JP2007225209A - Bidirectional constant pressure expansion valve - Google Patents

Bidirectional constant pressure expansion valve Download PDF

Info

Publication number
JP2007225209A
JP2007225209A JP2006047909A JP2006047909A JP2007225209A JP 2007225209 A JP2007225209 A JP 2007225209A JP 2006047909 A JP2006047909 A JP 2006047909A JP 2006047909 A JP2006047909 A JP 2006047909A JP 2007225209 A JP2007225209 A JP 2007225209A
Authority
JP
Japan
Prior art keywords
valve
pair
bellows
end side
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006047909A
Other languages
Japanese (ja)
Inventor
Satoshi Fujimoto
聡 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Original Assignee
Pacific Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd filed Critical Pacific Industrial Co Ltd
Priority to JP2006047909A priority Critical patent/JP2007225209A/en
Publication of JP2007225209A publication Critical patent/JP2007225209A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bidirectional constant pressure expansion valve capable of surely making a refrigerant pressure on a downstream side constant in comparison with a conventional one. <P>SOLUTION: In this bidirectional constant pressure expansion valve 10, centering of a movable opposed disc 44 is performed while guided by a guide projecting portion 44B of the movable opposed disc 44 and a guide recessed portion 13U of an opposed wall 13, even when bellows 41 is moved to any of one end side and the other end side according to the flow of a refrigerant, and the bellows 41, a contact shaft 37 and a valve element 19 are coaxially disposed. Thus characteristics of the valve is stabilized as a contact position of the contact shaft 37 and the valve element 19 is stabilized, and the refrigerant pressure at the downstream side can be surely made constant in comparison with the conventional one. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプ回路の室外熱交換器と室内熱交換器の間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁に関する。   The present invention relates to a bidirectional constant pressure expansion valve that is connected between an outdoor heat exchanger and an indoor heat exchanger of a heat pump circuit, allows refrigerant to flow in both directions, and makes the refrigerant pressure on the downstream side constant.

図6に示した従来の双方向定圧膨張弁のボディは、円筒ケース2の両端部を対向壁1,1で閉塞してなる。各対向壁1にはそれぞれボール弁機構4が備えられ、両対向壁1,1の間にはベローズ5が収容されている。また、ベローズ5の両端部を閉塞した可動対向盤5A,5Aからは、各ボール弁機構4,4に向かって1対の押圧シャフト7,7が延びている。そして、ベローズ5は、冷媒が流れる向きに応じて円筒ケース2内を直動し、一端部が下流側の対向壁1に当接した状態で冷媒圧力に応じて伸縮する。これにより、上流側のボール弁機構4の弁開度が調節され、下流側の冷媒圧力が一定になる(例えば、特許文献1参照)
特許第4418271号公報(段落[0013]、第1図)
The body of the conventional bidirectional constant pressure expansion valve shown in FIG. 6 is formed by closing both ends of the cylindrical case 2 with opposing walls 1 and 1. Each opposing wall 1 is provided with a ball valve mechanism 4, and a bellows 5 is accommodated between the opposing walls 1, 1. Further, a pair of pressing shafts 7 and 7 extend from the movable opposing plates 5A and 5A which close both ends of the bellows 5 toward the ball valve mechanisms 4 and 4, respectively. The bellows 5 linearly moves in the cylindrical case 2 in accordance with the direction in which the refrigerant flows, and expands and contracts in accordance with the refrigerant pressure in a state in which one end is in contact with the opposing wall 1 on the downstream side. Thereby, the valve opening degree of the ball valve mechanism 4 on the upstream side is adjusted, and the refrigerant pressure on the downstream side becomes constant (for example, see Patent Document 1).
Japanese Patent No. 4418271 (paragraph [0013], FIG. 1)

しかしながら、上記した従来の双方向定圧膨張弁は、ベローズ5が対向壁1,1の間を直動する度に、その直動方向と直交する方向にベローズ5がずれて弁の特性が変わり、下流側の冷媒圧力が一定にならない場合があった。   However, each time the bellows 5 linearly moves between the opposing walls 1 and 1 in the above-described conventional bidirectional constant pressure expansion valve, the bellows 5 is shifted in a direction orthogonal to the linear motion direction, and the characteristics of the valve change. In some cases, the refrigerant pressure on the downstream side was not constant.

本発明は、上記事情に鑑みてなされたもので、従来より確実に下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a bidirectional constant pressure expansion valve capable of making the downstream refrigerant pressure constant more reliably than before.

上記目的を達成するためになされた請求項1の発明に係る双方向定圧膨張弁(10)は、ヒートポンプ回路(90)の室内熱交換器(92A)と室外熱交換器(91A)との間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁(10)において、冷媒の流路(11)を内部に有したボディ(10B)と、ボディ(10B)に設けられて、流路(11)を一端側領域(R1)と中間領域(R3)と他端側領域(R2)とに区画する1対の対向壁(13)と、1対の対向壁(13)に貫通形成されて、略同軸上に配置された1対の弁口(16A,16B)と、一端側領域(R1)内及び他端側領域(R2)内にそれぞれ配置されて、各弁口(16A,16B)を開閉する1対の弁体(19)と、各弁体(19)を弁口(16A,16B)側に付勢する1対の弁体付勢ばね(17)と、中間領域(R3)に収容され、1対の対向壁(13)の対向方向に延びたベローズ(41)と、ベローズ(41)の両端部を密閉した1対の可動対向盤(44)と、弁体(19)と可動対向盤(44)との何れか一方に固定されて1対の弁口(16A,16B)に遊嵌され、弁体(19)と可動対向盤(44)との間で突っ張り状態になり、ベローズ(41)の変形量に応じて弁体(19)を移動して弁口(16A,16B)の弁開度を変更する1対の当接シャフト(37)と、可動対向盤(44)から対向壁(13)に向かって突出したガイド突部(44B)と、対向壁(13)の端面に陥没形成されてガイド突部(44B)が嵌合し、ベローズ(41)、当接シャフト(37)及び弁体(19)が同軸上に並ぶように可動対向盤(44)を芯出しするガイド凹部(13U)とを備えたところに特徴を有する。   In order to achieve the above object, a bidirectional constant pressure expansion valve (10) according to the invention of claim 1 is provided between an indoor heat exchanger (92A) and an outdoor heat exchanger (91A) of a heat pump circuit (90). In a bidirectional constant pressure expansion valve (10) that is connected to the refrigerant and that allows the refrigerant to flow in both directions and to make the refrigerant pressure downstream, the body (10B) having a refrigerant flow path (11) therein. And a pair of opposing walls (13) that are provided in the body (10B) and divide the flow path (11) into one end side region (R1), an intermediate region (R3), and the other end side region (R2). And a pair of valve ports (16A, 16B) that are formed so as to penetrate the pair of opposing walls (13) and are arranged substantially coaxially, and the one end side region (R1) and the other end side region (R2). A pair of valve bodies (19) that are respectively disposed within and open and close each valve port (16A, 16B); A pair of valve body urging springs (17) for urging the valve body (19) toward the valve ports (16A, 16B), and a pair of opposed walls (13) that are accommodated in the intermediate region (R3) Fixed to one of a bellows (41) extending in the direction, a pair of movable facing plates (44) in which both ends of the bellows (41) are sealed, and a valve body (19) and a movable facing plate (44) And is loosely fitted to the pair of valve ports (16A, 16B), and is stretched between the valve body (19) and the movable counter board (44), and the valve body according to the deformation amount of the bellows (41). A pair of abutting shafts (37) that move (19) to change the valve opening degree of the valve ports (16A, 16B), and a guide that protrudes from the movable facing plate (44) toward the facing wall (13) The protrusion (44B) and the guide protrusion (44B) are fitted into the end surface of the opposing wall (13) and the bellows (4 ), Having characterized in that the contact shaft (37) and the valve body (19) has a guide recess (13U) to center the movable counter plate (44) so as to be aligned coaxially.

請求項2の発明は、請求項1に記載の双方向定圧膨張弁(10)において、ガイド凹部(13U)及びガイド突部(44B)が、常時嵌合しているところに特徴を有する。   The invention of claim 2 is characterized in that, in the bidirectional constant pressure expansion valve (10) of claim 1, the guide recess (13U) and the guide projection (44B) are always fitted.

請求項3の発明は、請求項2に記載の双方向定圧膨張弁(10)において、ガイド凹部(13U)又はガイド突部(44B)の一方の周面に、摺動リング(44E)を設けたところに特徴を有する。   According to a third aspect of the present invention, in the bidirectional constant pressure expansion valve (10) according to the second aspect, a sliding ring (44E) is provided on one peripheral surface of the guide recess (13U) or the guide projection (44B). It has features.

請求項4の発明は、請求項3に記載の双方向定圧膨張弁(10)において、摺動リング(44E)は、摺動性樹脂で形成されたところに特徴を有する。   The invention of claim 4 is characterized in that, in the bidirectional constant pressure expansion valve (10) of claim 3, the sliding ring (44E) is formed of a slidable resin.

請求項5の発明に係る双方向定圧膨張弁(10)は、ヒートポンプ回路(90)の室内熱交換器(92A)と室外熱交換器(91A)との間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁(10)において、冷媒の流路(11)を内部に有したボディ(10B)と、ボディ(10B)に設けられて、流路(11)を一端側領域(R1)と中間領域(R3)と他端側領域(R2)とに区画する1対の対向壁(13)と、1対の対向壁(13)に貫通形成されて、略同軸上に配置された1対の弁口(16A,16B)と、一端側領域(R1)内及び他端側領域(R2)内にそれぞれ配置されて、各弁口(16A,16B)を開閉する1対の弁体(19)と、各弁体(19)を弁口(16A,16B)側に付勢する1対の弁体付勢ばね(17)と、中間領域(R3)に収容され、1対の対向壁(13)の対向方向に延びたベローズ(41)と、ベローズ(41)の両端部を密閉した1対の可動対向盤(44)と、弁体(19)と可動対向盤(44)との何れか一方に固定されて1対の弁口(16A,16B)に遊嵌され、弁体(19)と可動対向盤(44)との間で突っ張り状態になり、ベローズ(41)の変形量に応じて弁体(19)を移動して弁口(16A,16B)の弁開度を変更する1対の当接シャフト(37)と、可動対向盤(44)に形成されて、テーパー状に縮径した錐形突入部(44F)と、対向壁(13)に形成されて内側がテーパー状に縮径し、錐形突入部(44F)が嵌合して、ベローズ(41)、当接シャフト(37)及び弁体(19)が同軸上に並ぶように可動対向盤(44)を芯出しする錐形凹部(13T)と、1対の可動対向盤(44)の間を連結し、それら可動対向盤(44)同士を同軸状に保持した状態で直動を許容する座屈防止機構(45)が備えられたところに特徴を有する。   The bidirectional constant pressure expansion valve (10) according to the invention of claim 5 is connected between the indoor heat exchanger (92A) and the outdoor heat exchanger (91A) of the heat pump circuit (90) so that the refrigerant is bidirectional. In the bidirectional constant pressure expansion valve (10) that is flowed and can make the downstream refrigerant pressure constant, the body (10B) having the refrigerant flow path (11) therein and the body (10B) are provided. A pair of opposing walls (13) that divide the flow path (11) into one end side region (R1), an intermediate region (R3), and the other end side region (R2), and a pair of opposing walls (13 ) And a pair of valve ports (16A, 16B) disposed substantially coaxially, and disposed in the one end side region (R1) and the other end side region (R2), respectively. A pair of valve bodies (19) for opening and closing the mouths (16A, 16B), and the valve bodies (19) are connected to the valve mouths (16A, 1 B) a pair of valve body urging springs (17) urging to the side, a bellows (41) housed in the intermediate region (R3) and extending in the opposing direction of the pair of opposing walls (13), and a bellows (41) A pair of valve openings (16A, 16B) fixed to either one of the pair of movable counterboards (44) with both ends sealed and the valve element (19) and the movable counterboard (44). ), And is in a stretched state between the valve body (19) and the movable counter plate (44), and moves the valve body (19) in accordance with the deformation amount of the bellows (41), thereby opening the valve port (16A). , 16B), a pair of abutting shafts (37) for changing the valve opening degree, a conical intrusion portion (44F) formed in a movable opposing plate (44) and having a reduced diameter in a tapered shape, and an opposing wall ( 13), the inner diameter is reduced to a taper shape, and the conical ridge (44F) is fitted into the bellows (41) and the contact shuff. (37) and a conical recess (13T) for centering the movable counter plate (44) so that the valve bodies (19) are arranged coaxially, and a pair of movable counter plates (44) are connected, It is characterized in that a buckling prevention mechanism (45) that allows linear movement in a state where the movable opposing boards (44) are held coaxially is provided.

請求項6の発明は、請求項1乃至5の何れかに記載の双方向定圧膨張弁(10)において、一方の弁口(16A)と当接シャフト(37)との隙間の開口面積を、他方の弁口(16B)と当接シャフト(37)との隙間の開口面積より広くしたところに特徴を有する。   The invention of claim 6 is the bidirectional constant pressure expansion valve (10) according to any one of claims 1 to 5, wherein the opening area of the gap between one valve port (16A) and the contact shaft (37) is It is characterized in that it is wider than the opening area of the gap between the other valve port (16B) and the contact shaft (37).

[請求項1の発明]
請求項1の双方向定圧膨張弁(10)によれば、ヒートポンプ回路(90)を冷房運転と暖房運転との何れか一方にして、冷媒が一端側領域(R1)、中間領域(R3)、他端側領域(R2)の順番に流れると、ベローズ(41)は冷媒に押されて他端側に移動し、他端側の可動対向盤(44)が対向壁(13)に当接して軸方向で位置決めされる一方、一端側の可動対向盤(44)が対向壁(13)から離れる。そして、各当接シャフト(37)が各弁体(19)と各可動対向盤(44)との間で突っ張り状態になることで、他端側領域(R2)の弁体(19)が弁口(16B)から離れた位置に保持され、一端側領域(R1)の弁体(19)が弁口(16A)に接近した位置で、中間領域(R3)内の冷媒圧力に応じて弁口(16A)に接離する。これにより、一端側領域(R1)の弁口(16A)より下流側の冷媒圧力を一定にすることができる。また、冷暖房を切り替えて冷媒の流れる向きが逆転した場合も同様にして、上流に位置した他端側領域(R2)側の弁口(16B)の弁開度が中間領域(R3)の冷媒圧力に応じて変化し、その弁口(16B)より下流側の冷媒圧力を一定にすることができる。ここで、本発明では、冷媒の流れに応じてベローズ(41)が一端側と他端側の何れに移動しても、可動対向盤(44)のガイド突部(44B)と対向壁(13)のガイド凹部(13U)との案内により、ベローズ(41)、当接シャフト(37)及び弁体(19)が同軸上に並ぶように芯出しされる。これにより、弁の特性が安定し、従来より確実に下流側の冷媒圧力を一定にすることが可能になる。
[Invention of Claim 1]
According to the bidirectional constant pressure expansion valve (10) of claim 1, the heat pump circuit (90) is in one of the cooling operation and the heating operation, and the refrigerant is in the one end side region (R1), the intermediate region (R3), When it flows in the order of the other end side region (R2), the bellows (41) is pushed by the refrigerant and moves to the other end side, and the movable opposing plate (44) on the other end side contacts the opposing wall (13). While being positioned in the axial direction, the movable facing plate (44) on one end side is separated from the facing wall (13). And each contact shaft (37) will be in the tension state between each valve body (19) and each movable opposing board (44), and the valve body (19) of the other end side area | region (R2) will become a valve. The valve port is held at a position away from the port (16B), and the valve body (19) in the one end side region (R1) is close to the valve port (16A), depending on the refrigerant pressure in the intermediate region (R3). Contact (16A). Thereby, the refrigerant | coolant pressure downstream from the valve port (16A) of a one end side area | region (R1) can be made constant. Similarly, when the cooling / heating is switched and the flow direction of the refrigerant is reversed, similarly, the valve opening degree of the valve port (16B) on the other end side region (R2) side located upstream is the refrigerant pressure in the intermediate region (R3). The refrigerant pressure on the downstream side of the valve port (16B) can be made constant. Here, in the present invention, even if the bellows (41) moves to one end side or the other end side in accordance with the flow of the refrigerant, the guide protrusion (44B) and the opposing wall (13) of the movable facing plate (44). ) With the guide recess (13U), the bellows (41), the contact shaft (37) and the valve body (19) are centered so as to be aligned coaxially. As a result, the characteristics of the valve are stabilized, and the downstream refrigerant pressure can be made constant more reliably than in the past.

[請求項2,3,4の発明]
請求項2の構成によれば、ベローズ(41)の直動位置に拘わらず、ガイド凹部(13U)とガイド突部(44B)とが常時嵌合して可動対向盤(44)が常時芯出されているので、弁の特性がさらに安定する。この場合、請求項3の構成のように、ガイド凹部(13U)又はガイド突部(44B)に摺動リング(44E)を備えることで摺動抵抗が抑えられ、弁の特性をさらに安定させることができる。なお、摺動リング(44E)は、摺動性樹脂で構成することが好ましい(請求項4の発明)。
[Inventions of Claims 2, 3 and 4]
According to the configuration of the second aspect, regardless of the linear movement position of the bellows (41), the guide recess (13U) and the guide protrusion (44B) are always fitted, and the movable counterboard (44) is always centered. As a result, the characteristics of the valve are further stabilized. In this case, as in the configuration of claim 3, by providing the guide recess (13U) or the guide projection (44B) with the sliding ring (44E), the sliding resistance can be suppressed and the characteristics of the valve can be further stabilized. Can do. The sliding ring (44E) is preferably made of a slidable resin (invention of claim 4).

[請求項5の発明]
請求項5の双方向定圧膨張弁(10)によれば、ベローズ(41)が両対向壁(13)の間を移動し、ベローズ(41)の一端側で可動対向盤(44)と対向壁(13)に当接すると、錐形突入部(44F)と錐形凹部(13T)との嵌合により、可動対向盤(44)が芯だしされる。ここで、ベローズ(41)は、座屈防止機構(45)によって座屈が規制されているので、上記したベローズ(41)の一端側の芯だしにより、ベローズ(41)全体と、当接シャフト(37)及び弁体(19)が芯だしされる。これにより、弁の特性が安定して従来より確実に下流側の冷媒圧力を一定にすることが可能になる。
[Invention of claim 5]
According to the bidirectional constant pressure expansion valve (10) of claim 5, the bellows (41) moves between the opposing walls (13), and the movable opposing disk (44) and the opposing wall are arranged on one end side of the bellows (41). When it abuts on (13), the movable counter board (44) is centered by the fitting of the conical intrusion part (44F) and the conical concave part (13T). Here, since the buckling of the bellows (41) is regulated by the buckling prevention mechanism (45), the entire bellows (41) and the abutting shaft are arranged by the centering on one end side of the bellows (41). (37) and the valve body (19) are centered. As a result, the characteristics of the valve are stabilized, and the downstream refrigerant pressure can be made constant more reliably than before.

[請求項6の発明]
請求項6の双方向定圧膨張弁(10)のように、暖房冷房いずれかの運転時に下流側に位置する一方の弁口(16A)と当接シャフト(37)との隙間の開口面積を、他方の弁口(16B)と当接シャフト(37)との隙間の開口面積より広くしてもよい。これにより、暖房冷房の何れか一方の運転時に双方向定圧膨張弁(10)にて制御されて流される冷媒流量が、他方の運転時に制御されて流される冷媒流量より大きくなり、比較的に大流量(大容量)を必要とする暖房運転時になどに適切に対応することができる。
[Invention of claim 6]
As in the bi-directional constant pressure expansion valve (10) of claim 6, the opening area of the gap between the one valve port (16A) and the contact shaft (37) located on the downstream side during either heating or cooling operation, The opening area of the gap between the other valve port (16B) and the contact shaft (37) may be larger. As a result, the refrigerant flow rate controlled and flowed by the bidirectional constant pressure expansion valve (10) during either one of the heating and cooling operations is larger than the refrigerant flow rate controlled and flowed during the other operation, and is relatively large. It is possible to appropriately cope with the heating operation requiring a flow rate (large capacity).

[第1実施形態]
以下、本発明の一実施形態を図1〜図3に基づいて説明する。
図1に示された本実施形態の双方向定圧膨張弁10のボディ10Bは、パイプ部材12の内部に1対の対向壁13,13を備えてなる。パイプ部材12は、例えば、断面円形をなして真っ直ぐ延びており、両端寄り位置でテーパー状に縮径され、中間部分より両端部の径が小さくなっている。
[First Embodiment]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
A body 10 </ b> B of the bidirectional constant pressure expansion valve 10 of the present embodiment shown in FIG. 1 includes a pair of opposing walls 13 and 13 inside a pipe member 12. For example, the pipe member 12 has a circular cross section and extends straight, and is reduced in a tapered shape at positions near both ends, with the diameters at both ends being smaller than the intermediate portion.

両対向壁13,13は、パイプ部材12内に嵌合可能な断面円形をなしている。また、一方の対向壁13(図1の上側の対向壁13)の外縁部からは、他方の対向壁13に向けて円筒壁13Aが突出している。そして、他方の対向壁13には、一端部を縮径して嵌合部13Bが形成され、その嵌合部13Bを円筒壁13Aの内部に嵌合して対向壁13,13同士が互いに芯だしされている。また、円筒壁13Aの先端面が他方の対向壁13の段差部分に突き当てられて、対向壁13,13同士の間隔が一定の大きさになるように位置決めされている。   Both opposing walls 13, 13 have a circular cross section that can be fitted into the pipe member 12. A cylindrical wall 13 </ b> A protrudes from the outer edge portion of one opposing wall 13 (upper opposing wall 13 in FIG. 1) toward the other opposing wall 13. The other opposing wall 13 is formed with a fitting portion 13B having a reduced diameter at one end, the fitting portion 13B is fitted into the cylindrical wall 13A, and the opposing walls 13 and 13 are cored with each other. It has been started. Further, the tip end surface of the cylindrical wall 13A is abutted against the step portion of the other opposing wall 13, and is positioned so that the interval between the opposing walls 13 and 13 becomes a constant size.

各対向壁13の外周面には係止溝13Cが全周に亘って形成されている。これに対応して、パイプ部材12の中間部分における軸方向の2箇所には、パイプ部材12の一部を周方向全体に亘って内側に屈曲させて1対の突条12T,12Tが形成されている。そして、各対向壁13,13の係止溝13C内に各突条12Tを係合させて、対向壁13,13がパイプ部材12内に位置決め固定されると共に、対向壁13,13の外周面とパイプ部材12の内周面との隙間が塞がれている。これにより、パイプ部材12内の流路11が1対の対向壁13,13によって一端側の一端側領域R1と他端側の他端側領域R2とそれら一端側領域R1と他端側領域R2の中間の中間領域R3とに区画されている。   A locking groove 13 </ b> C is formed on the outer peripheral surface of each facing wall 13 over the entire circumference. Correspondingly, a pair of protrusions 12T and 12T are formed by bending a part of the pipe member 12 inward in the entire circumferential direction at two axial positions in the intermediate portion of the pipe member 12. ing. Then, the protrusions 12T are engaged in the locking grooves 13C of the opposing walls 13 and 13 so that the opposing walls 13 and 13 are positioned and fixed in the pipe member 12, and the outer peripheral surfaces of the opposing walls 13 and 13 And the inner peripheral surface of the pipe member 12 are closed. Thereby, the flow path 11 in the pipe member 12 is connected to the one end side region R1 on the one end side, the other end side region R2 on the other end side, the one end side region R1, and the other end side region R2 by the pair of opposing walls 13 and 13. And an intermediate region R3 in the middle.

対向壁13,13の中心部には、弁口16A,16Bが形成されている。これら弁口16A,16Bは、開口形状が共に円形になっており、互いに同軸上に配置されている。そして、これら弁口16A,16Bを通して冷媒が一端側領域R1と中間領域R3との間、中間領域R3と他端側領域R2との間を流れる。また、一方の弁口16Aにおける一端側領域R1側の開口縁及び他方の弁口16Bにおける他端側領域R2側の開口縁には、テーパー状の弁座16Zが形成されている。   Valve ports 16 </ b> A and 16 </ b> B are formed at the center of the opposing walls 13 and 13. These valve ports 16A and 16B have both circular openings, and are arranged coaxially with each other. The refrigerant flows through the valve ports 16A and 16B between the one end side region R1 and the intermediate region R3 and between the intermediate region R3 and the other end side region R2. A tapered valve seat 16Z is formed at the opening edge on the one end side region R1 side of the one valve port 16A and the opening edge on the other end side region R2 side of the other valve port 16B.

中間領域R3内には、可動感圧部40が収容されている。図2に示すように、可動感圧部40は、1対の対向壁13,13の間に延びたベローズ41の両端部を1対の可動対向盤44,44にて密閉してなり、そのベローズ41内が真空や大気圧等の一定圧力に保たれている。   A movable pressure-sensitive part 40 is accommodated in the intermediate region R3. As shown in FIG. 2, the movable pressure sensing unit 40 is formed by sealing both ends of a bellows 41 extending between a pair of opposed walls 13, 13 with a pair of movable opposed plates 44, 44. The inside of the bellows 41 is maintained at a constant pressure such as vacuum or atmospheric pressure.

各可動対向盤44は、円板状のフランジ部44Fを備え、フランジ部44Fのうちベローズ41の内側を向いた内面の中心に円形突部44Aを有している。円形突部44Aには、延長筒部材43が固定されている。その延長筒部材43は、一端有底の円筒状をなし、その開放端を円形突部44Aに嵌合した状態にして(圧入又は溶接により)固定されている。   Each movable counter board 44 includes a disk-like flange portion 44F, and has a circular protrusion 44A at the center of the inner surface of the flange portion 44F facing the inside of the bellows 41. An extension cylinder member 43 is fixed to the circular protrusion 44A. The extension cylinder member 43 has a cylindrical shape with one end and is fixed (by press-fitting or welding) with its open end fitted into the circular protrusion 44A.

延長筒部材43,43の外側には、感圧補助ばね42が挿通されて、その感圧補助ばね42が可動対向盤44,44の間で突っ張り状態になっている。また、両延長筒部材43の底壁43Bには、貫通孔43Aが貫通形成されている。そして、一端にヘッド部48Hを有したガイドピン48が、一方の延長筒部材43の内側から両貫通孔43A,43Aに挿通されて他方の延長筒部材43の内部に突入している。また、他方の延長筒部材43内でガイドピン48の先端に備えたリング溝48Mにストッパリング49が装着され、ヘッド部48Hとストッパリング49とによりガイドピン48が貫通孔43A,43Aに抜け止めされている。また、これら延長筒部材43,43、ガイドピン48及びストッパリング49によって座屈防止機構45が構成されている。そして、この座屈防止機構45と感圧補助ばね42とにより、常には両延長筒部材43,43の底壁43B,43B同士が隙間を介して対向し、その隙間を狭めるようにしてベローズ41が圧縮変形可能になっている。   A pressure-sensitive auxiliary spring 42 is inserted outside the extension cylinder members 43, 43, and the pressure-sensitive auxiliary spring 42 is stretched between the movable opposing plates 44, 44. A through hole 43 </ b> A is formed through the bottom wall 43 </ b> B of both the extended cylinder members 43. A guide pin 48 having a head portion 48 </ b> H at one end is inserted into the through-holes 43 </ b> A and 43 </ b> A from the inside of the one extension cylinder member 43 and enters the inside of the other extension cylinder member 43. Further, a stopper ring 49 is mounted in a ring groove 48M provided at the tip of the guide pin 48 in the other extension cylinder member 43, and the guide pin 48 is prevented from coming off in the through holes 43A and 43A by the head portion 48H and the stopper ring 49. Has been. Further, the extension cylinder members 43, 43, the guide pin 48, and the stopper ring 49 constitute a buckling prevention mechanism 45. And by this buckling prevention mechanism 45 and the pressure-sensitive auxiliary spring 42, the bottom walls 43B, 43B of both the extended cylindrical members 43, 43 are always opposed to each other through a gap, and the bellows 41 is made to narrow the gap. Can be compressed and deformed.

各対向壁13のうち中間領域R3の端面には、ガイド凹部13Uがそれぞれ陥没形成されている。ガイド凹部13Uは、弁口16A(16B)と同心の内径円形をなして双方向定圧膨張弁10の軸方向に均一の径をなして延び、ガイド凹部13Uの奥面には、中心に弁口16A(16B)が開口している。これに対し、可動対向盤44のうちフランジ部44Fの外面の中心には、円柱状のガイド突部44Bが突出形成されている。そして、このガイド突部44Bがガイド凹部13U内に直動可能な状態で常時嵌合している。   A guide recess 13U is formed in a recessed manner on the end surface of the intermediate region R3 in each of the opposing walls 13. The guide recess 13U has a circular inner diameter that is concentric with the valve port 16A (16B) and extends in a uniform diameter in the axial direction of the bidirectional constant-pressure expansion valve 10. 16A (16B) is opened. On the other hand, a cylindrical guide protrusion 44B is formed to protrude from the center of the outer surface of the flange portion 44F of the movable counter board 44. And this guide protrusion 44B is always fitted in the guide recessed part 13U in the state which can be moved linearly.

ガイド突部44Bには、冷媒連通孔16Dが形成されている。冷媒連通孔16Dは、ガイド突部44Bの先端面からガイド突部44Bとフランジ部44Fとの境界部分に亘って延びてその境界部分で直角曲げされ、ガイド突部44Bの先端面と側面とに開放している。また、ガイド凹部13Uの開口縁には、冷媒連通孔16Dの側面開口との対向位置に冷媒通過溝16Cが形成されている。冷媒通過溝16Cは、一端部が可動対向盤44の外縁部より外側まで延びている。これにより、可動対向盤44の位置に拘わらず中間領域R3が弁口16A,16Bに常時連通している。   A refrigerant communication hole 16D is formed in the guide protrusion 44B. The refrigerant communication hole 16D extends from the distal end surface of the guide projection 44B to the boundary portion between the guide projection 44B and the flange portion 44F, and is bent at a right angle at the boundary portion, to the distal end surface and the side surface of the guide projection 44B. It is open. A refrigerant passage groove 16C is formed at the opening edge of the guide recess 13U at a position facing the side opening of the refrigerant communication hole 16D. One end portion of the refrigerant passage groove 16 </ b> C extends to the outside from the outer edge portion of the movable facing plate 44. As a result, regardless of the position of the movable opposing board 44, the intermediate region R3 is always in communication with the valve ports 16A and 16B.

ガイド突部44Bには、冷媒連通孔16Dの内側に当接シャフト37が遊嵌され、その当接シャフト37の一端部がフランジ部44Fに固定されている。そして、当接シャフト37の他端部が、ガイド突部44Bの先端面から突出して弁口16A,16Bに挿通され、後述する球状の弁体19に突き合わされている。   The guide protrusion 44B has a contact shaft 37 loosely fitted inside the refrigerant communication hole 16D, and one end of the contact shaft 37 is fixed to the flange portion 44F. The other end of the abutting shaft 37 protrudes from the distal end surface of the guide protrusion 44B, is inserted into the valve ports 16A and 16B, and is abutted against a spherical valve body 19 described later.

図1に示すように、各対向壁13,13には、中間領域R3内との反対面に端部筒壁14が突出形成されている。端部筒壁14の内面のうち先端寄り部分には、雌螺子部14Aが形成され、ここにナット15が螺合している。ナット15の中心部には貫通孔15Aが形成され、端部筒壁14の内部空間と一端側領域R1又は他端側領域R2とが連通している。   As shown in FIG. 1, each of the opposing walls 13, 13 is formed with an end cylindrical wall 14 protruding on the opposite surface to the inside of the intermediate region R <b> 3. A female screw portion 14 </ b> A is formed in a portion near the tip of the inner surface of the end cylindrical wall 14, and a nut 15 is screwed therein. A through hole 15A is formed at the center of the nut 15, and the internal space of the end cylindrical wall 14 communicates with the one end side region R1 or the other end side region R2.

各ナット15と各弁座16Zとの間には、ナット15側から順番に、弁体付勢ばね17、押圧部材18、球状の弁体19が収容されている。押圧部材18は、全体として円柱形状をなし、一端部を段付き状に拡径し、さらにその大径側の端面に球受凹部18Aを陥没形成した構造になっている。弁体付勢ばね17の一端部は、ナット15における貫通孔15Aの開口縁に突き当てられかつその開口縁から突出した環状突部(図示せず)によって芯だしされる一方、弁体付勢ばね17の他端部は、押圧部材18の小径部分に嵌合されている。そして、押圧部材18の球受凹部18Aにおける円錐形内面に弁体19が当接し、弁体付勢ばね17の弾発力によって弁体19を弁口16A,16B側に付勢している。   Between each nut 15 and each valve seat 16Z, a valve body urging spring 17, a pressing member 18, and a spherical valve body 19 are accommodated in this order from the nut 15 side. The pressing member 18 has a cylindrical shape as a whole, and has a structure in which one end is enlarged in a stepped shape, and a ball receiving recess 18A is recessed in the end surface on the large diameter side. One end of the valve body biasing spring 17 is abutted against the opening edge of the through-hole 15A in the nut 15 and is centered by an annular protrusion (not shown) protruding from the opening edge. The other end of the spring 17 is fitted into the small diameter portion of the pressing member 18. The valve body 19 abuts on the conical inner surface of the ball receiving recess 18A of the pressing member 18, and the valve body 19 is biased toward the valve ports 16A and 16B by the elastic force of the valve body biasing spring 17.

本実施形態に係る双方向定圧膨張弁10の構成の説明は以上であり、次に、この双方向定圧膨張弁10を、図3に示したヒートポンプ回路90に組み付けた場合の動作について説明する。このヒートポンプ回路90は、例えば、一般家庭用のルームエアコンに備えられている。ヒートポンプ回路90には室外熱交換器91Aと室内熱交換器92Aとが備えられ、その室外熱交換器91Aは、ルームエアコンの室外機91に組み込まれる一方、室内熱交換器92Aは室内機92に組み込まれている。そして、1対の管路96A,96Bによってこれら室外熱交換器91Aと室内熱交換器92Aとの間が接続されて、室外熱交換器91A及び室内熱交換器92Aを含む冷媒循環路96が形成され、冷媒がこれら室外熱交換器91A及び室内熱交換器92Aを通過して冷媒循環路96を循環する。そして、冷媒が室外熱交換器91Aを通過する際に冷媒と外気との間で熱交換が行われ、冷媒が室内熱交換器92Aを通過する際に冷媒と室内の空気との間で熱交換が行われる。   The configuration of the bidirectional constant pressure expansion valve 10 according to the present embodiment has been described above. Next, the operation when the bidirectional constant pressure expansion valve 10 is assembled to the heat pump circuit 90 shown in FIG. 3 will be described. The heat pump circuit 90 is provided in a room air conditioner for general households, for example. The heat pump circuit 90 includes an outdoor heat exchanger 91A and an indoor heat exchanger 92A. The outdoor heat exchanger 91A is incorporated in the outdoor unit 91 of the room air conditioner, while the indoor heat exchanger 92A is installed in the indoor unit 92. It has been incorporated. The outdoor heat exchanger 91A and the indoor heat exchanger 92A are connected by a pair of pipes 96A and 96B to form a refrigerant circulation path 96 including the outdoor heat exchanger 91A and the indoor heat exchanger 92A. Then, the refrigerant passes through the outdoor heat exchanger 91A and the indoor heat exchanger 92A and circulates in the refrigerant circulation path 96. Then, when the refrigerant passes through the outdoor heat exchanger 91A, heat exchange is performed between the refrigerant and the outside air, and when the refrigerant passes through the indoor heat exchanger 92A, heat exchange is performed between the refrigerant and the indoor air. Is done.

本実施形態の双方向定圧膨張弁10は、室外機91内に組み付けられると共に、室外熱交換器91Aと室内熱交換器92Aとの間を連絡する一方の管路96Aの途中に接続されている。そして、ボディ10Bのうち図1の上側に示した一端側領域R1が室外熱交換器91Aに常時連通する一方、図1の下側に示した他端側領域R2が室内熱交換器92Aに常時連通した状態になっている。また、室外機91側では、他方の管路96Bの途中に四方弁93を介して圧縮機94が接続されている。そして、ヒートポンプ回路90を冷房運転と暖房運転とに切り替えると、四方弁93が作動して、冷媒循環路96を流れる冷媒の向きが逆転する。   The bidirectional constant pressure expansion valve 10 of the present embodiment is assembled in the outdoor unit 91 and connected in the middle of one conduit 96A that communicates between the outdoor heat exchanger 91A and the indoor heat exchanger 92A. . And one end side area | region R1 shown to the upper side of FIG. 1 among body 10B is always connected to outdoor heat exchanger 91A, while the other end side area | region R2 shown to the lower side of FIG. 1 is always connected to indoor heat exchanger 92A. It is in a state of communication. On the outdoor unit 91 side, a compressor 94 is connected to the other pipe 96B through a four-way valve 93. When the heat pump circuit 90 is switched between the cooling operation and the heating operation, the four-way valve 93 is activated, and the direction of the refrigerant flowing through the refrigerant circulation path 96 is reversed.

さて、ヒートポンプ回路90の冷房運転時には、一方の管路96Aにおいては、冷媒が室内熱交換器92Aから室外熱交換器91Aに流され、このとき、双方向定圧膨張弁10においては、図2の矢印で示したように、冷媒が一端側領域R1、一方の弁口16A、中間領域R3、他方の弁口16B、他端側領域R2の順番に流れる。   Now, during the cooling operation of the heat pump circuit 90, in one of the pipes 96A, the refrigerant flows from the indoor heat exchanger 92A to the outdoor heat exchanger 91A. At this time, in the bidirectional constant pressure expansion valve 10, as shown in FIG. As indicated by the arrows, the refrigerant flows in the order of one end side region R1, one valve port 16A, intermediate region R3, the other valve port 16B, and the other end side region R2.

すると、ベローズ41は冷媒に押されて他端側に移動し、ベローズ41の他端側の可動対向盤44が対向壁13に当接して軸方向で位置決めされる一方、一端側の可動対向盤44が対向壁13から離れる。そして、当接シャフト37が各弁体19と各可動対向盤44との間で突っ張り状態になることで、他端側領域R2の弁体19が、弁口16Bから離れた位置に保持され、一端側領域R1の弁体19が弁口16Aに接近した位置で、中間領域R3内の冷媒圧力に応じて弁口16Aに接離する。これにより、一端側領域R1の弁口16Aより下流側の冷媒圧力を一定にすることができる。また、冷暖房を切り替えて冷媒の流れる向きが逆転した場合も同様にして、上流に位置した他端側領域R2の弁口16Bの弁開度が中間領域R3の冷媒圧力に応じて変化し、その弁口16Bより下流側の冷媒圧力を一定にすることができる。   Then, the bellows 41 is pushed by the refrigerant and moves to the other end side, and the movable counter plate 44 on the other end side of the bellows 41 contacts the counter wall 13 and is positioned in the axial direction. 44 separates from the facing wall 13. The contact shaft 37 is stretched between each valve body 19 and each movable counter plate 44, so that the valve body 19 in the other end region R2 is held at a position away from the valve port 16B. At the position where the valve element 19 of the one end side region R1 approaches the valve port 16A, the valve body 16 contacts and separates from the valve port 16A according to the refrigerant pressure in the intermediate region R3. Thereby, the refrigerant | coolant pressure downstream from the valve port 16A of one end side area | region R1 can be made constant. Similarly, when the cooling / heating is switched and the refrigerant flow direction is reversed, the valve opening degree of the valve port 16B of the other end side region R2 located upstream changes according to the refrigerant pressure of the intermediate region R3, The refrigerant pressure downstream of the valve port 16B can be made constant.

ここで、本実施形態では、冷媒の流れに応じてベローズ41が一端側と他端側の何れに移動しても、可動対向盤44のガイド突部44Bと対向壁13のガイド凹部13Uとの案内により可動対向盤44が芯だしされ、ベローズ41、当接シャフト37及び弁体19が同軸上に配置される。これにより、当接シャフト37と弁体19との当接位置が安定する。しかも、ベローズ41の直動位置に拘わらず、ベローズ41の両端の可動対向盤44,44における各ガイド突部44Bが、各ガイド凹部13Uに常時嵌合しているので当接シャフト37と弁体19との当接位置の安定度が高まる。また、ガイド突部44B及びガイド凹部13Uによる案内機構と、座屈防止機構45とが協働してベローズ41の座屈を確実に防ぐことができる。これらにより、本実施形態の双方向定圧膨張弁10では、弁の特性が安定し、従来より確実に下流側の冷媒圧力を一定にすることが可能になる。   Here, in the present embodiment, even if the bellows 41 moves to one end side or the other end side according to the flow of the refrigerant, the guide projection 44B of the movable facing plate 44 and the guide recess 13U of the facing wall 13 The movable opposing board 44 is centered by the guide, and the bellows 41, the contact shaft 37, and the valve body 19 are arranged coaxially. Thereby, the contact position of the contact shaft 37 and the valve body 19 is stabilized. In addition, regardless of the linear movement position of the bellows 41, the guide protrusions 44B on the movable opposing plates 44, 44 at both ends of the bellows 41 are always fitted in the guide recesses 13U, so the contact shaft 37 and the valve body The stability of the contact position with 19 increases. Further, the buckling of the bellows 41 can be reliably prevented by the cooperation of the guide mechanism by the guide protrusion 44B and the guide recess 13U and the buckling prevention mechanism 45. Accordingly, in the bidirectional constant pressure expansion valve 10 of the present embodiment, the valve characteristics are stabilized, and the downstream refrigerant pressure can be made constant more reliably than in the past.

なお、本実施形態の双方向定圧膨張弁10のうち一方の弁口16Aと当接シャフト37との隙間の開口面積を、他方の弁口16Bと当接シャフト37との隙間の開口面積より広くしてもよい。このようにすれば、暖房冷房の何れか一方の運転時に双方向定圧膨張弁10にて制御されて流される冷媒流量が、他方の運転時に制御されて流される冷媒流量より大きくなり、比較的に大流量を必要とする暖房運転時になどに適切に対応することができる。   In addition, the opening area of the clearance gap between one valve opening 16A and the contact shaft 37 among the bidirectional | two-way constant pressure expansion valves 10 of this embodiment is wider than the opening area of the clearance gap between the other valve opening 16B and the contact shaft 37. May be. In this way, the refrigerant flow rate controlled and flowed by the bidirectional constant pressure expansion valve 10 during one of the heating and cooling operations is larger than the refrigerant flow rate controlled and flowed during the other operation. It is possible to appropriately cope with, for example, a heating operation that requires a large flow rate.

[第2実施形態]
本実施形態の双方向定圧膨張弁10は、図4に示されており、ガイド突部44Bの先端寄り位置の外周面にリング溝44Mが形成され、そこに摺動性樹脂製(例えば、フッ素系樹脂製)の摺動リング44Eが装着されている点が第1実施形態と異なる。その他の構成に関しては、第1実施形態と同様である。
[Second Embodiment]
The bidirectional constant pressure expansion valve 10 of the present embodiment is shown in FIG. 4, and a ring groove 44M is formed on the outer peripheral surface near the tip of the guide projection 44B, and made of a slidable resin (for example, fluorine This is different from the first embodiment in that a sliding ring 44E made of a resin is attached. Other configurations are the same as those in the first embodiment.

本実施形態によれば、摺動性樹脂製の摺動リング44Eを備えたことで、摺動抵抗の低減及び可動部分の軽量化が図られ、弁の特性の更なる安定化が可能になる。なお、摺動リング44Eは、摺動性樹脂以外の樹脂又は金属で構成してもよい。   According to the present embodiment, since the sliding ring 44E made of slidable resin is provided, the sliding resistance can be reduced and the weight of the movable part can be reduced, and the characteristics of the valve can be further stabilized. . The sliding ring 44E may be made of a resin or metal other than the slidable resin.

[第3実施形態]
本実施形態の双方向定圧膨張弁10は、図5に示されている。以下、第1実施形態と異なる構成に関してのみを説明する。
[Third Embodiment]
The bidirectional constant pressure expansion valve 10 of this embodiment is shown in FIG. Only the configuration different from that of the first embodiment will be described below.

本実施形態の双方向定圧膨張弁10では、一方の対向壁13(図5の上側の対向壁13)に備えた円筒壁13Aの基端部内面を奥側に向けて内径をテーパー状に徐々に縮径して一方の錐形凹部13Tが形成されている。また、他方の対向壁13の端面外縁部からは扁平の円筒壁13Dが突出形成され、その内側面をテーパー状にして他方の錐形凹部13Tが形成されている。各可動対向盤44におけるフランジ部44Fは、各錐形凹部13Tの内側面と同角度で傾斜したテーパー面44Tを備えて、本発明に係る「錐形突入部」を構成している。   In the bidirectional constant pressure expansion valve 10 of the present embodiment, the inner diameter is gradually tapered with the inner surface of the base end portion of the cylindrical wall 13A provided on one opposing wall 13 (upper opposing wall 13 in FIG. 5) facing the back side. One conical recess 13T is formed with a reduced diameter. A flat cylindrical wall 13D protrudes from the outer edge of the other opposing wall 13, and the other conical recess 13T is formed with the inner surface tapered. The flange portion 44F in each movable counter board 44 includes a tapered surface 44T inclined at the same angle as the inner surface of each conical recess 13T, and constitutes a “conical entry portion” according to the present invention.

本実施形態の構成によれば、ベローズ41が両対向壁13,13の間を移動し、ベローズ41の一端が対向壁13に当接すると、ベローズ41の一端側において、「錐形突入部」としてのフランジ部44Fと錐形凹部13Tとの案内により、可動対向盤44が芯だしされる。ここで、ベローズ41は、座屈防止機構45によって座屈が規制されているので、上記したベローズ41の一端側の芯だしにより、ベローズ41全体と、当接シャフト37及び弁体19が芯だしされる。これにより、当接シャフト37と弁体19との当接位置が安定して弁の特性も安定し、従来より確実に下流側の冷媒圧力を一定にすることが可能になる。   According to the configuration of the present embodiment, when the bellows 41 moves between the opposing walls 13 and 13 and one end of the bellows 41 abuts against the opposing wall 13, a “conical ridge” is formed on one end side of the bellows 41. As a result of the guide of the flange portion 44F and the conical concave portion 13T, the movable counter board 44 is centered. Here, since the buckling of the bellows 41 is regulated by the buckling prevention mechanism 45, the entire bellows 41, the contact shaft 37 and the valve element 19 are centered by the centering of one end of the bellows 41 described above. Is done. As a result, the contact position between the contact shaft 37 and the valve body 19 is stabilized, the characteristics of the valve are also stabilized, and the downstream refrigerant pressure can be made constant more reliably than before.

本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。   The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記第1〜第3の実施形態では、当接シャフト37が可動対向盤44側に固定されていたが、当接シャフト37を弁体19側に固定した構成にしてもよい。   (1) In the first to third embodiments, the contact shaft 37 is fixed to the movable counter plate 44 side. However, the contact shaft 37 may be fixed to the valve body 19 side.

(2)前記第1実施形態では、ガイド突部44Bとガイド凹部13Uとによる案内機構と、座屈防止機構45とが協働してベローズ41の座屈を防いでいたが、ガイド突部44Bとガイド凹部13Uとによる案内機構のみでベローズ41の座屈を防ぐ構成にしてもよい。   (2) In the first embodiment, the guide mechanism 44B and the guide recess 13U and the buckling prevention mechanism 45 cooperate to prevent the bellows 41 from buckling, but the guide protrusion 44B. Alternatively, the bellows 41 may be prevented from buckling only by a guide mechanism using the guide recess 13U.

本発明の第1実施形態に係る双方向定圧膨張弁の側断面図Side sectional view of the bidirectional constant pressure expansion valve according to the first embodiment of the present invention. 冷房時の双方向定圧膨張弁の側断面図Side sectional view of bidirectional constant pressure expansion valve during cooling ヒートポンプ回路の概念図Conceptual diagram of heat pump circuit 第2実施形態の双方向定圧膨張弁の側断面図Side sectional view of the bidirectional constant pressure expansion valve of the second embodiment 第3実施形態の双方向定圧膨張弁の側断面図Side sectional view of the bidirectional constant pressure expansion valve of the third embodiment 従来の双方向定圧膨張弁の側断面図Side sectional view of a conventional bidirectional constant pressure expansion valve

符号の説明Explanation of symbols

10 双方向定圧膨張弁
10B ボディ
13 対向壁
13T ガイド凹部
13U 錐形凹部
16A,16B 弁口
17 弁体付勢ばね
19 弁体
37 当接シャフト
41 ベローズ
44 可動対向盤
44B ガイド突部
44E 摺動リング
44F フランジ部(錐形突入部)
45 座屈防止機構
90 ヒートポンプ回路
91A 室外熱交換器
92A 室内熱交換器
R1 一端側領域
R2 他端側領域
R3 中間領域
DESCRIPTION OF SYMBOLS 10 Bidirectional constant pressure expansion valve 10B Body 13 Opposite wall 13T Guide recessed part 13U Conical recessed part 16A, 16B Valve port 17 Valve body urging spring 19 Valve body 37 Contact shaft 41 Bellows 44 Movable facing board 44B Guide protrusion 44E Sliding ring 44F Flange (conical entry)
45 Buckling prevention mechanism 90 Heat pump circuit 91A Outdoor heat exchanger 92A Indoor heat exchanger R1 One end side region R2 Other end side region R3 Middle region

Claims (6)

ヒートポンプ回路(90)の室内熱交換器(92A)と室外熱交換器(91A)との間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁(10)において、
前記冷媒の流路(11)を内部に有したボディ(10B)と、
前記ボディ(10B)に設けられて、前記流路(11)を一端側領域(R1)と中間領域(R3)と他端側領域(R2)とに区画する1対の対向壁(13)と、
前記1対の対向壁(13)に貫通形成されて、略同軸上に配置された1対の弁口(16A,16B)と、
前記一端側領域(R1)内及び前記他端側領域(R2)内にそれぞれ配置されて、前記各弁口(16A,16B)を開閉する1対の弁体(19)と、
前記各弁体(19)を前記弁口(16A,16B)側に付勢する1対の弁体付勢ばね(17)と、
前記中間領域(R3)に収容され、前記1対の対向壁(13)の対向方向に延びたベローズ(41)と、
前記ベローズ(41)の両端部を密閉した1対の可動対向盤(44)と、
前記弁体(19)と前記可動対向盤(44)との何れか一方に固定されて前記1対の弁口(16A,16B)に遊嵌され、前記弁体(19)と前記可動対向盤(44)との間で突っ張り状態になり、前記ベローズ(41)の変形量に応じて前記弁体(19)を移動して前記弁口(16A,16B)の弁開度を変更する1対の当接シャフト(37)と、
前記可動対向盤(44)から前記対向壁(13)に向かって突出したガイド突部(44B)と、
前記対向壁(13)の端面に陥没形成されて前記ガイド突部(44B)が嵌合し、前記ベローズ(41)、前記当接シャフト(37)及び前記弁体(19)が同軸上に並ぶように前記可動対向盤(44)を芯出しするガイド凹部(13U)とを備えたことを特徴とする双方向定圧膨張弁(10)。
Both are connected between the indoor heat exchanger (92A) and the outdoor heat exchanger (91A) of the heat pump circuit (90) so that the refrigerant flows in both directions, and the downstream refrigerant pressure can be made constant. In the constant pressure expansion valve (10),
A body (10B) having a flow path (11) for the refrigerant therein;
A pair of opposing walls (13) provided in the body (10B) and dividing the flow path (11) into one end side region (R1), an intermediate region (R3), and the other end side region (R2); ,
A pair of valve ports (16A, 16B) that are formed through the pair of opposing walls (13) and arranged substantially coaxially;
A pair of valve bodies (19) disposed in the one end side region (R1) and the other end side region (R2), respectively, for opening and closing the valve ports (16A, 16B);
A pair of valve body biasing springs (17) for biasing the valve bodies (19) toward the valve ports (16A, 16B);
A bellows (41) accommodated in the intermediate region (R3) and extending in the opposing direction of the pair of opposing walls (13);
A pair of movable opposing boards (44) in which both ends of the bellows (41) are sealed;
The valve body (19) and the movable counter board (44) are fixed to either one of the valve body (19) and loosely fitted to the pair of valve ports (16A, 16B). The pair of the valve openings (16A, 16B) is changed by moving the valve element (19) according to the deformation amount of the bellows (41). A contact shaft (37) of
A guide protrusion (44B) protruding from the movable counter plate (44) toward the counter wall (13);
The guide protrusion (44B) is fitted into the end surface of the opposing wall (13) and the bellows (41), the contact shaft (37), and the valve body (19) are arranged coaxially. As described above, the bidirectional constant pressure expansion valve (10) is provided with a guide recess (13U) for centering the movable counter board (44).
前記ガイド凹部(13U)及び前記ガイド突部(44B)が、常時嵌合していることを特徴とする請求項1に記載の双方向定圧膨張弁(10)。   The bidirectional constant pressure expansion valve (10) according to claim 1, wherein the guide recess (13U) and the guide protrusion (44B) are always fitted. 前記ガイド凹部(13U)又は前記ガイド突部(44B)の一方の周面に、摺動リング(44E)を設けたことを特徴とする請求項2に記載の双方向定圧膨張弁(10)。   The bidirectional constant pressure expansion valve (10) according to claim 2, wherein a sliding ring (44E) is provided on one circumferential surface of the guide recess (13U) or the guide projection (44B). 前記摺動リング(44E)は、摺動性樹脂で形成されたことを特徴とする請求項3に記載の双方向定圧膨張弁(10)。   The bidirectional constant pressure expansion valve (10) according to claim 3, wherein the sliding ring (44E) is made of a slidable resin. ヒートポンプ回路(90)の室内熱交換器(92A)と室外熱交換器(91A)との間に接続されて冷媒が双方向に流され、下流側の冷媒圧力を一定にすることが可能な双方向定圧膨張弁(10)において、
前記冷媒の流路(11)を内部に有したボディ(10B)と、
前記ボディ(10B)に設けられて、前記流路(11)を一端側領域(R1)と中間領域(R3)と他端側領域(R2)とに区画する1対の対向壁(13)と、
前記1対の対向壁(13)に貫通形成されて、略同軸上に配置された1対の弁口(16A,16B)と、
前記一端側領域(R1)内及び前記他端側領域(R2)内にそれぞれ配置されて、前記各弁口(16A,16B)を開閉する1対の弁体(19)と、
前記各弁体(19)を前記弁口(16A,16B)側に付勢する1対の弁体付勢ばね(17)と、
前記中間領域(R3)に収容され、前記1対の対向壁(13)の対向方向に延びたベローズ(41)と、
前記ベローズ(41)の両端部を密閉した1対の可動対向盤(44)と、
前記弁体(19)と前記可動対向盤(44)との何れか一方に固定されて前記1対の弁口(16A,16B)に遊嵌され、前記弁体(19)と前記可動対向盤(44)との間で突っ張り状態になり、前記ベローズ(41)の変形量に応じて前記弁体(19)を移動して前記弁口(16A,16B)の弁開度を変更する1対の当接シャフト(37)と、
前記可動対向盤(44)に形成されて、テーパー状に縮径した錐形突入部(44F)と、
前記対向壁(13)に形成されて内側がテーパー状に縮径し、前記錐形突入部(44F)が嵌合して、前記ベローズ(41)、前記当接シャフト(37)及び前記弁体(19)が同軸上に並ぶように前記可動対向盤(44)を芯出しする錐形凹部(13T)と、
前記1対の可動対向盤(44)の間を連結し、それら可動対向盤(44)同士を同軸状に保持した状態で直動を許容する座屈防止機構(45)が備えられたことを特徴とする双方向定圧膨張弁(10)。
Both are connected between the indoor heat exchanger (92A) and the outdoor heat exchanger (91A) of the heat pump circuit (90) so that the refrigerant flows in both directions, and the downstream refrigerant pressure can be made constant. In the constant pressure expansion valve (10),
A body (10B) having a flow path (11) for the refrigerant therein;
A pair of opposing walls (13) provided in the body (10B) and dividing the flow path (11) into one end side region (R1), an intermediate region (R3), and the other end side region (R2); ,
A pair of valve ports (16A, 16B) that are formed through the pair of opposing walls (13) and arranged substantially coaxially;
A pair of valve bodies (19) disposed in the one end side region (R1) and the other end side region (R2), respectively, for opening and closing the valve ports (16A, 16B);
A pair of valve body biasing springs (17) for biasing the valve bodies (19) toward the valve ports (16A, 16B);
A bellows (41) accommodated in the intermediate region (R3) and extending in the opposing direction of the pair of opposing walls (13);
A pair of movable opposing boards (44) in which both ends of the bellows (41) are sealed;
The valve body (19) and the movable counter board (44) are fixed to either one of the valve body (19) and loosely fitted to the pair of valve ports (16A, 16B). The pair of the valve openings (16A, 16B) is changed by moving the valve element (19) according to the deformation amount of the bellows (41). A contact shaft (37) of
A conical intrusion portion (44F) formed in the movable facing plate (44) and having a reduced diameter in a tapered shape;
The inner wall is formed in the facing wall (13) and has a tapered inner diameter, and the cone-shaped protrusion (44F) is fitted into the bellows (41), the contact shaft (37), and the valve body. A conical recess (13T) for centering the movable facing plate (44) so that (19) are arranged coaxially;
A buckling prevention mechanism (45) that connects the pair of movable counters (44) and allows linear movement in a state where the movable counters (44) are held coaxially is provided. Bidirectional constant pressure expansion valve (10) characterized.
一方の前記弁口(16A)と前記当接シャフト(37)との隙間の開口面積を、他方の前記弁口(16B)と前記当接シャフト(37)との隙間の開口面積より広くしたことを特徴とする請求項1乃至5の何れかに記載の双方向定圧膨張弁(10)。
The opening area of the gap between the one valve port (16A) and the contact shaft (37) is made larger than the opening area of the gap between the other valve port (16B) and the contact shaft (37). The bidirectional constant pressure expansion valve (10) according to any one of claims 1 to 5, characterized by:
JP2006047909A 2006-02-24 2006-02-24 Bidirectional constant pressure expansion valve Pending JP2007225209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047909A JP2007225209A (en) 2006-02-24 2006-02-24 Bidirectional constant pressure expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047909A JP2007225209A (en) 2006-02-24 2006-02-24 Bidirectional constant pressure expansion valve

Publications (1)

Publication Number Publication Date
JP2007225209A true JP2007225209A (en) 2007-09-06

Family

ID=38547186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047909A Pending JP2007225209A (en) 2006-02-24 2006-02-24 Bidirectional constant pressure expansion valve

Country Status (1)

Country Link
JP (1) JP2007225209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020102031A3 (en) * 2018-11-13 2021-04-22 Deltavalve, Llc Systems and methods for valve sealing
CN113551406A (en) * 2021-07-21 2021-10-26 珠海格力电器股份有限公司 Water level control structure and mobile air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177271U (en) * 1985-04-23 1986-11-05
JPS63153370A (en) * 1986-08-22 1988-06-25 株式会社デンソー Heat pump type air conditioner
JPH0198385U (en) * 1987-12-22 1989-06-30
JPH04208375A (en) * 1990-11-30 1992-07-30 Nippondenso Co Ltd Expansion valve
JPH06241620A (en) * 1993-02-15 1994-09-02 Nippondenso Co Ltd Control valve for refrigerating cycle
JPH08296929A (en) * 1995-04-26 1996-11-12 Tgk Co Ltd Two-way constant pressure expansion valve
JPH10220926A (en) * 1997-02-03 1998-08-21 Denso Corp Motor expansion valve
JP2003322086A (en) * 2002-02-04 2003-11-14 Eagle Ind Co Ltd Capacity control valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177271U (en) * 1985-04-23 1986-11-05
JPS63153370A (en) * 1986-08-22 1988-06-25 株式会社デンソー Heat pump type air conditioner
JPH0198385U (en) * 1987-12-22 1989-06-30
JPH04208375A (en) * 1990-11-30 1992-07-30 Nippondenso Co Ltd Expansion valve
JPH06241620A (en) * 1993-02-15 1994-09-02 Nippondenso Co Ltd Control valve for refrigerating cycle
JPH08296929A (en) * 1995-04-26 1996-11-12 Tgk Co Ltd Two-way constant pressure expansion valve
JPH10220926A (en) * 1997-02-03 1998-08-21 Denso Corp Motor expansion valve
JP2003322086A (en) * 2002-02-04 2003-11-14 Eagle Ind Co Ltd Capacity control valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020102031A3 (en) * 2018-11-13 2021-04-22 Deltavalve, Llc Systems and methods for valve sealing
CN113383185A (en) * 2018-11-13 2021-09-10 德尔塔瓦尔夫有限责任公司 System and method for valve sealing
JP2022507165A (en) * 2018-11-13 2022-01-18 デルタバルブ,エルエルシー Systems and methods for valve sealing
RU2766657C1 (en) * 2018-11-13 2022-03-15 ДЕЛЬТАВЭЛВ, ЭлЭлСи Systems and methods for valve sealing
JP7182707B2 (en) 2018-11-13 2022-12-02 デルタバルブ,エルエルシー System and method for valve sealing
CN113551406A (en) * 2021-07-21 2021-10-26 珠海格力电器股份有限公司 Water level control structure and mobile air conditioner

Similar Documents

Publication Publication Date Title
JP2020101291A (en) Valve device
KR101738321B1 (en) Ball valve with internal seal arrangement
JP6327401B2 (en) Pressure reducing valve
JP7369813B2 (en) electronic expansion valve
EP1731808A1 (en) Fluid controller
JP2006266663A (en) Expansion valve and air conditioner
WO2017038270A1 (en) Throttling device and refrigeration cycle
CN105531550A (en) Expansion valve
JP7478846B2 (en) Throttling valve and heat exchange system
WO2009104238A1 (en) Pressure type expansion valve
JP2007225209A (en) Bidirectional constant pressure expansion valve
JP4451407B2 (en) Bidirectional constant pressure expansion valve
EP3475599A1 (en) Flow control valve
JP2008128314A (en) Check valve
JP2012031966A (en) Three-way valve
JP4769036B2 (en) Throttle device, flow control valve, and air conditioner incorporating the same
JP4563945B2 (en) Bidirectional constant pressure expansion valve and manufacturing method thereof
JP4451406B2 (en) Bidirectional constant pressure expansion valve
JP2006349274A (en) Throttle device, flow control valve and air conditioner incorporating them
EP3260746B1 (en) Flow control valve
CN212746974U (en) Throttling device and air conditioning system
JP2015218948A (en) Throttle device and refrigeration cycle system
JP2022018217A (en) Check valve and refrigeration cycle system
KR100630612B1 (en) Two-way constant pressure expansion valve
CN211009933U (en) Throttle valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100630