JP4451406B2 - Bidirectional constant pressure expansion valve - Google Patents

Bidirectional constant pressure expansion valve Download PDF

Info

Publication number
JP4451406B2
JP4451406B2 JP2006047908A JP2006047908A JP4451406B2 JP 4451406 B2 JP4451406 B2 JP 4451406B2 JP 2006047908 A JP2006047908 A JP 2006047908A JP 2006047908 A JP2006047908 A JP 2006047908A JP 4451406 B2 JP4451406 B2 JP 4451406B2
Authority
JP
Japan
Prior art keywords
valve
pair
refrigerant
end side
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006047908A
Other languages
Japanese (ja)
Other versions
JP2007225208A (en
Inventor
聡 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Original Assignee
Pacific Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd filed Critical Pacific Industrial Co Ltd
Priority to JP2006047908A priority Critical patent/JP4451406B2/en
Publication of JP2007225208A publication Critical patent/JP2007225208A/en
Application granted granted Critical
Publication of JP4451406B2 publication Critical patent/JP4451406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)
  • Fluid-Driven Valves (AREA)

Description

本発明は、ヒートポンプ回路の室外熱交換器と室内熱交換器の間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁に関する。   The present invention relates to a bidirectional constant pressure expansion valve that is connected between an outdoor heat exchanger and an indoor heat exchanger of a heat pump circuit, allows refrigerant to flow in both directions, and makes the refrigerant pressure on the downstream side constant.

図6に示した従来の双方向定圧膨張弁は、冷媒が流される流路1の軸方向に1対のボール弁機構2,2を有すると共に、それらボール弁機構2,2の間に可動体3を直動可能に備えている。可動体3は、その直動方向に延びたベローズ4と、そのベローズ4の挫屈を規制しかつベローズ4を伸縮可能に支持した直動支持機構5とを備えている。直動支持機構5は、ベローズ4の両端に固定された可動盤5A,5Aから支持突部5B,5Bを互いに接近するように延ばし、それら支持突部5B,5Bに支持ピン5Cを貫通させて、支持突部5B,5Bの相対的な傾きを規制しつつ支持突部5B,5B同士が相互に直動可能な構造になっている。   The conventional bidirectional constant pressure expansion valve shown in FIG. 6 has a pair of ball valve mechanisms 2 and 2 in the axial direction of the flow path 1 through which the refrigerant flows, and a movable body between the ball valve mechanisms 2 and 2. 3 is provided so that it can move linearly. The movable body 3 includes a bellows 4 extending in the linear motion direction, and a linear motion support mechanism 5 that restricts the buckling of the bellows 4 and supports the bellows 4 so that the bellows 4 can be expanded and contracted. The linear motion support mechanism 5 extends support protrusions 5B and 5B from movable plates 5A and 5A fixed to both ends of the bellows 4 so as to approach each other, and allows support pins 5C to pass through the support protrusions 5B and 5B. The supporting protrusions 5B and 5B are structured such that the supporting protrusions 5B and 5B can directly move relative to each other while restricting the relative inclination of the supporting protrusions 5B and 5B.

可動体3の両端部からは各ボール弁機構2,2に向かって1対の押圧シャフト6,6が延びており、各押圧シャフト6,6がベローズ4の伸縮度に応じた押圧力で各ボール弁機構2,2のボール2A,2Aを押圧して、各ボール弁機構2の弁開度を調節する。即ち、冷媒が例えば図6における左から右に向かって流れると、可動体3が下流側に移動して流路1内の壁部に当接し、一方の押圧シャフト6が下流側(同図の右側)のボール弁機構2を開弁状態に保持する。この結果、ベローズ4にボール弁機構2の下流側の冷媒圧力がかかり、他方の押圧シャフト6がベローズ4の弾発力に応じた押圧力で上流側(同図の左側)のボール弁機構2のボール2Aを押圧する。これにより、上流側のボール弁機構2が下流側の冷媒圧力に応じた弁開度になり、下流側の冷媒を一定圧力にすることができる(例えば、特許文献1参照)。
特許第3418271号公報(段落[0024]〜[0028]、第1図)
A pair of pressing shafts 6, 6 extend from both ends of the movable body 3 toward the ball valve mechanisms 2, 2, and each pressing shaft 6, 6 has a pressing force corresponding to the degree of expansion / contraction of the bellows 4. The balls 2A and 2A of the ball valve mechanisms 2 and 2 are pressed to adjust the valve opening of each ball valve mechanism 2. That is, for example, when the refrigerant flows from left to right in FIG. 6, the movable body 3 moves to the downstream side and comes into contact with the wall portion in the flow path 1, and one pressing shaft 6 is connected to the downstream side (in FIG. The ball valve mechanism 2 on the right side is held open. As a result, the refrigerant pressure on the downstream side of the ball valve mechanism 2 is applied to the bellows 4, and the other pressing shaft 6 is pressed upstream of the ball valve mechanism 2 on the upstream side (the left side in the figure) with a pressing force corresponding to the elastic force of the bellows 4. The ball 2A is pressed. Thereby, the ball valve mechanism 2 on the upstream side has a valve opening degree corresponding to the refrigerant pressure on the downstream side, and the downstream refrigerant can be kept at a constant pressure (see, for example, Patent Document 1).
Japanese Patent No. 3418271 (paragraphs [0024] to [0028], FIG. 1)

しかしながら、上記した従来の双方向定圧膨張弁では、感圧部材としてベローズ4を用いていたので高価になっていた。そこで、ベローズより安価な感圧部材であるダイヤフラムを用いた双方向定圧膨張弁の開発が求められていた。   However, the conventional bidirectional constant pressure expansion valve described above is expensive because the bellows 4 is used as the pressure sensitive member. Therefore, development of a bi-directional constant pressure expansion valve using a diaphragm, which is a pressure-sensitive member that is less expensive than a bellows, has been demanded.

本発明は、上記事情に鑑みてなされたもので、従来より低コスト化が可能な双方向定圧膨張弁の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a bidirectional constant pressure expansion valve that can be manufactured at a lower cost than conventional ones.

上記目的を達成するためになされた請求項1の発明に係る双方向定圧膨張弁(10)は、ヒートポンプ回路(90)の室内熱交換器(92A)と室外熱交換器(91A)との間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁(10)において、冷媒の流路(11)を内部に有したボディ(10B)と、ボディ(10B)に設けられて、流路(11)を一端側領域(R1)と中間領域(R3)と他端側領域(R2)とに区画する1対の対向壁(13)と、1対の対向壁(13)に貫通形成されて、略同軸上に配置された1対の弁口(16A,16B)と、一端側領域(R1)内及び他端側領域(R2)内にそれぞれ配置されて、各弁口(16A,16B)を開閉する1対の弁体(19)と、各弁体(19)を弁口(16A,16B)側に付勢する1対の弁体付勢ばね(17)と、中間領域(R3)に収容されて1対の対向壁(13)の対向方向に延びかつ、それら1対の対向壁(13)の間で直動可能な中間筒体(31)と、中間筒体(31)の両端を閉塞し、中間領域(R3)の内部圧力に応じて変形する1対のダイヤフラム(34)と、1対の弁口(16A,16B)にそれぞれ遊嵌されて弁体(19)とダイヤフラム(34)との間で突っ張り状態になり、ダイヤフラム(34)の変形量に応じて弁体(19)を移動して弁口(16A,16B)の弁開度を変更する1対の当接シャフト(37)とを備えたところに特徴を有する。   In order to achieve the above object, a bidirectional constant pressure expansion valve (10) according to the invention of claim 1 is provided between an indoor heat exchanger (92A) and an outdoor heat exchanger (91A) of a heat pump circuit (90). In a bidirectional constant pressure expansion valve (10) that is connected to the refrigerant and that allows the refrigerant to flow in both directions and to make the refrigerant pressure downstream, the body (10B) having a refrigerant flow path (11) therein. And a pair of opposing walls (13) that are provided in the body (10B) and divide the flow path (11) into one end side region (R1), an intermediate region (R3), and the other end side region (R2). And a pair of valve ports (16A, 16B) that are formed so as to penetrate the pair of opposing walls (13) and are arranged substantially coaxially, and the one end side region (R1) and the other end side region (R2). A pair of valve bodies (19) that are respectively disposed within and open and close each valve port (16A, 16B); A pair of valve body urging springs (17) for urging the valve body (19) toward the valve port (16A, 16B) and a pair of opposed walls (13) that are accommodated in the intermediate region (R3) The intermediate cylinder (31) that extends in the direction and can be linearly moved between the pair of opposing walls (13) and both ends of the intermediate cylinder (31) are closed, and the internal pressure in the intermediate region (R3) In response to the pair of diaphragms (34) deformed in response to the pair of valve ports (16A, 16B), the valve body (19) and the diaphragm (34) are stretched, and the diaphragm ( And a pair of abutting shafts (37) for changing the valve opening degree of the valve ports (16A, 16B) by moving the valve body (19) in accordance with the deformation amount of 34).

請求項2の発明に係る双方向定圧膨張弁(10)は、ヒートポンプ回路(90)の室内熱交換器(92A)と室外熱交換器(91A)との間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁(10)において、冷媒の流路(11)を内部に有したボディ(10B)と、ボディ(10B)に設けられて、流路(11)を一端側領域(R1)と中間領域(R3)と他端側領域(R2)とに区画する1対の対向壁(13)と、1対の対向壁(13)に貫通形成されて、略同軸上に配置された1対の弁口(16A,16B)と、一端側領域(R1)内及び他端側領域(R2)内にそれぞれ配置されて、各弁口(16A,16B)を開閉する1対の弁体(19)と、各弁体(19)を弁口(16A,16B)側に付勢する1対の弁体付勢ばね(17)と、1対の対向壁(13)の対向方向に延びかつボディ(10B)に固定された中間筒体(31)と、中間筒体(31)の両端を閉塞し、中間領域(R3)の内部圧力に応じて変形する1対のダイヤフラム(34)と、1対の弁口(16A,16B)にそれぞれ遊嵌されて弁体(19)とダイヤフラム(34)との間で突っ張り状態になり、ダイヤフラム(34)の変形量に応じて弁体(19)を移動して弁口(16A,16B)の弁開度を変更する1対の当接シャフト(37)とを備えたところに特徴を有する。   The bidirectional constant pressure expansion valve (10) according to the invention of claim 2 is connected between the indoor heat exchanger (92A) and the outdoor heat exchanger (91A) of the heat pump circuit (90) so that the refrigerant is bidirectional. In the bidirectional constant pressure expansion valve (10) that is flowed and can make the downstream refrigerant pressure constant, the body (10B) having the refrigerant flow path (11) therein and the body (10B) are provided. A pair of opposing walls (13) that divide the flow path (11) into one end side region (R1), an intermediate region (R3), and the other end side region (R2), and a pair of opposing walls (13 ) And a pair of valve ports (16A, 16B) disposed substantially coaxially, and disposed in the one end side region (R1) and the other end side region (R2), respectively. A pair of valve bodies (19) for opening and closing the mouths (16A, 16B), and the valve bodies (19) are connected to the valve mouths (16A, 1 B) a pair of valve body urging springs (17) urging to the side, an intermediate cylinder (31) extending in the opposing direction of the pair of opposing walls (13) and fixed to the body (10B), Both ends of the intermediate cylinder (31) are closed and loosely fitted to a pair of diaphragms (34) and a pair of valve ports (16A, 16B) which are deformed according to the internal pressure of the intermediate region (R3). The valve body (19) and the diaphragm (34) are in a tension state, and the valve body (19) is moved according to the deformation amount of the diaphragm (34) to increase the valve opening of the valve ports (16A, 16B). It is characterized by having a pair of abutting shafts (37) to be changed.

請求項3の発明は、請求項1又は2に記載の双方向定圧膨張弁(10)において、1対のダイヤフラム(34)の弾性係数を異ならせたところに特徴を有する。   The invention of claim 3 is characterized in that in the bidirectional constant pressure expansion valve (10) according to claim 1 or 2, the elastic coefficients of the pair of diaphragms (34) are made different.

請求項4の発明は、請求項1乃至3の何れかに記載の双方向定圧膨張弁(10)において、中間筒体(31)の内面における軸方向の中間部分に、ばね係止壁(31A)を突出形成し、ばね係止壁(31A)と両方のダイヤフラム(34)との間に1対の感圧補助ばね(32)を突っ張り状態にして設けたところに特徴を有する。   According to a fourth aspect of the present invention, in the bidirectional constant pressure expansion valve (10) according to any one of the first to third aspects, a spring locking wall (31A) is provided at an axially intermediate portion of the inner surface of the intermediate cylinder (31). ), And a pair of pressure-sensitive auxiliary springs (32) are provided in a stretched state between the spring locking wall (31A) and both diaphragms (34).

請求項5の発明は、請求項4に記載の双方向定圧膨張弁(10)において、1対の感圧補助ばね(32)の弾性係数を異ならせたところに特徴を有する。   The invention of claim 5 is characterized in that in the bidirectional constant pressure expansion valve (10) according to claim 4, the elastic coefficients of the pair of pressure sensitive auxiliary springs (32) are made different.

請求項6の発明は、請求項1乃至5の何れかに記載の双方向定圧膨張弁(10)において、一方の弁口(16A)と当接シャフト(37)との隙間の開口面積を、他方の弁口(16B)と当接シャフト(37)との隙間の開口面積より広くしたところに特徴を有する。   The invention of claim 6 is the bidirectional constant pressure expansion valve (10) according to any one of claims 1 to 5, wherein the opening area of the gap between one valve port (16A) and the contact shaft (37) is It is characterized in that it is wider than the opening area of the gap between the other valve port (16B) and the contact shaft (37).

請求項1の双方向定圧膨張弁(10)によれば、ヒートポンプ回路(90)を冷房運転と暖房運転との何れか一方にして、冷媒が一端側領域(R1)、中間領域(R3)、他端側領域(R2)の順番に流れると、中間筒体(31)は冷媒に押されて他端側領域(R2)側に移動する。すると、一端側領域(R1)側の弁体(19)が弁口(16A)に接近する一方、他端側領域(R2)側の弁体(19)は、弁口(16B)から離され、各弁体(19)と各ダイヤフラム(34)との間で当接シャフト(37)が突っ張り状態になる。   According to the bidirectional constant pressure expansion valve (10) of claim 1, the heat pump circuit (90) is in one of the cooling operation and the heating operation, and the refrigerant is in the one end side region (R1), the intermediate region (R3), When flowing in the order of the other end side region (R2), the intermediate cylinder (31) is pushed by the refrigerant and moves to the other end side region (R2) side. Then, the valve element (19) on the one end side region (R1) side approaches the valve opening (16A), while the valve element (19) on the other end side region (R2) side is separated from the valve opening (16B). The contact shaft (37) is in a stretched state between each valve element (19) and each diaphragm (34).

この状態で、中間領域(R3)内の冷媒圧力に応じてダイヤフラム(34)が変形すると、その変形に伴って各弁体(19)の弁口(16A,16B)に対する位置が変化して弁開度が所定の範囲で変わる。ここで、下流に位置した他端側領域(R2)の弁体(19)は弁口(16B)から離されて弁開度が大きくなっているので、その弁開度が所定の範囲で変化しても流量及び冷媒圧力への影響は小さい。これに対し、上流に位置した一端側領域(R1)の弁体(19)は弁口(16A)に接近して弁開度が小さくなっているので、その弁開度が所定の範囲で変化した場合の流量及び冷媒圧力への影響は大きい。そして、中間領域(R3)内の冷媒圧力が比較的大きくなると、弁体(19)が弁口(16A)に近づき、一端側領域(R1)の弁口(16A)を通過する冷媒の流量が絞られて、中間領域(R3)内の冷媒圧力が下がる。これとは逆に、中間領域(R3)内の冷媒圧力が比較的小さくなると、一端側領域(R1)側の弁口(16A)の弁開度が大きくなり、一端側領域(R1)の弁口(16A)を通過する冷媒の流量が増加して、中間領域(R3)内の冷媒圧力が上がる。これらにより、その弁口(16A)より下流側の冷媒圧力を一定にすることができる。また、ヒートポンプ回路(90)を冷暖房を切り替えると、冷媒が流れる方向が逆転し、上記した場合と同様に、上流に位置した他端側領域(R2)側の弁口(16B)の弁開度が、中間領域(R3)の冷媒圧力に応じて変化し、その弁口(16B)より下流側の冷媒圧力を一定にすることができる。   In this state, when the diaphragm (34) is deformed in accordance with the refrigerant pressure in the intermediate region (R3), the position of each valve element (19) with respect to the valve port (16A, 16B) is changed along with the deformation. The opening varies within a predetermined range. Here, since the valve element (19) of the other end side region (R2) located downstream is separated from the valve opening (16B) and the valve opening degree is large, the valve opening degree changes within a predetermined range. Even so, the effect on the flow rate and refrigerant pressure is small. On the other hand, the valve element (19) in the one end side region (R1) located upstream approaches the valve opening (16A) and the valve opening is reduced, so that the valve opening changes within a predetermined range. The effect on the flow rate and refrigerant pressure is great. When the refrigerant pressure in the intermediate region (R3) becomes relatively large, the valve body (19) approaches the valve port (16A), and the flow rate of the refrigerant passing through the valve port (16A) in the one end side region (R1) is increased. The refrigerant pressure in the intermediate region (R3) is reduced by being throttled. On the contrary, when the refrigerant pressure in the intermediate region (R3) becomes relatively small, the valve opening degree of the valve port (16A) on the one end side region (R1) side becomes large, and the valve in the one end side region (R1) becomes larger. The flow rate of the refrigerant passing through the port (16A) increases, and the refrigerant pressure in the intermediate region (R3) increases. As a result, the refrigerant pressure downstream of the valve port (16A) can be made constant. Further, when the heat pump circuit (90) is switched between cooling and heating, the direction in which the refrigerant flows is reversed, and the valve opening degree of the valve port (16B) on the other end side region (R2) side located upstream as in the above case. However, it changes according to the refrigerant | coolant pressure of an intermediate | middle area | region (R3), and can make the refrigerant | coolant pressure downstream from the valve port (16B) constant.

また、請求項2の双方向定圧膨張弁(10)によれば、冷媒が一端側領域(R1)、中間領域(R3)、他端側領域(R2)の順番に流れると、上流側に位置した一端側領域(R1)の弁体(19)は、冷媒の流体圧力に押されて弁口(16A)に接近し、弁体(19)とダイヤフラム(34)との間で当接シャフト(37)が突っ張り状態になる。一方、下流側に位置した他端側領域(R2)の弁体(19)は、冷媒の流体圧力に押されて弁口(16B)及び当接シャフト(37)から離れ、その弁口(16B)を冷媒が比較的自由に流れる状態なる。これにより、請求項1の双方向定圧膨張弁(10)と同様にし、上流側の弁口(16A,16B)の弁開度が中間領域(R3)の冷媒圧力に応じて変化し、下流側の冷媒圧力を一定にすることができる。   Further, according to the bidirectional constant pressure expansion valve (10) of claim 2, when the refrigerant flows in the order of the one end side region (R1), the intermediate region (R3), and the other end side region (R2), it is positioned upstream. The valve body (19) in the one end side region (R1) is pushed by the fluid pressure of the refrigerant and approaches the valve port (16A), and a contact shaft (between the valve body (19) and the diaphragm (34)) 37) is in a stretched state. On the other hand, the valve element (19) in the other end side region (R2) located on the downstream side is pushed away from the valve port (16B) and the contact shaft (37) by the fluid pressure of the refrigerant, and the valve port (16B) ) The refrigerant flows relatively freely. Thereby, similarly to the bidirectional constant pressure expansion valve (10) of claim 1, the valve opening degree of the upstream side valve ports (16A, 16B) changes according to the refrigerant pressure in the intermediate region (R3), and the downstream side The refrigerant pressure can be made constant.

このように、請求項1及び2の双方向定圧膨張弁(10)によれば、下流側の冷媒圧力を一定にすることができる。そして、従来の双方向定圧膨張弁で感圧部材として用いられていたベローズ(4)に代えてダイヤフラム(34)を用いたので、従来より低コスト化が可能になる。また、請求項2の構成によれば、可動感圧体30がボディ(10B)に固定されているので性能が安定し、耐久性にも優れる。さらに、請求項1及び2の双方向定圧膨張弁(10)は、各弁口(16A,16B)の弁開度を変更するためのダイヤフラム(34)を各弁口(16A,16B)毎に別々に備えているので、室内熱交換器(92A)側の弁口(16B)の冷媒圧力に対する弁開度の特性と、室外熱交換器(91A)側の弁口(16A)の冷媒圧力に対する弁開度の特性とを、それぞれ別々に適した特性に設定することができる。   Thus, according to the bidirectional constant pressure expansion valve (10) of claims 1 and 2, the downstream refrigerant pressure can be made constant. Since the diaphragm (34) is used instead of the bellows (4) used as a pressure-sensitive member in the conventional bidirectional constant pressure expansion valve, the cost can be reduced as compared with the conventional one. Moreover, according to the structure of Claim 2, since the movable pressure sensing body 30 is being fixed to the body (10B), performance is stabilized and it is excellent also in durability. Furthermore, the bidirectional constant pressure expansion valve (10) according to claims 1 and 2 has a diaphragm (34) for changing the valve opening degree of each valve port (16A, 16B) for each valve port (16A, 16B). Since it is provided separately, the characteristics of the valve opening degree with respect to the refrigerant pressure of the valve port (16B) on the indoor heat exchanger (92A) side and the refrigerant pressure of the valve port (16A) on the outdoor heat exchanger (91A) side The characteristics of the valve opening can be set to characteristics suitable for each.

具体的には、請求項3の双方向定圧膨張弁(10)のように、1対のダイヤフラム(34)の弾性係数を異ならせて、冷媒圧力及び冷媒流量が異なる冷房運転時と暖房運転時のそれぞれにおいて冷媒の圧力と流量を制御可能な最適な弁のリフト特性を得ることができる。   Specifically, as in the bi-directional constant pressure expansion valve (10) of claim 3, the elastic coefficients of the pair of diaphragms (34) are made different so that the refrigerant pressure and the refrigerant flow are different during cooling operation and heating operation. It is possible to obtain an optimal valve lift characteristic capable of controlling the refrigerant pressure and flow rate.

また、請求項4の双方向定圧膨張弁(10)のように、各ダイヤフラム(34)毎に感圧補助ばね(32)を別々に設けて、ダイヤフラム(34)と感圧補助ばね(32)とを合わせた弾発力によって弁体(19)を作動させてもよい。そして、この場合、請求項5の発明のように、1対の感圧補助ばね(32)の弾性係数を異ならせることで、最適な弁のリフト特性を得ることができる。   Further, as in the bi-directional constant pressure expansion valve (10) of claim 4, a pressure sensitive auxiliary spring (32) is provided separately for each diaphragm (34), and the diaphragm (34) and the pressure sensitive auxiliary spring (32) are provided. The valve body (19) may be operated by a resilient force combined with the above. In this case, the optimal valve lift characteristic can be obtained by making the elastic coefficients of the pair of pressure-sensitive auxiliary springs (32) different from each other as in the fifth aspect of the invention.

さらに、請求項6の双方向定圧膨張弁(10)のように、一方の弁口(16A)と当接シャフト(37)との隙間の開口面積を、他方の弁口(16B)と当接シャフト(37)との隙間の開口面積より広くしてもよい。これにより、暖房冷房の何れか一方の運転時における下流側の冷媒圧力が、他方の運転時における下流側の冷媒圧力より大きくなり、冷房運転時と暖房運転時のそれぞれで最適な温度及び圧力に制御された冷媒を室外及び室内の熱交換器(91A,92A)に供給することができる。   Further, as in the bi-directional constant pressure expansion valve (10) of claim 6, the opening area of the gap between one valve port (16A) and the contact shaft (37) is set in contact with the other valve port (16B). You may make it wider than the opening area of the clearance gap with a shaft (37). As a result, the refrigerant pressure on the downstream side during either one of the heating and cooling operations becomes larger than the refrigerant pressure on the downstream side during the other operation, and the optimum temperature and pressure are obtained during the cooling operation and the heating operation, respectively. The controlled refrigerant can be supplied to the outdoor and indoor heat exchangers (91A, 92A).

[第1実施形態]
以下、本発明の一実施形態を図1〜図4に基づいて説明する。
図1に示された本実施形態の双方向定圧膨張弁10のボディ10Bは、パイプ部材12の内部に1対の対向壁13,13を備えてなる。パイプ部材12は、例えば、断面円形をなして真っ直ぐ延びており、両端寄り位置でテーパー状に縮径され、中間部分より両端部の径が小さくなっている。
[First Embodiment]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
A body 10 </ b> B of the bidirectional constant pressure expansion valve 10 of the present embodiment shown in FIG. 1 includes a pair of opposing walls 13 and 13 inside a pipe member 12. For example, the pipe member 12 has a circular cross section and extends straight, and is reduced in a tapered shape at positions near both ends, with the diameters at both ends being smaller than the intermediate portion.

1対の対向壁13,13は、パイプ部材12と別部品になっている。一方の対向壁13(図1の上側の対向壁13)の外縁部からは、他方の対向壁13に向けて円筒壁13Aが突出している。そして、他方の対向壁13には、一端部を縮径して嵌合部13Bが形成され、その嵌合部13Bを円筒壁13Aの内部に嵌合して対向壁13,13同士が互いに芯だしされている。また、円筒壁13Aの先端面が他方の対向壁13の段差部分に突き当てられて、対向壁13,13同士の間隔が一定の大きさになるように位置決めされている。   The pair of opposing walls 13 and 13 are separate parts from the pipe member 12. A cylindrical wall 13 </ b> A protrudes from the outer edge portion of one opposing wall 13 (upper opposing wall 13 in FIG. 1) toward the other opposing wall 13. The other opposing wall 13 is formed with a fitting portion 13B having a reduced diameter at one end, the fitting portion 13B is fitted into the cylindrical wall 13A, and the opposing walls 13 and 13 are cored with each other. It has been started. Further, the tip end surface of the cylindrical wall 13A is abutted against the step portion of the other opposing wall 13, and is positioned so that the interval between the opposing walls 13 and 13 becomes a constant size.

各対向壁13の外周面には係止溝13Cが全周に亘って形成されている。これに対応して、パイプ部材12の中間部分における軸方向の2箇所には、パイプ部材12の一部を周方向全体に亘って内側に屈曲させて1対の突条12T,12Tが形成され、これら突条12Tが各対向壁13の係止溝13C内に係合している。そして、対向壁13,13がパイプ部材12内に位置決め固定されると共に、対向壁13,13の外周面とパイプ部材12の内周面との隙間が塞がれている。これにより、パイプ部材12内の流路11が1対の対向壁13,13にて一端側領域R1と中間領域R3と他端側領域R2とに区画されている。   A locking groove 13 </ b> C is formed on the outer peripheral surface of each facing wall 13 over the entire circumference. Correspondingly, a pair of protrusions 12T and 12T are formed by bending a part of the pipe member 12 inward in the entire circumferential direction at two axial positions in the intermediate portion of the pipe member 12. These protrusions 12T are engaged in the locking grooves 13C of the opposing walls 13. The opposing walls 13 and 13 are positioned and fixed in the pipe member 12 and the gap between the outer peripheral surface of the opposing walls 13 and 13 and the inner peripheral surface of the pipe member 12 is closed. Thereby, the flow path 11 in the pipe member 12 is divided into one end side area | region R1, intermediate | middle area | region R3, and other end side area | region R2 by a pair of opposing walls 13 and 13. FIG.

対向壁13,13の中心部には、弁口16A,16Bが形成されている。これら弁口16A,16Bは、開口形状が共に円形になっており、互いに同軸上に配置されている。そして、これら弁口16A,16Bを通して冷媒が一端側領域R1と中間領域R3との間、中間領域R3と他端側領域R2との間を流れる。また、一方の弁口16Aにおける一端側領域R1側の開口縁及び他方の弁口16Bにおける他端側領域R2側の開口縁には、テーパー状の弁座16Zが形成されている。   Valve ports 16 </ b> A and 16 </ b> B are formed at the center of the opposing walls 13 and 13. These valve ports 16A and 16B have both circular openings, and are arranged coaxially with each other. The refrigerant flows through the valve ports 16A and 16B between the one end side region R1 and the intermediate region R3 and between the intermediate region R3 and the other end side region R2. A tapered valve seat 16Z is formed at the opening edge on the one end side region R1 side of the one valve port 16A and the opening edge on the other end side region R2 side of the other valve port 16B.

中間領域R3内には、可動感圧体30が収容されている。図2に示すように、可動感圧体30は、1対の対向壁13,13の間に延びかつ、弁口16A,16Bと同心上に配置された円筒状の中間筒体31を備えている。中間筒体31の両端開口縁からは側方にフランジ部31Fが張り出されている。中間筒体31の両端部と各対向壁13との間には、ダイヤフラム固定盤35が備えられている。ダイヤフラム固定盤35は、一端有底の扁平円筒形状をなし、扁平円筒壁部35Dの一端開口縁から側方にフランジ部35Fが張り出している。このフランジ部35Fは中間筒体31のフランジ部31Fと同形状をなし、これらフランジ部31F,35Fの間にダイヤフラム34の外縁部を挟み、両フランジ部31F,35F及びダイヤフラム34が溶接されている。   A movable pressure sensitive body 30 is accommodated in the intermediate region R3. As shown in FIG. 2, the movable pressure-sensitive body 30 includes a cylindrical intermediate cylinder 31 that extends between the pair of opposing walls 13 and 13 and is disposed concentrically with the valve ports 16A and 16B. Yes. A flange portion 31 </ b> F protrudes laterally from both end opening edges of the intermediate cylinder 31. A diaphragm fixing plate 35 is provided between both end portions of the intermediate cylindrical body 31 and each facing wall 13. The diaphragm fixing plate 35 has a flat cylindrical shape with one end, and a flange portion 35F projects laterally from one end opening edge of the flat cylindrical wall portion 35D. The flange portion 35F has the same shape as the flange portion 31F of the intermediate cylinder 31. The outer edge portion of the diaphragm 34 is sandwiched between the flange portions 31F and 35F, and both the flange portions 31F and 35F and the diaphragm 34 are welded. .

各対向壁13,13には、可動感圧体30の両端部に対応して嵌合凹部13Dがそれぞれ陥没形成されている。また、一方の嵌合凹部13Dの奥面と他方の嵌合凹部13Dの奥面との間の距離は、可動感圧体30におけるダイヤフラム固定盤35,35の端面間の距離より大きくなっている。そして、両ダイヤフラム固定盤35,35の端部が嵌合凹部13D,13D内に嵌合した状態に保持され、可動感圧体30が対向壁13,13の間を直動する。さらに、嵌合凹部13Dの奥面には、冷媒通過溝16Cが形成されている。冷媒通過溝16Cの一端は弁口16A(16B)に連通し、冷媒通過溝16Cの他端は嵌合凹部13Dの側方を通過して中間領域R3に開放している。これにより、可動感圧体30の位置に拘わらず中間領域R3が弁口16A,16Bに常時連通している。   In each of the opposing walls 13, 13, fitting recesses 13 </ b> D are formed to be depressed corresponding to both ends of the movable pressure-sensitive body 30. Further, the distance between the back surface of one fitting recess 13D and the back surface of the other fitting recess 13D is larger than the distance between the end surfaces of the diaphragm fixing plates 35, 35 in the movable pressure sensitive body 30. . And the edge part of both diaphragm fixing plates 35 and 35 is hold | maintained in the state fitted in fitting recessed part 13D, 13D, and the movable pressure sensing body 30 moves directly between the opposing walls 13 and 13. FIG. Further, a coolant passage groove 16C is formed in the inner surface of the fitting recess 13D. One end of the refrigerant passage groove 16C communicates with the valve port 16A (16B), and the other end of the refrigerant passage groove 16C passes through the side of the fitting recess 13D and opens to the intermediate region R3. Thereby, regardless of the position of the movable pressure sensing body 30, the intermediate region R3 is always in communication with the valve ports 16A and 16B.

ダイヤフラム固定盤35の底壁35Bにおける中心部には、シャフト挿通孔35Cが貫通形成されている。また、ダイヤフラム固定盤35の開口縁からダイヤフラム34に向けて筒状の過度変形防止部35Tが突出している。そして、過度変形防止部35Tの先端面がダイヤフラム34の中心部分に突き合わされて、ダイヤフラム34におけるダイヤフラム固定盤35側への過度の変形を防止している。   A shaft insertion hole 35 </ b> C is formed through the center portion of the bottom wall 35 </ b> B of the diaphragm fixing plate 35. Further, a cylindrical excessive deformation preventing portion 35 </ b> T protrudes from the opening edge of the diaphragm fixing plate 35 toward the diaphragm 34. And the front end surface of the excessive deformation | transformation prevention part 35T is faced | matched with the center part of the diaphragm 34, and the excessive deformation | transformation to the diaphragm stationary platen 35 side in the diaphragm 34 is prevented.

ダイヤフラム34の外面のうち過度変形防止部35Tに囲まれた中心部からは、当接シャフト37がそれぞれ起立しており、それら当接シャフト37が過度変形防止部35T及び弁口16A,16Bに挿通して後述する球状の弁体19に突き合わされている。   A contact shaft 37 stands upright from the center of the outer surface of the diaphragm 34 surrounded by the excessive deformation prevention portion 35T, and the contact shaft 37 is inserted into the excessive deformation prevention portion 35T and the valve ports 16A and 16B. Then, it is abutted against a spherical valve body 19 described later.

ダイヤフラム固定盤35の扁平円筒壁部35Dのうち、常に嵌合凹部13Dの外側に位置する部分には、複数の冷媒通過孔36が貫通形成されている。そして、冷媒通過孔36を通してダイヤフラム固定盤35の内外に冷媒が出入りして冷媒圧力がダイヤフラム34の外面に付与される。   A plurality of refrigerant passage holes 36 are formed through the portion of the flat cylindrical wall portion 35D of the diaphragm fixing plate 35 that is always located outside the fitting recess 13D. Then, the refrigerant enters and exits the diaphragm fixing plate 35 through the refrigerant passage hole 36, and the refrigerant pressure is applied to the outer surface of the diaphragm 34.

中間筒体31は、内部を真空や大気圧等の一定圧力に保つようになっている。また、中間筒体31における軸方向の中間部分には、内周面全体からばね係止壁31Aが突出形成されている。また、ダイヤフラム34の内面にはインナー支持盤33が宛がわれている。そして、中間筒体31の内部には、ばね係止壁31Aと両方のダイヤフラム34,34との間に1対の感圧補助ばね32が突っ張り状態にして備えられている。ここで、本実施形態では、両感圧補助ばね32,32の間では弾性係数が異なっている。具体的には、一端側領域R1寄りの感圧補助ばね32の弾性係数の方が、反対側の感圧補助ばね32の弾性係数より大きくなっている。   The intermediate cylinder 31 is configured to keep the inside at a constant pressure such as vacuum or atmospheric pressure. A spring locking wall 31 </ b> A is formed to project from the entire inner peripheral surface of the intermediate cylindrical body 31 in the axial direction. An inner support plate 33 is assigned to the inner surface of the diaphragm 34. A pair of pressure-sensitive auxiliary springs 32 are provided in a tensioned state between the spring locking wall 31A and both diaphragms 34, 34 inside the intermediate cylinder 31. Here, in this embodiment, the elastic coefficients are different between the two pressure-sensitive auxiliary springs 32 and 32. Specifically, the elastic coefficient of the pressure sensitive auxiliary spring 32 near the one end side region R1 is larger than the elastic coefficient of the pressure sensitive auxiliary spring 32 on the opposite side.

インナー支持盤33は、中心部がダイヤフラム34に向かって突出しており、その突出部分の先端面のみがダイヤフラム34に当接している。また、インナー支持盤33の外縁部は中間筒体31の内面に形成された段差部31Dに隙間を介して対向している。そして、ダイヤフラム34が中間筒体31の奥側に所定量まで撓んだ際に、インナー支持盤33と段差部31Dとが当接して、ダイヤフラム34の過度変形を防止する。   The center portion of the inner support plate 33 protrudes toward the diaphragm 34, and only the tip surface of the protruding portion is in contact with the diaphragm 34. Further, the outer edge portion of the inner support board 33 faces a step portion 31D formed on the inner surface of the intermediate cylinder 31 with a gap. And when the diaphragm 34 bends to the back | inner side of the intermediate cylinder 31 to the predetermined amount, the inner support board 33 and the level | step-difference part 31D contact | abut, and the excessive deformation | transformation of the diaphragm 34 is prevented.

図1に示すように、各対向壁13,13には、中間領域R3内との反対面に端部筒壁14が突出形成されている。端部筒壁14の内面のうち先端寄り部分には、雌螺子部14Aが形成され、ここにナット15が螺合している。ナット15の中心部には貫通孔15Aが形成され、端部筒壁14の内部空間と一端側領域R1又は他端側領域R2とが連通している。   As shown in FIG. 1, each of the opposing walls 13, 13 is formed with an end cylindrical wall 14 protruding on the opposite surface to the inside of the intermediate region R <b> 3. A female screw portion 14 </ b> A is formed in a portion near the tip of the inner surface of the end cylindrical wall 14, and a nut 15 is screwed therein. A through hole 15A is formed at the center of the nut 15, and the internal space of the end cylindrical wall 14 communicates with the one end side region R1 or the other end side region R2.

各ナット15と各弁座16Zとの間には、ナット15側から順番に、弁体付勢ばね17、押圧部材18、球状の弁体19が収容されている。押圧部材18は、全体として円柱形状をなし、一端部を段付き状に拡径し、さらにその大径側の端面に球受凹部18Aを陥没形成した構造になっている。弁体付勢ばね17の一端部は、ナット15における貫通孔15Aの開口縁に突き当てられかつその開口縁から突出した環状突部(図示せず)によって芯だしされる一方、弁体付勢ばね17の他端部は、押圧部材18の小径部分に嵌合されている。そして、押圧部材18の球受凹部18Aにおける円錐形内面に弁体19が当接し、弁体付勢ばね17の弾発力によって弁体19を弁口16A,16B側に付勢している。   Between each nut 15 and each valve seat 16Z, a valve body urging spring 17, a pressing member 18, and a spherical valve body 19 are accommodated in this order from the nut 15 side. The pressing member 18 has a cylindrical shape as a whole, and has a structure in which one end is enlarged in a stepped shape, and a ball receiving recess 18A is recessed in the end surface on the large diameter side. One end of the valve body biasing spring 17 is abutted against the opening edge of the through-hole 15A in the nut 15 and is centered by an annular protrusion (not shown) protruding from the opening edge. The other end of the spring 17 is fitted into the small diameter portion of the pressing member 18. The valve body 19 abuts on the conical inner surface of the ball receiving recess 18A of the pressing member 18, and the valve body 19 is biased toward the valve ports 16A and 16B by the elastic force of the valve body biasing spring 17.

本実施形態に係る双方向定圧膨張弁10の構成の説明は以上であり、次に、この双方向定圧膨張弁10を、図4に示したヒートポンプ回路90に組み付けた場合の動作について以下説明する。このヒートポンプ回路90は、例えば、一般家庭用のルームエアコンに備えられている。ヒートポンプ回路90には室外熱交換器91Aと室内熱交換器92Aとが備えられ、その室外熱交換器91Aは、ルームエアコンの室外機91に組み込まれる一方、室内熱交換器92Aは室内機92に組み込まれている。そして、1対の管路96A,96Bによってこれら室外熱交換器91Aと室内熱交換器92Aとの間が接続されて、室外熱交換器91A及び室内熱交換器92Aを含む冷媒循環路96が形成され、冷媒がこれら室外熱交換器91A及び室内熱交換器92Aを通過して冷媒循環路96を循環する。そして、冷媒が室外熱交換器91Aを通過する際に冷媒と外気との間で熱交換が行われ、冷媒が室内熱交換器92Aを通過する際に冷媒と室内の空気との間で熱交換が行われる。   The configuration of the bidirectional constant pressure expansion valve 10 according to the present embodiment has been described above. Next, the operation when the bidirectional constant pressure expansion valve 10 is assembled to the heat pump circuit 90 shown in FIG. 4 will be described below. . The heat pump circuit 90 is provided in a room air conditioner for general households, for example. The heat pump circuit 90 includes an outdoor heat exchanger 91A and an indoor heat exchanger 92A. The outdoor heat exchanger 91A is incorporated in the outdoor unit 91 of the room air conditioner, while the indoor heat exchanger 92A is installed in the indoor unit 92. It has been incorporated. The outdoor heat exchanger 91A and the indoor heat exchanger 92A are connected by a pair of pipes 96A and 96B to form a refrigerant circulation path 96 including the outdoor heat exchanger 91A and the indoor heat exchanger 92A. Then, the refrigerant passes through the outdoor heat exchanger 91A and the indoor heat exchanger 92A and circulates in the refrigerant circulation path 96. Then, when the refrigerant passes through the outdoor heat exchanger 91A, heat exchange is performed between the refrigerant and the outside air, and when the refrigerant passes through the indoor heat exchanger 92A, heat exchange is performed between the refrigerant and the indoor air. Is done.

本実施形態の双方向定圧膨張弁10は、室外機91内に組み付けられると共に、室外熱交換器91Aと室内熱交換器92Aとの間を連絡する一方の管路96Aの途中に接続されている。そして、ボディ10Bのうち図1の上側に示した一端側領域R1が室外熱交換器91Aに常時連通する一方、図1の下側に示した他端側領域R2が室内熱交換器92Aに常時連通した状態になっている。また、室外機91側では、他方の管路96Bの途中に四方弁93を介して圧縮機94が接続されている。そして、ヒートポンプ回路90を冷房運転と暖房運転とに切り替えると、四方弁93が作動して、冷媒循環路96を流れる冷媒の向きが逆転する。   The bidirectional constant pressure expansion valve 10 of the present embodiment is assembled in the outdoor unit 91 and connected in the middle of one conduit 96A that communicates between the outdoor heat exchanger 91A and the indoor heat exchanger 92A. . And one end side area | region R1 shown to the upper side of FIG. 1 among body 10B is always connected to outdoor heat exchanger 91A, while the other end side area | region R2 shown to the lower side of FIG. 1 is always connected to indoor heat exchanger 92A. It is in a state of communication. On the outdoor unit 91 side, a compressor 94 is connected to the other pipe 96B through a four-way valve 93. When the heat pump circuit 90 is switched between the cooling operation and the heating operation, the four-way valve 93 is activated, and the direction of the refrigerant flowing through the refrigerant circulation path 96 is reversed.

さて、ヒートポンプ回路90の冷房運転時には、一方の管路96Aにおいては、冷媒が室内熱交換器92Aから室外熱交換器91Aに流され、このとき、双方向定圧膨張弁10においては、図2の矢印で示したように、冷媒が一端側領域R1、一方の弁口16A、中間領域R3、他方の弁口16B、他端側領域R2の順番に流れる。   Now, during the cooling operation of the heat pump circuit 90, in one of the pipes 96A, the refrigerant flows from the indoor heat exchanger 92A to the outdoor heat exchanger 91A. At this time, in the bidirectional constant pressure expansion valve 10, as shown in FIG. As indicated by the arrows, the refrigerant flows in the order of one end side region R1, one valve port 16A, intermediate region R3, the other valve port 16B, and the other end side region R2.

すると、中間領域R3内の可動感圧体30が冷媒に押されて他端側領域R2側(この場合は図2の下側)に移動する。すると、一端側領域R1側の弁体19が弁口16Aに接近する一方、他端側領域R2側の弁体19は、弁口16Bから離され、各弁体19と各ダイヤフラム34との間で当接シャフト37が突っ張り状態になる。この状態で、中間領域R3内の冷媒圧力に応じてダイヤフラム34が変形すると、その変形に伴って各弁体19の弁口16A,16Bに対する位置が変化して弁開度が所定の範囲で変わる。   Then, the movable pressure sensitive body 30 in the intermediate region R3 is pushed by the refrigerant and moves to the other end region R2 side (in this case, the lower side in FIG. 2). Then, the valve body 19 on the one end side region R1 side approaches the valve port 16A, while the valve body 19 on the other end side region R2 side is separated from the valve port 16B, and between each valve body 19 and each diaphragm 34. As a result, the abutting shaft 37 is stretched. In this state, when the diaphragm 34 is deformed according to the refrigerant pressure in the intermediate region R3, the position of each valve body 19 with respect to the valve ports 16A and 16B is changed and the valve opening is changed within a predetermined range. .

ここで、下流に位置した他端側領域R2の弁体19は弁口16Bから離されて弁開度が大きくなっているので、その弁開度が所定の範囲で変化しても流量及び冷媒圧力への影響は小さい。これに対し、上流に位置した一端側領域R1の弁体19は弁口16Aに接近して弁開度が小さくなっているので、その弁開度が所定の範囲で変化した場合の流量及び冷媒圧力への影響は大きい。そして、中間領域R3内の冷媒圧力が比較的大きくなると、弁体19が弁口16Aに近づき、一端側領域R1の弁口16Aを通過する冷媒の流量が絞られて、中間領域R3内の冷媒圧力が下がる。これとは逆に、中間領域R3内の冷媒圧力が比較的小さくなると、一端側領域R1側の弁口16Aの弁開度が大きくなり、一端側領域R1の弁口16Aを通過する冷媒の流量が増加して、中間領域R3内の冷媒圧力が上がる。これらにより、その弁口16Aより下流側の冷媒圧力を一定にすることができる。   Here, since the valve element 19 in the other end side region R2 located downstream is separated from the valve port 16B and has a large valve opening, the flow rate and the refrigerant even if the valve opening changes within a predetermined range. The effect on pressure is small. On the other hand, since the valve element 19 of the one end side region R1 located upstream approaches the valve port 16A and the valve opening degree is small, the flow rate and refrigerant when the valve opening degree changes within a predetermined range. The effect on pressure is significant. When the refrigerant pressure in the intermediate region R3 becomes relatively large, the valve body 19 approaches the valve port 16A, the flow rate of the refrigerant passing through the valve port 16A in the one end side region R1 is reduced, and the refrigerant in the intermediate region R3 The pressure drops. On the contrary, when the refrigerant pressure in the intermediate region R3 becomes relatively small, the valve opening degree of the valve port 16A on the one end side region R1 side increases, and the flow rate of the refrigerant passing through the valve port 16A on the one end side region R1. Increases, and the refrigerant pressure in the intermediate region R3 increases. As a result, the refrigerant pressure downstream of the valve port 16A can be made constant.

また、ヒートポンプ回路90を冷暖房を切り替えると、図2から図3の変化に示すように冷媒が流れる方向が逆転し、上記した場合と同様に、上流に位置した他端側領域R2側の弁口16Bの弁開度が、中間領域R3の冷媒圧力に応じて変化し、その弁口16Bより下流側の冷媒圧力を一定にすることができる。ここで、本実施形態では、冷房運転時に上流に位置する一端側領域R1寄りの感圧補助ばね32の弾性係数の方が、反対側の感圧補助ばね32の弾性係数より大きくなっているので、一端側領域R1側によって下流側の冷媒圧力が調節される冷房運転時の方が暖房運転時に比べて双方向定圧膨張弁10の下流側の冷媒圧力が高くなる。   Further, when the heat pump circuit 90 is switched between cooling and heating, the direction in which the refrigerant flows is reversed as shown in the changes in FIG. 2 to FIG. 3, and the valve port on the other end side region R2 side located upstream as described above. The valve opening degree of 16B changes according to the refrigerant | coolant pressure of intermediate area | region R3, and the refrigerant | coolant pressure downstream from the valve port 16B can be made constant. Here, in the present embodiment, the elastic coefficient of the pressure-sensitive auxiliary spring 32 near the one end side region R1 located upstream during the cooling operation is larger than the elastic coefficient of the pressure-sensitive auxiliary spring 32 on the opposite side. The refrigerant pressure on the downstream side of the bidirectional constant pressure expansion valve 10 is higher in the cooling operation in which the refrigerant pressure on the downstream side is adjusted by the one end region R1 side than in the heating operation.

このように、本実施形態の双方向定圧膨張弁10によれば、下流側の冷媒圧力を一定にすることができる。しかも、従来の双方向定圧膨張弁で感圧部材として用いられていたベローズに代えてダイヤフラム34を用いたので、従来より低コスト化が可能になる。また、各弁口16A,16Bの弁開度を変更するためのダイヤフラム34を各弁口16A,16B毎に別々に備えたので、室内熱交換器92A側の弁口16Bの冷媒圧力に対する弁開度の特性と、室外熱交換器91A側の弁口16Aの冷媒圧力に対する弁開度の特性とを、それぞれ別々に適した特性に設定することができる。具体的には、本実施形態では1対のダイヤフラム34の弾性係数を異ならせ、冷媒圧力及び冷媒流量が異なる冷房運転時と暖房運転時のそれぞれにおいて冷媒の圧力と流量を制御可能な最適な弁のリフト特性を得ることができる。   Thus, according to the bidirectional constant pressure expansion valve 10 of the present embodiment, the downstream refrigerant pressure can be made constant. In addition, since the diaphragm 34 is used instead of the bellows used as the pressure-sensitive member in the conventional bidirectional constant pressure expansion valve, the cost can be reduced as compared with the conventional one. Moreover, since the diaphragm 34 for changing the valve opening degree of each valve port 16A, 16B is provided separately for each valve port 16A, 16B, the valve opening with respect to the refrigerant pressure of the valve port 16B on the indoor heat exchanger 92A side is provided. The characteristic of the degree and the characteristic of the valve opening with respect to the refrigerant pressure of the valve port 16A on the outdoor heat exchanger 91A side can be set to appropriate characteristics. Specifically, in the present embodiment, an optimal valve that can control the refrigerant pressure and flow rate in the cooling operation and the heating operation in which the refrigerant coefficient and the refrigerant flow rate are different from each other by changing the elastic coefficients of the pair of diaphragms 34. The lift characteristics can be obtained.

[第2実施形態]
本実施形態の双方向定圧膨張弁10は、図5に示されており、可動感圧体30が両対向壁13,13の間に固定されると共に、過度変形防止部35Tに冷媒通過孔36が貫通形成されている点が異なる。
[Second Embodiment]
The bidirectional constant pressure expansion valve 10 of the present embodiment is shown in FIG. 5, and the movable pressure sensing body 30 is fixed between the opposing walls 13 and 13, and the refrigerant passage hole 36 is provided in the excessive deformation preventing portion 35 </ b> T. Is different in that it is formed through.

本実施形態の双方向定圧膨張弁10によれば、冷媒が一端側領域R1、中間領域R3、他端側領域R2の順番に流れると、上流側に位置した一端側領域R1側の弁体19が弁口16Aに接近する一方、下流側に位置した他端側領域R2側の弁体19が弁口16Bから離され、各弁体19とダイヤフラム34との間で当接シャフト37が突っ張り状態になる。そして、第1実施形態の双方向定圧膨張弁10と同様に、上流側の弁口16A,16Bの弁開度が、中間領域R3の冷媒圧力に応じて変化し、その弁口16A,16Bより下流側の冷媒圧力を一定にすることができる。   According to the bidirectional constant pressure expansion valve 10 of the present embodiment, when the refrigerant flows in the order of the one end side region R1, the intermediate region R3, and the other end side region R2, the valve element 19 on the one end side region R1 side located on the upstream side. Is close to the valve port 16A, while the valve body 19 on the other end side region R2 side located on the downstream side is separated from the valve port 16B, and the contact shaft 37 is stretched between each valve body 19 and the diaphragm 34. become. Then, similarly to the bidirectional constant pressure expansion valve 10 of the first embodiment, the valve openings of the upstream valve ports 16A and 16B change according to the refrigerant pressure in the intermediate region R3, and from the valve ports 16A and 16B. The downstream refrigerant pressure can be made constant.

本実施形態の双方向定圧膨張弁10によっても、第1実施形態の双方向定圧膨張弁10と同様の効果を得られると共に、可動感圧体30が固定されているので性能が安定し、耐久性にも優れる。   The bi-directional constant pressure expansion valve 10 of the present embodiment can achieve the same effects as the bi-directional constant pressure expansion valve 10 of the first embodiment, and the performance is stable and durable because the movable pressure sensing body 30 is fixed. Excellent in properties.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記第1及び第2の実施形態の双方向定圧膨張弁10に備えたボディ10Bは、パイプ部材12と対向壁13とを組み付けて構成されていたが、これら対向壁13をパイプ部材12に一体形成したものも本発明の技術的範囲に含まれる。   (1) Although the body 10B provided in the bidirectional constant pressure expansion valve 10 of the first and second embodiments is configured by assembling the pipe member 12 and the opposing wall 13, the opposing wall 13 is connected to the pipe member. What is integrally formed with 12 is also included in the technical scope of the present invention.

(2)前記第1実施形態では、1対の感圧補助ばね32,32の弾性係数を異ならせることで、暖房運転時と冷房運転時とで下流側の冷媒圧力に差異を設けていたが、1対のダイヤフラム34,34の弾性係数を異ならせてもよいし、ダイヤフラム34と感圧補助ばね32の両方を合わせた弾性係数を双方向定圧膨張弁10の一端側と他端側との間で異ならせてもよい。   (2) In the first embodiment, the elastic coefficient of the pair of pressure-sensitive auxiliary springs 32, 32 is made different so that the refrigerant pressure on the downstream side is different between the heating operation and the cooling operation. The elastic coefficients of the pair of diaphragms 34 and 34 may be different, or the elastic coefficient obtained by combining both the diaphragm 34 and the pressure-sensitive auxiliary spring 32 is set between the one end side and the other end side of the bidirectional constant pressure expansion valve 10. It may be different between.

(3)また、暖房運転時に下流側に位置する一方の弁口16Aと当接シャフト37との隙間の開口面積と、他方の弁口16Bと当接シャフト37との隙間の開口面積とを異ならせて、暖房運転時と冷房運転時とで下流側の冷媒圧力に差異を設けてもよい。   (3) Further, the opening area of the gap between the one valve port 16A and the contact shaft 37 located on the downstream side during the heating operation is different from the opening area of the gap between the other valve port 16B and the contact shaft 37. Thus, a difference may be provided in the refrigerant pressure on the downstream side between the heating operation and the cooling operation.

(4)さらに、上記した双方向定圧膨張弁の両端部の構成を同一にして暖房運転時と冷房運転時とで下流側の冷媒圧力を同一にしてもよい。   (4) Furthermore, the configuration of both ends of the bidirectional constant pressure expansion valve described above may be the same, and the downstream refrigerant pressure may be the same during heating operation and cooling operation.

本発明の第1実施形態に係る双方向定圧膨張弁の側断面図Side sectional view of the bidirectional constant pressure expansion valve according to the first embodiment of the present invention. その双方向定圧膨張弁の側断面図Side sectional view of the bidirectional constant pressure expansion valve その双方向定圧膨張弁の側断面図Side sectional view of the bidirectional constant pressure expansion valve ヒートポンプ回路の概念図Conceptual diagram of heat pump circuit 第2実施形態に係る双方向定圧膨張弁の側断面図Side sectional view of a bidirectional constant pressure expansion valve according to a second embodiment 従来の双方向定圧膨張弁の側断面図Side sectional view of a conventional bidirectional constant pressure expansion valve

符号の説明Explanation of symbols

10 双方向定圧膨張弁
10B ボディ
11 流路
12 パイプ部材
13 対向壁
16A,16B 各弁口
17 弁体付勢ばね
19 弁体
31 中間筒体
31A 係止壁
32 感圧補助ばね
34 ダイヤフラム
37 当接シャフト
90 ヒートポンプ回路
91A 室外熱交換器
92A 室内熱交換器
R1 一端側領域
R2 他端側領域
R3 中間領域


DESCRIPTION OF SYMBOLS 10 Bidirectional constant pressure expansion valve 10B Body 11 Flow path 12 Pipe member 13 Opposite wall 16A, 16B Each valve port 17 Valve body urging spring 19 Valve body 31 Intermediate cylinder 31A Locking wall 32 Pressure sensitive auxiliary spring 34 Diaphragm 37 Contact Shaft 90 Heat pump circuit 91A Outdoor heat exchanger 92A Indoor heat exchanger R1 One end side region R2 Other end side region R3 Middle region


Claims (6)

ヒートポンプ回路(90)の室内熱交換器(92A)と室外熱交換器(91A)との間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁(10)において、
前記冷媒の流路(11)を内部に有したボディ(10B)と、
前記ボディ(10B)に設けられて、前記流路(11)を一端側領域(R1)と中間領域(R3)と他端側領域(R2)とに区画する1対の対向壁(13)と、
前記1対の対向壁(13)に貫通形成されて、略同軸上に配置された1対の弁口(16A,16B)と、
前記一端側領域(R1)内及び前記他端側領域(R2)内にそれぞれ配置されて、前記各弁口(16A,16B)を開閉する1対の弁体(19)と、
前記各弁体(19)を前記弁口(16A,16B)側に付勢する1対の弁体付勢ばね(17)と、
前記中間領域(R3)に収容されて前記1対の対向壁(13)の対向方向に延びかつ、それら1対の対向壁(13)の間で直動可能な中間筒体(31)と、
前記中間筒体(31)の両端を閉塞し、前記中間領域(R3)の内部圧力に応じて変形する1対のダイヤフラム(34)と、
前記1対の弁口(16A,16B)にそれぞれ遊嵌されて前記弁体(19)と前記ダイヤフラム(34)との間で突っ張り状態になり、前記ダイヤフラム(34)の変形量に応じて前記弁体(19)を移動して前記弁口(16A,16B)の弁開度を変更する1対の当接シャフト(37)とを備えたことを特徴とする双方向定圧膨張弁(10)。
Both are connected between the indoor heat exchanger (92A) and the outdoor heat exchanger (91A) of the heat pump circuit (90) so that the refrigerant flows in both directions, and the downstream refrigerant pressure can be made constant. In the constant pressure expansion valve (10),
A body (10B) having a flow path (11) for the refrigerant therein;
A pair of opposing walls (13) provided in the body (10B) and dividing the flow path (11) into one end side region (R1), an intermediate region (R3), and the other end side region (R2); ,
A pair of valve ports (16A, 16B) that are formed through the pair of opposing walls (13) and arranged substantially coaxially;
A pair of valve bodies (19) disposed in the one end side region (R1) and the other end side region (R2), respectively, for opening and closing the valve ports (16A, 16B);
A pair of valve body biasing springs (17) for biasing the valve bodies (19) toward the valve ports (16A, 16B);
An intermediate cylinder (31) accommodated in the intermediate region (R3) and extending in the opposing direction of the pair of opposing walls (13) and capable of linear movement between the pair of opposing walls (13);
A pair of diaphragms (34) that close both ends of the intermediate cylinder (31) and deform in accordance with the internal pressure of the intermediate region (R3);
Each of the pair of valve ports (16A, 16B) is loosely fitted to be stretched between the valve body (19) and the diaphragm (34), and the diaphragm (34) is subjected to the deformation amount according to the deformation amount of the diaphragm (34). A bidirectional constant pressure expansion valve (10) comprising a pair of contact shafts (37) for moving the valve body (19) to change the valve opening degree of the valve ports (16A, 16B) .
ヒートポンプ回路(90)の室内熱交換器(92A)と室外熱交換器(91A)との間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁(10)において、
前記冷媒の流路(11)を内部に有したボディ(10B)と、
前記ボディ(10B)に設けられて、前記流路(11)を一端側領域(R1)と中間領域(R3)と他端側領域(R2)とに区画する1対の対向壁(13)と、
前記1対の対向壁(13)に貫通形成されて、略同軸上に配置された1対の弁口(16A,16B)と、
前記一端側領域(R1)内及び前記他端側領域(R2)内にそれぞれ配置されて、前記各弁口(16A,16B)を開閉する1対の弁体(19)と、
前記各弁体(19)を前記弁口(16A,16B)側に付勢する1対の弁体付勢ばね(17)と、
前記1対の対向壁(13)の対向方向に延びかつボディ(10B)に固定された中間筒体(31)と、
前記中間筒体(31)の両端を閉塞し、前記中間領域(R3)の内部圧力に応じて変形する1対のダイヤフラム(34)と、
前記1対の弁口(16A,16B)にそれぞれ遊嵌されて前記弁体(19)と前記ダイヤフラム(34)との間で突っ張り状態になり、前記ダイヤフラム(34)の変形量に応じて前記弁体(19)を移動して前記弁口(16A,16B)の弁開度を変更する1対の当接シャフト(37)とを備えたことを特徴とする双方向定圧膨張弁(10)。
Both are connected between the indoor heat exchanger (92A) and the outdoor heat exchanger (91A) of the heat pump circuit (90) so that the refrigerant flows in both directions and the refrigerant pressure on the downstream side can be made constant. In the constant pressure expansion valve (10),
A body (10B) having a flow path (11) for the refrigerant therein;
A pair of opposing walls (13) provided in the body (10B) and dividing the flow path (11) into one end side region (R1), an intermediate region (R3), and the other end side region (R2); ,
A pair of valve ports (16A, 16B) that are formed through the pair of opposing walls (13) and arranged substantially coaxially;
A pair of valve bodies (19) disposed in the one end side region (R1) and the other end side region (R2), respectively, for opening and closing the valve ports (16A, 16B);
A pair of valve body biasing springs (17) for biasing the valve bodies (19) toward the valve ports (16A, 16B);
An intermediate cylinder (31) extending in the opposing direction of the pair of opposing walls (13) and fixed to the body (10B);
A pair of diaphragms (34) that close both ends of the intermediate cylinder (31) and deform in accordance with the internal pressure of the intermediate region (R3);
Each of the pair of valve ports (16A, 16B) is loosely fitted to be stretched between the valve body (19) and the diaphragm (34), and the diaphragm (34) is subjected to the deformation amount according to the deformation amount of the diaphragm (34). A bidirectional constant pressure expansion valve (10) comprising a pair of contact shafts (37) for moving the valve body (19) to change the valve opening degree of the valve ports (16A, 16B) .
前記1対のダイヤフラム(34)の弾性係数を異ならせたことを特徴とする請求項1又は2に記載の双方向定圧膨張弁(10)。   The bidirectional constant pressure expansion valve (10) according to claim 1 or 2, wherein the elastic coefficients of the pair of diaphragms (34) are different. 前記中間筒体(31)の内面における軸方向の中間部分に、ばね係止壁(31A)を突出形成し、
前記ばね係止壁(31A)と両方の前記ダイヤフラム(34)との間に1対の感圧補助ばね(32)を突っ張り状態にして設けたことを特徴とする請求項1乃至3の何れかに記載の双方向定圧膨張弁(10)。
A spring locking wall (31A) is formed so as to protrude from the axially intermediate portion of the inner surface of the intermediate cylinder (31),
A pair of pressure-sensitive auxiliary springs (32) are provided in a stretched state between the spring locking wall (31A) and both the diaphragms (34). Bidirectional constant pressure expansion valve (10) according to
前記1対の感圧補助ばね(32)の弾性係数を異ならせたことを特徴とする請求項4に記載の双方向定圧膨張弁(10)。   The bidirectional constant-pressure expansion valve (10) according to claim 4, wherein the pair of pressure-sensitive auxiliary springs (32) have different elastic coefficients. 一方の前記弁口(16A)と前記当接シャフト(37)との隙間の開口面積を、他方の前記弁口(16B)と前記当接シャフト(37)との隙間の開口面積より広くしたことを特徴とする請求項1乃至5の何れかに記載の双方向定圧膨張弁(10)。
The opening area of the gap between the one valve port (16A) and the contact shaft (37) is made larger than the opening area of the gap between the other valve port (16B) and the contact shaft (37). The bidirectional constant pressure expansion valve (10) according to any one of claims 1 to 5, characterized by:
JP2006047908A 2006-02-24 2006-02-24 Bidirectional constant pressure expansion valve Expired - Fee Related JP4451406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047908A JP4451406B2 (en) 2006-02-24 2006-02-24 Bidirectional constant pressure expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047908A JP4451406B2 (en) 2006-02-24 2006-02-24 Bidirectional constant pressure expansion valve

Publications (2)

Publication Number Publication Date
JP2007225208A JP2007225208A (en) 2007-09-06
JP4451406B2 true JP4451406B2 (en) 2010-04-14

Family

ID=38547185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047908A Expired - Fee Related JP4451406B2 (en) 2006-02-24 2006-02-24 Bidirectional constant pressure expansion valve

Country Status (1)

Country Link
JP (1) JP4451406B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537449B (en) * 2011-12-07 2013-08-28 三一重型装备有限公司 Bidirectional self-adaptive damping valve
CN103216980B (en) * 2013-04-27 2015-02-04 温岭市恒发空调部件有限公司 Bi-direction circulation expansion valve

Also Published As

Publication number Publication date
JP2007225208A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5246736B2 (en) Temperature expansion valve
US8540207B2 (en) Fluid flow control assembly
JP5390181B2 (en) Expansion valve, heat pump refrigeration cycle and air conditioner
US5081847A (en) Variable flow orifice tube
KR20080095293A (en) Thermostatic expansion valve with check valve
JPH04214157A (en) Fluid flow controller
CN106352616A (en) Temperature expansion valve and freezing circulation
JP2671183B2 (en) Fluid control valve
JPWO2006090826A1 (en) Pressure control valve
JP4451406B2 (en) Bidirectional constant pressure expansion valve
JP4451407B2 (en) Bidirectional constant pressure expansion valve
JP2008138812A (en) Differential pressure valve
JPWO2007111040A1 (en) Control valve for variable displacement compressor
CN107289684B (en) Thermostatic expansion valve and air conditioning system with same
JP4563945B2 (en) Bidirectional constant pressure expansion valve and manufacturing method thereof
KR20140076507A (en) Control valve
JP5543481B2 (en) Expansion valve with diaphragm and at least two outlet openings
JP3418271B2 (en) Two-way constant pressure expansion valve
WO2006090678A1 (en) Restriction device, flow rate control valve, and air conditioner having the flow rate control valve assembled therein
KR100630612B1 (en) Two-way constant pressure expansion valve
JP2007225209A (en) Bidirectional constant pressure expansion valve
JP7127850B2 (en) Flow switching valve
JP2003185299A (en) Combination valve
WO2020203040A1 (en) Thermostat device
JP4139452B2 (en) Constant flow valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees