JP4447152B2 - Production method of ketones - Google Patents

Production method of ketones Download PDF

Info

Publication number
JP4447152B2
JP4447152B2 JP2000372458A JP2000372458A JP4447152B2 JP 4447152 B2 JP4447152 B2 JP 4447152B2 JP 2000372458 A JP2000372458 A JP 2000372458A JP 2000372458 A JP2000372458 A JP 2000372458A JP 4447152 B2 JP4447152 B2 JP 4447152B2
Authority
JP
Japan
Prior art keywords
formula
represented
methyl ketone
silica
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000372458A
Other languages
Japanese (ja)
Other versions
JP2002173460A (en
Inventor
孝治 久村
典弘 山中
毅 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Hakko Chemical Co Ltd
Original Assignee
Kyowa Hakko Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Chemical Co Ltd filed Critical Kyowa Hakko Chemical Co Ltd
Priority to JP2000372458A priority Critical patent/JP4447152B2/en
Publication of JP2002173460A publication Critical patent/JP2002173460A/en
Application granted granted Critical
Publication of JP4447152B2 publication Critical patent/JP4447152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルコールとメチルケトンとを反応させてケトン類を製造する方法に関する。
【0002】
【従来の技術】
ケトン類は、溶剤、可塑剤等や工業用製品の原料等として有用である。ケトン類を製造する方法としては、例えば、触媒の存在下に第一級アルコールとアセトン等のメチルケトンとから製造する方法が知られている。
例えば、米国特許第4739122号にはアルミナを担体とした銅触媒の存在下、アセトンおよびイソプロパノールとブタノールとを、216〜254℃の温度で反応させることにより2−ヘプタノンを5.9〜18.3%の収率で製造する方法が開示されている。
【0003】
また、J.Org.Chem.,,189(1942)は、アルミナを担体とした銅−亜鉛触媒の存在下、アセトンとブタノールを、309℃で反応させることにより2−ヘプタノンを製造する方法を記載している。
しかしながら、前記のいずれの方法でも反応時に210℃以上の高温が必要である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、アルコールとメチルケトンとを反応させてケトン類を製造する方法において、高温を必要としない工業的に有利なケトン類の製造法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、式(I)
【0006】
【化8】

Figure 0004447152
【0007】
(式中、R1はアルキルを表す)で表されるアルコールと式(II)
【0008】
【化9】
Figure 0004447152
【0009】
(式中、R2はアルキルを表す)で表されるメチルケトンとを担体に担持されたニッケル触媒の存在下で反応させることを特徴とする式(III)
【0010】
【化10】
Figure 0004447152
【0011】
(式中、R1およびR2はそれぞれ前記と同義である)で表されるケトン類の製造法を提供する(この製造法を本発明の製造法1と表現することもある)。
以下、本明細書中においては、式(I)で表されるアルコールを単にアルコールと、式(II)で表されるメチルケトンを単にメチルケトンと、式(III)で表されるケトン類を単にケトン類と、担体に担持されたニッケル触媒を本発明における触媒と表現することもある。
【0012】
【発明の実施の形態】
式(I)〜(III)の基の定義において、アルキルとしては、直鎖または分枝状の炭素数1〜20の、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、sec−ブチル、tert−ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ドデシル、ペンタデシル、エイコシル等があげられるが、中でも炭素数1〜8のものが好ましい。また、メチルケトンとしてはアセトンが好ましい。
【0013】
原料であるアルコールの好ましい具体例としては、例えば、エタノール、プロパノール、2−メチルプロパノール、ブタノール、ペンタノール、2−メチルブタノール、3−メチルブタノール、ヘキサノール、ヘプタノール、オクタノール、2−エチルヘキサノール等があげられる。
本発明の製造法1におけるメチルケトンとアルコールのモル比は、特に限定されないが、1:0.05〜10であるのが好ましく、1:0.2〜2であるのがより好ましい。
【0014】
本発明における触媒において、その担体としては、例えば、シリカ、シリカ−アルミナ、アルミナ、ケイソウ土、ゼオライト、ベントナイト、活性白土、酸性白土、ケイ酸マグネシウム、カオリン、酸化マグネシウム、シリカ−酸化マグネシウム、タルク等があげられるが、中でも、シリカ、シリカ−アルミナ、ケイソウ土、シリカ−酸化マグネシウムが好ましく、さらには、シリカ−酸化マグネシウムがより好ましく使用される。さらにシリカ−酸化マグネシウムの中でも、シリカと酸化マグネシウムの重量比が、8:2〜6:4のものがより好ましく使用される。
【0015】
本発明における触媒において、ニッケルの含量が30〜70重量%であるものが好ましく使用される。
本発明における触媒は、通常は、市販品として入手することが可能であり、例えば、日揮化学製のN−101F、N−102F、N−103F、セラニーズ社製のcelActive Ni55/5、 celActive Ni60/15、エンゲルハルド社製のNi−3288、 Ni − 5256等があげられる。また、本発明における触媒は、公知の方法〔元素別触媒便覧(触媒工学講座10)、474〜482頁、地人書館、昭和42年2月25日発行 等〕等により調製することも可能である。
【0016】
本発明における触媒は、前記にあげた市販品をそのまま使用してもよいが、予め、水素で還元した後に使用してもよい。この場合の還元条件は、使用する触媒によって異なるが、水素のガス空間速度GHSV[本発明における触媒(cm3)に対するガスの流速(cm3/時間)]は10〜500(/時間)であるのが好ましい。
【0017】
本発明の製造法1における反応は、バッチ方式で行うことも可能であるが、本発明における触媒を固定床触媒として、連続的に反応を行うことも可能である。バッチ方式の場合の、本発明における触媒の使用量は、原料(メチルケトン+アルコール)に対して5〜30%であるのが好ましい。また、本発明における触媒を固定床触媒として、連続的に反応を行う場合には、本発明における触媒の使用量は特に限定されないが、原料(メチルケトン+アルコール)の液空間速度LHSV[本発明における触媒(cm3)に対する原料液の流速(cm3/時間)]が0.1〜10(/時間)であるのが好ましく、0.5〜4.0(/時間)であるのがより好ましい。
【0018】
反応温度は、特には限定されないが、100〜200℃であるのが好ましい。
反応圧力は、0.1〜5MPaであるのが好ましい。
また、反応は、通常、無溶媒で行うか、不活性な溶媒の存在下、行ってもよく、その不活性な溶媒の具体例としては、ジイソプロピルエーテル等のエーテル類、ヘプタン、オクタン等の脂肪族炭化水素、トルエン、キシレン等の芳香族炭化水素等があげられる。
【0019】
また、反応は、前記以外の方法として回分式、半回分式等のいずれの方式でも行うことができる。
また、原料としてメチルケトンの一部をメチルケトンと対応する式(IV)
【0020】
【化11】
Figure 0004447152
【0021】
(式中、R2は前記と同義である)で表される2級アルコールに置きかえてもよく、この場合のメチルケトンと式(IV)で表される2級アルコールのモル比は、1:0.01〜0.8であるのが好ましく、1:0.1〜0.4であるのがより好ましい。従って、本発明は、式(I)で表されるアルコールと、式(II)で表されるメチルケトンと式(IV)で表される2級アルコールの混合液とを担体に担持されたニッケル触媒の存在下で反応させることを特徴とする式(III)で表されるケトン類の製造法も提供する(この製造法を本発明の製造法2と表現することもある)。この場合、式(II)で表されるメチルケトンがアセトンであり、式(IV)で表される2級アルコールがイソプロピルアルコールであるのが好ましい。本発明の製造法2における反応条件等は、前記で説明した本発明の製造法1の反応条件等と同様に設定することができる。
【0022】
本発明の製造法1および2は、副生成物の生成が少ないという長所を有する。前記のようにして得られたケトン類を含む反応液は、触媒を濾過等により分離した後、蒸留等による精製に付すことができる。
本発明の製造法1または2により得られるケトン類は、溶剤、可塑剤等や工業用製品の原料等として有用である。
【0023】
【実施例】
参考例1:触媒の前処理
5〜7メッシュに破砕したN−101F触媒〔日揮化学製:Ni(55.5%)、SiO2(12.0%)、MgO(5.2%)〕100mlを内径2.3cmの金属製反応器に充填し、室温下で窒素をGHSV=12で流し0.4MPaに加圧し、さらにブタノールをLHSV=1.0で通液する。次に50℃/時間で120℃まで昇温し、水素をGHSV=12で流して、触媒還元を70時間行った後、窒素を止め、水素のみで2.0MPaまで昇圧し、180℃まで昇温して、さらに70時間触媒還元を行った。この還元された触媒を実施例1〜6で使用した。
【0024】
実施例1
参考例1で得られた触媒を反応器に入れ、窒素をGHSV=60で流し2.0MPaに加圧し、さらにアセトンとブタノールの混合液(モル比1:0.5)をLHSV=1.8で通液し、反応温度を180℃に昇温して反応を行った。反応生成物をガスクロマトグラフィーで分析した結果、ブタノールの転化率は49%で、2−ヘプタノンの選択率は73%であった。また、アセトンからの転化率は23%で、2−ヘプタノンの選択率は70%であった。ガスクロマトグラフィーの分析条件は以下の通りである(以下の実施例においても同様の条件でガスクロマトグラフィー分析を行った)。
(ガスクロマトグラフィー分析条件)
カラム:DB-5(ジェー・アンド・ダブリュ・サイエンティフィック社製)とHP-INNOWax(ヒューレット パッカード社製)を直列につないだ。
カラム温度:50℃で10分間保持後、6℃/分で110℃まで昇温後、同温度で10分間保持、さらに、10℃/分で220℃まで昇温後、同温度で9分間保持。
注入口:250℃
検出器:FID(水素炎イオン検出器)
【0025】
実施例2
アセトンとブタノールのモル比を1:1、液空間速度LHSVを1.0、反応温度を160℃とする以外は実施例1と同様に反応を行った。反応生成物を分析した結果、ブタノールの転化率は23%で、2−ヘプタノンの選択率は75%であった。また、アセトンからの転化率は25%で、2−ヘプタノンの選択率は70%であった。
【0026】
実施例3
ブタノールの代わりにエタノールを用い、LHSV=1.0、反応温度160℃とする以外は実施例1と同様に反応を行った。反応生成物を分析した結果、エタノールの転化率は29%で、2−ペンタノンの選択率は76%であった。また、アセトンからの転化率は18%で、2−ペンタノンの選択率は79%であった。
【0027】
実施例4
ブタノールの代わりに2−エチルヘキサノールを用い、アセトンと2−エチルヘキサノールのモル比を1:0.35とする以外は実施例1と同様に反応を行った。反応生成物を分析した結果、2−エチルヘキサノールの転化率は51%で、5−エチル−2−ノナノンの選択率は61%であった。また、アセトンからの転化率は25%で、5−エチル−2−ノナノンの選択率は42%であった。
【0028】
実施例5
ブタノールの代わりに2−メチルプロパノールを用いる以外は実施例1と同様に反応を行った。反応生成物を分析した結果、2−メチルプロパノールの転化率は43%で、5−メチル−2−ヘキサノンの選択率は69%であった。また、アセトンからの転化率は27%であり、5−メチル−2−ヘキサノンの選択率は59%であった。
【0029】
実施例6
アセトンの代わりにアセトンとイソプロパノールの混合液(モル比=1:0.2)を用いる以外は実施例1と同様に反応を行った。反応生成物を分析した結果、ブタノールの転化率は49%で、2−ヘプタノンの選択率は73%であった。また、アセトンからの転化率は23%で、2−ヘプタノンの選択率は75%であった。
【0030】
【発明の効果】
本発明によれば、アルコールとメチルケトンとを反応させてケトン類を製造する方法において、高温を必要としない工業的に有利なケトン類の製造法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing ketones by reacting alcohol and methyl ketone.
[0002]
[Prior art]
Ketones are useful as solvents, plasticizers, raw materials for industrial products, and the like. As a method for producing ketones, for example, a method for producing primary ketones and methyl ketones such as acetone in the presence of a catalyst is known.
For example, US Pat. No. 4,739,122 discloses 2-heptanone 5.9 to 18.3 by reacting acetone, isopropanol and butanol at a temperature of 216 to 254 ° C. in the presence of an alumina-supported copper catalyst. A method of manufacturing with a yield of% is disclosed.
[0003]
In addition, J.H. Org. Chem. , 7 , 189 (1942) describe a process for producing 2-heptanone by reacting acetone and butanol at 309 ° C. in the presence of a copper-zinc catalyst using alumina as a support.
However, any of the above methods requires a high temperature of 210 ° C. or higher during the reaction.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an industrially advantageous method for producing ketones which does not require high temperature in a method for producing ketones by reacting alcohol with methyl ketone.
[0005]
[Means for Solving the Problems]
The present invention relates to a compound of formula (I)
[0006]
[Chemical 8]
Figure 0004447152
[0007]
(Wherein R 1 represents alkyl) and the formula (II)
[0008]
[Chemical 9]
Figure 0004447152
[0009]
(Wherein R 2 represents alkyl) is reacted with methyl ketone represented by the formula (III) in the presence of a nickel catalyst supported on a carrier.
[0010]
[Chemical Formula 10]
Figure 0004447152
[0011]
(Wherein, R 1 and R 2 have the same meanings as described above), respectively, are provided (this production method may be expressed as Production Method 1 of the present invention).
Hereinafter, in the present specification, the alcohol represented by formula (I) is simply alcohol, the methyl ketone represented by formula (II) is simply methyl ketone, and the ketone represented by formula (III) is simply ketone. And a nickel catalyst supported on a carrier may be expressed as a catalyst in the present invention.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the definition of the groups of the formulas (I) to (III), alkyl includes straight-chain or branched C 1-20, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert- Examples thereof include butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, pentadecyl, eicosyl, etc. Among them, those having 1 to 8 carbon atoms are preferable. As the methyl ketone, acetone is preferable.
[0013]
Preferable specific examples of the alcohol as a raw material include, for example, ethanol, propanol, 2-methylpropanol, butanol, pentanol, 2-methylbutanol, 3-methylbutanol, hexanol, heptanol, octanol, 2-ethylhexanol and the like. It is done.
The molar ratio of methyl ketone and alcohol in production method 1 of the present invention is not particularly limited, but is preferably 1: 0.05 to 10 and more preferably 1: 0.2 to 2.
[0014]
In the catalyst of the present invention, examples of the carrier include silica, silica-alumina, alumina, diatomaceous earth, zeolite, bentonite, activated clay, acidic clay, magnesium silicate, kaolin, magnesium oxide, silica-magnesium oxide, talc and the like. Among them, silica, silica-alumina, diatomaceous earth, and silica-magnesium oxide are preferable, and silica-magnesium oxide is more preferably used. Furthermore, among silica-magnesium oxides, those having a weight ratio of silica to magnesium oxide of 8: 2 to 6: 4 are more preferably used.
[0015]
In the catalyst of the present invention, those having a nickel content of 30 to 70% by weight are preferably used.
The catalyst in the present invention can be usually obtained as a commercial product, for example, N-101F, N-102F, N-103F manufactured by JGC Chemical, celActive Ni55 / 5 manufactured by Celanese, celActive Ni60 / 15, Ni-3288 manufactured by Engelhard, Ni-5256, and the like. The catalyst in the present invention can also be prepared by a known method [catalyst manual for each element (Catalyst Engineering Course 10), pages 474 to 482, Jinjinshokan, issued on February 25, 1967, etc.]. is there.
[0016]
As the catalyst in the present invention, the above-mentioned commercial products may be used as they are, but they may be used after reducing with hydrogen in advance. The reduction conditions in this case vary depending on the catalyst used, but the hydrogen gas space velocity GHSV [gas flow rate (cm 3 / hour) relative to the catalyst (cm 3 ) in the present invention] is 10 to 500 (/ hour). Is preferred.
[0017]
The reaction in the production method 1 of the present invention can be performed in a batch system, but it is also possible to perform the reaction continuously using the catalyst in the present invention as a fixed bed catalyst. In the batch method, the amount of the catalyst used in the present invention is preferably 5 to 30% with respect to the raw material (methyl ketone + alcohol). In addition, when the catalyst in the present invention is used as a fixed bed catalyst and the reaction is continuously performed, the amount of the catalyst used in the present invention is not particularly limited, but the liquid space velocity LHSV of the raw material (methyl ketone + alcohol) [in the present invention] The flow rate of the raw material liquid (cm 3 / hour) relative to the catalyst (cm 3 )] is preferably 0.1 to 10 (/ hour), more preferably 0.5 to 4.0 (/ hour). .
[0018]
Although reaction temperature is not specifically limited, It is preferable that it is 100-200 degreeC.
The reaction pressure is preferably 0.1 to 5 MPa.
The reaction may be usually carried out without a solvent or in the presence of an inert solvent. Specific examples of the inert solvent include ethers such as diisopropyl ether, fats such as heptane and octane. Aromatic hydrocarbons such as aromatic hydrocarbons, toluene and xylene.
[0019]
The reaction can be carried out by any method other than the above, such as a batch method or a semi-batch method.
In addition, formula (IV) corresponding to methyl ketone as a part of methyl ketone as a raw material
[0020]
Embedded image
Figure 0004447152
[0021]
(Wherein R 2 has the same meaning as described above), and the molar ratio of methyl ketone to secondary alcohol represented by formula (IV) in this case is 1: 0. 0.01 to 0.8 is preferable, and 1: 0.1 to 0.4 is more preferable. Accordingly, the present invention provides a nickel catalyst in which an alcohol represented by the formula (I), a mixed liquid of methyl ketone represented by the formula (II) and a secondary alcohol represented by the formula (IV) is supported on a carrier. There is also provided a method for producing a ketone represented by the formula (III) characterized in that the reaction is carried out in the presence of (this production method may be expressed as production method 2 of the present invention). In this case, the methyl ketone represented by the formula (II) is preferably acetone, and the secondary alcohol represented by the formula (IV) is preferably isopropyl alcohol. The reaction conditions and the like in the production method 2 of the present invention can be set similarly to the reaction conditions and the like of the production method 1 of the present invention described above.
[0022]
The production methods 1 and 2 of the present invention have an advantage that there are few by-products. The reaction solution containing ketones obtained as described above can be subjected to purification by distillation or the like after the catalyst is separated by filtration or the like.
The ketones obtained by the production method 1 or 2 of the present invention are useful as solvents, plasticizers and the like, and raw materials for industrial products.
[0023]
【Example】
Reference Example 1: N-101F catalyst was crushed before treatment 5-7 mesh catalyst [Nikki Kagaku: Ni (55.5%), SiO 2 (12.0%), MgO (5.2%) ] 100ml of internal diameter 2.3cm A metal reactor is charged, nitrogen is flowed at GHSV = 12, pressurized to 0.4 MPa, and butanol is further passed at LHSV = 1.0 at room temperature. Next, the temperature was raised to 120 ° C. at 50 ° C./hour, hydrogen was allowed to flow at GHSV = 12, and catalytic reduction was performed for 70 hours. Then, nitrogen was stopped, the pressure was increased to 2.0 MPa only with hydrogen, and the temperature was raised to 180 ° C. The catalyst was reduced for an additional 70 hours. This reduced catalyst was used in Examples 1-6.
[0024]
Example 1
The catalyst obtained in Reference Example 1 was put into a reactor, nitrogen was flowed at GHSV = 60, and the pressure was increased to 2.0 MPa. Further, a mixed liquid of acetone and butanol (molar ratio 1: 0.5) was LHSV = 1.8. And the reaction temperature was raised to 180 ° C. to carry out the reaction. As a result of analyzing the reaction product by gas chromatography, the conversion of butanol was 49% and the selectivity for 2-heptanone was 73%. The conversion from acetone was 23%, and the selectivity for 2-heptanone was 70%. The analysis conditions of gas chromatography are as follows (gas chromatography analysis was performed under the same conditions in the following examples).
(Gas chromatography analysis conditions)
Column: DB-5 (manufactured by J & W Scientific) and HP-INNOWax (manufactured by Hewlett-Packard) were connected in series.
Column temperature: Hold at 50 ° C for 10 minutes, then heat up to 110 ° C at 6 ° C / minute, hold at the same temperature for 10 minutes, further heat up to 220 ° C at 10 ° C / minute, and hold at the same temperature for 9 minutes .
Inlet: 250 ° C
Detector: FID (hydrogen flame ion detector)
[0025]
Example 2
The reaction was performed in the same manner as in Example 1 except that the molar ratio of acetone to butanol was 1: 1, the liquid space velocity LHSV was 1.0, and the reaction temperature was 160 ° C. As a result of analyzing the reaction product, the conversion of butanol was 23% and the selectivity for 2-heptanone was 75%. The conversion from acetone was 25%, and the selectivity for 2-heptanone was 70%.
[0026]
Example 3
The reaction was performed in the same manner as in Example 1 except that ethanol was used in place of butanol, LHSV = 1.0, and the reaction temperature was 160 ° C. As a result of analyzing the reaction product, the conversion of ethanol was 29% and the selectivity for 2-pentanone was 76%. The conversion from acetone was 18%, and the selectivity for 2-pentanone was 79%.
[0027]
Example 4
The reaction was performed in the same manner as in Example 1 except that 2-ethylhexanol was used instead of butanol and the molar ratio of acetone to 2-ethylhexanol was 1: 0.35. As a result of analyzing the reaction product, the conversion rate of 2-ethylhexanol was 51% and the selectivity of 5-ethyl-2-nonanone was 61%. The conversion from acetone was 25%, and the selectivity for 5-ethyl-2-nonanone was 42%.
[0028]
Example 5
The reaction was performed in the same manner as in Example 1 except that 2-methylpropanol was used instead of butanol. As a result of analyzing the reaction product, the conversion of 2-methylpropanol was 43% and the selectivity of 5-methyl-2-hexanone was 69%. The conversion rate from acetone was 27%, and the selectivity for 5-methyl-2-hexanone was 59%.
[0029]
Example 6
The reaction was performed in the same manner as in Example 1 except that a mixed liquid of acetone and isopropanol (molar ratio = 1: 0.2) was used instead of acetone. As a result of analyzing the reaction product, the conversion of butanol was 49% and the selectivity for 2-heptanone was 73%. Moreover, the conversion from acetone was 23% and the selectivity of 2-heptanone was 75%.
[0030]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of industrially advantageous ketones which does not require high temperature in the method of making alcohol react with methyl ketone and manufacturing ketones is provided.

Claims (8)

式(I)
Figure 0004447152
(式中、Rはアルキルを表す)で表されるアルコールと式(II)
Figure 0004447152
(式中、Rはアルキルを表す)で表されるメチルケトンとを担体に担持されたニッケル触媒の存在下で反応させることを特徴とする式(III)
Figure 0004447152
(式中、RおよびRはそれぞれ前記と同義である)で表されるケトン類の製造法。
Formula (I)
Figure 0004447152
(Wherein R 1 represents alkyl) and the formula (II)
Figure 0004447152
(Wherein R 2 represents alkyl) is reacted with methyl ketone represented by the formula (III) in the presence of a nickel catalyst supported on a carrier.
Figure 0004447152
(Wherein, R 1 and R 2 have the same meanings as described above, respectively).
式(II)で表されるメチルケトンがアセトンである請求項1記載の製造法。  The process according to claim 1, wherein the methyl ketone represented by the formula (II) is acetone. 担体が、シリカ、シリカ−アルミナ、アルミナ、ケイソウ土、ゼオライト、ベントナイト、活性白土、酸性白土、ケイ酸マグネシウム、カオリン、酸化マグネシウム、シリカ−酸化マグネシウムまたはタルクである請求項1または2に記載の製造法。  The production according to claim 1 or 2, wherein the support is silica, silica-alumina, alumina, diatomaceous earth, zeolite, bentonite, activated clay, acid clay, magnesium silicate, kaolin, magnesium oxide, silica-magnesium oxide or talc. Law. 式(I)で表されるアルコールと式(II)で表されるメチルケトンとの反応温度が100〜200℃である請求項1〜3のいずれかに記載の製造法。  The process according to any one of claims 1 to 3, wherein a reaction temperature between the alcohol represented by the formula (I) and the methyl ketone represented by the formula (II) is 100 to 200 ° C. 式(I)
Figure 0004447152
(式中、Rはアルキルを表す)で表されるアルコールと、式(II)
Figure 0004447152
(式中、 はアルキルを表す)で表されるメチルケトンと式(IV)
Figure 0004447152
(式中、Rは前記と同義である)で表される2級アルコールの混合液とを担体に担持されたニッケル触媒の存在下で反応させることを特徴とする式(III)
Figure 0004447152
(式中、RおよびRはそれぞれ前記と同義である)で表されるケトン類の製造法。
Formula (I)
Figure 0004447152
(Wherein R 1 represents alkyl) and a formula (II)
Figure 0004447152
( Wherein R 2 represents alkyl ) and a methyl ketone represented by the formula (IV)
Figure 0004447152
(Wherein R 2 has the same meaning as described above), and a mixture of secondary alcohols represented by the formula (III) is reacted in the presence of a nickel catalyst supported on a carrier.
Figure 0004447152
(Wherein, R 1 and R 2 have the same meanings as described above, respectively).
式(II)で表されるメチルケトンがアセトンであり、式(IV)で表される2級アルコールがイソプロピルアルコールである請求項5記載の製造法。  6. The process according to claim 5, wherein the methyl ketone represented by the formula (II) is acetone and the secondary alcohol represented by the formula (IV) is isopropyl alcohol. 担体が、シリカ、シリカ−アルミナ、アルミナ、ケイソウ土、ゼオライト、ベントナイト、活性白土、酸性白土、ケイ酸マグネシウム、カオリン、酸化マグネシウム、シリカ−酸化マグネシウムまたはタルクである請求項5または6に記載の製造法。  The production according to claim 5 or 6, wherein the support is silica, silica-alumina, alumina, diatomaceous earth, zeolite, bentonite, activated clay, acid clay, magnesium silicate, kaolin, magnesium oxide, silica-magnesium oxide or talc. Law. 式(I)で表されるアルコールと、式(II)で表されるメチルケトンと式(IV)で表される2級アルコールの混合液との反応温度が100〜200℃である請求項5〜7のいずれかに記載の製造法。  The reaction temperature between the alcohol represented by the formula (I), the mixture of the methyl ketone represented by the formula (II) and the secondary alcohol represented by the formula (IV) is 100 to 200 ° C. 8. The production method according to any one of 7 above.
JP2000372458A 2000-12-07 2000-12-07 Production method of ketones Expired - Lifetime JP4447152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372458A JP4447152B2 (en) 2000-12-07 2000-12-07 Production method of ketones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372458A JP4447152B2 (en) 2000-12-07 2000-12-07 Production method of ketones

Publications (2)

Publication Number Publication Date
JP2002173460A JP2002173460A (en) 2002-06-21
JP4447152B2 true JP4447152B2 (en) 2010-04-07

Family

ID=18841998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372458A Expired - Lifetime JP4447152B2 (en) 2000-12-07 2000-12-07 Production method of ketones

Country Status (1)

Country Link
JP (1) JP4447152B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887786B2 (en) 2002-12-17 2011-02-15 L'oreal Care and/or make-up cosmetic composition structured with silicone polymers
JP4562992B2 (en) * 2003-02-28 2010-10-13 ダイセル化学工業株式会社 Method for producing organic compound using iridium compound catalyst, etc.
JP7056978B2 (en) * 2020-08-17 2022-04-19 Murui合同会社 Programs, information processing methods and information processing equipment

Also Published As

Publication number Publication date
JP2002173460A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP5860039B2 (en) Process for the preparation of tetrahydropyranol substituted at the 2-position
KR20180117658A (en) Method for preparing terpene alcohol mixture
JPH03167157A (en) Production of unsaturated carboxylic ester
KR20150076177A (en) Method for the production of neopentyl glycol
EP3604260A1 (en) Single-stage method of butadiene production
KR20150076176A (en) Continuous method for the production of neopentyl glycol
JP3925940B2 (en) Method for producing ether compound
JP4447152B2 (en) Production method of ketones
HUE027821T2 (en) Process for alkynylating 16-substituted-17-keto steroids
JP5662587B2 (en) Olefin metathesis process and catalyst with tungsten fluorine bond
JP4040375B2 (en) Method for producing α-olefin
JP5442001B2 (en) Method for producing high purity terminal olefin compound
JP2001278831A (en) Improved method of producing acylated aromatic ether
JP2005247840A (en) Process for producing 1,3-propanediol and 1,3-propanediol obtained by the same process for production
Lauchli et al. Efficient synthesis of [2H2]-tetrahydrodicranenone B and a 3-oxa-analogue resistant against β-oxidation
JP5807286B2 (en) Aldol condensation
Tamami et al. Microwave promoted rapid oxidative deoximation of oximes under solvent-free conditions
JP4790359B2 (en) Production method of glycol ether using metallosilicate catalyst in hydrogen ion form
JPS6042775B2 (en) 1,7-octadien-3-one and its manufacturing method
JP4140073B2 (en) Process for producing hexahydrophthalides
Tayebee et al. Acetylation and oxygenation transformations catalyzed by silica-supported dodecatungstophosphoric acid
JPH0586936B2 (en)
JPS6081180A (en) Manufacture of 3-formyl-tetrahydrothiopyrane
JP2002179609A (en) Method for producing bis(4-oxocyclohexyl) compound
JPH0588689B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070323

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4447152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term