JPS63153370A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS63153370A
JPS63153370A JP62126650A JP12665087A JPS63153370A JP S63153370 A JPS63153370 A JP S63153370A JP 62126650 A JP62126650 A JP 62126650A JP 12665087 A JP12665087 A JP 12665087A JP S63153370 A JPS63153370 A JP S63153370A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
valve
valve body
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62126650A
Other languages
Japanese (ja)
Other versions
JP2722452B2 (en
Inventor
鉄男 小佐々
小久保 尚躬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Publication of JPS63153370A publication Critical patent/JPS63153370A/en
Application granted granted Critical
Publication of JP2722452B2 publication Critical patent/JP2722452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷媒の流通方向を切換えることにより、冷房
と暖房とを切換えるヒートポンプ式冷暖房装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat pump air-conditioning device that switches between cooling and heating by switching the flow direction of refrigerant.

[従来の技術] 例えばアキュームレータサイクルを用いた冷凍装置は、
室外熱交換器から室内熱交換器への配管を兼ねるギヤピ
ラリチューブ笠の抵抗手段を減圧装置として使用してい
るが、車両用冷凍装置など、冷媒圧縮機の負荷変動およ
び使用条件変動の激しい冷凍装置に適用すると、第3図
のグラフに示す破線aのようにキャピラリチューブの冷
媒流6特性上、冷媒汁縮様の高回転時には冷媒の過冷却
度(以下スーパークール潰と呼ぶ)が大きくなり過ぎ、
冷媒Bカの異常上昇が発生する問題点があった。
[Prior art] For example, a refrigeration system using an accumulator cycle,
The resistance means of the gear pillar tube cap, which also serves as piping from the outdoor heat exchanger to the indoor heat exchanger, is used as a pressure reducing device, but it is used in refrigeration systems where the refrigerant compressor load and usage conditions fluctuate widely, such as in vehicle refrigeration systems. When applied to a device, due to the characteristics of the refrigerant flow6 in the capillary tube, as shown by the broken line a in the graph of Figure 3, the degree of supercooling of the refrigerant (hereinafter referred to as supercool collapse) increases at high rotation speeds such as refrigerant compression. Too much,
There was a problem that an abnormal rise in refrigerant B occurred.

このような不具合を解消するために、僅かなスーパーク
ール菅の変化でも大きく冷媒流量が変化する減圧装置と
して、従来では、抵抗手段の−F流側に定差圧弁もしく
は抵抗手段の下流側にオリフィスのごとき急激な形状変
化を伴う固定絞りを設けることにより、第3図のグラフ
に示1一点鎖線すのように僅かな範囲(0℃〜12℃)
内のスーパークール吊の変化でも冷媒流量が広い範囲(
100/(g/h〜220Kg/h)で変化するように
制御している。
In order to eliminate such problems, conventional pressure reducing devices that change the refrigerant flow rate greatly even with slight changes in the supercool tube have been equipped with a constant differential pressure valve on the -F flow side of the resistance means or an orifice on the downstream side of the resistance means. By providing a fixed diaphragm that undergoes rapid shape changes, it is possible to reduce the temperature within a small range (0°C to 12°C) as shown by the dashed line 1 in the graph of Figure 3.
The refrigerant flow rate can be varied over a wide range (
It is controlled to change at 100/(g/h to 220Kg/h).

[発明が解決しようとする問題点] しかしながら、第12図、第13図および第14図に示
すように、冷凍装置101に四方弁、電磁VJF/A弁
等の流通方向切換弁102を用い、冷媒の流れる方向を
変更して冷房運転と暖房運転とを切換えるヒートポンプ
式冷暖房装置の場合には、キャピラリチューブなどの抵
抗手段103の下流側に固定絞り104が配されるよう
に:設ける必要があり、キャピラリチューブなどの抵抗
手段103の上流側の固定絞り104を迂回さぜる必要
があり、抵抗手段103、固定絞り104、または連山
弁105が複数必要となると共に、冷媒配管106も複
雑となる問題点を有していた。
[Problems to be Solved by the Invention] However, as shown in FIGS. 12, 13, and 14, when a flow direction switching valve 102 such as a four-way valve or an electromagnetic VJF/A valve is used in the refrigeration system 101, In the case of a heat pump air-conditioning device that switches between cooling operation and heating operation by changing the flow direction of the refrigerant, it is necessary to provide a fixed throttle 104 downstream of the resistance means 103 such as a capillary tube. , it is necessary to bypass the fixed throttle 104 on the upstream side of the resistance means 103 such as a capillary tube, and a plurality of resistance means 103, fixed throttles 104, or chain valves 105 are required, and the refrigerant piping 106 becomes complicated. It had some problems.

本発明は、上記事情に鑑みてなされたもので、その目的
は、僅かなスーパークール吊の変化C大きな冷媒流量変
化となる減圧装置の部品点数の小数化と冷媒配管の簡素
化を行うことのできるヒートポンプ式冷暖房装置の提供
を目的とする。
The present invention was made in view of the above circumstances, and its purpose is to reduce the number of parts of a pressure reducing device and simplify the refrigerant piping, which cause small changes in supercool suspension and large changes in refrigerant flow rate. The purpose is to provide a heat pump type air conditioning system that can

[問題点を解決するための手段] 本発明のヒートポンプ式冷暖房′g装置は、冷媒圧縮機
、室外熱交換器、減圧装置、室内熱交換器が順次環状に
接続された冷m装置と、該冷凍a置の冷媒の流通方向を
変更して冷房運転と111房運転とを切換える流通方向
切換手段とを備えたヒートポンプ底冷a房装置において
、前記減圧装置は、抵抗手段を備えると共に、その抵抗
手段の前記室外熱交換器側または前記室内熱交換器側の
少なくとも一方に、冷媒が前記室外熱交換器側または前
記室内熱交換器側から前記抵抗手段へ流れる時に冷媒の
通過抵抗を小さくし、冷媒が前記抵抗手段から前記室外
熱交換器側または前記室内熱交換器側へ流れる時に冷媒
の通過抵抗を大きくする可逆絞り弁を設けた構成を採用
した。
[Means for Solving the Problems] The heat pump air-conditioning/heating device of the present invention comprises a cooling device in which a refrigerant compressor, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger are sequentially connected in an annular manner; In a heat pump bottom cooling a-cooling device equipped with a flow direction switching means for changing the flow direction of refrigerant in a refrigeration room A to switch between a cooling operation and a cooling operation, the pressure reducing device is equipped with a resistance means and the resistance reducing the passage resistance of the refrigerant when the refrigerant flows from the outdoor heat exchanger side or the indoor heat exchanger side to the resistance means on at least one of the outdoor heat exchanger side or the indoor heat exchanger side of the means; A configuration is adopted in which a reversible throttle valve is provided that increases the passage resistance of the refrigerant when the refrigerant flows from the resistance means to the outdoor heat exchanger side or the indoor heat exchanger side.

[作用1 上記構成よりなる本発明のヒートポンプ式冷暖房装置は
つぎの作用を有する。
[Function 1] The heat pump type air-conditioning device of the present invention having the above configuration has the following function.

抵抗手段の室外熱交換器側に可逆絞り弁を設け、室外熱
交換器から減圧装置を介して室内熱交換器へ冷媒を流す
場合(冷房時)、可逆絞り弁では、室外熱交換器で過冷
却の状態と/νった冷媒を完全液状態のまま容易に通過
させているので、冷媒の通過抵抗が小さくなり、抵抗手
段への冷媒流量低下の影響を小さくする。
When a reversible throttle valve is installed on the outdoor heat exchanger side of the resistance means and the refrigerant flows from the outdoor heat exchanger to the indoor heat exchanger via a pressure reducing device (during cooling), the reversible throttle valve prevents the outdoor heat exchanger from overheating. Since the refrigerant that has reached the cooling state is easily passed through in a completely liquid state, the resistance to the passage of the refrigerant is reduced, and the influence of a decrease in the refrigerant flow rate on the resistance means is reduced.

抵抗手段の室外熱交換器側に可逆絞り弁を設け、室内熱
交換器から減圧装置を介して室外熱交換器へ冷媒を流す
場合(暖房時)、可逆絞り弁では、抵抗手段によって膨
張された冷媒の通過抵抗が大きくなり、さらに冷媒は膨
張する。よって抵抗手段と可逆絞り弁とが減圧装置の働
きをする。
A reversible throttle valve is provided on the outdoor heat exchanger side of the resistance means, and when the refrigerant flows from the indoor heat exchanger to the outdoor heat exchanger via the pressure reduction device (during heating), the refrigerant is expanded by the resistance means. The passage resistance of the refrigerant increases, and the refrigerant further expands. Therefore, the resistance means and the reversible throttle valve act as a pressure reducing device.

抵抗手段の室内熱交換器側に可逆絞り弁を設け、室外熱
交換器から減圧装置を介して室内熱交換器へ冷媒を流す
場合(冷房時)、可逆絞り弁では、抵抗手段によって膨
張された冷媒の通過抵抗が大きくなり、さらに冷媒は膨
張する。よって抵抗手段と可逆絞り弁とが減圧装置の働
きをする。
A reversible throttle valve is installed on the indoor heat exchanger side of the resistance means, and when the refrigerant flows from the outdoor heat exchanger to the indoor heat exchanger via the pressure reduction device (during cooling), the reversible throttle valve allows the refrigerant to be expanded by the resistance means. The passage resistance of the refrigerant increases, and the refrigerant further expands. Therefore, the resistance means and the reversible throttle valve act as a pressure reducing device.

抵抗手段の室内熱交換器側に可逆絞り弁を設け、室内熱
交換器から減圧装置を介して室外熱交換器へ冷媒を流す
場合(暖房時)、可逆絞り弁では、室内熱交換器で過冷
却の状態となった冷媒を完全液状態のまま通過させるた
めに、冷媒の通過抵抗を小さくして抵抗手段への冷Is
流預低下の影響を小さくし、冷媒を容易に通過させる。
When a reversible throttle valve is installed on the indoor heat exchanger side of the resistance means and the refrigerant flows from the indoor heat exchanger to the outdoor heat exchanger via a pressure reducing device (during heating), the reversible throttle valve prevents the indoor heat exchanger from overheating. In order to pass the cooled refrigerant in a completely liquid state, the resistance to passage of the refrigerant is reduced and the cooling Is to the resistance means is reduced.
Reduces the effect of reduced flow rate and allows refrigerant to pass through easily.

[発明の効果] 上記構成および作用により本発明のヒートポンプ式冷暖
房装置はつぎの効果を奏する。
[Effects of the Invention] With the above configuration and operation, the heat pump type air-conditioning device of the present invention has the following effects.

イ)抵抗手段の室外熱交m器側に従来用いられていた絞
り抵抗手段のバイパス用冷媒配管およびバイパス用冷媒
配管内を冷媒が室外熱交換器側に流れるのを阻止する逆
止弁が不要となる。
b) The check valve that prevents the refrigerant from flowing to the outdoor heat exchanger side through the bypass refrigerant pipe and the bypass refrigerant pipe of the throttle resistance means, which were conventionally used on the outdoor heat exchanger side of the resistance means, is unnecessary. becomes.

O)抵抗手段の室内熱交換器側に従来用いられていた絞
り抵抗手段のバイパス用冷媒配管およびバイパス用冷媒
配管内を冷媒が室内熱交換器側に流れるのを阻止する逆
止弁が不要となる。
O) There is no need for the bypass refrigerant pipe of the throttle resistance means and the check valve that prevents the refrigerant from flowing to the indoor heat exchanger side in the bypass refrigerant pipe, which were conventionally used on the indoor heat exchanger side of the resistance means. Become.

ハ)僅かなスーパークール聞の変化C大きな冷媒流量変
化となる減圧装置の部品点数の小数化と冷媒配管の簡素
化を行うことができる。
C) Slight change in supercool rate C) Large change in refrigerant flow rate It is possible to reduce the number of parts of the pressure reducing device and simplify the refrigerant piping.

[実施例] つぎに本発明のヒートポンプ式冷暖房装置を図面に示す
実施例に基づき説明する。
[Example] Next, a heat pump type air-conditioning device of the present invention will be explained based on an example shown in the drawings.

第1図ないし第4図は本発明のヒートポンプ式冷暖房装
置の第1実施例を示1゜ 第1図は冷凍装置への概略図を示す。
1 to 4 show a first embodiment of a heat pump type air conditioning system according to the present invention, and FIG. 1 shows a schematic diagram of a refrigeration system.

この冷凍装置tAの冷媒圧縮機1は、図示しないエンジ
ンの回転がクラッチを介して断続的に伝達され、吸入口
11より吸引した冷媒を圧縮して吐出口12より吐出す
る。冷媒圧縮機1より吐出された冷媒は冷媒配管3を介
して四方弁2の高圧側人口21へ流入する。
The refrigerant compressor 1 of this refrigeration system tA is intermittently transmitted with the rotation of an engine (not shown) via a clutch, compresses refrigerant sucked through an inlet 11, and discharges the compressed refrigerant from an outlet 12. The refrigerant discharged from the refrigerant compressor 1 flows into the high-pressure side port 21 of the four-way valve 2 via the refrigerant pipe 3.

四方弁2は、高圧側入口21の他に、室外熱交換器31
と冷媒配管3を介して接続される第1出入口22、室内
熱交換器32と冷媒配管3を介して接続される第2出入
口23、および低圧側出口24を備え、第1出入口22
および12出入口23は、図示しない電磁切換手段によ
り高圧側人口21および低圧側出口24と接続が切換え
られる。また、四方弁2の低圧側出口24と冷媒圧縮機
1の吸入口11の間にはアキュームレータ33が設けら
れている。
The four-way valve 2 has an outdoor heat exchanger 31 in addition to the high-pressure side inlet 21.
The first inlet/outlet 22 includes a first inlet/outlet 22 connected to the indoor heat exchanger 32 via the refrigerant piping 3, a second inlet/outlet 23 connected to the indoor heat exchanger 32 via the refrigerant piping 3, and a low pressure side outlet 24.
The connection of the inlet/outlet 23 and the inlet/outlet 23 to the high-pressure side port 21 and the low-pressure side outlet 24 is switched by an electromagnetic switching means (not shown). Further, an accumulator 33 is provided between the low-pressure side outlet 24 of the four-way valve 2 and the suction port 11 of the refrigerant compressor 1.

室外熱交換器31は、自e*のエンジンルームの前部な
ど外気との通気性の良い場所に設置され、冷媒と外気と
の熱交換を行う。
The outdoor heat exchanger 31 is installed in a place with good ventilation with the outside air, such as the front part of the engine room of the e*, and exchanges heat between the refrigerant and the outside air.

室内熱交換器32は、車室内に設置された空気調和装置
内に配置され、車室内に吐出される空気と冷媒との熱交
換を行う。
The indoor heat exchanger 32 is disposed in an air conditioner installed in the vehicle interior, and performs heat exchange between air discharged into the vehicle interior and a refrigerant.

室外熱交換器31と室内熱交換器32の間の冷媒配管3
には、抵抗手段であるキャピラリチューブ34が設けら
れている。そしてこのキャピラリチューブ34の室外熱
交換器31側および室内熱交換器32側には、絞り抵抗
手段(冷媒に通過抵抗を与える手段)と一方向弁との両
方の役目を果す可逆絞り弁4.5が設けられている。こ
のキャピラリチューブ34および可逆絞り弁4.5によ
り冷媒を減圧および断熱膨張する減圧装置を構成する。
Refrigerant piping 3 between outdoor heat exchanger 31 and indoor heat exchanger 32
A capillary tube 34 is provided as a resistance means. On the outdoor heat exchanger 31 side and the indoor heat exchanger 32 side of the capillary tube 34, there are reversible throttle valves 4. which serve as both a throttle resistance means (means for providing passage resistance to the refrigerant) and a one-way valve. 5 is provided. The capillary tube 34 and the reversible throttle valve 4.5 constitute a pressure reducing device that reduces the pressure of the refrigerant and expands it adiabatically.

可逆絞り弁4は、弁ケース40、該弁ケース40内に形
成された冷媒通路41を備える。
The reversible throttle valve 4 includes a valve case 40 and a refrigerant passage 41 formed within the valve case 40.

弁ケース40には、キャピラリチューブ34の一端と接
続されるチューブ接続部42、室外熱交換器31に接続
された冷媒配管3と接続される配管接続部43、および
チューブ接続部42と配管接続部43との間に設けられ
、外周方向に膨出した膨出部44が設けられている。な
おこの膨出部44には、スパナ(組付工具)を係合する
六角部が形成されている。
The valve case 40 includes a tube connection part 42 connected to one end of the capillary tube 34, a pipe connection part 43 connected to the refrigerant pipe 3 connected to the outdoor heat exchanger 31, and a pipe connection part between the tube connection part 42 and the pipe connection part. 43, and a bulging portion 44 that bulges in the outer circumferential direction is provided. Note that this bulging portion 44 is formed with a hexagonal portion that engages with a spanner (assembly tool).

冷媒通路41には、デユープ側冷媒通路46、絞り47
、および配管側冷媒通路49が設けられている。
The refrigerant passage 41 includes a duplex side refrigerant passage 46 and a throttle 47.
, and a piping side refrigerant passage 49 are provided.

チューブ側冷媒通路46は、チューブ接続部42内に形
成され、キャピラリチューブ34から室外熱交換器31
に向って径が漸減する漸減部45を備えている。
The tube-side refrigerant passage 46 is formed within the tube connection portion 42 and is connected from the capillary tube 34 to the outdoor heat exchanger 31.
It is provided with a gradually decreasing portion 45 whose diameter gradually decreases toward .

絞り47は、膨出部44内に形成され、冷媒が室外熱交
換器31側からキャピラリチューブ34へ流れる時に冷
媒の通過抵抗を小さくする。また絞り47は、冷媒がギ
ヤビラリチl−プ34から室外熱交換器31側へ流れる
時に冷媒の通過抵抗を大きくする。配管側冷媒通路49
は、配管接続部43内に形成され、キャピラリチューブ
34から室外熱交換器31に向って径が漸増する漸増部
48を備えている。
The throttle 47 is formed within the bulging portion 44 and reduces the passage resistance of the refrigerant when the refrigerant flows from the outdoor heat exchanger 31 side to the capillary tube 34 . Further, the throttle 47 increases the passage resistance of the refrigerant when the refrigerant flows from the gear roof 34 to the outdoor heat exchanger 31 side. Piping side refrigerant passage 49
is formed within the piping connection portion 43 and includes a gradually increasing portion 48 whose diameter gradually increases from the capillary tube 34 toward the outdoor heat exchanger 31.

可逆絞り弁5は、可逆絞り弁4と同様、弁ケース50、
該弁ケース50内に形成された冷媒通路51を備える。
Like the reversible throttle valve 4, the reversible throttle valve 5 includes a valve case 50,
A refrigerant passage 51 formed within the valve case 50 is provided.

弁ケース50には、キャピラリチューブ34の−QQと
接続されるチューブ接続部52、室内熱交換器32に接
続された冷媒配管3と接続される配管接VC部53、お
よびデユープ接続部52と配管接続部53との間に設け
られ、外周方向に膨出した膨出部54が設けられている
。なおこの膨出部54には、スパナ(組付工具)を係合
する六角部が形成されている。
The valve case 50 includes a tube connection part 52 connected to -QQ of the capillary tube 34, a pipe connection VC part 53 connected to the refrigerant pipe 3 connected to the indoor heat exchanger 32, and a pipe connection part 53 connected to the duplex connection part 52 and the pipe. A bulging portion 54 is provided between the connecting portion 53 and the bulging portion 54 that bulges in the outer circumferential direction. Note that this bulging portion 54 is formed with a hexagonal portion that engages with a spanner (assembly tool).

冷媒通路51は、チューブ側冷媒通路56、絞り57、
および配管側冷媒通路59が設けられている。チューブ
側冷媒通路56は、チューブ接続部52内に形成され、
キャピラリデユープ34から室内熱交換器32に向って
径が漸減する漸減部55を備えている。絞り57は、膨
出部54内に形成され、冷媒が室内熱交換器32側から
キャビラリチューブ34へ流れる時に冷媒の通過抵抗を
小さくする。また絞り51は、冷媒がキャピラリチュー
ブ34から室内熱交換器32側へ流れる時に冷媒の通過
抵抗を大ぎくする。配管側冷媒通路59は、配管接続部
53内に形成され、キャピラリデユープ34から室内熱
交換器32に向って径が漸増する漸増部58を備えてい
る。
The refrigerant passage 51 includes a tube side refrigerant passage 56, a throttle 57,
and a piping-side refrigerant passage 59 are provided. The tube-side refrigerant passage 56 is formed within the tube connection portion 52,
A gradually decreasing portion 55 whose diameter gradually decreases from the capillary duplex 34 toward the indoor heat exchanger 32 is provided. The throttle 57 is formed within the bulging portion 54 and reduces the passage resistance of the refrigerant when the refrigerant flows from the indoor heat exchanger 32 side to the cabillary tube 34 . Furthermore, the restrictor 51 greatly increases the passage resistance of the refrigerant when the refrigerant flows from the capillary tube 34 to the indoor heat exchanger 32 side. The piping-side refrigerant passage 59 is formed within the piping connection portion 53 and includes a gradually increasing portion 58 whose diameter gradually increases from the capillary duplex 34 toward the indoor heat exchanger 32 .

このように可逆絞り弁4.5は、それぞれ対応する機能
部品が同一構造で構成されている。
In this way, the reversible throttle valve 4.5 has corresponding functional parts having the same structure.

つぎに、上記冷媒回路の作動を説明する。Next, the operation of the refrigerant circuit will be explained.

イ)冷房運転時 冷房運転時の四方弁2は、第1図に示すように、高圧側
入口21と第1出入口22とが連通し、第2出入口23
と低圧側出口24とが連通ずる。これにより、冷媒圧縮
l111の吐出口12より吐出したa8iU、高圧の気
相冷媒が四方弁2の第1出入口22より吐出され、冷媒
は冷媒配管3をたどって室外熱交換器31内に流入する
。室外熱交換器31内に流入した冷媒は車室外の空気と
熱交換して凝縮液化し、ざらに、室外熱交換器31内を
流れる間に過冷却の状態になる。
b) During cooling operation In the four-way valve 2 during cooling operation, as shown in FIG.
and the low pressure side outlet 24 communicate with each other. As a result, the a8iU high-pressure gas phase refrigerant discharged from the discharge port 12 of the refrigerant compression l111 is discharged from the first inlet/outlet port 22 of the four-way valve 2, and the refrigerant follows the refrigerant pipe 3 and flows into the outdoor heat exchanger 31. . The refrigerant flowing into the outdoor heat exchanger 31 exchanges heat with the air outside the vehicle, condenses and liquefies, and roughly becomes supercooled while flowing inside the outdoor heat exchanger 31.

室外熱交換器31で液化された冷媒は、可逆絞り弁4の
配管接続部43内の配管側冷媒通路49に流入する。過
冷却の状態となった冷媒が配管側冷媒通路49より絞り
41、デユープ側冷媒通路46を通過し、その後キャピ
ラリチューブ34に流入する。この絞り47では、冷媒
の通過抵抗が小さく、キャピラリチューブ34への冷t
s流量低下の影響を小さくした径に形成されているので
、冷媒が完全液状態のまま容易に通過できる。
The refrigerant liquefied in the outdoor heat exchanger 31 flows into the pipe-side refrigerant passage 49 in the pipe connection part 43 of the reversible throttle valve 4 . The supercooled refrigerant passes from the piping-side refrigerant passage 49 through the throttle 41 and the duplex-side refrigerant passage 46, and then flows into the capillary tube 34. This aperture 47 has a small resistance to passage of the refrigerant, and the cold temperature to the capillary tube 34 is small.
s Since the diameter is formed to reduce the influence of a decrease in flow rate, the refrigerant can easily pass through in a completely liquid state.

可逆絞り弁4のデユープ側冷媒通路46よりキャピラリ
チューブ34内に流入した液冷媒は、細いチューブ内を
流れることによって減圧され、可逆絞り弁5のチューブ
接続部52内のチューブ側冷媒通路56に流入する。キ
ャピラリチューブ34を通過した冷媒は減圧されて気化
が開始されているため、通過抵抗が増大し、膨出部54
の絞り57を通過する際、急激に膨張させられ、低温、
低圧の霧状の冷媒となり、配管接続部53内の配管側冷
媒通路59より室内熱交換器32内に流入する。
The liquid refrigerant that has flowed into the capillary tube 34 from the dual-side refrigerant passage 46 of the reversible throttle valve 4 is depressurized by flowing through the thin tube, and then flows into the tube-side refrigerant passage 56 within the tube connection portion 52 of the reversible throttle valve 5. do. The refrigerant that has passed through the capillary tube 34 is depressurized and has started to vaporize, so the passage resistance increases and the bulge 54
When passing through the aperture 57 of the
The refrigerant becomes a low-pressure mist and flows into the indoor heat exchanger 32 through the pipe-side refrigerant passage 59 in the pipe connection portion 53 .

室内熱交換器32内に流入した霧状の冷媒は、室内熱交
換器32内を流れる際に、lI全室内空気より熱を奪っ
て蒸発し、アキュームレータ33内に流入する。
The atomized refrigerant that has flowed into the indoor heat exchanger 32 absorbs heat from all the indoor air while flowing through the indoor heat exchanger 32, evaporates, and flows into the accumulator 33.

アキュームレータ33内に流入した冷媒は、ガス状冷媒
、液状冷媒、潤滑油に分離され、ガス状冷媒と潤滑油の
一定量が冷媒圧縮I!11の吸入口11に吸入される。
The refrigerant that has flowed into the accumulator 33 is separated into gaseous refrigerant, liquid refrigerant, and lubricating oil, and a certain amount of the gaseous refrigerant and lubricating oil is compressed into refrigerant I! 11 is inhaled into the suction port 11.

また、アキュームレータ33内の図示しないドライψで
水分が除去される。
Further, water is removed by a dryer ψ (not shown) inside the accumulator 33.

以上のサイクルを繰り返すことにより、室外熱交換器3
1で車室内の空気から熱を奪い、室内熱交換器32でそ
の熱を車室外に捨てて車室内の冷房を行う。
By repeating the above cycle, the outdoor heat exchanger 3
1 removes heat from the air inside the vehicle, and an indoor heat exchanger 32 discards the heat outside the vehicle to cool the interior of the vehicle.

口)暖房運転時 暖房運転時の四方弁2は、第2図に示すように、高圧側
入口21と第2出入口23とが連通し、第1出入口22
と低圧側出口24とが連通ずる。これにより、冷媒圧縮
機1の吐出口12より吐出した高温、高圧の気相冷媒が
四方弁2の第2出入口23より吐出され、冷媒は冷媒配
管3をたどって室内熱交換器32内に流入する。室内熱
交換532内に流入した冷媒は、車室内に吹出される空
気に潜熱を奪われて膳縮液化する。冷媒より潜熱を奪っ
て加熱された空気は、車室内に吹出されて車室内を暖房
する。
2) During heating operation In the four-way valve 2 during heating operation, as shown in FIG.
and the low pressure side outlet 24 communicate with each other. As a result, the high temperature, high pressure gas phase refrigerant discharged from the discharge port 12 of the refrigerant compressor 1 is discharged from the second inlet/outlet 23 of the four-way valve 2, and the refrigerant follows the refrigerant pipe 3 and flows into the indoor heat exchanger 32. do. The refrigerant that has flowed into the indoor heat exchanger 532 is deprived of latent heat by the air blown into the vehicle interior, and is condensed and liquefied. The heated air absorbs latent heat from the refrigerant and is blown into the vehicle interior to heat the vehicle interior.

室内熱交換器32で液化された冷媒は、可逆絞り弁5の
配管接続部53内の配管側冷媒通路59に流入する。過
冷却の状態となった冷媒が配管側冷媒通路59より絞り
57、デユープ側冷媒通路56を通過し、その後キャピ
ラリチューブ34に流入する。この絞り51では、冷媒
の通過抵抗が小さく、キャピラリチューブ34への冷媒
流量低下の影響を小さくした径に形成されているので、
冷媒が完全液状態のまま容易に通過できる。
The refrigerant liquefied in the indoor heat exchanger 32 flows into the pipe-side refrigerant passage 59 in the pipe connection portion 53 of the reversible throttle valve 5 . The supercooled refrigerant passes from the piping-side refrigerant passage 59 through the throttle 57 and the duplex-side refrigerant passage 56, and then flows into the capillary tube 34. The aperture 51 has a diameter that has a small resistance to passage of the refrigerant and is formed to reduce the influence of a decrease in the flow rate of the refrigerant to the capillary tube 34.
Refrigerant can easily pass through in a completely liquid state.

可逆絞り弁5のデユープ側冷媒通路56よりキャピラリ
チューブ34内に流入した液冷媒は、細いデユープ内を
流れることによって減圧され、可逆絞り弁4のチューブ
接続部42内のチューブ側冷媒通路46に流入する。キ
ャピラリデユー、ブ34を通過した冷媒は減圧されて気
化が開始されているため、通過抵抗が増大し、膨出部4
4の絞り47を通過する際、急激に膨張させられ、低温
、低圧の霧状の冷媒となり、配管接続部43内の配管側
冷媒通路49より室外熱交換器31内に流入する。
The liquid refrigerant flowing into the capillary tube 34 from the duplex side refrigerant passage 56 of the reversible throttle valve 5 is depressurized by flowing through the narrow duplex, and then flows into the tube side refrigerant passage 46 in the tube connection part 42 of the reversible throttle valve 4. do. The refrigerant that has passed through the capillary duplex 34 is depressurized and has started to vaporize, so the passage resistance increases and the bulge 4
When passing through the constrictor 47 of No. 4, the refrigerant is rapidly expanded and becomes a low-temperature, low-pressure atomized refrigerant, which flows into the outdoor heat exchanger 31 through the pipe-side refrigerant passage 49 in the pipe connection part 43.

室外熱交換器31内に流入した霧状の冷媒は、室外熱交
換器31内を流れる際に、室外熱交換器31を通過し、
IJ!室外の空気の熱を奪って蒸発する。蒸発が完了し
気化した冷媒はアキュームレータ33内に流入する。
The atomized refrigerant that has flowed into the outdoor heat exchanger 31 passes through the outdoor heat exchanger 31 as it flows through the outdoor heat exchanger 31,
IJ! It absorbs heat from the outdoor air and evaporates. After the evaporation is completed, the vaporized refrigerant flows into the accumulator 33.

アキュームレータ33内に流入した冷媒は、ガス状冷媒
、液状冷媒、潤滑油に分離され、ガス状冷媒と潤滑油の
一定聞が冷媒圧縮機1の吸入口11に吸入される。また
、アキュームレータ33内の図示しないドライヤで水分
が除去される。
The refrigerant that has flowed into the accumulator 33 is separated into gaseous refrigerant, liquid refrigerant, and lubricating oil, and a certain amount of the gaseous refrigerant and lubricating oil is sucked into the suction port 11 of the refrigerant compressor 1 . Further, moisture is removed by a dryer (not shown) inside the accumulator 33.

以上のザイクルを繰り返すことにより、室外熱交換器3
1で外気から熱を奪い、室内熱交換器32でその熱を車
室内に捨てることによりill室内の暖房を行う。
By repeating the cycle above, the outdoor heat exchanger 3
1 removes heat from the outside air, and an indoor heat exchanger 32 discards the heat into the vehicle interior to heat the interior of the vehicle.

以上に示すように、可逆絞り弁4.5は、それぞれ絞り
抵抗手段と一方向弁との両方の機能を備えるため、四方
弁2、室外熱交換器31、v内熱交換器32および減r
f、装置を直列のループで結ぶことができ、従来のヒー
トポンプ式冷暖房5A置の冷媒回路に比較して減圧装置
の部品点数の少数化と冷媒配管の@素化を行うことがで
きる。
As shown above, the reversible throttle valves 4.5 each have the functions of both a throttle resistance means and a one-way valve.
f. The devices can be connected in a series loop, making it possible to reduce the number of parts in the pressure reducing device and simplify the refrigerant piping compared to the refrigerant circuit of a conventional heat pump type air-conditioning/heating system with 5A.

また、可逆絞り弁4.5の絞り47.57により、第3
図のグラフに示す実wACのように僅かな範囲(0℃〜
12.7℃)内のスーパークール量の変化でも冷媒流量
が広い範囲(100醇/h〜22ON5F/h)で変化
し、冷媒圧縮機1の負荷変動、冷凍装置Aの大きな熱負
荷変動等に対し、第3図のグラフに示す2点鎖I!dの
ようなレシーバおよびエキスパンションバルブを備えた
冷凍装γ並の冷媒流量低下を行える。
Also, by the throttle 47.57 of the reversible throttle valve 4.5, the third
As shown in the graph of the figure, the actual wAC is within a small range (0℃~
Even if the supercool amount changes within 12.7℃), the refrigerant flow rate changes over a wide range (100/h to 22ON5F/h), resulting in load fluctuations in refrigerant compressor 1, large heat load fluctuations in refrigeration equipment A, etc. On the other hand, the two-point chain I! shown in the graph of FIG. The refrigerant flow rate can be reduced to the same level as in a refrigeration system γ equipped with a receiver and an expansion valve as shown in d.

さらに、キャピラリチューブ34の長さく1)および径
(φ)をJ= 1.2m、φ= 2.8uk:設定し、
可逆絞り弁4.5の絞り47.57の径を冷媒配管3の
径、冷rR流吊に応じて種々変更したときの本実施例の
B、CSD、E点の圧力降下特性と、キャピラリデユー
プなどの抵抗手段103の長さくjりおよび径(φ)を
、jl= 12m、φ=2.8m−に設定し、固定絞り
104の径(φ)をφ= 1.2nllllに設定した
第12図に示す従来の減圧装置のB、C,D、E点の圧
力降下特性を第4図に示した。この第4図のグラフより
、本実施例の減圧装置は、第12図に足す従来の減圧装
置と比較してほぼ圧力降下特性が近似していることが確
認できる。
Furthermore, the length 1) and diameter (φ) of the capillary tube 34 are set to J = 1.2 m, φ = 2.8 uk,
The pressure drop characteristics at points B, CSD, and E of this example when the diameter of the throttle 47.57 of the reversible throttle valve 4.5 is varied depending on the diameter of the refrigerant pipe 3 and the cooling rR flow, and the capillary The length and diameter (φ) of the resistance means 103 such as Yub were set to jl = 12 m, φ = 2.8 m, and the diameter (φ) of the fixed aperture 104 was set to φ = 1.2nllll. The pressure drop characteristics at points B, C, D, and E of the conventional pressure reducing device shown in FIG. 12 are shown in FIG. 4. From the graph of FIG. 4, it can be confirmed that the pressure drop characteristics of the pressure reducing device of this embodiment are almost similar to those of the conventional pressure reducing device shown in FIG.

第5図ないし第8図は本発明のヒートポンプ式冷暖房装
置の第2実施例を示す。
5 to 8 show a second embodiment of the heat pump type air-conditioning device of the present invention.

く上記実施例と同一符号は同−機能物を示す)本実施例
では、第1実施例の冷凍装置△の可逆絞り弁4.5を弁
体7.9を有する可逆絞り弁6.8に変更したちのであ
る。この可逆絞り弁6を第6図を用いて説明する。この
可逆絞り弁6は、冷媒の流通路を形成する弁ケース60
、その弁ケース60内を移動可能に配された弁体7、こ
の弁体7をキャビラリヂ1−ブ34に接続される側に付
勢するコイルスプリング61からなる。
In this embodiment, the reversible throttle valve 4.5 of the refrigeration system Δ of the first embodiment is replaced with a reversible throttle valve 6.8 having a valve body 7.9. It has been changed. This reversible throttle valve 6 will be explained using FIG. 6. This reversible throttle valve 6 has a valve case 60 that forms a refrigerant flow path.
, a valve body 7 movably disposed within the valve case 60, and a coil spring 61 that urges the valve body 7 toward the side connected to the cavity rib 34.

弁ケース60は、キャピラリチューブ34の一端と接続
されるデユープ側ケース62と、室外熱交換器31と接
続された冷媒配管3と接続される配管側接続ケース63
とからなる。このチューブ側ケース62は、キャピラリ
デユープ34と接続されるデユープ接’MR64を備え
るとともに、内部に弁体7を収納する円筒形の弁室65
を備える。この弁室65内のチューブ接続部64側には
弁体7の移動をvA止する段差66が設けられており、
デユープ接続部64とは異なった側に配管側接続ケース
63が締結されている。
The valve case 60 includes a duplex side case 62 connected to one end of the capillary tube 34 and a pipe side connection case 63 connected to the refrigerant pipe 3 connected to the outdoor heat exchanger 31.
It consists of This tube side case 62 is provided with a duplex contact MR 64 connected to the capillary duplex 34, and has a cylindrical valve chamber 65 that houses the valve body 7 therein.
Equipped with A step 66 is provided on the tube connection portion 64 side in this valve chamber 65 to stop the movement of the valve body 7 by vA.
A piping side connection case 63 is fastened to a side different from the duplex connection part 64.

配管側接続ケース63は、冷媒配管3と接続される配管
接続部67を備えると共に、弁室65内の弁体の移動を
阻止する小径部68が設けられている。そしてこの小径
部68内は弁室65側に円錐状に広がるケース側テーパ
一部69が設けられている。
The pipe-side connection case 63 includes a pipe connection portion 67 that is connected to the refrigerant pipe 3 and is also provided with a small diameter portion 68 that prevents movement of the valve body within the valve chamber 65 . Inside this small diameter portion 68, a case side taper portion 69 is provided that expands conically toward the valve chamber 65 side.

弁体7は、第7図にも示すように、弁体1のチューブ接
続部64が接続される側の外周に弁室65内に摺接する
複数の突起11を備える。また、弁体7の配管接続部6
7側の端部には、配管接続部67側に円錐状に窄まる弁
体側テーパ一部72が形成されCいる。さらに弁体7内
には、チューブ接続部64側から配管接続部67側に貫
通した貫通ロア3が設けられ、この貫通口13の配管接
続部67側の端部には、急激な形状変化を伴うノズル7
4が形成されでいる。
As shown in FIG. 7, the valve body 7 includes a plurality of projections 11 on the outer periphery of the valve body 1 on the side to which the tube connection portion 64 is connected, which slides into the valve chamber 65. In addition, the piping connection portion 6 of the valve body 7
A valve body side taper portion 72 that narrows conically toward the piping connection portion 67 side is formed at the end portion on the 7 side. Further, a through lower portion 3 is provided in the valve body 7 and penetrates from the tube connection portion 64 side to the piping connection portion 67 side, and the end of the through hole 13 on the piping connection portion 67 side has a sudden shape change. Accompanying nozzle 7
4 has been formed.

キャピラリデユープ34の室内熱交換器32側に接続さ
れる可逆絞り弁8は、可逆絞り弁6と同様、冷媒の流通
路を形成する弁ケース80、その弁ケース80内を移動
可能に配された弁体9、この弁体9をキャピラリチュー
ブ34が接続される側に付勢するコイルスプリング81
からなる。
Like the reversible throttle valve 6, the reversible throttle valve 8 connected to the indoor heat exchanger 32 side of the capillary duplex 34 is arranged to be movable within the valve case 80 that forms a flow path for the refrigerant. a coil spring 81 that urges the valve body 9 toward the side to which the capillary tube 34 is connected.
Consisting of

そして弁ケース80は、チューブ側ケース82と配管側
接続ケース83とを締結してなり、チューブ側ケース8
2は、デユープ接続部84を備えると共に、内部に弁室
85を備え、弁室85内には弁体9の移動を阻止する段
差86が設けられている。また、配管側接続ケース83
は、配管接続部87を備えると共に、弁室85内の弁体
9の移動を阻止するケース側デーパ一部88が設けられ
ている。
The valve case 80 is formed by fastening a tube side case 82 and a piping side connection case 83.
2 includes a duplex connection portion 84 and a valve chamber 85 therein, and a step 86 for preventing movement of the valve body 9 is provided in the valve chamber 85. In addition, the piping side connection case 83
is provided with a pipe connection portion 87 and a case side tapered portion 88 that prevents movement of the valve body 9 within the valve chamber 85.

弁体9は、弁室85内に摺接する複数の突起91を備え
ると共に、端部に弁体側j−バ一部92が設けられてい
る。そしてざらに弁体9内には、貫通口93が設けられ
、その端部にノズル94が形成されている。
The valve body 9 includes a plurality of protrusions 91 that slide into the valve chamber 85, and is provided with a valve body side j-bar portion 92 at the end thereof. Roughly inside the valve body 9, a through hole 93 is provided, and a nozzle 94 is formed at the end thereof.

つぎに、第2実施例の冷媒回路の作動を説明する。Next, the operation of the refrigerant circuit of the second embodiment will be explained.

(第1実施例と同一の作動の説明は省略づる)イン冷房
運転時 室外熱交換器31で液化された冷媒は、可逆絞り弁6の
配管接続部67よりその内部に流入する。弁体7は、コ
イルスプリング61および液冷媒の流れによってチュー
ブ接続部64側に付勢され、突起71が段差66に当接
する。これにより、ケース側テーパ一部69と弁体側テ
ーパ一部72との間が開成して冷媒が弁ケース60と弁
体7の間の弁室65内に流入する。このため、弁室65
内に流入した冷媒は突起71の各間を通過してチューブ
接続部64よりキャピラリデユープ34内に流入する。
(A description of the same operation as in the first embodiment will be omitted.) During the in-cooling operation, the refrigerant liquefied in the outdoor heat exchanger 31 flows into the reversible throttle valve 6 through the piping connection 67. The valve body 7 is urged toward the tube connection portion 64 by the coil spring 61 and the flow of liquid refrigerant, and the protrusion 71 comes into contact with the step 66 . As a result, the space between the case side taper part 69 and the valve body side taper part 72 is opened, and the refrigerant flows into the valve chamber 65 between the valve case 60 and the valve body 7 . For this reason, the valve chamber 65
The refrigerant that has flowed into the tube passes between the projections 71 and flows into the capillary duplex 34 from the tube connection portion 64 .

また、配管接続部67より流入した一部の冷媒は、ノズ
ル74、貫通ロア3を通過してデユープ接続部64より
キャピラリチューブ34内に流入する。
Further, a part of the refrigerant that has flowed in from the pipe connection portion 67 passes through the nozzle 74 and the through lower portion 3 and flows into the capillary tube 34 from the duplex connection portion 64 .

キャビラリヂl−734内に流入した液冷媒は、細いキ
ャピラリチューブ34内を流れることによって減圧され
、可逆絞り弁8のデユープ接続部84よりその内部に流
入づる。キャピラリチューブ34を通過した冷媒は減圧
されて気化が開始されでいるため、通過抵抗が増大し、
弁体9をコイルスプリング81の付勢力に打勝って配管
接続部81側に付勢する。このため、ケース側テーパ一
部88と弁体側テーパ一部92が当接し、ケース側テー
パ一部88と弁体側テーパ一部92どの間の冷媒の通過
が阻止される。そして、デユープ接続部84内に流入し
た冷媒は、n通口93およびノズル94を介してのみ配
管接続部81より冷媒配管3に流入する。配管接続部8
7より冷媒配管3に流入する冷媒は、ノズル94を通過
する際、急激に膨張させられ、低温、低圧の霧状の冷媒
となり、室外熱交換器31内に流入する。
The liquid refrigerant that has flowed into the cavity 1-734 is reduced in pressure by flowing through the thin capillary tube 34, and then flows into the interior through the duplex connection 84 of the reversible throttle valve 8. Since the refrigerant that has passed through the capillary tube 34 is depressurized and vaporization has started, the passage resistance increases.
The valve body 9 is urged toward the piping connection portion 81 by overcoming the urging force of the coil spring 81. Therefore, the case side taper part 88 and the valve body side taper part 92 come into contact with each other, and the refrigerant is prevented from passing between the case side taper part 88 and the valve body side taper part 92. The refrigerant that has flowed into the duplex connection portion 84 flows into the refrigerant pipe 3 from the pipe connection portion 81 only through the n-port 93 and the nozzle 94 . Piping connection part 8
When the refrigerant flowing into the refrigerant pipe 3 from 7 passes through the nozzle 94, it is rapidly expanded, becomes a low-temperature, low-pressure mist refrigerant, and flows into the outdoor heat exchanger 31.

口)暖房運転時 室内熱交換器32で液化された冷媒は、可逆絞り弁8の
配管接続部81より、その内部に流入する。
(1) During heating operation, the refrigerant liquefied in the indoor heat exchanger 32 flows into the reversible throttle valve 8 through the pipe connection portion 81 thereof.

弁体9は、コイルスプリング81および液冷媒の流れに
よってデユープ接続部84側に付勢され、突起91が段
差86に当接する。これにより、ケース側テーパ一部8
8と弁体側テーパ一部92との間が開成して冷媒が弁ケ
ース80と弁体9の1mの弁室85内に流入する。この
ため、弁’[85内に流入した冷媒は突起91の各間を
通過してグー1−ブ接続部84より主11ビラリヂl−
フ34内に流入する。また、配管接続部87より流入し
た一部の冷媒は、ノズル94、貫通口93を通過してデ
ユープ接続部84よりキャピラリチューブ34内に流入
する。
The valve body 9 is urged toward the duplex connection portion 84 by the coil spring 81 and the flow of liquid refrigerant, and the protrusion 91 comes into contact with the step 86 . As a result, the case side taper part 8
8 and the valve body side taper portion 92 are opened, and the refrigerant flows into the valve case 80 and the 1 m valve chamber 85 of the valve body 9. Therefore, the refrigerant that has flowed into the valve '[85] passes between each of the protrusions 91 and is transferred from the goose 1-beam connection 84 to the main 11 villa ridge l-
The water flows into the pipe 34. Further, a part of the refrigerant that has flowed in from the pipe connection portion 87 passes through the nozzle 94 and the through hole 93 and flows into the capillary tube 34 from the duplex connection portion 84 .

キャピラリチューブ34内に流入した液冷媒は、細いデ
ユープ内を流れることによって減圧され、可逆絞り弁6
のデユープ接続部64よりその内部に流入する。キャピ
ラリチューブ34を通過した冷媒は減圧されて気化が開
始されているため、通過抵抗が増大し、弁体7をコイル
スプリング61の付勢力に打勝って配管接続部67側に
付勢する。このため、ケース側テーパ一部69と弁体側
デーバ一部72とが当接し、ケース側テーパ一部69と
弁体側テーパ一部72との間の冷媒の通過が阻止される
。そして、デユープ接続部64内に流入した冷媒は、貫
通ロア3およびノズル74を介してのみ配管接続部67
より冷媒配管3に流入する。配管接続部61より冷媒配
管3に流入する冷媒は、ノズル74を通過する際、急激
に膨張させられ、低温、低圧の霧状の冷媒となり、室外
熱交換鼎31内に流入する。
The liquid refrigerant that has flowed into the capillary tube 34 is depressurized by flowing through the narrow duplex, and then passes through the reversible throttle valve 6.
Flows into the interior through the duplex connection portion 64 of. Since the refrigerant that has passed through the capillary tube 34 is depressurized and vaporization has started, the passage resistance increases, and the valve body 7 is urged toward the piping connection portion 67 by overcoming the urging force of the coil spring 61. Therefore, the case side taper part 69 and the valve body side taper part 72 come into contact with each other, and passage of the refrigerant between the case side taper part 69 and the valve body side taper part 72 is blocked. The refrigerant that has flowed into the duplex connection portion 64 flows through the pipe connection portion 67 only through the through lower portion 3 and the nozzle 74.
The refrigerant flows into the refrigerant pipe 3. When the refrigerant flowing into the refrigerant pipe 3 from the pipe connection part 61 passes through the nozzle 74, it is rapidly expanded, becomes a low-temperature, low-pressure mist refrigerant, and flows into the outdoor heat exchanger 31.

本実施例の可逆絞り弁6.8は、弁体1.9を設番プて
いるので、第1実施例より冷房時と暖房時の冷媒の通過
抵抗の差を大きく設定できる。
Since the reversible throttle valve 6.8 of this embodiment has the valve body 1.9 numbered, it is possible to set a larger difference in refrigerant passage resistance during cooling and heating than in the first embodiment.

本実施例では、可逆絞り弁6.8を対向させで配置した
が、可逆絞り弁6.8を同方向に向けて配置しても良い
。この場合には、暖房または冷房運転時に第1実施例と
同じ作動となる。
In this embodiment, the reversible throttle valves 6.8 are arranged to face each other, but the reversible throttle valves 6.8 may be arranged facing in the same direction. In this case, the same operation as in the first embodiment occurs during heating or cooling operation.

第9図に本発明の第3実施例に採用した可逆絞り弁6を
示す。
FIG. 9 shows a reversible throttle valve 6 adopted in a third embodiment of the present invention.

(第2実施例と同一符号は同−機能物を示寸)本実施例
は、上記実施例の弁体7内のノズル74を廃止し、ケー
ス側テーパ一部69に1つまたは複数の満76を設けた
もので、図に示すように弁体7が冷媒により配管接続部
67側に付勢され、ケース側テーパ一部69と弁体側テ
ーパ一部72が当接するとき、満76の内面が弁体側テ
ーパ一部72により塞がれてノズルを形成する。
(The same reference numerals as in the second embodiment indicate the same functional parts.) In this embodiment, the nozzle 74 in the valve body 7 of the above embodiment is abolished, and one or more fillers are provided in the case side taper part 69. As shown in the figure, when the valve body 7 is urged toward the piping connection part 67 side by the refrigerant and the case side taper part 69 and the valve body side taper part 72 come into contact, the inner surface of the full 76 is closed by the valve body side taper portion 72 to form a nozzle.

これにより、チューブ接続部64から流入した冷媒は、
満16を通過して膨張する。なお溝76をか体側テーパ
一部72に設けたり、本実施例を可逆絞り弁8側に適用
しても良い。
As a result, the refrigerant flowing from the tube connection part 64 is
It expands after passing 16 minutes. Note that the groove 76 may be provided in the tapered portion 72 on the body side, or this embodiment may be applied to the reversible throttle valve 8 side.

第10図および第11図に本発明の第4実施例に採用し
た可逆絞り弁6を示す。
10 and 11 show a reversible throttle valve 6 adopted in a fourth embodiment of the present invention.

(第2実施例と同一符号は同−機能物を示す)本実施例
の弁体7は、樹脂、板ばね等よりなる薄板状で、中心に
オリフィス17、外周に複数の切欠部18を備える。ま
たコイルスプリング61は、弁体7を配管接続部67側
に付勢するものCある。
(The same reference numerals as in the second embodiment indicate the same functional objects.) The valve body 7 of this embodiment is a thin plate made of resin, leaf spring, etc., and has an orifice 17 in the center and a plurality of cutouts 18 on the outer periphery. . Further, the coil spring 61 has a type C that urges the valve body 7 toward the piping connection portion 67 side.

そして、冷媒がチューブ接続部64側より流入する場合
は、弁体7が配管接続部67側に付勢されて、冷媒はオ
リフィス71を介してのみ配管接続部67側に流入でき
、オリフィス77を通過する際に膨張する。
When the refrigerant flows from the tube connection part 64 side, the valve body 7 is biased toward the pipe connection part 67 side, and the refrigerant can flow into the pipe connection part 67 side only through the orifice 71. It expands as it passes through.

また、冷媒が配管接続部67側より流入する場合は、冷
媒の圧力で弁体1をチューブ接続部64側に移動させる
。これにより弁体7と小径部68との闇が開成し、冷媒
はこの間および切欠部78を通過して弁室65内に流入
し、チューブ接続部64側より吐出する。これにより、
配管接続部67側より流入した冷媒は、大きな通過抵抗
を受けることなくチューブ接続部64側より流出する。
Moreover, when the refrigerant flows in from the pipe connection part 67 side, the valve body 1 is moved to the tube connection part 64 side by the pressure of the refrigerant. This opens the gap between the valve body 7 and the small diameter portion 68, and the refrigerant flows into the valve chamber 65 through the gap and the notch 78, and is discharged from the tube connection portion 64 side. This results in
The refrigerant flowing in from the pipe connection part 67 side flows out from the tube connection part 64 side without being subjected to large passage resistance.

(変形例) 本実施例では、抵抗手段にキャピラリチューブを用いた
が、定差圧弁やオリフィスなどを用いても良い。
(Modification) In this embodiment, a capillary tube is used as the resistance means, but a constant differential pressure valve, an orifice, etc. may also be used.

本実施例では、冷媒に通過抵抗を与える手段としてノズ
ル、オリフィスを用いたが、ベンチュリーなど急激な形
状変化を伴う絞り抵抗手段を用いても良い。
In this embodiment, a nozzle and an orifice are used as means for imparting passage resistance to the refrigerant, but a restricting resistance means that undergoes rapid shape changes, such as a venturi, may also be used.

本実施例では、抵抗手段の室外熱交換器側および室内熱
交換器側の両側に可逆絞り弁を設けたが、一方のみに用
い、他方を絞り抵抗手段と一方向弁とを組合せて用いて
も良い。
In this example, reversible throttling valves were provided on both sides of the outdoor heat exchanger side and the indoor heat exchanger side of the resistance means, but they were used only on one side, and the other was used in combination with the throttling resistance means and a one-way valve. Also good.

本実施例では、流通方向切換手段に四方弁を用いたが、
複数の電磁弁により冷媒の流れ方向を切換えても良い。
In this example, a four-way valve was used as the flow direction switching means.
The flow direction of the refrigerant may be switched using a plurality of electromagnetic valves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に採用したヒートポンプ式
冷暖房装置の冷房運転時を示ず冷媒回路図、第2図は本
発明の第1実施例に採用したヒートポンプ式冷暖房装置
の暖房運転時を示す冷媒回路図、第3図は本発明の第1
実施例に採用したヒートポンプ式冷暖F:装置の冷媒流
槍とスーパークール化との関係を示すグラフ、第4図は
本発明の第1実施例に採用した可逆絞り弁の径に対する
冷媒配管の所定の小における圧力降トとの関係を示すグ
ラフ、第5図は本発明の第2実施例に採用したヒートポ
ンプ式冷暖房装置の冷房運転時を示す冷媒回路図、第6
図は本発明の第2実施例に採用した可逆絞り弁の断面図
、第7図は本発明の第2実施例に採用した可逆絞り弁の
弁体の斜視図、第8図は本発明の第2実施例に採用した
ヒートポンプ式冷暖房装置の暖房運転時を六す冷媒回路
図、第9図は本発明の第3実施例に採用した可逆絞り弁
を示す断面図、第10図は本発明の第4実施例に採用し
た可逆絞り弁を示す断面図、第11同は第10図に示す
本発明の第4実施例に採用した可逆絞り弁の弁体の斜視
図、第12図ないし第14図は従来のヒートポンプ式冷
暖房装置の冷房運転時を示す冷媒回路図である。 図中 A・・・冷凍装H1・・・冷媒圧縮機 2・・・四方弁
31・・・室外熱交換器 32・・・室外熱交換器33
・・・アキュームレータ 34・・・キャピラリチュー
ブ(抵抗手段)  4.5.6.8・・・可逆絞り弁 
60.80・・・弁ケース 7.9・・・弁体 74.
94・・・ノズル第9図 第4 ED     CB 第6図 第7図 第1o図 第11図
Fig. 1 is a refrigerant circuit diagram of the heat pump air-conditioning system adopted in the first embodiment of the present invention, not showing the cooling operation, and Fig. 2 is a heating operation of the heat pump air-conditioning system adopted in the first embodiment of the present invention. The refrigerant circuit diagram showing the time, FIG. 3 is the first embodiment of the present invention.
Heat pump type cooling/heating F adopted in the embodiment: A graph showing the relationship between the refrigerant flow rate of the device and super cooling. Figure 4 shows the predetermined refrigerant piping with respect to the diameter of the reversible throttle valve adopted in the first embodiment of the present invention. FIG. 5 is a graph showing the relationship between the pressure drop and the pressure drop when the temperature is small. FIG.
The figure is a sectional view of the reversible throttle valve adopted in the second embodiment of the present invention, FIG. 7 is a perspective view of the valve body of the reversible throttle valve adopted in the second embodiment of the present invention, and FIG. A refrigerant circuit diagram during heating operation of the heat pump air-conditioning system adopted in the second embodiment, FIG. 9 is a sectional view showing a reversible throttle valve adopted in the third embodiment of the present invention, and FIG. 10 is a diagram of the present invention. 11 is a perspective view of the valve body of the reversible throttle valve adopted in the fourth embodiment of the present invention shown in FIG. 10, and FIGS. FIG. 14 is a refrigerant circuit diagram showing a conventional heat pump air-conditioning system during cooling operation. In the figure, A: Refrigeration system H1: Refrigerant compressor 2: Four-way valve 31: Outdoor heat exchanger 32: Outdoor heat exchanger 33
...Accumulator 34...Capillary tube (resistance means) 4.5.6.8...Reversible throttle valve
60.80...Valve case 7.9...Valve body 74.
94...Nozzle Figure 9 Figure 4 ED CB Figure 6 Figure 7 Figure 1o Figure 11

Claims (1)

【特許請求の範囲】 1) 冷媒圧縮機、室外熱交換器、減圧装置、室内熱交
換器が順次環状に接続された冷凍装置と、該冷凍装置の
冷媒の流通方向を変更して冷房運転と暖房運転とを切換
える流通方向切換手段とを備えたヒートポンプ式冷暖房
装置において、前記減圧装置は、抵抗手段を備えると共
に、その抵抗手段の前記室外熱交換器側または前記室内
熱交換器側の少なくとも一方に、冷媒が前記室外熱交換
器側または前記室内熱交換器側から前記抵抗手段へ流れ
る時に冷媒の通過抵抗を小さくし、冷媒が前記抵抗手段
から前記室外熱交換器側または前記室内熱交換器側へ流
れる時に冷媒の通過抵抗を大きくする可逆絞り弁を設け
たことを特徴とするヒートポンプ式冷暖房装置。 2) 前記可逆絞り弁は、弁ケースと該弁ケース内に配
され、冷媒の流れにより付勢されて移動可能な弁体とを
有し、その弁体が前記弁ケース内の前記室外熱交換器側
または前記室内熱交換器側に移動した時に、冷媒の通過
抵抗を大きくし、前記弁体が前記弁ケース内で前記抵抗
手段側に移動した時に、冷媒の通過抵抗を小さくするこ
とを特徴とする特許請求の範囲第1項に記載のヒートポ
ンプ式冷暖房装置。 3) 前記冷凍装置は、冷媒圧縮機の冷媒吸入側にアキ
ユームレータを備えたアキユームレータサイクルである
ことを特徴とする特許請求の範囲第1項または第2項の
いずれかに記載のヒートポンプ式冷暖房装置。
[Claims] 1) A refrigeration system in which a refrigerant compressor, an outdoor heat exchanger, a pressure reduction device, and an indoor heat exchanger are sequentially connected in a ring, and a cooling operation by changing the flow direction of the refrigerant in the refrigeration system. In a heat pump type air-conditioning device equipped with a flow direction switching means for switching between a heating operation and a heating operation, the pressure reducing device includes a resistance means, and at least one of the resistance means on the outdoor heat exchanger side or the indoor heat exchanger side. When the refrigerant flows from the outdoor heat exchanger side or the indoor heat exchanger side to the resistance means, the passage resistance of the refrigerant is reduced, and the refrigerant flows from the resistance means to the outdoor heat exchanger side or the indoor heat exchanger side. A heat pump type air-conditioning/heating device characterized by being provided with a reversible throttle valve that increases the passage resistance of refrigerant when it flows to the side. 2) The reversible throttle valve has a valve case and a valve body disposed within the valve case and movable by being energized by the flow of refrigerant, and the valve body is connected to the outdoor heat exchanger inside the valve case. The refrigerant passage resistance is increased when the valve body moves to the chamber side or the indoor heat exchanger side, and the refrigerant passage resistance is decreased when the valve body moves to the resistance means side within the valve case. A heat pump air-conditioning device according to claim 1. 3) The heat pump according to claim 1 or 2, wherein the refrigeration system is an accumulator cycle that includes an accumulator on the refrigerant suction side of a refrigerant compressor. type air conditioning system.
JP62126650A 1986-08-22 1987-05-22 Heat pump type air conditioner Expired - Fee Related JP2722452B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19786886 1986-08-22
JP61-197868 1986-08-22

Publications (2)

Publication Number Publication Date
JPS63153370A true JPS63153370A (en) 1988-06-25
JP2722452B2 JP2722452B2 (en) 1998-03-04

Family

ID=16381665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62126650A Expired - Fee Related JP2722452B2 (en) 1986-08-22 1987-05-22 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2722452B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195696A (en) * 2000-12-21 2002-07-10 Matsushita Electric Ind Co Ltd Air conditioner
KR100368490B1 (en) * 2000-06-02 2003-01-24 조병옥 Cooling Apparatus With Electronic Controled Type Refrigerant Expansion device
JP2007225209A (en) * 2006-02-24 2007-09-06 Pacific Ind Co Ltd Bidirectional constant pressure expansion valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150467A (en) * 1979-05-10 1980-11-22 Nippon Denso Co Refrigerating plant
JPS567959A (en) * 1979-06-29 1981-01-27 Nippon Denso Co Refrigeration device
JPS5630569A (en) * 1979-08-22 1981-03-27 Nippon Denso Co Refrigeration equipment
JPS576969U (en) * 1980-06-13 1982-01-13
JPS58208569A (en) * 1983-03-30 1983-12-05 株式会社日立製作所 Refrigeration cycle of heat pump type air conditioner
JPS5972464U (en) * 1982-11-05 1984-05-17 三菱電機株式会社 air conditioner
JPS60152873A (en) * 1984-01-23 1985-08-12 松下精工株式会社 Heat pump type refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150467A (en) * 1979-05-10 1980-11-22 Nippon Denso Co Refrigerating plant
JPS567959A (en) * 1979-06-29 1981-01-27 Nippon Denso Co Refrigeration device
JPS5630569A (en) * 1979-08-22 1981-03-27 Nippon Denso Co Refrigeration equipment
JPS576969U (en) * 1980-06-13 1982-01-13
JPS5972464U (en) * 1982-11-05 1984-05-17 三菱電機株式会社 air conditioner
JPS58208569A (en) * 1983-03-30 1983-12-05 株式会社日立製作所 Refrigeration cycle of heat pump type air conditioner
JPS60152873A (en) * 1984-01-23 1985-08-12 松下精工株式会社 Heat pump type refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368490B1 (en) * 2000-06-02 2003-01-24 조병옥 Cooling Apparatus With Electronic Controled Type Refrigerant Expansion device
JP2002195696A (en) * 2000-12-21 2002-07-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2007225209A (en) * 2006-02-24 2007-09-06 Pacific Ind Co Ltd Bidirectional constant pressure expansion valve

Also Published As

Publication number Publication date
JP2722452B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US4324112A (en) Refrigeration system
US7370493B2 (en) Vapor compression refrigerating systems
JP2000346472A (en) Supercritical steam compression cycle
JP2004136851A (en) Air conditioner for vehicle
JPS645227B2 (en)
CN107238226B (en) Multi-split system and control method thereof
WO2018154957A1 (en) Refrigeration cycle device
KR20180104416A (en) Air conditioning system
EP0029935B1 (en) Expansion device with adjustable refrigerant throttling and reversible refrigeration system using such an expansion device
JP3413943B2 (en) Refrigeration cycle
US6712281B2 (en) Expansion valve
JPH02290475A (en) Heat pump type air conditioner
JPS63153370A (en) Heat pump type air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
JP2000292016A (en) Refrigerating cycle
JP2002243284A (en) Air conditioner
KR850000602B1 (en) Decompression apparatus of freezing apparatus
JPS63251760A (en) Refrigerator
JPH05196324A (en) Expansion valve for refrigerating cycle
JPH01314857A (en) Refrigerating cycle
JPS6346348B2 (en)
KR0160870B1 (en) Cooling system of airconditioner
JP6977598B2 (en) Internal heat exchanger for heat pump
JPS6136659A (en) Heat pump type air conditioner
JPH11344264A (en) Freezing cycle device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees