 ),(u2,v2,w2 )(x1,y1,z1 )(x2,y2,z2 )とし、Λ-1の導出過程を示す。
【0030】
まず、仮にS1 /|S1|,H1 /|H1|をそれぞれz軸方向の単位ベクトル(0,0,1)に一致させるための回転行列A,Bを考える。すなわち、(0,0,1)=(u1,v1,w1 )Aおよび(0,0,1)=(x1,y1,z1 )Bとする。これより、(u1,v1,w1 )=(x1,y1,z1 )BA-1である。A,Bは一意には定まらないが、Aについては、x軸回りとy軸回りの回転に分け、
Figure 0004452868
とすれば、(0,0,1)=(u1,v1,w1 )Aを満足するものを得る。
【0031】
同様にBは、
Figure 0004452868
とすればよい。平方根は正を選択する。
【0032】
ここで、Cをz軸回りの回転行列、
Figure 0004452868
とすると、z軸方向のベクトルは回転の影響を受けないから、
(0,0,1)=(x1,y1,z1 )BC
すなわち、
(u1,v1,w1 )=(x1,y1,z1 )BCA-1
が成り立つ。ここで、
(u2,v2,w2 )=(x2,y2,z2 )BCA-1
も成立するように、Cを定めたい。しかし、この表式のままでは1自由度の過剰拘束である。
【0033】
(x2,y2,z2 )Bの第1、第2要素(u2,v2,w2 )Aの第1、第2要素をそれぞれα0000 とし、
α=α0 /√α0 2+β0 2, β=β0 /√α0 2+β0 2
γ=γ0 /√γ0 2+δ0 2, δ=δ0 /√γ0 2+δ0 2
について、2次元問題、
Figure 0004452868
(ただし、c1 2+c2 2=1,α2 +β2 =1,γ2 +δ2 =1)
によってc1,c2 を求める。これは(u2,v2,w2 )Aと(x2,y2,z2 )Bのxy面内の射影の向きだけ一致させることになり、射影の長さを1としたことによって1自由度放棄した。
【0034】
1,c2 は一意的に定まり、
1 =αγ+βδ, c2 =−αδ+βγ
である。ただし、
Figure 0004452868
以上のように、A,B,Cが決定され、BCA-1=Λ-1が得られた。
【0035】
次に、図2を参照し、N=4での点走査方式による磁気式モーションキャプチャ装置の回路全体の構成例について説明する。
図2における送信コイルD1 〜D4 は、図1に示すように配置されるもので、それらの送信コイルD1 〜D4 および駆動回路の規模は、磁気センサまでの最大距離によって異なるが、試作では直径15mm、30ターン程度のフェライト鉄心入りソレノイドコイルを用い、数μFのコンデンサで並列共振させて電圧駆動するようにしている。発生する磁場は正弦波(8kHz)で、正弦信号発生機構によって発生させる。発生した正弦波は、コンピュータから時分割装置に送られる励磁パターンに従って送信コイルを励磁する。
【0036】
u,v,wの各磁気センサは、座標系の3軸に対する磁場ベクトルの各成分を検知するためのもので、試作では、直径8mm、高さ7mmのドラムコアに巻いたコイルを、1軸は1つ、他の2軸はそれぞれ2個を直列にし、合計5個を各軸のコイルの中心が一致するように配置して、3軸磁気センサとした。3組のコイルはそれぞれ共振させ、さらにセンスアンプを兼ねた2段の能動フィルタをスタガして、−6dB帯域は7〜9kHz、低域40dB/dec、高域−60dB/decの減衰特性を得ている。整定時間は2msである。
受信信号の振幅と位相の正負の検出は、積分器において正弦波半周期を同期的に積分して行い、A/D変換器において符号を含めて12ビットでA/D変換している。これらの部分はマルチプレクサによって3軸が時分割共用している。
能動フィルタ部のダイナミックレンジは、増幅器の飽和と内部雑音の比率で制限されるが、線形回路なのでかなり大きい。一方、積分器の前には、自動利得切換機構が必須である。試作では25 倍(>33 倍)を2倍きざみで切換える計算機制御の利得切換回路、およびこれに並行に最適利得レンジを直ちに判定するための対数増幅回路を装備した。3軸は同一の利得レンジを用いる。
【0037】
上記図1および図2の構成において、L=0.75に設定した場合、計測範囲である0.75×0.75×1.05mの領域全体にわたって計測可能である。zが0.5m程度の位置では、各方向とも1mm以内の分解能および安定度を得た。zが1.5mに近い位置では、z方向の分解能は維持されるが、xy方向の分解能および安定度が最大3mm程度まで低下する。
標点姿勢については、1°程度の分解能が確認された。標点姿勢からの標点位置へのクロストーク、すなわちセンサを回転させたときの座標の読みのずれは、1mm程度であった。
【0038】
【発明の効果】
以上に詳述した本発明の磁気式モーションキャプチャ装置における座標・姿勢の計測方式によれば、次のような効果が期待できる。
室空間程度の大きさでのモーションキャプチャを行う産業分野では、実時間で計測データの欠損や計測環境の影響に対して頑健性の高い計測手法が求められている。現在、実用に供されている方式には、光学式と磁気式がある。光学式の装置がもっともよく用いられているが、自動トラッキングに失敗した点を人手で補う等、煩雑な問題がある。特に、標点の隠蔽や交差移動には一般的な解決策がない。
一方、磁気方式では、原理上トラッキングに起因する問題はあり得ず、鉄や導体による妨害がない環境では高精度が期待できる。しかし、現在、実用に供されている方式(従来の技術として前述)では、中心が同一の、軸が直交する3個のコイルを時分割励磁して磁場をつくり、このコイル配置に依存して、オイラー角からセンサ座標を求めている。計測可能な空間はコイルの中心を中心とする球である。そのため、計測空間に関する制限が強く、さらにコイルの高精度な加工を必要とするため、性能に比して高価であった。
【0039】
しかるに、本発明の計測方式においては、いろいろなコイル配置に対して標点座標を求める、より一般的な方法を用い、計測可能範囲を計測対象の性質に合った形状に定めることができ、従来の方式に比べて計測可能範囲の絶対的な大きさを拡張することができる。また、特殊な加工技術を用いなくても、一般的な電子部品によって装置を構成できるため、装置を安価に供給することができる。
【図面の簡単な説明】
【図1】本発明に係る計測方式において点走査方式の計測に用いる2×2の送信コイル配置を示す斜視図である。
【図2】本発明に係る計測方式を適用する点走査方式による磁気式モーションキャプチャ装置の回路構成を示すブロック説明図である。

Claims (4)

  1. 計測空間内の平面上の格子点の位置に、軸を上記平面に鉛直とした磁気双極子からなる送信コイルを3箇所以上に設置して、磁場の強度と向きを設定し、それらの送信コイルを3通りの異なる組み合わせで励磁したときの磁場強度を、それぞれ上記空間内に位置する磁気センサによって計測するに当たり、磁気センサーで計測して計算に用いる受信ベクトルの大きさの最大値と最小値を制限し、その範囲内の磁場強度になる空間を計測範囲として、それぞれの励磁に対する座標を独立変数、磁場強度を従属変数とする式の従属変数にそれぞれの計測値を代入して得られた3つの式からなる3元連立方程式の解として、上記磁気センサの座標を求めることを特徴とする磁気式モーションキャプチャ装置における計測方式。
  2. 計測空間内の平面上の格子点の位置に、軸を上記平面に鉛直とした磁気双極子からなる送信コイルを2箇所以上に設置して、磁場の強度と向きを設定し、それらの送信コイルを2通りの異なる組み合わせで励磁したときの磁場の向きを、それぞれ上記空間内に位置する磁気センサによって磁気センサの局所座標軸に対して計測するに当たり、磁気センサーで計測して計算に用いる受信ベクトルの大きさの最大値と最小値を制限し、その範囲内の磁場強度になる空間を計測範囲として、それぞれの励磁についての既知の座標における磁場の向きと計測した磁場の向きが等しくなるような局所座標軸の回転行列によって磁気センサの姿勢を求めることを特徴とする磁気式モーションキャプチャ装置における計測方式。
  3. 計測空間内の平面上の格子点の位置に、軸を上記平面に鉛直とした複数の磁気双極子からなる送信コイルを設置して、磁場の強度と向きを設定し、それらのコイルを1つずつ順に励磁して、それぞれの送信コイルを励磁したときの磁場強度および磁気センサの局所座標軸に対する磁場の向きを3軸磁気センサによって計測するに当たり、磁気センサーで計測して計算に用いる受信ベクトルの大きさの最大値と最小値を制限し、その範囲内の磁場強度になる空間を計測範囲とし、計測した磁場強度のうちから3通りの磁場強度計測値を選んで、座標を独立変数、それぞれ対応する送信コイルのつくる磁場強度を従属変数とする式の従属変数にそれぞれの計測値を代入して得られた3つの式からなる3元連立方程式の数値解を、ニュートン法によって得ることにより、上記磁気センサの座標を求め、かつ2通りの磁場の向きの計測値を選んで、既知の座標における対応する送信コイルのつくる磁場の向きと計測した磁場の向きが等しくなるような局所座標軸の回転行列によって磁気センサの姿勢を求めることを特徴とする磁気式モーションキャプチャ装置における計測方式。
  4. 送信コイルが生成する磁場の磁場強度の最大値と最小値の比よりも大きな利得切り替え幅を持つ利得切り替え回路を用いて、計測範囲内の磁気センサーからの信号の増幅率を段階的に変えることにより、計測範囲内の磁気センサーからの信号をA/D変換器で変換する際の分解能がほぼ等しくなるように構成した信号処理方式を前提とし、計測範囲内の送信コイルの励磁パターンと配置パターンを定めることを特徴とする請求項1〜3のいずれかに記載の磁気式モーションキャプチャ装置における計測方式。
JP33850598A 1998-11-12 1998-11-12 磁気式モーションキャプチャ装置における計測方式 Expired - Lifetime JP4452868B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33850598A JP4452868B2 (ja) 1998-11-12 1998-11-12 磁気式モーションキャプチャ装置における計測方式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33850598A JP4452868B2 (ja) 1998-11-12 1998-11-12 磁気式モーションキャプチャ装置における計測方式

Publications (2)

Publication Number Publication Date
JP2000146509A JP2000146509A (ja) 2000-05-26
JP4452868B2 true JP4452868B2 (ja) 2010-04-21

Family

ID=18318796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33850598A Expired - Lifetime JP4452868B2 (ja) 1998-11-12 1998-11-12 磁気式モーションキャプチャ装置における計測方式

Country Status (1)

Country Link
JP (1) JP4452868B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498478B2 (en) 2000-08-14 2002-12-24 Radic Co., Ltd. Azimuth measuring method, azimuth measuring apparatus, position measuring method, and position measuring apparatus
JP3762309B2 (ja) * 2002-02-18 2006-04-05 キヤノン株式会社 位置方向測定装置および情報処理方法
AU2003220185B2 (en) 2002-03-12 2007-05-10 Menache, Llc Motion tracking system and method
US7009561B2 (en) 2003-03-11 2006-03-07 Menache, Llp Radio frequency motion tracking system and method
US20060241397A1 (en) * 2005-02-22 2006-10-26 Assaf Govari Reference pad for position sensing
US8122783B2 (en) * 2008-02-22 2012-02-28 Sauer-Danfoss Inc. Joystick and method of manufacturing the same
DE102010029668A1 (de) * 2010-06-02 2011-12-08 Robert Bosch Gmbh Kalibrierung eines dreiachsigen Magnetfeldsensors
WO2018088198A1 (ja) * 2016-11-10 2018-05-17 株式会社デンソー 車両システム、携帯機、及び車載装置
JP6549640B2 (ja) * 2016-11-10 2019-07-24 株式会社Soken 車両システム、携帯機、及び車載装置
CN109782198A (zh) * 2019-03-04 2019-05-21 西南石油大学 一种三轴双向补偿式磁场测量装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104001A (ja) * 1990-08-24 1992-04-06 Hitachi Denshi Ltd 表示制御装置
JPH0765882B2 (ja) * 1990-11-05 1995-07-19 松下電器産業株式会社 位置検出器およびその検出器を用いたレンズ装置
DE4407785A1 (de) * 1994-03-09 1995-09-14 Philips Patentverwaltung Anordnung zur Bestimmung der räumlichen Position eines gegenüber einem Bezugselement verschiebbaren Abtastelements
US5600330A (en) * 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US5729129A (en) * 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator

Also Published As

Publication number Publication date
JP2000146509A (ja) 2000-05-26

Similar Documents

Publication Publication Date Title
US4035762A (en) Position sensing readout
JP3380263B2 (ja) 移動体の位置および方向の検出装置
EP0581434B1 (en) Compensation method for an electromagnetic remote position and orientation sensor
US6952201B2 (en) Three-dimensional information detecting device, three-dimensional information detecting sensor device, and three-dimensional information indicating device
JP4452868B2 (ja) 磁気式モーションキャプチャ装置における計測方式
JPH08512125A (ja) 妨害金属がある場所で物体の位置と向きを測定する方法および装置
JP7522235B2 (ja) リアルタイム空間高精度磁気位置決め装置、放射線結像システムおよび磁気位置決め方法
JP5386698B2 (ja) 室内位置検出装置
CN109238175A (zh) 一种基于激光跟踪仪的空间平面夹角测量方法
CN109633540B (zh) 一种磁源的实时定位系统及实时定位方法
Moritz et al. Analysis of an ultrasonic spatial locating system
CN111504301B (zh) 一种基于磁场特征矢量的定位方法、装置及系统
CN115728829A (zh) 一种基于磁梯度全张量的磁性目标定位方法
JPH033190B2 (ja)
US11547380B2 (en) Real-time spatial precise magnetic positioning device, radiographic imaging system and magnetic positioning method
CN113108777B (zh) 基于磁信标的单锚定位方法
Qian et al. Design of a three degrees-of-freedom biomimetic microphone array based on a coupled circuit
CN114280655A (zh) 一种基于全球导航卫星系统的测姿方法和系统
Blankenbach et al. Magnetic Indoor Local Positioning System
CN113899371B (zh) 一种单线圈接收端的电磁空间定位模型与定位算法
JP2006177684A (ja) 磁気マーカを用いた位置・方向計測方法および位置・方向計測方法システム
Sarcevic et al. Fingerprint-based fusion of magnetic field data with multiple wireless technologies for indoor mobile robot positioning
Guerret et al. Demodulation Methods for a Wireless Electromagnetic Tracker
US20240183689A1 (en) Control method and controller related to electromagnetic tracking
RU2241958C9 (ru) Способ (варианты) и следящая система для определения положения и ориентации подвижного объекта

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term