JP4448047B2 - 耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略可能な肌焼用鋼 - Google Patents

耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略可能な肌焼用鋼 Download PDF

Info

Publication number
JP4448047B2
JP4448047B2 JP2005089377A JP2005089377A JP4448047B2 JP 4448047 B2 JP4448047 B2 JP 4448047B2 JP 2005089377 A JP2005089377 A JP 2005089377A JP 2005089377 A JP2005089377 A JP 2005089377A JP 4448047 B2 JP4448047 B2 JP 4448047B2
Authority
JP
Japan
Prior art keywords
less
steel
cold workability
hardening
grain coarsening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005089377A
Other languages
English (en)
Other versions
JP2006265704A (ja
Inventor
俊夫 村上
琢哉 ▲高▼知
昌吾 村上
等 畑野
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005089377A priority Critical patent/JP4448047B2/ja
Publication of JP2006265704A publication Critical patent/JP2006265704A/ja
Application granted granted Critical
Publication of JP4448047B2 publication Critical patent/JP4448047B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は自動車などの輸送機器や、建設機械その他の産業機械などにおいて、肌焼き処理して使用される機械部品用の素材となる肌焼用鋼に関し、特に、軸受やCVT用プーリー、シャフト類、歯車、軸付き歯車などの素材として肌焼き処理して使用する際に、耐結晶粒粗大化特性に優れるとともに、冷間加工性が良好で加工前の軟化焼鈍を省略することのできる肌焼用鋼とその製法に関するものである。
自動車、建設機械、その他の各種産業機械用として用いられる機械部品において、特に高強度が要求される部品には、従来から浸炭、窒化および浸炭窒化などの表面硬化熱処理(肌焼き処理)が行なわれている。これらの用途には、通常、SCr、SCM、SNCMなどの如きJIS規格で定められた肌焼用鋼を使用し、鍛造・切削等の機械加工により所望の部品形状に成形した後、浸炭、浸炭窒化などの表面硬化熱処理を施し、その後、研磨などの仕上工程を経て製造される。
近年、上記の様な機械部品についても製造原価の低減、リードタイムの短縮などが望まれており、肌焼き処理を高温化することによって熱処理時間を短縮することが行なわれている。しかし、肌焼き処理温度を高めると、素材の結晶粒が粗大化し、熱処理歪量が増大するという問題が生じてくる。
そこで、肌焼用鋼の耐結晶粒粗大化特性を改善したものとして、Tiを添加した肌焼きボロン鋼が提案されている(特許文献1,2)。これらは、鋼中に0.1〜0.2質量%程度のTiを添加することによって遊離窒素(free−N)を固定し、且つTi炭化物やTiを含む複合炭化物、Ti窒化物などを微細に析出させることで、肌焼き処理のための加熱時のオーステナイト結晶粒の粗大化を抑制するものである。
一方、肌焼用鋼においては、部品形状に成形する際に冷間加工が行なわれるため、冷間加工性も重要な要求特性となる。また鋼材を冷間加工する際には、冷間加工性を高めるため加工前に球状化焼鈍などの軟化焼鈍を行なうことが多いが、軟化焼鈍には設備費や人件費、エネルギー費などを含めて多大なコストがかかるので、この様な軟化焼鈍をせずとも加工できる様な冷間加工性に優れた鋼材が望まれる。
この様なことから、Tiが添加された肌焼用鋼においても、軟化焼鈍をせずとも冷間加工できる様に加工性を改善した鋼材が開発されている(特許文献3,4,5など)。これらの発明では、主として鋼成分中の冷間加工性に影響を及ぼす化学成分を調整することで、冷間加工性を改善している。上記特許文献3,4では、更なる冷間加工性改善策として、熱間圧延後の冷却速度を適正に制御する方法を開示しており、また上記特許文献5では、冷間加工性の更なる改善に、熱延材の金属組織を制御する方法も開示している。
しかしこれら従来の肌焼用鋼では、形状が複雑であったり強加工を受けたりする部品に適用した場合、軟化焼鈍なしでの冷間加工性が必ずしも十分とは言えず、更なる改善が望まれる。
特開平10−81938号公報 特開平10−130720号公報 特開平6−299241号公報 特開平10−130777号公報 特開平11−43737号公報
本発明は上記の様な事情に着目してなされたものであって、その目的は、前掲の従来技術に開示された肌焼用鋼の特性を更に改善し、特に、冷間加工性を一段と高めて軟化焼鈍の省略を可能にすると共に、肌焼き処理のための加熱処理による結晶粒の粗大化を一段と抑制し、物理的特性や寸法制度の良好な肌焼部品を与える肌焼用鋼を提供し、更にはその様な特性を備えた肌焼用鋼を確実に得ることのできる製法を提供することにある。
上記課題を解決することのできた本発明に係る耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略を可能にした肌焼用鋼は、質量%で、
C:0.10〜0.35%、
Si:0.03〜1.0%、
Mn:0.20〜2.0%、
S:0.1%以下(0%を含む)、
N:0.030%以下(0%を含む)、
Al:0.2%以下(0%を含む)、
Ti:0.03〜0.30%、
を含み、残部が実質的にFeよりなる鋼からなり、横断面内におけるビッカース硬さの平均値が180以下で、且つビッカース硬さバラツキの標準偏差の最大値が5以下であるところに特徴を有している。
本発明に係る上記肌焼用鋼において、横断面内における金属組織の主体がフェライト+パーライトで、これらの組織が80%以上を占めるものは、上記ビッカース硬さの平均値が相対的に低く、且つ硬さバラツキの標準偏差がより低く抑えられたものになるので好ましい。
また本発明の上記鋼には、前掲の必須元素に加えて、求められる特性に応じて下記1)〜4)に示す群から選ばれる1種以上の元素を含有させることも有効である。
1)Cu:3.0%以下(0%を含まない)、Ni:3.0%以下(0%を含まない) 、Cr:2.0%以下(0%を含まない)、Mo:2.0%以下(0%を含まない )よりなる群から選択される少なくとも1種、
2)B:0.0005〜0.010%、
3)Nb:0.2%以下(0%を含まない)、V:0.3%以下(0%を含まない)、
Zr:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、
4)REM:0.03%以下(0%を含まない)、Ca:0.03%以下(0%を含ま ない)、Mg:0.03%以下(0%を含まない)、Pb:0.3%以下(0%を含まない)、Bi:0.3%以下(0%を含まない)、Te:0.3%以下(0%を含まない)、Se:0.3%以下(0%を含まない)、Sn:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種。
また本発明の製法は、上述した特性を備えた肌焼用鋼を工業的に安定して確実に製造することのできる方法として位置付けられるもので、上記成分組成の要件を満たす鋼を、1250℃以上の温度で均熱し、そのまま直接、若しくは圧延してからAr1変態点以下の温度まで冷却した後、1050〜1200℃に再加熱し、そのまま直接、若しくは圧延してからAr1変態点以下の温度まで冷却する処理を1回以上行ない、次いで850〜1000℃に再加熱してから圧延し、最終圧延温度を700〜850℃とするところに特徴を有している。
本発明によれば、鋼の化学成分を特定すると共に、特に、横断面内におけるビッカース硬さの平均値を特定するとともに、該バラツキの標準偏差を極力抑え、より好ましくは鋼横断面の金属組織をフェライト+パーライト主体の組織とすることによって、軟化焼鈍をせずとも複雑形状への加工や強加工に耐える優れた冷間加工性を有すると共に、表面硬化処理のための肌焼き熱処理による耐結晶粒粗大化特性に優れ、機械的特性と寸法精度に優れた肌焼部品を与える肌焼用鋼を提供できる。
本発明者らは前述した様な従来技術の下で、特にTi添加肌焼用鋼に焦点を絞って、耐結晶粒粗大化特性と冷間加工性を更に改善すべく、それらの性能に影響を及ぼす熱間圧延材の成分組成や物理的特性、結晶構造などを主体にして研究を重ねてきた。その結果、上記の様に、鋼の成分組成を特定すると共に、熱延材断面におけるビッカース硬さの平均値を低めに抑えると共に、該硬さバラツキの標準偏差を少なくし、或いは更に金属組織を適正化してやれば、軟化焼鈍を省略した場合でも優れた冷間加工性を有すると共に、肌焼き処理のための加熱による耐結晶粒粗大化特性においても良好な肌焼用鋼が得られることを知り、上記本発明に想到した。
以下、本発明において鋼の化学成分を定めた理由を明らかにし、引き続いて、鋼断面内のビッカース硬さの平均値や硬さバラツキの標準偏差、更には金属組織を定めた理由を明確にしていく。
まず、鋼の化学成分を定めた理由を説明する。
C:0.10〜0.35%;
Cは機械部品として必要な芯部硬さを確保する上で重要な元素であり、0.10%未満では硬さ不足により機械部品としての静的強度が不足気味となる。しかしC量が多過ぎると、硬くなり過ぎて芯部の靭性が低下すると共に冷間加工性も悪くなるので、0.35%以下に抑える必要がある。より好ましいC含量は、0.12%以上、0.30%以下である。
Si:0.03〜1.0%;
Siは脱酸剤として作用し、酸化物系介在物量を低減して内部品質を高める作用を有すると共に、焼戻し処理時の硬さ低下を抑えて肌焼き部品の表層硬さを確保するのに有効な元素であり、0.03%以上の添加を必要とする。しかし、Si量が多過ぎると、素材が硬くなり過ぎて冷間加工性が劣化するばかりでなく、浸炭処理時の粒界酸化層の形成が助長されて機械的特性にも悪影響が現われてくるので、これらの障害を抑えるため1.0%を上限と定めた。より好ましいSi含量は、0.05%以上、0.50%以下である。
Mn:0.20〜2.0%;
Mnは脱酸剤として作用し、酸化物系介在物量を低減して鋼材の内部品質を高める作用を有すると共に、浸炭焼入れ時の焼入性を著しく高める作用を有しており、こうした作用を有効に発揮させるには0.2%以上含有させる必要がある。しかし多過ぎると、冷間加工時の変形抵抗が増大して加工性が低下するばかりか、浸炭時の粒界酸化層の形成を助長して機械的特性にも悪影響を及ぼす様になるので、上限を2.0%とする。Mnのより好ましい含有量は0.40%以上、1.80%以下である。
S:0.1%以下;
Sは、Mnと反応してMnSを形成し被削性を高める作用を有しているが、TiS介在物などの形成もあって、衝撃特性や冷間加工性に悪影響を及ぼすので、なるべく少なく抑えるのが好ましく、多くとも0.1%以下、好ましくは0.03%以下に抑えるのがよい。
N:0.030%以下;
Nは、Al,Tiと結合して窒化物や炭窒化物を形成し、浸炭加熱時におけるオーステナイト粒成長を抑制する作用を有している反面、衝撃特性や疲労特性に顕著な悪影響を及ぼすので、多くとも0.030%以下、好ましくは0.025%以下に抑えるべきである。
Al:0.2%以下;
Alは鋼材の脱酸に有効な元素であり、しかも結晶粒の調整にも有効に作用するが、Al含量が多過ぎると、硬質で粗大な非金属介在物(Al23)が生成して衝撃特性や冷間加工性を劣化させるので、0.2%以下に抑えるべきである。Alのより好ましい含有量は0.1%以下である。
Ti:0.03〜0.30%;
Tiは、鋼中のfree−Nと結合して微細なTi窒化物を生成し、且つ微細なTi炭化物やTi含有複合炭化物として析出することによって、浸炭加熱時におけるオーステナイト結晶粒の粗大化を抑制する重要な元素であり、これらの作用を有効に発揮させるには0.03%以上含有させねばならない。しかしTi量が多過ぎると、Ti含有析出物の生成量が過大となって冷間加工性に悪影響を及ぼす様になるので、0.30%を上限とする。より好ましいTi含量は0.05%以上、0.20%以下である。
本発明で用いる鋼の必須構成元素は以上の通りであり、残部は実質的にFeである。「実質的に」とは不可避的に混入してくる元素、例えばP(リン)やO(酸素)などの不可避不純物量の混入を許容するという意味であり、それらが含まれることによる障害を極力抑えるには、Pは0.03以下、Oは0.003%以下に抑えるのがよい。
ちなみに、Pは結晶粒界に偏析して部品の衝撃特性や冷間加工性を低下させるので、極力少なく抑えるべきであり、多くとも0.03%以下、より好ましくは0.010%以下に抑えるのがよい。またO(酸素)は鋼材の強度特性を低下させるので、0.003%以下、より好ましくは0.001%以下に抑えるのがよい。
また本発明で用いる鋼材には、上記必須元素に加えて、所望に応じて更なる付加的特性を与えるため、下記の様な選択元素を含有させることも有効であり、必要に応じてそれらの元素を添加したものも本発明の技術的範囲に含まれる。
Cu:3.0%以下(0%を含まない)、Ni:3.0%以下(0%を含まない)、Cr:2.0%以下(0%を含まない)、Mo:2.0%以下(0%を含まない)よりなる群から選択される少なくとも1種;
Cu,Ni,Cr,Moは、何れも焼入れ性の向上に寄与するという点では同効元素であり、且つこれらのうちCuは耐食性の向上にも寄与する。またNi,Moは鋼材の靭性向上にも寄与し、Crは浸炭硬化性を高める作用も有している。しかし、それら各元素の効果は各々上記上限値付近で飽和するので、それ以上の添加は不経済であるばかりでなく、過剰量のCrは靭性に悪影響を及ぼし、Moは靭性と冷間加工性に悪影響を及ぼすので、上限値を超える添加は避けるべきである。
また、これらの元素のうち特にCuは、単独で添加すると鋼材の熱間加工性を劣化させる傾向があるが、Cuと共に適量のNiを併用すると、こうしたCu添加による弊害を回避できるので好ましい。
B:0.0005〜0.010%;
Bは微量で鋼材の焼入性を大幅に高める作用を有しており、しかも結晶粒界を強化して衝撃強度を高める作用も有している。こうした作用は0.0005%以上添加することで有効に発揮される。しかし、それらの効果は約0.010%で飽和し、またB量が多過ぎると、B窒化物が生成し易くなって冷間加工性に顕著な悪影響を及ぼすので、多くとも0.010%以下に抑えるべきである。より好ましいB含量は0.0007%以上、0.0050%以下である。
Nb:0.2%以下(0%を含まない)、V:0.3%以下(0%を含まない)、Z
r:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種;
Nb,V,Zrは、何れも炭化物や窒化物からなる析出物を形成してオーステナイト結晶粒の粗大化を抑える作用を有しているが、多過ぎると上記析出物量が多くなり過ぎて成形加工性に悪影響を及ぼす様になるので、夫々上限値以下に抑えるべきである。
REM:0.03%以下(0%を含まない)、Ca:0.03%以下(0%を含まない)、Mg:0.03%以下(0%を含まない)、Pb:0.3%以下(0%を含まない)、Bi:0.3%以下(0%を含まない)、Te:0.3%以下(0%を含まない)、Se:0.3%以下(0%を含まない)、Sn:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種;
これらの元素は、何れも鋼材の被削性向上に有効に作用するが、多過ぎると靭性を著しく劣化させるので、添加するにしても夫々上限値以下に抑えるべきである。
本発明では、上述した鋼成分の制限に加えて、圧延材としての重要な物理的特性として、横断面内におけるビッカース硬さの平均値が180以下で、該硬さバラツキの標準偏差の最大値が5以下であることを必須の要件とする。即ち本発明者らが、上記成分組成の要件を満たす圧延鋼材について、その冷間加工性と熱処理時の耐結晶粒粗大化特性に及ぼす物性の影響について様々の角度から研究を進めたところ、上記の様に、供試鋼材の横断面内におけるビッカース硬さの平均値と該硬さバラツキの標準偏差がそれらの特性に顕著な影響を及ぼし、該ビッカース硬さの平均値が180以下、より好ましくは170以下で、且つ硬さバラツキの標準偏差の最大値が5以下であるものは、軟化焼鈍を省略した場合でも安定して優れた冷間加工性を有すると共に、肌焼きのための熱処理時における耐結晶粒粗大化特性においても優れた性能を示すことが確認された。
この様な傾向が得られる理論的な理由は、現在のところ未だ明確にされていないが、次の様なことが考えられる。即ち、ビッカース硬さの平均値が相対的に低いということは、相対的に軟質で変形し易いことを意味しており、この値を所定値以下に抑えることで冷間加工性の向上が図られる。具体的にはその値を180以下、より好ましくは170以下に抑えることで、軟化焼鈍なしでも優れた冷間加工性を得ることが可能となる。但し、たとえビッカース硬さの平均値が180以下であっても、該硬さバラツキの標準偏差が大きくなると、局部的に変形能の小さな領域が存在することとなってその領域が破壊の起点となり、鋼全体としての冷間加工性が低下してくるので、硬さバラツキに起因する加工性劣化を抑えて軟化焼鈍なしでも優れた冷間加工性を確保するには、硬さバラツキの標準偏差の最大値を5以下に抑えることが必要であり、より好ましくは該最大値を4以下に抑えるのがよい。
更に、こうしたビッカース硬さの平均値と当該バラツキの標準偏差の最大値に与える圧延鋼材の金属組織についても検討を進めた結果、断面金属組織中に占めるフェライトとパーライトのトータル面積率が高いものほど上記ビッカース硬さの平均値は相対的に低い値で安定すると共に、当該硬さバラツキの標準偏差の最大値は小さくなり、該トータル面積率が少なくとも80%、好ましくは90%以上、更に好ましくは95%以上であるものは、加工後の軟化焼鈍を省略し得るほどに優れた冷間加工性を示すことが確認された。
ちなみに、フェライト+パーライトのトータル面積率が大きいということは、それ以外の組織、例えばベイナイトやマルテンサイトなどが少ないことを意味しており、金属組織が全体的に均質であることから、ビッカース硬さが全体的に略均等で硬さバラツキが小さくなるものと思われる。
上記の様に本発明によれば、鋼の成分組成を特定すると共に、当該鋼断面のビッカース硬さの平均値と硬さバラツキの標準偏差の最大値を低く抑え、好ましくは更に、金属組織をフェライト+パーライトの総和で80%以上を確保することによって、軟化焼鈍を省略した場合でも優れた冷間加工性を確保しつつ、肌焼き処理のための加熱による耐結晶粒粗大化特性に優れ、強度特性と寸法精度の良好な肌焼き部品を与える肌焼用鋼を提供できる。
次に、上記の様な特性を備えた肌焼用鋼を得るには、前述した化学成分の要件を満たす鋼材を1250℃以上の温度で均熱し、そのまま直接、若しくは圧延してからAr1変態点以下の温度まで冷却した後、1050〜1200℃に再加熱し、そのまま直接、若しくは圧延してからAr1変態点以下の温度まで冷却する処理を1回以上行ない、次いで850〜1000℃に再加熱してから圧延し、最終圧延温度を700〜850℃に制御することが極めて有効である。
1250℃以上で均熱した後、Ar1変態点以下まで冷却するのは、加熱時に粗大化したオーステナイトをフェライトに変態させ、その後の加熱でオーステナイトに逆変態させた時のオーステナイト粒を微細化すると共に、Ti含有析出物をさせて次工程の再加熱でTi析出物の大きさを適度に調整できる様にするためである。
上記1250℃以上の温度での均熱後は、一旦Ar1変態点以下の温度にまで冷却するのは、加熱時に粗大化したオーステナイトをフェライトに変態させ、その後の圧延前の加熱によってオーステナイトに逆変態させ、オーステナイト粒を微細化すると共に、フェライト変態時にTi含有析出物を析出させるためであり、その為には、均熱後Ar1変態点以下の温度にまで冷却することが必須となる。
その後、再び1050〜1200℃の温度域で再均熱するのは、オーステナイト中に適度な大きさのTi含有析出物を析出させ、肌焼処理のための加熱時におけるオーステナイト粒の粗粒化を抑制すると共に、その後の圧延前の加熱時のTiの固溶量を低減させて圧延後の冷却過程で析出するTi含有析出物による析出強化を抑えることによって、圧延鋼材の平均硬さと硬さバラツキを低く抑えるためである。ちなみに、再均熱温度が1200℃を超えると、Ti含有析出物の固溶量が増大し、また1050℃未満ではTi含有析出物が適当な大きさに成長しないので、いずれの場合も再均熱の目的が果たせなくなる。
従って、この再均熱とAr1変態点以下の温度まで冷却を1回以上行ない、もしくはその間に圧延を行うと、圧延材断面の硬さバラツキが更に小さくなると共に、冷間加工性は一段と高められることになる。
その後、850〜1000℃に再加熱してから圧延し、最終圧延温度は700〜850℃の範囲内となる様に制御する。圧延前の再加熱温度を850℃以上に定めたのは、850℃未満では圧延中の変形抵抗が大き過ぎて圧延機にかかる負荷が過大となるからである。また再加熱温度を1000℃以下に抑えるのは、圧延後のオーステナイト粒を微細化し、圧延材の金属組織を微細フェライト+微細パーライト主体の組織とすることによって冷間加工性を高めるためである。圧延前のより好ましい再加熱温度は950℃以下である。
また、再加熱後に行われる圧延時の最終圧延温度が700℃未満では、圧延工程中にフェライトの析出が起こって変形抵抗が更に高まり、圧延負荷が大きくなって実操業にそぐわなくなる。逆に最終圧延温度が850℃を超えると、圧延後のオーステナイト粒が粗大化し、冷間加工性に好適な微細フェライト+微細パーライト組織が得られ難くなる。
その他の製造条件は特に限定されず、公知の条件範囲の中から適宜最適の条件を選択して適用すればよい。
以下、実施例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
実施例1
表1に示す化学組成の鋼材を小型溶製炉で溶製し、鋳造、均熱ののち熱間鍛造を行なって一辺が155mm角の鋼片を得た。この鋼片を使用し、表2,3に示す如く1300℃または1200℃で60分間均熱してから室温まで空冷した。次いで、各均熱材の一部を1000〜1250℃の範囲の各温度に再均熱してから室温まで空冷した。その後、再均熱材を同表に示す如く870℃から1100℃の範囲の各温度に加熱し、同表に示す最終圧延温度で圧延することによって、直径30mmの棒鋼を得た。
得られた各圧延棒鋼の横断面を観察できるサンプルを切り出し、鏡面状に研磨した後、腐食液「エタノール+3%ナイタール」で処理した後、図1に示す如く、表面から深さ1mm位置、D/8位置(Dは棒鋼の直径を表わす)、D/4位置、3D/8位置から任意に各4箇所を選んで合計16箇所を光学顕微鏡により倍率400倍で観察し、ポイントカウンティング法によってフェライト(α)+パーライト(P)面積率を求めた。なお残部組織は全てベイナイトであった。また上記と同じ横断面位置のビッカース硬さを各3断面で測定し、硬さバラツキの標準偏差の最大値を求めた。尚、ビッカース硬さの測定は荷重10kgで行なった。
各供試材の耐結晶粒粗大化特性は、各供試棒鋼について、圧下率70%で冷間鍛造した後、1000℃で3時間加熱した後のオースイテナイト結晶粒度をJIS G 0551に定めるオーステナイト結晶粒度試験方法に則って測定し、結晶粒度番号で5番以下の粗大粒の面積率によって評価した。5%を超えるもの:不良(×)、5%以下のもの:良好(○)。
また冷間加工性は、各熱延材を直径27.5mmに引抜き加工した材料から、図2に示す如く長さ41.3mmのノッチ付き試験片を作製し、それぞれ5個の端面完全拘束試験を行い、圧下率40%に圧下したときに割れが発生した試験片の数によって評価した。◎:割れなし、○:割れ1個、×:割れ2個以上。
結果を表2,3に一括して示す。
Figure 0004448047
Figure 0004448047
Figure 0004448047
表1〜3より次の様に考えることができる。
No.1〜8,15〜37は、本発明の規定要件を全て満たす実施例であり、耐結晶粒粗大化特性と冷間加工性のいずれも良好で、総合判定で良好の結果が得られている。なおNo.8は、フェライト+パーライト面積率が本発明の推奨範囲よりも若干低いため、他の実施例に較べると冷間加工性が若干劣るものの、総合判定は良好である。
これらに対し、No.9〜14は、熱延前の均熱温度や再均熱、圧延加熱および最終圧延温度のいずれかが好適範囲を外れるため、硬さバラツキ標準偏差の最大値が本発明で規定する値(5)を超えており、耐結晶粒粗大化特性と冷間加工性の一方もしくは両方が目標に達していない。またNo.38〜43は、鋼の化学成分が規定要件を外れているため、硬さの平均値または硬さバラツキの標準偏差の最大値が規定値を超えており、或いは該最大値が一応規定要件を満たすものであっても、耐結晶粒粗大化特性と冷間加工性の一方が劣悪で、本発明の目的を達成できていない。
圧延後の棒鋼断面の金属組織とビッカース硬さの測定位置を示す説明図である。 実験で採用した冷間加工性評価用の試験片を示す図である。

Claims (6)

  1. 質量%で、
    C:0.10〜0.35%、
    Si:0.03〜1.0%、
    Mn:0.20〜2.0%、
    S:0.1%以下(0%を含む)、
    N:0.030%以下(0%を含む)、
    Al:0.2%以下(0%を含む)、
    Ti:0.03〜0.30%、
    を含み、残部はFe及び不可避不純物よりなる鋼からなり、横断面内におけるビッカース硬さの平均値が180以下で、且つビッカース硬さバラツキの標準偏差の最大値が5以下であることを特徴とする、耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼。
  2. 横断面内における金属組織の80%以上が、フェライト+パーライトである請求項1に記載の肌焼用鋼。
  3. 鋼が、更に他の元素として、Cu:3.0%以下(0%を含まない)、Ni:3.0%以下(0%を含まない)、Cr:2.0%以下(0%を含まない)、Mo:2.0%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素を含むものである請求項1または2に記載の肌焼用鋼。
  4. 鋼が、更に他の元素として、B:0.0005〜0.010%を含むものである請求項1〜3のいずれかに記載の肌焼用鋼。
  5. 鋼が、更に他の元素として、Nb:0.2%以下(0%を含まない)、V:0.3%以下(0%を含まない)、Zr:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素を含むものである請求項1〜4のいずれかに記載の肌焼用鋼。
  6. 鋼が、更に他の元素として、REM:0.03%以下(0%を含まない)、Ca:0.03%以下(0%を含まない)、Mg:0.03%以下(0%を含まない)、Pb:0.3%以下(0%を含まない)、Bi:0.3%以下(0%を含まない)、Te:0.3%以下(0%を含まない)、Se:0.3%以下(0%を含まない)、Sn:0.3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素を含むものである請求項1〜5のいずれかに記載の肌焼用鋼。
JP2005089377A 2005-03-25 2005-03-25 耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略可能な肌焼用鋼 Expired - Fee Related JP4448047B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089377A JP4448047B2 (ja) 2005-03-25 2005-03-25 耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略可能な肌焼用鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005089377A JP4448047B2 (ja) 2005-03-25 2005-03-25 耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略可能な肌焼用鋼

Publications (2)

Publication Number Publication Date
JP2006265704A JP2006265704A (ja) 2006-10-05
JP4448047B2 true JP4448047B2 (ja) 2010-04-07

Family

ID=37201963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089377A Expired - Fee Related JP4448047B2 (ja) 2005-03-25 2005-03-25 耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略可能な肌焼用鋼

Country Status (1)

Country Link
JP (1) JP4448047B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464572B2 (ja) * 2009-03-30 2014-04-09 日新製鋼株式会社 すべり軸受用高強度鋼板
JP5503195B2 (ja) * 2009-06-18 2014-05-28 株式会社神戸製鋼所 摩擦圧接に適した機械構造用鋼材およびその製造方法、摩擦圧接部品
JP5704717B2 (ja) * 2011-06-23 2015-04-22 株式会社神戸製鋼所 冷間加工用機械構造用鋼およびその製造方法、並びに機械構造用部品
JP6766362B2 (ja) * 2016-01-26 2020-10-14 日本製鉄株式会社 浸炭時の粗大粒防止特性と疲労特性と被削性に優れた肌焼鋼およびその製造方法
JP6705344B2 (ja) * 2016-09-01 2020-06-03 日本製鉄株式会社 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼およびその製造方法
WO2018061101A1 (ja) 2016-09-28 2018-04-05 新日鐵住金株式会社

Also Published As

Publication number Publication date
JP2006265704A (ja) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4464864B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼
US20130186522A1 (en) Carburizing steel having excellent cold forgeability and method of manufacturing the same
JP4464862B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れた軟化焼鈍の省略可能な肌焼用鋼
KR101965520B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
US9200354B2 (en) Rolled steel bar or wire for hot forging
JP4464863B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼
WO2019244503A1 (ja) 機械部品
JP4448047B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略可能な肌焼用鋼
JP4609585B2 (ja) 軟窒化用鋼、軟窒化用鋼材およびクランクシャフト
US8034199B2 (en) Case-hardening steel excellent in cold forgeability and low carburization distortion property
KR20170128553A (ko) 연질화용 강 및 부품 그리고 이들의 제조 방법
JPH11236644A (ja) 高強度特性と低熱処理歪み特性に優れた高周波焼入れ用鋼材とその製造方法
JP5871085B2 (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
JP3738003B2 (ja) 冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材およびその製造方法
JP4464861B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼
JP4328924B2 (ja) 高強度軸部品の製造方法
JP2006291335A (ja) 高温浸炭特性と加工性に優れた肌焼用鋼
JP5614330B2 (ja) 軟窒化処理用鋼板およびその製造方法
CN113692456A (zh) 剪切加工性优异的超高强度钢板及其制造方法
JP5583352B2 (ja) 高周波焼入れ用鋼および静捩り破壊強度および捩り疲労強度に優れた高周波焼入れ部品
JP4488228B2 (ja) 高周波焼入れ用鋼材
JP4556770B2 (ja) 浸炭用鋼およびその製造方法
JP6390685B2 (ja) 非調質鋼およびその製造方法
JP2006265703A (ja) 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼およびその製法
JP6721141B1 (ja) 軟窒化用鋼および軟窒化部品並びにこれらの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees