JP4445090B2 - High-pressure control valve for supercritical vapor compression refrigeration cycle equipment - Google Patents

High-pressure control valve for supercritical vapor compression refrigeration cycle equipment Download PDF

Info

Publication number
JP4445090B2
JP4445090B2 JP2000094643A JP2000094643A JP4445090B2 JP 4445090 B2 JP4445090 B2 JP 4445090B2 JP 2000094643 A JP2000094643 A JP 2000094643A JP 2000094643 A JP2000094643 A JP 2000094643A JP 4445090 B2 JP4445090 B2 JP 4445090B2
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
temperature
density
bellows device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000094643A
Other languages
Japanese (ja)
Other versions
JP2001280721A (en
Inventor
正男 二見
靖雄 小宮
優 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2000094643A priority Critical patent/JP4445090B2/en
Publication of JP2001280721A publication Critical patent/JP2001280721A/en
Application granted granted Critical
Publication of JP4445090B2 publication Critical patent/JP4445090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

【0001】
【発明の属する技術分野】
この発明は、炭酸ガス等による冷媒を用いて超臨界域で運転される超臨界蒸気圧縮冷凍サイクル装置において使用される高圧制御弁に関するものである。
【0002】
【従来の技術】
炭酸ガス(CO2 )等の冷媒を超臨界域で使用する超臨界蒸気圧縮冷凍サイクル装置では、放熱器(ガスクーラ)の出口側の冷媒の圧力と温度とが最適制御線に沿うように制御されるよう、特開平9−264622号公報に示されているように、放熱器出口側の冷媒温度による冷媒封入のダイヤフラム室あるいはベローズ内の密閉室の内圧(封入冷媒の体積変化)変化により動作する高圧制御弁(圧力制御弁)を放熱器より蒸発器へ至る冷媒通路の途中に設け、この高圧制御弁による放熱器−蒸発器間の冷媒通路の連通度を制御し、放熱器の出口側の冷媒の圧力制御を行うものが知られている。
【0003】
超臨界蒸気圧縮冷凍サイクル装置において、上述したような高圧制御弁が設けられると、放熱器の出口側の冷媒温度に対応して放熱器の出口側の冷媒圧力が制御され、冷凍サイクルの成績係数(COP)が大きくなる。
【0004】
【発明が解決しようとする課題】
従来の高圧制御弁では、ベローズ装置の温度に対する動作特性が一定である。これに対し、最近の実験、研究では、最大COPを得るためには、ベローズ装置の温度に対する動作特性が一定でなく、ベローズ装置の動作特性が温度(放熱器の出口側の冷媒温度)に応じて変化することが好ましいことが分かってきている。
【0005】
たとえば、(20℃、6.5MPa)、(40℃、11.5MPa)で、高圧制御弁が作動する冷凍サクイルが最もCOPが大きいと、図6に示されている蒸気圧線図では、(20℃、6.5MPa)での二酸化炭素の密度は800kg/m3、(40℃、11.5MPa)での二酸化炭素の密度は700kg/m3となり、温度に対してベローズ装置の封入冷媒の密度が変化することが要求される。
【0006】
また、放熱器の出口側の冷媒温度に応じて高圧制御弁の弁開圧が変化することも、COPを高めるために効力がある。
【0007】
この発明は、上述の如き事情に鑑みてなされたものであり、最大COPで超臨界蒸気圧縮冷凍サイクル装置を稼働させる高圧制御弁を提供することを目的としている。
【0008】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁は、圧縮機と放熱器と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器へ至る冷媒通路の途中に設けられ、前記放熱器の出口側の冷媒の温度に感応して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御して放熱器出口側の圧力制御を行う高圧制御弁であって、冷媒封入の密閉室を画定し、前記放熱器の出口側の冷媒の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮するベローズ装置と、前記放熱器の出口側の冷媒の温度を及ぼされ、温度に応じて前記ベローズ装置の初期ベローズ長を変化させて前記封入冷媒の密度を変化させる密度補正感温部材と、前記ベローズ装置に接続され、前記ベローズ装置の伸縮により開閉駆動されて弁ポートと共働して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御する弁体とを有し、前記ベローズ装置は、一端を固定側部材に接続されて固定端とされ、他端を自由端とされて当該自由端に前記弁体を保持し、前記固定側部材と前記固定端との間に感温材料製の密度補正感温部材が設けられ、前記密度補正感温部材によって前記固定端の前記固定側部材に対する接続位置が変更されるものである。
【0009】
また、上述の目的を達成するために、請求項2の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁は、圧縮機と放熱器と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器へ至る冷媒通路の途中に設けられ、前記放熱器の出口側の冷媒の温度に感応して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御して放熱器出口側の圧力制御を行う高圧制御弁であって、冷媒封入の密閉室を画定し、前記放熱器の出口側の冷媒の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮するベローズ装置と、前記放熱器の出口側の冷媒の温度を及ぼされ、温度に応じて前記ベローズ装置の初期ベローズ長を変化させて前記封入冷媒の密度を変化させる密度補正感温部材と、前記ベローズ装置に接続され、前記ベローズ装置の伸縮により開閉駆動されて弁ポートと共働して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御する弁体とを有し、前記ベローズ装置は、一端を固定側部材に接続されて固定端とされ、他端を自由端とされ、中間部に弁保持部材を接続され、前記弁保持部材に前記弁体が取り付けられ、前記自由端と前記弁保持部材との間に感温材料製の密度補正感温部材が設けられ、前記密度補正感温部材によって前記自由端の位置が変更されるものである。
【0014】
請求項1の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁によれば、ベローズ装置が放熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮し、このベローズ装置の伸縮によって弁体が開閉駆動され、放熱器と蒸発器との間の冷媒通路の連通度を制御され、その上で、自由端と前記弁保持部材との間に設けられた密度補正感温部材によってベローズ装置の固定端の固定側部材に対する接続位置が放熱器の出口側の冷媒の温度に応じて変更され、この接続位置の変更によってベローズ装置の初期ベローズ長が変化し、封入冷媒の密度が変化する。
【0016】
請求項2の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁によれば、ベローズ装置が放熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮し、このベローズ装置の伸縮によって弁体が開閉駆動され、放熱器と蒸発器との間の冷媒通路の連通度を制御され、その上で、自由端と前記弁保持部材との間に設けられた密度補正感温部材によってベローズ装置の自由端の位置が変更され、この自由端の位置変更によってベローズ装置の初期ベローズ長が変化し、封入冷媒の密度が変化する。
【0020】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。
図1はこの発明による高圧制御弁が適用される超臨界蒸気圧縮冷凍サイクル装置用の一つの実施の形態を示している。
【0021】
この冷凍サイクル装置は、圧縮機1と、放熱器(ガスクーラ)2と、蒸発器3と、アキュムレータ4とを有し、これらが冷媒配管5、6、7により閉ループ状に連通接続され、この閉ループを炭酸ガス等による冷媒が循環する。
【0022】
放熱器2より蒸発器3へ至る冷媒通路6の途中には、放熱器2の出口側の冷媒の圧力および温度に感応して放熱器2と蒸発器3との連通・遮断および連通度を定量的に制御して放熱器出口側の圧力制御を行う高圧制御弁8と、放熱器2の出口側の冷媒の圧力と蒸発器3の入口側の冷媒の圧力との差圧が所定値以上の場合に開弁する逃し弁9とが互いに並列に設けられている。
【0023】
つぎに、本発明による高圧制御弁8の実施の形態1を図2,図3を参照して説明する。高圧制御弁8は弁ハウジング10を有している。弁ハウジング10は、放熱器2の出口側の冷媒配管を接続される入口ポート(高圧側ポート)11と、蒸発器3の入口側の冷媒配管を接続される出口ポート12と、連通孔13によって入口ポート11に連通する弁室14と、弁室14の底部に開口して弁室14を内部通路15を介して出口ポート12に連通接続する弁ポート16とを形成されている。
【0024】
弁室14には、弁ポート16を開閉する弁体17と、ベローズ装置18とが設けられている。ベローズ装置18は、固定端となる上端側に上部エンド部材19を一体接続されたベローズ本体20と、上部エンド部材19に連結されベローズ内部にガスを封入するための封入ガス管21および内部導管22を有するフランジ状の上部部材23と、ベローズ本体20の自由端となる下端を閉じるべくベローズ本体20の下端に溶接された下部エンド部材24および下部エンド部材24に固定連結された弁保持部材25と、内部ばね26とにより構成されており、弁保持部材25の下底部に弁体17が取り付けられている。なお、下部エンド部材24にはこれを貫通する連通孔27が形成されている。
【0025】
ベローズ装置18は密閉室18Aを画定しており、密閉室18Aには、封入ガス管21、内部導管22によって、冷媒と同じ二酸化炭素ガスが封入されている。
【0026】
弁ハウジング10には調整ねじ部材28がねじ係合しており、調整ねじ部材28と上部部材23との間には密度補正感温部材をなす皿ばね形状の上部バイメタル29が挟まれており、上部部材23と弁室14の段差部30との間には密度補正感温部材をなす皿ばね形状の下部バイメタル31が挟まれている。これにより上部部材23は、上下に、上部バイメタル29、下部バイメタル31を挟まれた形態で、固定側部材である弁ハウジング10に固定されている。
【0027】
上部バイメタル29、下部バイメタル31は、各々上側に低膨張材29a、31aを、下側に高膨張材29b、31bを張り合わせれられており、弁室14に導入される放熱器2の出口側の冷媒の温度に感応し、低温時には図2に示されているような形状をなして上部部材23を下側箇所に位置させ、これに対し、高温時には図3に示されているような形状に変形して上部部材23を上側箇所に位置させる。これは、ベローズ装置18の固定端の固定側部材(弁ハウジング10)に対する接続位置が変更されることを意味する。
【0028】
ベローズ装置18は、放熱器2の出口側の冷媒の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮し、弁体17を上下に開閉駆動する。
【0029】
これにより、弁体17は、放熱器2の出口側の冷媒の温度に応じて弁ポート16の開度、換言すれば、放熱器2と蒸発器3との間の冷媒通路の連通度を制御し、放熱器出口側の圧力制御を行う。
【0030】
放熱器2の出口側の冷媒の温度が低い場合には、上部バイメタル29、下部バイメタル31が図2に示されているような形状をなして上部部材23を下側箇所に位置させるが、放熱器2の出口側の冷媒の温度が高くなると、上部バイメタル29、下部バイメタル31が図3に示されているような形状に変形して上部部材23を上側箇所に位置させる。これにより、ベローズ装置18が上方へ伸長し、すなわち、ベローズ装置18の初期ベローズ長が長くなり、それに応じてベローズ装置18の内容積が増加し、ベローズ装置18の封入冷媒の密度が低下する。
【0031】
上述のように高温時には、ベローズ装置18の封入冷媒の密度が低下するため、(20℃、6.5MPa)での二酸化炭素の密度は800kg/m3 、(40℃、11.5MPa)での二酸化炭素の密度は700kg/m3 というように、密度を変えることができ、図8にて破線により示されているような圧力・温度特性が得られ、冷凍サクイルのCOPを最大値に設定できる。
【0032】
また、高温時には、ベローズ内圧の温度による上昇割合が低温時に比して小さくなり、高温時の内圧上昇を抑えることで、ベローズ装置18の耐熱性が向上する。
【0033】
図4,図5はこの発明による高圧制御弁の他の実施の形態を示している。なお、図4,図5において、図2、図3に対応する部分は、図2、図3に付した符号と同一の符号を付して、その説明を省略する。
【0034】
この実施の形態では、固定端となる上部部材23は調整ねじ部材28によって弁ハウジング10に対する位置を調整可能に決められている。ベローズ装置18の下端は自由端とされ、ベローズ装置18の中間部に接続部材32によってカップ状の弁保持部材33の上側が固定接続されている。弁保持部材33は、ベローズ装置18の自由端側を取り囲んでおり、下底部に弁体17を保持している。
【0035】
ベローズ装置18の下部エンド部材24には密度補正感温部材をなすバイメタル34が取り付けられている。バイメタル34は下部エンド部材24と弁保持部材33の底部との間に挟まれた形態で存在している。バイメタル34は、下側に低膨張材34aを、上側に高膨張材34bを張り合わせれられており、弁室14に導入される放熱器2の出口側の冷媒の温度に感応し、低温時には図4に示されているような形状をなして下部エンド部材24を上側箇所に位置させ、これに対し、高温時には図5に示されているような形状に変形して下部エンド部材24を下側箇所に位置させる。これは、ベローズ装置18の自由端の位置が変更されることを意味する。
【0036】
この実施の形態でも、ベローズ装置18は、放熱器2の出口側の冷媒の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮し、弁体17を上下に開閉駆動する。これにより、弁体17は、放熱器2の出口側の冷媒の温度に応じて弁ポート16の開度、換言すれば、放熱器2と蒸発器3との間の冷媒通路の連通度を制御し、放熱器出口側の圧力制御を行う。
【0037】
放熱器2の出口側の冷媒の温度が低い場合には、バイメタル34が図4に示されているような形状をなして下部エンド部材24を上側箇所に位置させるが、放熱器2の出口側の冷媒の温度が高くなると、バイメタル34が図5に示されているような形状に変形して下部エンド部材24を下側箇所に位置させる。これにより、ベローズ装置18が下方へ伸長し、すなわち、ベローズ装置18の初期ベローズ長が長くなり、それに応じてベローズ装置18の内容積が増加し、ベローズ装置18の封入冷媒の密度が低下する。
【0038】
この実施の形態でも、上述のように高温時には、ベローズ装置18の封入冷媒の密度が低下するため、(20℃、6.5MPa)での二酸化炭素の密度は800kg/m3 、(40℃、11.5MPa)での二酸化炭素の密度は700kg/m3 というように、密度を変えることができ、図8にて破線により示されているような圧力・温度特性が得られ、冷凍サクイルのCOPを最大値に設定できる。
【0039】
また、高温時には、ベローズ内圧の温度による上昇割合が低温時に比して小さくなり、高温時の内圧上昇を抑えることで、ベローズ装置18の耐熱性が向上する。
【0047】
【発明の効果】
以上の説明から理解される如く、請求項1に記載の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁によれば、ベローズ装置が放熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮し、このベローズ装置の伸縮によって弁体が開閉駆動され、放熱器と蒸発器との間の冷媒通路の連通度を制御され、その上で、固定側部材とベローズ装置の固定端との間に設けられた密度補正感温部材によって固定端の固定側部材に対する接続位置が放熱器の出口側の冷媒の温度に応じて変更され、この接続位置の変更によってベローズ装置の初期ベローズ長が変化し、封入冷媒の密度が変化するから、最大COPで超臨界蒸気圧縮冷凍サイクル装置が稼働するように、放熱器の出口側の冷媒圧力を制御でき、超臨界蒸気圧縮冷凍サイクル装置を最大COPで稼働できる。
【0049】
また、請求項2の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁によれば、ベローズ装置が放熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮し、このベローズ装置の伸縮によって弁体が開閉駆動され、放熱器と蒸発器との間の冷媒通路の連通度を制御され、その上で、自由端と前記弁保持部材との間に設けられた密度補正感温部材によってベローズ装置の自由端の位置が変更され、この自由端の位置変更によってベローズ装置の初期ベローズ長が変化し、封入冷媒の密度が変化する。
【図面の簡単な説明】
【図1】 この発明による高圧制御弁が適用される超臨界蒸気圧縮冷凍サイクル装置用の一つの実施の形態を示すブロック線図である。
【図2】 この発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁の一つの実施の形態を示す低温時の断面図である。
【図3】 この発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁の一つの実施の形態を示す高温時の断面図である。
【図4】 この発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁の他の実施の形態を示す低温時の断面図である。
【図5】 この発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁の他の実施の形態を示す高温時の断面図である。
【図6】 二酸化炭素の蒸気圧線図である
【符号の説明】
1 圧縮機
2 放熱器
3 蒸発器
8 高圧制御弁
9 逃し弁
10 弁ハウジング
14 弁室
16 弁ポート
17 弁体
18 ベローズ装
9 上部バイメタル
31 下部バイメタル
33 弁保持部材
34 バイメタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-pressure control valve used in a supercritical vapor compression refrigeration cycle apparatus operated in a supercritical region using a refrigerant such as carbon dioxide gas.
[0002]
[Prior art]
In a supercritical vapor compression refrigeration cycle apparatus that uses a refrigerant such as carbon dioxide (CO 2 ) in the supercritical region, the pressure and temperature of the refrigerant on the outlet side of the radiator (gas cooler) are controlled so as to follow the optimal control line. As described in Japanese Patent Application Laid-Open No. 9-264622, the operation is performed by changing the internal pressure of the refrigerant-enclosed diaphragm chamber or the sealed chamber in the bellows (change in volume of the encapsulated refrigerant) depending on the refrigerant temperature on the radiator outlet side. A high pressure control valve (pressure control valve) is provided in the middle of the refrigerant passage from the radiator to the evaporator, and the degree of communication of the refrigerant passage between the radiator and the evaporator is controlled by this high pressure control valve. What performs pressure control of a refrigerant is known.
[0003]
In the supercritical vapor compression refrigeration cycle apparatus, when the high-pressure control valve as described above is provided, the refrigerant pressure on the outlet side of the radiator is controlled corresponding to the refrigerant temperature on the outlet side of the radiator, and the coefficient of performance of the refrigeration cycle (COP) increases.
[0004]
[Problems to be solved by the invention]
In the conventional high-pressure control valve, the operation characteristics with respect to the temperature of the bellows device are constant. On the other hand, in recent experiments and research, in order to obtain the maximum COP, the operation characteristics with respect to the temperature of the bellows device are not constant, and the operation characteristics of the bellows device depend on the temperature (the refrigerant temperature at the outlet side of the radiator). It has been found preferable to change.
[0005]
For example, at (20 ℃, 6.5MPa), ( 40 ℃, 11.5MPa), the refrigeration Sakuiru high-pressure control valve is actuated most COP is high, the vapor pressure curve diagram shown in FIG. 6, ( The density of carbon dioxide at 20 ° C. and 6.5 MPa is 800 kg / m 3 , and the density of carbon dioxide at (40 ° C. and 11.5 MPa) is 700 kg / m 3 . The density is required to change.
[0006]
In addition, changing the valve opening pressure of the high-pressure control valve in accordance with the refrigerant temperature on the outlet side of the radiator is also effective for increasing COP.
[0007]
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a high-pressure control valve that operates a supercritical vapor compression refrigeration cycle apparatus with a maximum COP.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the invention of claim 1 is characterized in that a refrigerant such as carbon dioxide is circulated in order through a compressor, a radiator and an evaporator, Of the supercritical vapor compression refrigeration cycle apparatus operated in the region, provided in the middle of the refrigerant path from the radiator to the evaporator, and in response to the temperature of the refrigerant on the outlet side of the radiator, the radiator and the evaporation A high pressure control valve for controlling the degree of communication of the refrigerant passage between the radiator and the pressure on the radiator outlet side, demarcating a refrigerant-sealed sealed chamber, and controlling the temperature of the refrigerant on the outlet side of the radiator The bellows device that expands and contracts due to the pressure due to the density of the enclosed refrigerant according to the heat transmitted to the enclosed refrigerant, and the temperature of the refrigerant on the outlet side of the radiator is exerted, and the initial bellows length of the bellows device is increased according to the temperature. Change the amount of the enclosed refrigerant A density-corrected temperature-sensitive member that changes the degree of temperature, and is connected to the bellows device, and is opened and closed by expansion and contraction of the bellows device, and cooperates with a valve port to communicate a refrigerant passage between the radiator and the evaporator have a a valve body for controlling the degree, the bellows device is a stationary end connected to one end to the fixed side member, is a free end and the other end to hold the valve body to the free end, the the temperature-sensitive material made of the density correction temperature sensitive member provided between the fixed-side member and the fixed end, connected position relative to the fixed member of the fixed end by the density correction temperature sensitive member is in shall be changed .
[0009]
In order to achieve the above-mentioned object, the high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the invention of claim 2 circulates a refrigerant such as carbon dioxide through the compressor, the radiator and the evaporator in order, Provided in the refrigerant path from the radiator to the evaporator of the supercritical vapor compression refrigeration cycle apparatus operated in a supercritical region, and in response to the temperature of the refrigerant on the outlet side of the radiator A high-pressure control valve that controls the degree of communication of the refrigerant passage between the evaporator and the pressure on the radiator outlet side, defines a refrigerant-sealed sealed chamber, and controls the refrigerant on the outlet side of the radiator. The bellows device that is subjected to temperature and expands and contracts by the pressure due to the density of the enclosed refrigerant according to the heat transmitted to the enclosed refrigerant, and the temperature of the refrigerant on the outlet side of the radiator is exerted, and the initial bellows of the bellows device according to the temperature Encapsulation with varying length A density-corrected temperature-sensitive member that changes the density of the medium, and a refrigerant path that is connected to the bellows device, is driven to open and close by expansion and contraction of the bellows device, and cooperates with a valve port to connect the radiator and the evaporator The bellows device has one end connected to a fixed side member as a fixed end, the other end as a free end, and a valve holding member connected to an intermediate portion. The valve body is attached to the valve holding member, and a density correction temperature sensitive member made of a temperature sensitive material is provided between the free end and the valve holding member, and the position of the free end is set by the density correction temperature sensitive member. Is to be changed.
[0014]
According to the high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the first aspect of the invention, the bellows device depends on the density of the encapsulated refrigerant according to the heat transmitted to the encapsulated refrigerant by the temperature of the refrigerant on the outlet side of the radiator. The valve body is opened and closed by the expansion and contraction of the bellows device, the degree of communication of the refrigerant passage between the radiator and the evaporator is controlled, and on that, between the free end and the valve holding member The connection position of the fixed end of the bellows device to the fixed side member is changed according to the temperature of the refrigerant on the outlet side of the radiator, and the change in the connection position changes the initial bellows length of the bellows device. Changes, and the density of the enclosed refrigerant changes.
[0016]
According to the high pressure control valve for the supercritical vapor compression refrigeration cycle apparatus according to the second aspect of the invention, the bellows device depends on the density of the encapsulated refrigerant according to the heat transmitted to the encapsulated refrigerant by the temperature of the refrigerant on the outlet side of the radiator. The valve body is opened and closed by the expansion and contraction of the bellows device, the degree of communication of the refrigerant passage between the radiator and the evaporator is controlled, and on that, between the free end and the valve holding member The position of the free end of the bellows device is changed by the density-corrected temperature-sensitive member provided in the position, and the change in the position of the free end changes the initial bellows length of the bellows device, thereby changing the density of the enclosed refrigerant.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 shows one embodiment for a supercritical vapor compression refrigeration cycle apparatus to which a high-pressure control valve according to the present invention is applied.
[0021]
This refrigeration cycle apparatus has a compressor 1, a radiator (gas cooler) 2, an evaporator 3, and an accumulator 4, which are connected in a closed loop by refrigerant pipes 5, 6, and 7, and this closed loop. A refrigerant such as carbon dioxide circulates.
[0022]
In the middle of the refrigerant passage 6 from the radiator 2 to the evaporator 3, the communication between the radiator 2 and the evaporator 3 and the degree of communication are quantified in response to the pressure and temperature of the refrigerant on the outlet side of the radiator 2. The pressure difference between the refrigerant pressure on the outlet side of the radiator 2 and the refrigerant pressure on the inlet side of the evaporator 3 is greater than or equal to a predetermined value. A relief valve 9 that opens in this case is provided in parallel with each other.
[0023]
Next, a first embodiment of the high-pressure control valve 8 according to the present invention will be described with reference to FIGS. The high pressure control valve 8 has a valve housing 10. The valve housing 10 includes an inlet port (high-pressure side port) 11 to which the refrigerant pipe on the outlet side of the radiator 2 is connected, an outlet port 12 to which the refrigerant pipe on the inlet side of the evaporator 3 is connected, and a communication hole 13. A valve chamber 14 that communicates with the inlet port 11 and a valve port 16 that opens at the bottom of the valve chamber 14 and connects the valve chamber 14 to the outlet port 12 via the internal passage 15 are formed.
[0024]
The valve chamber 14 is provided with a valve body 17 that opens and closes the valve port 16 and a bellows device 18. The bellows device 18 includes a bellows body 20 having an upper end member 19 integrally connected to an upper end side serving as a fixed end, an enclosed gas pipe 21 and an internal conduit 22 that are connected to the upper end member 19 and enclose gas inside the bellows. A lower end member 24 welded to the lower end of the bellows body 20 and a valve holding member 25 fixedly connected to the lower end member 24 to close the lower end serving as a free end of the bellows body 20. The valve body 17 is attached to the lower bottom portion of the valve holding member 25. The lower end member 24 is formed with a communication hole 27 penetrating therethrough.
[0025]
The bellows device 18 defines a sealed chamber 18A. The sealed chamber 18A is filled with carbon dioxide gas, which is the same as the refrigerant, by a sealed gas pipe 21 and an internal conduit 22.
[0026]
An adjusting screw member 28 is threadedly engaged with the valve housing 10, and a disc spring-shaped upper bimetal 29 that forms a density correction temperature-sensitive member is sandwiched between the adjusting screw member 28 and the upper member 23. Between the upper member 23 and the stepped portion 30 of the valve chamber 14, a disc spring-shaped lower bimetal 31 that forms a density correction temperature sensitive member is sandwiched. Thus, the upper member 23 is fixed to the valve housing 10 that is a fixed side member in a form in which the upper bimetal 29 and the lower bimetal 31 are sandwiched between the upper and lower sides.
[0027]
The upper bimetal 29 and the lower bimetal 31 are bonded with low expansion materials 29 a and 31 a on the upper side and high expansion materials 29 b and 31 b on the lower side, respectively, on the outlet side of the radiator 2 introduced into the valve chamber 14. Sensitive to the temperature of the refrigerant, it has a shape as shown in FIG. 2 when the temperature is low, and the upper member 23 is positioned at the lower position. On the other hand, when the temperature is high, the shape is as shown in FIG. It deform | transforms and the upper member 23 is located in an upper part. This means that the connection position of the fixed end of the bellows device 18 with respect to the fixed side member (valve housing 10) is changed.
[0028]
The bellows device 18 is subjected to the temperature of the refrigerant on the outlet side of the radiator 2, expands and contracts due to the pressure of the density of the enclosed refrigerant according to the heat transmitted to the enclosed refrigerant, and drives the valve body 17 to open and close up and down.
[0029]
Thereby, the valve body 17 controls the opening degree of the valve port 16 according to the temperature of the refrigerant on the outlet side of the radiator 2, in other words, the degree of communication of the refrigerant passage between the radiator 2 and the evaporator 3. Then, control the pressure on the radiator outlet side.
[0030]
When the temperature of the refrigerant on the outlet side of the radiator 2 is low, the upper bimetal 29 and the lower bimetal 31 are shaped as shown in FIG. When the temperature of the refrigerant on the outlet side of the vessel 2 becomes higher, the upper bimetal 29 and the lower bimetal 31 are deformed into the shape as shown in FIG. 3, and the upper member 23 is positioned at the upper portion. As a result, the bellows device 18 extends upward, that is, the initial bellows length of the bellows device 18 is lengthened, the internal volume of the bellows device 18 is increased accordingly, and the density of the refrigerant sealed in the bellows device 18 is reduced.
[0031]
As described above, since the density of the refrigerant enclosed in the bellows device 18 decreases at a high temperature, the density of carbon dioxide at (20 ° C., 6.5 MPa) is 800 kg / m 3 , (40 ° C., 11.5 MPa). The density of carbon dioxide can be changed to 700 kg / m 3, and the pressure / temperature characteristics shown by the broken line in FIG. 8 can be obtained, and the COP of the frozen squill can be set to the maximum value. .
[0032]
Further, at the time of high temperature, the rate of increase of the bellows internal pressure due to the temperature is smaller than that at the time of low temperature, and the heat resistance of the bellows device 18 is improved by suppressing the increase in internal pressure at the time of high temperature.
[0033]
4 and 5 show another embodiment of the high-pressure control valve according to the present invention. 4 and 5, parts corresponding to those in FIGS. 2 and 3 are denoted by the same reference numerals as those in FIGS. 2 and 3, and description thereof is omitted.
[0034]
In this embodiment, the upper member 23 serving as a fixed end is determined by an adjustment screw member 28 so that its position relative to the valve housing 10 can be adjusted. The lower end of the bellows device 18 is a free end, and the upper side of the cup-shaped valve holding member 33 is fixedly connected to an intermediate portion of the bellows device 18 by a connecting member 32. The valve holding member 33 surrounds the free end side of the bellows device 18 and holds the valve body 17 on the lower bottom portion.
[0035]
A bimetal 34 constituting a density correction temperature sensitive member is attached to the lower end member 24 of the bellows device 18. The bimetal 34 exists in a form sandwiched between the lower end member 24 and the bottom of the valve holding member 33. The bimetal 34 is bonded with a low expansion material 34 a on the lower side and a high expansion material 34 b on the upper side, and is sensitive to the temperature of the refrigerant on the outlet side of the radiator 2 introduced into the valve chamber 14. 4, the lower end member 24 is positioned at the upper portion, and at a high temperature, the lower end member 24 is deformed into a shape as shown in FIG. Position it at a point. This means that the position of the free end of the bellows device 18 is changed.
[0036]
Also in this embodiment, the bellows device 18 is subjected to the temperature of the refrigerant on the outlet side of the radiator 2, expands and contracts due to the pressure due to the density of the enclosed refrigerant according to the heat transmitted to the enclosed refrigerant, and opens and closes the valve body 17 up and down. To drive. Thereby, the valve body 17 controls the opening degree of the valve port 16 according to the temperature of the refrigerant on the outlet side of the radiator 2, in other words, the degree of communication of the refrigerant passage between the radiator 2 and the evaporator 3. Then, control the pressure on the radiator outlet side.
[0037]
When the temperature of the refrigerant on the outlet side of the radiator 2 is low, the bimetal 34 is shaped as shown in FIG. 4 and the lower end member 24 is positioned on the upper side, but the outlet side of the radiator 2 When the temperature of the refrigerant increases, the bimetal 34 is deformed into a shape as shown in FIG. 5 to position the lower end member 24 at the lower position. As a result, the bellows device 18 extends downward, that is, the initial bellows length of the bellows device 18 is increased, the internal volume of the bellows device 18 is increased accordingly, and the density of the refrigerant sealed in the bellows device 18 is reduced.
[0038]
Even in this embodiment, since the density of the encapsulated refrigerant of the bellows device 18 decreases at a high temperature as described above, the density of carbon dioxide at (20 ° C., 6.5 MPa) is 800 kg / m 3 , (40 ° C., The density of carbon dioxide at 11.5 MPa) can be changed to 700 kg / m 3, and the pressure / temperature characteristics shown by the broken line in FIG. 8 can be obtained. Can be set to the maximum value.
[0039]
Further, at the time of high temperature, the rate of increase of the bellows internal pressure due to the temperature is smaller than that at the time of low temperature, and the heat resistance of the bellows device 18 is improved by suppressing the increase in internal pressure at the time of high temperature.
[0047]
【The invention's effect】
As can be understood from the above description, according to the high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the first aspect of the invention, the bellows device is subjected to the temperature of the refrigerant on the outlet side of the radiator, and the enclosed refrigerant The expansion and contraction of the bellows device is controlled by the expansion and contraction of the bellows device, and the degree of communication of the refrigerant passage between the radiator and the evaporator is controlled. The connection position of the fixed end with respect to the fixed side member is changed according to the temperature of the refrigerant on the outlet side of the radiator by the density correction temperature-sensitive member provided between the fixed side member and the fixed end of the bellows device. initial bellows length of the bellows device is changed by changing the position, because the density of the enclosed refrigerant is changed, a maximum COP in as supercritical vapor compression refrigeration cycle apparatus is running, the outlet side refrigerant pressure of the radiator Control can, supercritical vapor compression refrigeration cycle apparatus can operate at a maximum COP.
[0049]
Further, according to the supercritical vapor compression refrigeration cycle device for a high pressure control valve according to the invention of claim 2, the inclusion refrigerant bellows device in accordance with the heat transmitted to be in sealed refrigerant adversely the temperature of the refrigerant at the outlet side of the radiator The valve body is opened and closed by the expansion and contraction of the bellows device, the degree of communication of the refrigerant passage between the radiator and the evaporator is controlled, and the free end and the valve holding member are The position of the free end of the bellows device is changed by the density correction temperature sensing member provided between the two, and the change in the position of the free end changes the initial bellows length of the bellows device, thereby changing the density of the enclosed refrigerant.
[Brief description of the drawings]
FIG. 1 is a block diagram showing one embodiment for a supercritical vapor compression refrigeration cycle apparatus to which a high-pressure control valve according to the present invention is applied.
FIG. 2 is a cross-sectional view at low temperature showing one embodiment of a high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the present invention.
FIG. 3 is a cross-sectional view at high temperature showing one embodiment of a high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the present invention.
FIG. 4 is a cross-sectional view at a low temperature showing another embodiment of a high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the present invention.
FIG. 5 is a cross-sectional view at a high temperature showing another embodiment of a high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the present invention.
FIG. 6 is a vapor pressure diagram of carbon dioxide .
[Explanation of symbols]
1 compressor 2 radiator 3 the evaporator 8 the high pressure control valve 9 relief valve 10 valve housing 14 valve chamber 16 valve port 17 the valve element 18 the bellows equipment
2 9 upper bimetallic 31 lower bimetal 33 valve holding member 34 Baimeta Le

Claims (2)

圧縮機と放熱器と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器へ至る冷媒通路の途中に設けられ、前記放熱器の出口側の冷媒の温度に感応して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御して放熱器出口側の圧力制御を行う高圧制御弁であって、
冷媒封入の密閉室を画定し、前記放熱器の出口側の冷媒の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮するベローズ装置と、
前記放熱器の出口側の冷媒の温度を及ぼされ、温度に応じて前記ベローズ装置の初期ベローズ長を変化させて前記封入冷媒の密度を変化させる密度補正感温部材と、
前記ベローズ装置に接続され、前記ベローズ装置の伸縮により開閉駆動されて弁ポートと共働して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御する弁体とを有し、
前記ベローズ装置は、一端を固定側部材に接続されて固定端とされ、他端を自由端とされて当該自由端に前記弁体を保持し、前記固定側部材と前記固定端との間に感温材料製の密度補正感温部材が設けられ、前記密度補正感温部材によって前記固定端の前記固定側部材に対する接続位置が変更される
ことを特徴とする超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁。
A refrigerant such as carbon dioxide circulates in order through the compressor, radiator and evaporator, and is provided in the middle of the refrigerant path from the radiator to the evaporator of the supercritical vapor compression refrigeration cycle apparatus operated in the supercritical region. A high pressure control valve that controls the degree of communication of the refrigerant passage between the radiator and the evaporator in response to the temperature of the refrigerant on the outlet side of the radiator to control the pressure on the radiator outlet side. And
A bellows device that delimits a sealed chamber of refrigerant enclosed, is subjected to the temperature of the refrigerant on the outlet side of the radiator, and expands and contracts by pressure due to the density of the enclosed refrigerant according to the heat transmitted to the enclosed refrigerant;
The temperature of the refrigerant on the outlet side of the radiator is exerted, and the density correction temperature-sensitive member that changes the density of the enclosed refrigerant by changing the initial bellows length of the bellows device according to the temperature,
Connected to said bellows arrangement, possess a valve body for controlling communication of the refrigerant passage between the bellows device stretchable by the radiator cooperates with opening and closing by the valve port and said evaporator,
In the bellows device, one end is connected to a fixed side member to be a fixed end, the other end is set to a free end, the valve body is held at the free end, and between the fixed side member and the fixed end. A high-pressure for a supercritical vapor compression refrigeration cycle apparatus is provided with a density-corrected temperature-sensitive member made of a temperature-sensitive material, and the connection position of the fixed end to the fixed-side member is changed by the density-corrected temperature-sensitive member. Control valve.
圧縮機と放熱器と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器へ至る冷媒通路の途中に設けられ、前記放熱器の出口側の冷媒の温度に感応して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御して放熱器出口側の圧力制御を行う高圧制御弁であって、
冷媒封入の密閉室を画定し、前記放熱器の出口側の冷媒の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷媒の密度による圧力により伸縮するベローズ装置と、
前記放熱器の出口側の冷媒の温度を及ぼされ、温度に応じて前記ベローズ装置の初期ベローズ長を変化させて前記封入冷媒の密度を変化させる密度補正感温部材と、
前記ベローズ装置に接続され、前記ベローズ装置の伸縮により開閉駆動されて弁ポートと共働して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御する弁体とを有し、 前記ベローズ装置は、一端を固定側部材に接続されて固定端とされ、他端を自由端とされ、中間部に弁保持部材を接続され、前記弁保持部材に前記弁体が取り付けられ、前記自由端と前記弁保持部材との間に感温材料製の密度補正感温部材が設けられ、前記密度補正感温部材によって前記自由端の位置が変更される
ことを特徴とする超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁。
A refrigerant such as carbon dioxide circulates in order through the compressor, radiator and evaporator, and is provided in the middle of the refrigerant path from the radiator to the evaporator of the supercritical vapor compression refrigeration cycle apparatus operated in the supercritical region. A high pressure control valve that controls the degree of communication of the refrigerant passage between the radiator and the evaporator in response to the temperature of the refrigerant on the outlet side of the radiator to control the pressure on the radiator outlet side. And
A bellows device that delimits a sealed chamber of refrigerant enclosed, is subjected to the temperature of the refrigerant on the outlet side of the radiator, and expands and contracts by pressure due to the density of the enclosed refrigerant according to the heat transmitted to the enclosed refrigerant;
The temperature of the refrigerant on the outlet side of the radiator is exerted, and the density correction temperature-sensitive member that changes the density of the enclosed refrigerant by changing the initial bellows length of the bellows device according to the temperature,
A valve body connected to the bellows device, driven to open and close by expansion and contraction of the bellows device, and cooperating with a valve port to control the degree of communication of the refrigerant passage between the radiator and the evaporator; In the bellows device, one end is connected to a fixed side member to be a fixed end, the other end is a free end , a valve holding member is connected to an intermediate portion, the valve body is attached to the valve holding member, A supercritical vapor compression characterized in that a density-corrected temperature-sensitive member made of a temperature-sensitive material is provided between a free end and the valve holding member, and the position of the free end is changed by the density-corrected temperature-sensitive member. High-pressure control valve for refrigeration cycle equipment.
JP2000094643A 2000-03-30 2000-03-30 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment Expired - Fee Related JP4445090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000094643A JP4445090B2 (en) 2000-03-30 2000-03-30 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094643A JP4445090B2 (en) 2000-03-30 2000-03-30 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2001280721A JP2001280721A (en) 2001-10-10
JP4445090B2 true JP4445090B2 (en) 2010-04-07

Family

ID=18609668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094643A Expired - Fee Related JP4445090B2 (en) 2000-03-30 2000-03-30 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4445090B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855596B1 (en) * 2003-05-27 2005-08-05 Valeo Climatisation EXPANSION DEVICE FOR AIR CONDITIONING CIRCUIT
JP4783374B2 (en) 2004-10-21 2011-09-28 ダンフォス・アクチ−セルスカブ Valves used in cooling systems
JP4713977B2 (en) * 2005-08-01 2011-06-29 株式会社不二工機 Motorized valve
DE102006021327A1 (en) * 2006-05-05 2007-11-08 Otto Egelhof Gmbh & Co. Kg Control method for expansion valves in car air conditioning systems uses bellows filled with inert gas which pushes rods against spring attached to the valve stem so as to open valve when threshold pressure or temperature is exceeded
JP5292537B2 (en) * 2006-08-25 2013-09-18 株式会社テージーケー Expansion device
JP3151299U (en) * 2009-04-06 2009-06-18 株式会社鷺宮製作所 Pressure operated control valve
CN115854427A (en) * 2022-11-28 2023-03-28 贵州电网有限责任公司 Gear and rack driving adjusting device and method for heat dissipation load of central air conditioner external unit
CN115751782B (en) * 2022-12-15 2023-09-12 徐州市三禾自动控制设备有限公司 Refrigerating plant for fungus class freezer

Also Published As

Publication number Publication date
JP2001280721A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US6189326B1 (en) Pressure control valve
JP2006220407A (en) Expansion valve for refrigeration cycle
JP4445090B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
JP2008020141A (en) Pressure control valve
JP3995828B2 (en) Temperature expansion valve
JP2000241048A (en) Temperature-sensitive expansion valve
JP2007139208A (en) Expansion valve for refrigerating cycle
JP2002071037A (en) Relief valve, high pressure control valve with relief valve and super critical vapor refrigerating cycle device
JP2002221376A (en) Refrigerating cycle
JP2008249157A (en) Reversible thermostatic expansion valve
JP2941506B2 (en) Expansion valve
JP3954743B2 (en) Control valve for refrigeration cycle
JP4044714B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
JP4256565B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
JP2001280722A (en) Supercritical steam compression refrigerating cycle device and composite valve for supercritical steam compression refrigerating cycle device
JP2002349732A (en) Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system
JP2001324245A (en) High pressure control valve for supercritical vapor compression freezing cycle
JPS5810623B2 (en) Expansion valve using shape memory alloy
JP3712828B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
JPH05118711A (en) Expansion valve
JP2001153499A (en) Control valve for refrigerating cycle
JP2001116400A (en) Refrigeration cycle
JP4002364B2 (en) Operation control method and apparatus for supercritical vapor compression cycle, capacity control apparatus and capacity control valve for variable capacity compressor
JP2004100771A (en) Relief valve, high pressure control valve with relief valve and refrigerating cycle device
JP5463209B2 (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees