JP3418271B2 - Two-way constant pressure expansion valve - Google Patents

Two-way constant pressure expansion valve

Info

Publication number
JP3418271B2
JP3418271B2 JP10180295A JP10180295A JP3418271B2 JP 3418271 B2 JP3418271 B2 JP 3418271B2 JP 10180295 A JP10180295 A JP 10180295A JP 10180295 A JP10180295 A JP 10180295A JP 3418271 B2 JP3418271 B2 JP 3418271B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
chamber
sensitive
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10180295A
Other languages
Japanese (ja)
Other versions
JPH08296929A (en
Inventor
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP10180295A priority Critical patent/JP3418271B2/en
Publication of JPH08296929A publication Critical patent/JPH08296929A/en
Application granted granted Critical
Publication of JP3418271B2 publication Critical patent/JP3418271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷暖房両用に用いら
れるヒートポンプ方式の冷凍サイクルにおいて、圧力が
一定になるように冷媒を断熱膨張させて蒸発器に送り込
むための定圧膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant pressure expansion valve for adiabatically expanding a refrigerant so as to keep a constant pressure and sending it to an evaporator in a heat pump type refrigeration cycle used for both heating and cooling.

【0002】[0002]

【従来の技術】ヒートポンプ方式の冷凍サイクルでは、
室内の熱交換器と室外の熱交換器との間の冷媒の流れ方
向を逆にすることにより、下流側の熱交換器が蒸発器に
なって冷房状態と暖房状態とが切り替わる。そして、そ
のいずれの状態の場合でも、蒸発器に送られる冷媒圧が
一定になるように冷媒を断熱膨張させる必要がある。
2. Description of the Related Art In a heat pump type refrigeration cycle,
By reversing the flow direction of the refrigerant between the indoor heat exchanger and the outdoor heat exchanger, the heat exchanger on the downstream side becomes an evaporator, and the cooling state and the heating state are switched. In either case, it is necessary to adiabatically expand the refrigerant so that the pressure of the refrigerant sent to the evaporator is constant.

【0003】そこで、以前は、冷房時用と暖房時用の二
つの定圧膨張弁を並列に配置してその各々に逆止弁を接
続し、冷房時と暖房時の各々の場合に、いずれか一方の
定圧膨張弁が機能するようにしていた。
Therefore, in the past, two constant pressure expansion valves for cooling and for heating were arranged in parallel, and a check valve was connected to each of them, whichever was used for cooling and heating. One of the constant pressure expansion valves had to function.

【0004】[0004]

【発明が解決しようとする課題】しかし、そのように冷
房時用と暖房時用の二つの定圧膨張弁を並列に配置して
その各々に逆止弁を接続する構造は、一方の定圧膨張弁
が常に機能していないので、無駄な装置コストがかかっ
ていることになる。
However, such a structure in which two constant pressure expansion valves for cooling and for heating are arranged in parallel and a check valve is connected to each of them is one constant pressure expansion valve. Is not always functioning, which means wasteful equipment cost.

【0005】そこで本発明は、冷房時と暖房時のいずれ
の状態でも機能して無駄な装置コストのかからない双方
向定圧膨張弁を提供することを目的とする。
Therefore, an object of the present invention is to provide a bidirectional constant pressure expansion valve that functions in both the cooling and heating states and does not waste the device cost.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の双方向定圧膨張弁は、ヒートポンプ式冷凍
サイクル中の一対の熱交換器間に接続された冷媒流路管
の途中に形成された空間からなる調圧室と、上記調圧室
内の冷媒の圧力に対応して管軸方向の長さが変化するよ
うに上記調圧室内に配置された感圧体と、上記感圧体の
両端部に連結されて上記冷媒の流路面積を上記調圧室の
両側において変化させるように配置された一対の弁体と
を有し、上記冷媒流路管内の冷媒の流れ方向が変わるこ
とによって上記感圧体が上記調圧室内で冷媒の流れ方向
に移動して、上記一対の弁体のうち下流側に位置する弁
体が全開になると共に、上流側に位置する弁体部分が冷
媒を断熱膨張させる絞り部になるようにしたことを特徴
とする。
In order to achieve the above object, the bidirectional constant pressure expansion valve of the present invention is provided with a refrigerant passage pipe connected between a pair of heat exchangers in a heat pump type refrigeration cycle. A pressure regulating chamber formed of the formed space, a pressure sensitive body arranged in the pressure regulating chamber so that the length in the pipe axis direction changes in accordance with the pressure of the refrigerant in the pressure regulating chamber, and the pressure sensitive chamber. A pair of valve bodies connected to both ends of the body and arranged to change the flow passage area of the refrigerant on both sides of the pressure adjusting chamber, and the flow direction of the refrigerant in the refrigerant flow passage pipe changes. Thereby, the pressure-sensitive body moves in the flow direction of the refrigerant in the pressure regulating chamber, the valve body located on the downstream side of the pair of valve bodies is fully opened, and the valve body portion located on the upstream side is opened. It is characterized in that it serves as a throttle portion for adiabatically expanding the refrigerant.

【0007】そして、上記感圧体は上記感圧室内の冷媒
圧力が高まると長さが縮められ、それによって、上流側
に位置する弁体が上記感圧室側に引き寄せられて上記感
圧室入口側の冷媒流路面積が狭められ、その結果上記感
圧室内及び下流側冷媒流路管内の冷媒圧力が一定に維持
されるようにするとよい。
When the pressure of the refrigerant in the pressure-sensitive chamber increases, the length of the pressure-sensitive body is shortened, whereby the valve element located on the upstream side is attracted to the pressure-sensitive chamber side and the pressure-sensitive chamber. It is preferable that the area of the refrigerant passage on the inlet side is narrowed, and as a result, the refrigerant pressure in the pressure sensitive chamber and the refrigerant passage pipe on the downstream side is maintained constant.

【0008】[0008]

【作用】冷媒流路管内の冷媒の流れ方向が変わると感圧
室内の感圧体が流れ方向に移動し、その結果、一対の弁
体のうち下流側に位置する弁体が全開になって感圧室内
と下流側冷媒流路管内の冷媒圧力が等しくなり、上流側
に位置する弁体部分が絞り部となってそこを通過する冷
媒が断熱膨張する。
When the flow direction of the refrigerant in the refrigerant flow pipe changes, the pressure-sensitive body in the pressure-sensitive chamber moves in the flow direction, and as a result, the valve element located downstream of the pair of valve elements is fully opened. Refrigerant pressures in the pressure-sensitive chamber and in the downstream-side refrigerant flow path pipe become equal, and the valve body portion located on the upstream side serves as a throttle portion, so that the refrigerant passing therethrough adiabatically expands.

【0009】そして、感圧体は周囲の感圧室内の冷媒圧
力が高まると長さが縮められ、それによって、上流側に
位置する弁体が感圧室側に引き寄せられて感圧室の入口
流路路面積が狭められ、その結果、感圧室内と下流側冷
媒流路管内の冷媒圧力が一定に維持される。
The length of the pressure-sensitive body is shortened as the refrigerant pressure in the surrounding pressure-sensitive chamber increases, whereby the valve element located on the upstream side is attracted to the pressure-sensitive chamber side and the inlet of the pressure-sensitive chamber. The flow passage area is narrowed, and as a result, the refrigerant pressure in the pressure sensitive chamber and the downstream refrigerant passage pipe is maintained constant.

【0010】[0010]

【実施例】図面を参照して実施例を説明する。図2は、
ヒートポンプ式冷凍サイクルを用いた冷暖房装置を示し
ており、装置は室内に置かれる室内機10と室外に置か
れる室外機20とに分かれている。
Embodiments will be described with reference to the drawings. Figure 2
It shows a cooling and heating device using a heat pump type refrigeration cycle, and the device is divided into an indoor unit 10 placed indoors and an outdoor unit 20 placed outdoors.

【0011】その室内機10には室内熱交換器11が配
置され、室外機20には、室外熱交換器21の他、冷媒
を圧縮するための圧縮機22と、圧縮機22に液冷媒が
戻るのを防ぐためのアキュムレータ23とが配置されて
いて、それらを冷媒が循環する。また、冷房時と暖房時
とで冷媒の流れ方向を逆転させるように切り換えるため
の四方弁24が、冷媒流路の途中に配置されている。
An indoor heat exchanger 11 is arranged in the indoor unit 10, the outdoor unit 20 has an outdoor heat exchanger 21, a compressor 22 for compressing a refrigerant, and a liquid refrigerant in the compressor 22. An accumulator 23 for preventing the return is arranged, and a refrigerant circulates them. Further, a four-way valve 24 for switching the flow direction of the refrigerant to be reversed between the cooling time and the heating time is arranged in the middle of the refrigerant flow path.

【0012】また室外機20側には、室内熱交換器11
と室外熱交換器21との間を連通接続する冷媒流路管1
の途中に、冷媒を断熱膨張させて一定の圧力で下流側に
送り出すための双方向定圧膨張弁30が介挿接続されて
いる。
On the side of the outdoor unit 20, the indoor heat exchanger 11
Refrigerant flow path pipe 1 for connecting and communicating with the outdoor heat exchanger 21
A bidirectional constant-pressure expansion valve 30 for adiabatically expanding the refrigerant and sending it to the downstream side at a constant pressure is inserted and connected in the middle of.

【0013】図1は、双方向定圧膨張弁30を示してい
る。双方向定圧膨張弁30は、冷媒流路管1を分割した
部分に構成されており、両側で冷媒流路管1に固定され
た円筒状のケース31で囲まれていて、その内側の空間
が調圧室32になっている。ケース31と冷媒流路管1
との接続部はシール部材でシールされて、調圧室32は
外部に対して気密に構成されている。
FIG. 1 shows a bidirectional constant pressure expansion valve 30. The bidirectional constant-pressure expansion valve 30 is configured in a divided portion of the refrigerant flow path pipe 1, is surrounded by a cylindrical case 31 fixed to the refrigerant flow path pipe 1 on both sides, and has a space inside thereof. It is a pressure regulation chamber 32. Case 31 and refrigerant flow pipe 1
The connection portion with and is sealed by a sealing member, and the pressure adjusting chamber 32 is configured to be airtight to the outside.

【0014】調圧室32内には、感圧体50が収容され
ている。感圧体50は、調圧室32の軸方向に伸縮自在
な蛇腹筒状のベローズ51の両端に各々ディスク52が
気密に固着されていて、両ディスク52間に圧縮コイル
スプリング54が装着されて構成されている。そして、
感圧体50内の圧力は負圧に設定されている。
A pressure sensitive body 50 is housed in the pressure adjusting chamber 32. In the pressure sensitive body 50, discs 52 are airtightly fixed to both ends of a bellows 51 having a bellows tubular shape that is expandable and contractible in the axial direction of the pressure regulating chamber 32, and a compression coil spring 54 is mounted between the discs 52. It is configured. And
The pressure inside the pressure sensitive body 50 is set to a negative pressure.

【0015】圧縮コイルスプリング54によって軸方向
に押し広げられるように付勢された両側のディスク52
は、冷媒の圧力の影響がない状態では、冷媒流路管1の
端部部材(調圧室32の両側壁面)で形成された外側ス
トッパ34a,34bに当接する。
The disks 52 on both sides are urged by a compression coil spring 54 so as to be expanded in the axial direction.
Is in contact with the outer stoppers 34a and 34b formed by the end members (both wall surfaces of the pressure adjusting chamber 32) of the refrigerant flow pipe 1 when there is no influence of the refrigerant pressure.

【0016】したがって、両外側ストッパ34a,34
b間の間隔が感圧体50の最大軸方向長さLo であり、
感圧体50の軸方向長さLは、冷媒圧の影響によって感
圧体50が縮められた長さΔL分だけ、Loより短くな
る。
Therefore, both outer stoppers 34a, 34
The distance between b is the maximum axial length Lo of the pressure sensitive body 50,
The axial length L of the pressure sensitive body 50 is shorter than Lo by the length ΔL of the pressure sensitive body 50 contracted by the influence of the refrigerant pressure.

【0017】圧縮コイルスプリング54の内側には、山
高帽状の内側ストッパ55が両ディスク52から内方に
向き合うように突出配置されていて、両ディスク52間
に予め形成されている隙間の軸方向長さが、感圧体50
が最大限縮むことができる長さ(ΔLmax)になってい
る。56及び57は、両内側ストッパ55を軸方向に遊
びをもって連結する連結部材である。
Inside the compression coil spring 54, an inner stopper 55 in the shape of a bowl cap is arranged so as to project from both discs 52 so as to face inward, and an axial direction of a gap previously formed between both discs 52. Length is 50
Has a length (ΔLmax) that allows maximum contraction. Reference numerals 56 and 57 are connecting members that connect the inner stoppers 55 with play in the axial direction.

【0018】外側ストッパ34a,34bより外側に
は、各々内方の感圧体50側へ漸次細くなるテーパ状の
弁座35a,35bが形成されていて、球状の弁体36
a,36bが各々外側から弁座35a,35bに対向し
て配置されている。
Outside the outer stoppers 34a, 34b, tapered valve seats 35a, 35b are formed, which taper toward the inner side of the pressure sensitive body 50, respectively.
a and 36b are arranged to face the valve seats 35a and 35b from the outside.

【0019】そして、弁座35a,35bと弁体36
a,36bとの隙間部分が、冷媒を断熱膨張させるため
の絞り部41a,41bになっている。調圧室32内で
は、ケース31の内周面とベローズ51との間の空間が
冷媒流路になっている。
The valve seats 35a and 35b and the valve body 36 are
Gap portions with a and 36b are throttle portions 41a and 41b for adiabatically expanding the refrigerant. In the pressure adjusting chamber 32, the space between the inner peripheral surface of the case 31 and the bellows 51 serves as a refrigerant flow path.

【0020】なお、両弁体36a,36bの有効受圧面
積は等しく設定されている。ただし、冷房時と暖房時と
で冷媒の膨張特性を変えたい場合等には、両弁体36
a,36bの有効受圧面積を異ならせればよい。
The effective pressure receiving areas of both valve bodies 36a and 36b are set to be equal. However, when it is desired to change the expansion characteristics of the refrigerant between cooling and heating, both valve elements 36
The effective pressure receiving areas of a and 36b may be different.

【0021】両弁体36a,36bと感圧体50両端の
ディスク52との間には各々ロッド37a,37bが介
装連結されていて、両弁体36a,36b共に、外方か
ら弁座35a,35bに向けて圧縮コイルスプリング3
8a,38bで付勢されている。
Rods 37a and 37b are respectively interposed between the valve bodies 36a and 36b and the disks 52 at both ends of the pressure sensitive body 50, and both valve bodies 36a and 36b are valve seats 35a from the outside. , 35b toward the compression coil spring 3
It is urged by 8a and 38b.

【0022】39a,39bは、圧縮コイルスプリング
38a,38bと弁体36a,36bとの間に介装され
た受け部材である。40a,40bは、圧縮コイルスプ
リング38a,38bの他端側を受けるように冷媒流路
管1内に螺合されたバネ受けナットであり、回転させる
ことによって、圧縮コイルスプリング38a,38bの
バネ力を調整することができる。
Reference numerals 39a and 39b are receiving members interposed between the compression coil springs 38a and 38b and the valve bodies 36a and 36b. Reference numerals 40a and 40b denote spring receiving nuts screwed into the refrigerant flow path pipe 1 so as to receive the other ends of the compression coil springs 38a and 38b, and by rotating, spring force of the compression coil springs 38a and 38b. Can be adjusted.

【0023】このように構成された実施例装置におい
て、感圧体50の軸方向長さLは、三つの圧縮コイルス
プリング54,38a,38bのバネ力及び感圧体50
の内外圧がバランスする状態で決まる。したがって、感
圧体50の軸方向長さLは、調圧室32内の冷媒圧Px
によって決まることになる。
In the embodiment constructed as described above, the axial length L of the pressure sensitive body 50 is determined by the spring force of the three compression coil springs 54, 38a, 38b and the pressure sensitive body 50.
Determined by the balance of internal and external pressure. Therefore, the axial length L of the pressure sensitive body 50 is determined by the refrigerant pressure Px in the pressure adjusting chamber 32.
Will be determined by

【0024】図1は、左側にある室外熱交換器21から
右側にある室内熱交換器11に向かって冷媒が流される
冷房時の状態を示しており、上流側の冷媒流路管1a内
の冷媒圧Paが下流側の冷媒流路管1b内の冷媒圧Pb
より高い、即ち、Pa>Pbの状態になっている。
FIG. 1 shows a state during cooling in which the refrigerant flows from the outdoor heat exchanger 21 on the left side to the indoor heat exchanger 11 on the right side, and the inside of the refrigerant flow pipe 1a on the upstream side is shown. The refrigerant pressure Pa is the refrigerant pressure Pb in the refrigerant passage pipe 1b on the downstream side.
It is higher, that is, Pa> Pb.

【0025】この状態では、図1に示されるように、感
圧体50が冷媒の流れによって右側に押しつけられる状
態になるので、下流側の弁体36bは全開状態になり、
その結果、調圧室32内の冷媒圧Pxは下流側の冷媒流
路管1b内の冷媒圧Pbと等しくなる。即ち、Px=P
bである。そして、上流側の弁体36a部分の絞り部4
1aが、冷媒を断熱膨張させるための絞りになる。
In this state, as shown in FIG. 1, the pressure sensitive body 50 is pressed to the right side by the flow of the refrigerant, so that the downstream valve body 36b is fully opened.
As a result, the refrigerant pressure Px in the pressure regulation chamber 32 becomes equal to the refrigerant pressure Pb in the downstream refrigerant flow pipe 1b. That is, Px = P
b. Then, the throttle portion 4 of the valve element 36a on the upstream side
1a serves as a throttle for adiabatically expanding the refrigerant.

【0026】その結果、下流側の冷媒流路管1b内の冷
媒圧Pbが下がると調圧室32内の冷媒圧Pxも同じだ
け下がり、それに伴ってLが伸びるので、上流側の弁体
36aが開き方向に移動して、上流側の冷媒流路管1a
から調圧室32内に送り込まれる冷媒流量が増加する。
すると、Pxが大きくなるのでLが縮んで、上流側の冷
媒流路管1aから調圧室32内に送り込まれる冷媒流量
が減少する。
As a result, when the refrigerant pressure Pb in the refrigerant passage pipe 1b on the downstream side decreases, the refrigerant pressure Px in the pressure adjusting chamber 32 also decreases by the same amount, and L increases accordingly, so that the valve element 36a on the upstream side. Moves in the opening direction, and the refrigerant channel pipe 1a on the upstream side
From this, the flow rate of the refrigerant sent into the pressure regulation chamber 32 increases.
Then, Px becomes large, so that L contracts, and the flow rate of the refrigerant fed into the pressure regulation chamber 32 from the upstream refrigerant flow pipe 1a decreases.

【0027】また、逆に下流側の冷媒流路管1b内の冷
媒圧Pbが上がると調圧室32内の冷媒圧Pxも同じだ
け上がり、それに伴ってLが縮むので、上流側の弁体3
6aが閉じ方向に移動して、上流側の冷媒流路管1aか
ら調圧室32内に送り込まれる冷媒流量が減少する。す
ると、Pxが小さくなるのでLが伸びて、上流側の冷媒
流路管1aから調圧室32内に送り込まれる冷媒流量が
増加する。
On the contrary, when the refrigerant pressure Pb in the downstream refrigerant flow pipe 1b rises, the refrigerant pressure Px in the pressure adjusting chamber 32 also rises by the same amount, and L contracts accordingly, so that the upstream valve body Three
6a moves in the closing direction, and the flow rate of the refrigerant fed into the pressure regulation chamber 32 from the upstream refrigerant flow pipe 1a decreases. Then, since Px becomes smaller, L becomes longer, and the flow rate of the refrigerant sent from the refrigerant passage pipe 1a on the upstream side into the pressure adjusting chamber 32 increases.

【0028】このような動作の結果、定圧膨張弁30は
常にLが一定になるように動作する。それは、調圧室3
2内の冷媒圧Px即ち下流側冷媒流路管1b内の冷媒圧
Pbが一定になることであり、蒸発器11へ送られる冷
媒圧が一定に維持されることになる。
As a result of such operation, the constant pressure expansion valve 30 operates so that L is always constant. It is the pressure regulation room 3
That is, the refrigerant pressure Px in 2 or the refrigerant pressure Pb in the downstream refrigerant flow pipe 1b becomes constant, and the refrigerant pressure sent to the evaporator 11 is maintained constant.

【0029】なお、上流側の弁体36aの有効受圧面積
が感圧体50のディスク52の有効受圧面積に比べて非
常に小さいので、上流側の冷媒流路管1a内の冷媒圧P
aは、感圧体50の動作に対してほとんど影響を与えな
い。また、影響がある場合は、Lが一定になる圧力Px
が変わるだけである。
Since the effective pressure receiving area of the upstream valve body 36a is much smaller than the effective pressure receiving area of the disk 52 of the pressure sensitive body 50, the refrigerant pressure P in the upstream refrigerant flow pipe 1a is increased.
a has almost no effect on the operation of the pressure sensitive body 50. When there is an influence, the pressure Px at which L becomes constant is
Only changes.

【0030】上記の動作は、上流側の冷媒流路管1a内
の冷媒圧Paが下流側の冷媒流路管1b内の冷媒圧Pb
より低い暖房状態の場合、即ち、Pa<Pbの場合に
も、左右が反対になるだけで上記と全く同様に行われ
る。
In the above operation, the refrigerant pressure Pa in the upstream refrigerant flow pipe 1a is changed to the refrigerant pressure Pb in the downstream refrigerant flow pipe 1b.
In the case of a lower heating state, that is, in the case of Pa <Pb, the operation is exactly the same as the above except that the left and right sides are reversed.

【0031】[0031]

【発明の効果】本発明によれば、冷媒流路管内の冷媒の
流れ方向が変われば、感圧室内の感圧体が流れ方向に移
動して、一対の弁体のうち下流側に位置する弁体が全開
になって感圧室内と下流側冷媒流路管内の冷媒圧力が等
しくなり、上流側に位置する弁体部分が絞り部となって
そこを通過する冷媒が断熱膨張するので、冷媒の流れ方
向が冷暖房のいずれの状態であっても冷媒を断熱膨張さ
せることができる。
According to the present invention, when the flow direction of the refrigerant in the refrigerant flow pipe changes, the pressure sensitive body in the pressure sensitive chamber moves in the flow direction and is positioned on the downstream side of the pair of valve bodies. When the valve body is fully opened and the refrigerant pressures in the pressure-sensitive chamber and the downstream side refrigerant flow path pipe become equal, the valve body portion located on the upstream side becomes a throttle portion and the refrigerant passing therethrough adiabatically expands, so the refrigerant The refrigerant can be adiabatically expanded regardless of whether the flow direction is in the cooling or heating state.

【0032】そして、感圧体は周囲の感圧室内の冷媒圧
力が高まると長さが縮められ、それによって、上流側に
位置する弁体が感圧室側に引き寄せられて感圧室の入口
流路路面積が狭められて感圧室内と下流側冷媒流路管内
の冷媒圧力が一定に維持されるので、冷暖房いずれの場
合でも同じ装置で冷媒を定圧膨張させることができる。
The length of the pressure sensitive body is shortened when the pressure of the refrigerant in the surrounding pressure sensitive chamber is increased, whereby the valve element located on the upstream side is attracted to the pressure sensitive chamber side and the inlet of the pressure sensitive chamber. Since the flow passage area is narrowed and the pressure of the refrigerant in the pressure-sensitive chamber and in the downstream refrigerant flow pipe is kept constant, the refrigerant can be expanded at a constant pressure by the same device in both cooling and heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の双方向定圧膨張弁の断面図で
ある。
FIG. 1 is a sectional view of a bidirectional constant pressure expansion valve according to an embodiment of the present invention.

【図2】本発明の実施例の冷凍サイクルの全体略示図で
ある。
FIG. 2 is an overall schematic view of a refrigeration cycle according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 冷媒流路管 30 双方向定圧膨張弁 32 調圧室 50 感圧体 36a,36b 弁体 41a,41b 絞り部 1 Refrigerant flow pipe 30 bidirectional constant pressure expansion valve 32 Pressure regulation chamber 50 pressure sensitive body 36a, 36b valve body 41a, 41b throttle part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ヒートポンプ式冷凍サイクル中の一対の熱
交換器間に接続された冷媒流路管の途中に形成された空
間からなる調圧室と、 上記調圧室内の冷媒の圧力に対応して管軸方向の長さが
変化するように上記調圧室内に配置された感圧体と、 上記感圧体の両端部に連結されて上記冷媒の流路面積を
上記調圧室の両側において変化させるように配置された
一対の弁体とを有し、 上記冷媒流路管内の冷媒の流れ方向が変わることによっ
て上記感圧体が上記調圧室内で冷媒の流れ方向に移動し
て、上記一対の弁体のうち下流側に位置する弁体が全開
になると共に、上流側に位置する弁体部分が冷媒を断熱
膨張させる絞り部になるようにしたことを特徴とする双
方向定圧膨張弁。
1. A pressure regulation chamber comprising a space formed in the middle of a refrigerant flow pipe connected between a pair of heat exchangers in a heat pump type refrigeration cycle, and a pressure regulation chamber corresponding to the pressure of the refrigerant in the pressure regulation chamber. And a pressure-sensitive body disposed in the pressure-adjusting chamber so that the length in the tube axis direction changes, and the flow passage area of the refrigerant is connected to both ends of the pressure-sensitive body on both sides of the pressure-adjusting chamber. And a pair of valve bodies arranged so as to change, the pressure sensitive body moves in the flow direction of the refrigerant in the pressure regulating chamber by changing the flow direction of the refrigerant in the refrigerant flow path pipe, A bidirectional constant-pressure expansion valve characterized in that the valve element located on the downstream side of the pair of valve elements is fully opened, and the valve element located on the upstream side serves as a throttle for adiabatically expanding the refrigerant. .
【請求項2】上記感圧体は上記感圧室内の冷媒圧力が高
まると長さが縮められ、それによって、上流側に位置す
る弁体が上記感圧室側に引き寄せられて上記感圧室入口
側の冷媒流路面積が狭められ、その結果、上記感圧室内
及び下流側冷媒流路管内の冷媒圧力が一定に維持される
請求項1記載の双方向定圧膨張弁。
2. The pressure-sensitive body is shortened in length as the refrigerant pressure in the pressure-sensitive chamber increases, whereby the valve element located on the upstream side is attracted to the pressure-sensitive chamber side and the pressure-sensitive chamber. The bidirectional constant-pressure expansion valve according to claim 1, wherein the refrigerant flow passage area on the inlet side is narrowed, and as a result, the refrigerant pressure in the pressure sensing chamber and the downstream refrigerant flow passage pipe is maintained constant.
JP10180295A 1995-04-26 1995-04-26 Two-way constant pressure expansion valve Expired - Fee Related JP3418271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10180295A JP3418271B2 (en) 1995-04-26 1995-04-26 Two-way constant pressure expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10180295A JP3418271B2 (en) 1995-04-26 1995-04-26 Two-way constant pressure expansion valve

Publications (2)

Publication Number Publication Date
JPH08296929A JPH08296929A (en) 1996-11-12
JP3418271B2 true JP3418271B2 (en) 2003-06-16

Family

ID=14310282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10180295A Expired - Fee Related JP3418271B2 (en) 1995-04-26 1995-04-26 Two-way constant pressure expansion valve

Country Status (1)

Country Link
JP (1) JP3418271B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130743A (en) * 2000-10-30 2002-05-09 Mitsubishi Heavy Ind Ltd Outdoor heat exchanger unit structure, outdoor unit, and gas heat pump type air conditioner
MXPA06012065A (en) * 2004-04-22 2008-01-16 Ice Energy Inc A mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system.
JP4563945B2 (en) * 2006-02-24 2010-10-20 太平洋工業株式会社 Bidirectional constant pressure expansion valve and manufacturing method thereof
JP2007225209A (en) * 2006-02-24 2007-09-06 Pacific Ind Co Ltd Bidirectional constant pressure expansion valve
CN103216980B (en) * 2013-04-27 2015-02-04 温岭市恒发空调部件有限公司 Bi-direction circulation expansion valve
CN106813424A (en) * 2015-11-28 2017-06-09 吴亚妹 A kind of changeable flow throttling arrangement
CN107289684B (en) * 2016-04-01 2020-07-14 浙江三花制冷集团有限公司 Thermostatic expansion valve and air conditioning system with same
JP6478958B2 (en) * 2016-09-02 2019-03-06 株式会社不二工機 Control valve
CN106949676A (en) * 2017-05-12 2017-07-14 吴亚妹 A kind of bidirectional throttling valve of unidirectional variable restrictor
JP7418807B2 (en) * 2020-03-06 2024-01-22 株式会社不二工機 valve device

Also Published As

Publication number Publication date
JPH08296929A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
US4548047A (en) Expansion valve
US5004008A (en) Variable area refrigerant expansion device
JP3418271B2 (en) Two-way constant pressure expansion valve
US5170638A (en) Variable area refrigerant expansion device
KR100272206B1 (en) Right angle thermally responsive expansion valve
US5836349A (en) Bidirectional flow control device
US5002089A (en) Variable area refrigerant expansion device for heating mode of a heat pump
US4926658A (en) Two way flow control device
US5038579A (en) Dual flow variable area expansion device for heat pump system
JPH086986B2 (en) Refrigerant expansion device
US4500035A (en) Expansion valve
US5214939A (en) Variable area refrigerant expansion device having a flexible orifice
JP2501677B2 (en) Refrigerant expansion device
US5134860A (en) Variable area refrigerant expansion device having a flexible orifice for heating mode of a heat pump
JPS6170355A (en) Expansion valve for refrigerator
US4978062A (en) Thermostatic expansion valve with bi-directional flow
JP2672416B2 (en) Fluid flow rate measuring device
KR19980042729A (en) Two-way flow control
JP2006292185A (en) Expansion device and refrigerating cycle
JP3452704B2 (en) Bidirectional subcooling expansion valve
CN204460866U (en) Two-way thermal expansion valve
JP3207489B2 (en) Constant pressure expansion valve
JP3452698B2 (en) Two-way constant pressure expansion valve
JP2701945B2 (en) Temperature type subcool control valve
JPS6260586B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees