JP2001280721A - High pressure control valve for supercritical steam compression refrigerating cycle device - Google Patents

High pressure control valve for supercritical steam compression refrigerating cycle device

Info

Publication number
JP2001280721A
JP2001280721A JP2000094643A JP2000094643A JP2001280721A JP 2001280721 A JP2001280721 A JP 2001280721A JP 2000094643 A JP2000094643 A JP 2000094643A JP 2000094643 A JP2000094643 A JP 2000094643A JP 2001280721 A JP2001280721 A JP 2001280721A
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
temperature
valve
pressure control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000094643A
Other languages
Japanese (ja)
Other versions
JP4445090B2 (en
Inventor
Masao Futami
正男 二見
Yasuo Komiya
靖雄 小宮
Masaru Oi
優 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2000094643A priority Critical patent/JP4445090B2/en
Publication of JP2001280721A publication Critical patent/JP2001280721A/en
Application granted granted Critical
Publication of JP4445090B2 publication Critical patent/JP4445090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

PROBLEM TO BE SOLVED: To provide a high-pressure control valve to work a supercritical steam compression refrigerating cycle device at a maximum COP. SOLUTION: The high pressure control valve comprises a bellows device 18 to define a refrigerant-sealed closed chamber 18A and be influenced by the temperature of a refrigerant on the outlet side of a radiator, and expanded and contracted by a pressure by density of the sealed refrigerant corresponding to heat transferred to the sealed refrigerant; upper bimetal 29 and lower bimetal 31 influenced by the temperature of the refrigerant on the outlet side of the radiator and changing density of the sealed refrigerant by changing the length of the initial bellows of a bellows device 18; and a valve element 17 connected to the bellows device 18 and driven for opening and closing through expansion and contraction of the bellows device 18 and controlling the degree of communication of a refrigerant passage, running between the radiator and an evaporator, in coordination with a valve port 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、炭酸ガス等によ
る冷媒を用いて超臨界域で運転される超臨界蒸気圧縮冷
凍サイクル装置において使用される高圧制御弁に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-pressure control valve used in a supercritical vapor compression refrigeration cycle apparatus operated in a supercritical region using a refrigerant such as carbon dioxide.

【0002】[0002]

【従来の技術】炭酸ガス(CO2 )等の冷媒を超臨界域
で使用する超臨界蒸気圧縮冷凍サイクル装置では、放熱
器(ガスクーラ)の出口側の冷媒の圧力と温度とが最適
制御線に沿うように制御されるよう、特開平9−264
622号公報に示されているように、放熱器出口側の冷
媒温度による冷媒封入のダイヤフラム室あるいはベロー
ズ内の密閉室の内圧(封入冷媒の体積変化)変化により
動作する高圧制御弁(圧力制御弁)を放熱器より蒸発器
へ至る冷媒通路の途中に設け、この高圧制御弁による放
熱器−蒸発器間の冷媒通路の連通度を制御し、放熱器の
出口側の冷媒の圧力制御を行うものが知られている。
2. Description of the Related Art In a supercritical vapor compression refrigeration cycle apparatus using a refrigerant such as carbon dioxide (CO 2 ) in a supercritical region, the pressure and temperature of the refrigerant at the outlet side of a radiator (gas cooler) are optimally controlled. Japanese Patent Application Laid-Open No. 9-264
No. 622, a high-pressure control valve (pressure control valve) that operates according to a change in the internal pressure (a change in the volume of the enclosed refrigerant) of a diaphragm chamber or a closed chamber in a bellows in which the refrigerant is enclosed due to the temperature of the refrigerant at the radiator outlet side. ) Is provided in the middle of the refrigerant passage from the radiator to the evaporator, and the high-pressure control valve controls the degree of communication of the refrigerant passage between the radiator and the evaporator to control the pressure of the refrigerant on the outlet side of the radiator. It has been known.

【0003】超臨界蒸気圧縮冷凍サイクル装置におい
て、上述したような高圧制御弁が設けられると、放熱器
の出口側の冷媒温度に対応して放熱器の出口側の冷媒圧
力が制御され、冷凍サイクルの成績係数(COP)が大
きくなる。
In the supercritical vapor compression refrigeration cycle apparatus, when the above-described high pressure control valve is provided, the refrigerant pressure at the outlet of the radiator is controlled in accordance with the refrigerant temperature at the outlet of the radiator, and the refrigeration cycle is controlled. Has a large coefficient of performance (COP).

【0004】[0004]

【発明が解決しようとする課題】従来の高圧制御弁で
は、ベローズ装置の温度に対する動作特性が一定であ
る。これに対し、最近の実験、研究では、最大COPを
得るためには、ベローズ装置の温度に対する動作特性が
一定でなく、ベローズ装置の動作特性が温度(放熱器の
出口側の冷媒温度)に応じて変化することが好ましいこ
とが分かってきている。
In the conventional high-pressure control valve, the operating characteristics of the bellows device with respect to the temperature are constant. In contrast, in recent experiments and studies, in order to obtain the maximum COP, the operating characteristics of the bellows device with respect to the temperature are not constant, and the operating characteristics of the bellows device depend on the temperature (the refrigerant temperature at the outlet side of the radiator). It has been found that it is preferable to change.

【0005】たとえば、(20℃、6.5MPa)、
(40℃、11.5MPa)で、高圧制御弁が作動する
冷凍サクイルが最もCOPが大きいと、図8に示されて
いる蒸気圧線図では、(20℃、6.5MPa)での二
酸化炭素の密度は800kg/m3、(40℃、11.
5MPa)での二酸化炭素の密度は700kg/m3
なり、温度に対してベローズ装置の封入冷媒の密度が変
化することが要求される。
For example, (20 ° C., 6.5 MPa)
At (40 ° C., 11.5 MPa), the refrigeration cycle operated by the high pressure control valve has the largest COP. According to the vapor pressure diagram shown in FIG. 8, carbon dioxide at (20 ° C., 6.5 MPa) Has a density of 800 kg / m 3 , (40 ° C., 11.
The density of carbon dioxide at 5 MPa) is 700 kg / m 3 , and it is required that the density of the refrigerant charged in the bellows device changes with temperature.

【0006】また、放熱器の出口側の冷媒温度に応じて
高圧制御弁の弁開圧が変化することも、COPを高める
ために効力がある。
Further, the fact that the valve opening pressure of the high-pressure control valve changes in accordance with the refrigerant temperature at the outlet side of the radiator is also effective for increasing the COP.

【0007】この発明は、上述の如き事情に鑑みてなさ
れたものであり、最大COPで超臨界蒸気圧縮冷凍サイ
クル装置を稼働させる高圧制御弁を提供することを目的
としている。
The present invention has been made in view of the above circumstances, and has as its object to provide a high-pressure control valve for operating a supercritical vapor compression refrigeration cycle apparatus at a maximum COP.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1の発明による超臨界蒸気圧縮冷凍サイク
ル装置用高圧制御弁は、圧縮機と放熱器と蒸発器とを炭
酸ガス等による冷媒が順に循環し、超臨界域で運転され
る超臨界蒸気圧縮冷凍サイクル装置の前記放熱器より前
記蒸発器へ至る冷媒通路の途中に設けられ、前記放熱器
の出口側の冷媒の温度に感応して前記放熱器と前記蒸発
器との間の冷媒通路の連通度を制御して放熱器出口側の
圧力制御を行う高圧制御弁であって、冷媒封入の密閉室
を画定し、前記放熱器の出口側の冷媒の温度を及ぼさ
れ、封入冷媒に伝わる熱に応じた封入冷媒の密度による
圧力により伸縮するベローズ装置と、前記放熱器の出口
側の冷媒の温度を及ぼされ、温度に応じて前記ベローズ
装置の初期ベローズ長を変化させて前記封入冷媒の密度
を変化させる密度補正感温部材と、前記ベローズ装置に
接続され、前記ベローズ装置の伸縮により開閉駆動され
て弁ポートと共働して前記放熱器と前記蒸発器との間の
冷媒通路の連通度を制御する弁体とを有しているもので
ある。
In order to achieve the above object, a high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the present invention comprises a compressor, a radiator, an evaporator, a carbon dioxide gas or the like. The refrigerant is sequentially circulated, provided in the middle of the refrigerant passage from the radiator to the evaporator of the supercritical vapor compression refrigeration cycle device operated in the supercritical region, the temperature of the refrigerant on the outlet side of the radiator A high-pressure control valve for controlling the degree of communication of a refrigerant passage between the radiator and the evaporator in response to perform pressure control on a radiator outlet side, wherein the high-pressure control valve defines a closed chamber for charging the refrigerant, and A bellows device that is affected by the temperature of the refrigerant on the outlet side of the radiator and expands and contracts by the pressure due to the density of the sealed refrigerant in accordance with the heat transmitted to the sealed refrigerant; The initial bellows of the bellows device And a density-correcting temperature-sensing member that changes the density of the sealed refrigerant by changing the bellows device, and is opened and closed by expansion and contraction of the bellows device, and cooperates with a valve port to cooperate with the radiator and the evaporator. And a valve for controlling the degree of communication of the refrigerant passage between the valve body and the valve body.

【0009】また、請求項2の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁は、請求項1に記載の
超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁であっ
て、前記ベローズ装置は、一端を固定側部材に接続され
て固定端とされ、他端を自由端とされて当該自由端に前
記弁体を保持し、前記固定側部材と前記固定端との間に
感温材料製の密度補正感温部材が設けられ、前記密度補
正感温部材によって前記固定端の前記固定側部材に対す
る接続位置が変更されるものである。
The high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the second aspect of the present invention is the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the first aspect, wherein the bellows device comprises: One end is connected to the fixed side member to be a fixed end, the other end is a free end, holds the valve body at the free end, and is made of a temperature-sensitive material between the fixed side member and the fixed end. A density correction temperature-sensitive member is provided, and a connection position of the fixed end to the fixed side member is changed by the density correction temperature-sensitive member.

【0010】また、請求項3の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁は、請求項1に記載の
超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁であっ
て、ベローズ装置は、一端を固定側部材に接続されて固
定端とされ、他端を自由端とされ、中間部に弁保持部材
を接続され、前記弁保持部材に前記弁体が取り付けら
れ、前記自由端と前記弁保持部材との間に感温材料製の
密度補正感温部材が設けられ、前記密度補正感温部材に
よって前記自由端の位置が変更されるものである。
A high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the invention of claim 3 is the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to claim 1, wherein the bellows device has one end. Is connected to a fixed side member to be a fixed end, the other end is a free end, a valve holding member is connected to an intermediate portion, the valve body is attached to the valve holding member, the free end and the valve holding A density-corrected temperature-sensitive member made of a temperature-sensitive material is provided between the first and second members, and the position of the free end is changed by the density-corrected temperature-sensitive member.

【0011】また、請求項4の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁は、請求項1〜3の何
れかに記載の超臨界蒸気圧縮冷凍サイクル装置用高圧制
御弁であって、前記密度補正感温部材は、温度上昇に応
じて前記ベローズ装置を初期ベローズ長を伸長させて前
記封入冷媒の密度を低減させるものである。
A high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the invention of claim 4 is the high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to any one of claims 1 to 3, The density correction thermosensitive member reduces the density of the sealed refrigerant by extending the initial bellows length of the bellows device according to a temperature rise.

【0012】また、請求項5の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁は、圧縮機と放熱器と
蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界
域で運転される超臨界蒸気圧縮冷凍サイクル装置の前記
放熱器より前記蒸発器へ至る冷媒通路の途中に設けら
れ、前記放熱器の出口側の冷媒の温度に感応して前記放
熱器と前記蒸発器との間の冷媒通路の連通度を制御して
放熱器出口側の圧力制御を行う高圧制御弁であって、冷
媒封入の密閉室を画定し、前記放熱器の出口側の冷媒の
温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷媒
の密度による圧力により伸縮するベローズ装置と、前記
ベローズ装置に接続され、前記ベローズ装置の伸縮によ
り開閉駆動されて弁ポートと共働して前記放熱器と前記
蒸発器との間の冷媒通路の連通度を制御する弁体と、感
温材料により構成され、前記弁体を開弁方向に付勢する
感温補償ばねとを有しているものである。
A high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention is operated in a supercritical region by circulating a refrigerant such as carbon dioxide gas through a compressor, a radiator, and an evaporator in order. A supercritical vapor compression refrigeration cycle device is provided in the middle of a refrigerant passage from the radiator to the evaporator in the supercritical vapor compression refrigeration cycle device, and is provided between the radiator and the evaporator in response to the temperature of the refrigerant on the outlet side of the radiator. A high-pressure control valve for controlling the degree of communication of the refrigerant passage of the radiator to control the pressure on the outlet side of the radiator, which defines a closed chamber for charging the refrigerant, is affected by the temperature of the refrigerant on the outlet side of the radiator, and is sealed. A bellows device that expands and contracts by pressure due to the density of the charged refrigerant in accordance with the heat transmitted to the refrigerant; Refrigerant between the vessel A valve body for controlling communication of the road, is composed of a temperature sensitive material, those having a temperature sensitive compensating spring for urging the valve body in the valve opening direction.

【0013】また、請求項6の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁は、圧縮機と放熱器と
蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界
域で運転される超臨界蒸気圧縮冷凍サイクル装置の前記
放熱器より前記蒸発器へ至る冷媒通路の途中に設けら
れ、前記放熱器の出口側の冷媒の温度に感応して前記放
熱器と前記蒸発器との間の冷媒通路の連通度を制御して
放熱器出口側の圧力制御を行う高圧制御弁であって、冷
媒封入の密閉室を画定し、前記放熱器の出口側の冷媒の
温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷媒
の密度による圧力により伸縮するベローズ装置と、前記
ベローズ装置に接続され、前記ベローズ装置の伸縮によ
り開閉駆動されて弁ポートと共働して前記放熱器と前記
蒸発器との間の冷媒通路の連通度を制御する弁体と、感
温材料により構成され、前記弁体を閉弁方向に付勢する
感温補償ばねとを有しているものである。
Further, the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention is operated in a supercritical region by circulating a refrigerant such as carbon dioxide gas through a compressor, a radiator and an evaporator in order. A supercritical vapor compression refrigeration cycle device is provided in the middle of a refrigerant passage from the radiator to the evaporator in the supercritical vapor compression refrigeration cycle device, and is provided between the radiator and the evaporator in response to the temperature of the refrigerant on the outlet side of the radiator. A high-pressure control valve for controlling the degree of communication of the refrigerant passage of the radiator to control the pressure on the outlet side of the radiator, which defines a closed chamber for charging the refrigerant, is affected by the temperature of the refrigerant on the outlet side of the radiator, and is sealed. A bellows device that expands and contracts by pressure due to the density of the charged refrigerant in accordance with the heat transmitted to the refrigerant; Refrigerant between the vessel A valve body for controlling communication of the road, is composed of a temperature sensitive material, those having a temperature sensitive compensating spring for urging the valve body in the valve closing direction.

【0014】請求項1の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、ベローズ装置が放
熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わ
る熱に応じた封入冷媒の密度による圧力により伸縮し、
このベローズ装置の伸縮によって弁体が開閉駆動され、
放熱器と蒸発器との間の冷媒通路の連通度を制御され、
その上で、密度補正感温部材によって放熱器の出口側の
冷媒の温度に応じてベローズ装置の初期ベローズ長が変
化し、封入冷媒の密度が変化する。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the first aspect of the present invention, the bellows device is subjected to the temperature of the refrigerant at the outlet side of the radiator, and the charged refrigerant according to the heat transmitted to the charged refrigerant. Expands and contracts due to the pressure of the density of
The valve body is opened and closed by the expansion and contraction of the bellows device,
The degree of communication of the refrigerant passage between the radiator and the evaporator is controlled,
Then, the initial bellows length of the bellows device changes according to the temperature of the refrigerant at the outlet side of the radiator by the density correction thermosensitive member, and the density of the charged refrigerant changes.

【0015】請求項2の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、固定側部材とベロ
ーズ装置の固定端との間に設けられた密度補正感温部材
によってベローズ装置の固定端の固定側部材に対する接
続位置が放熱器の出口側の冷媒の温度に応じて変更さ
れ、この接続位置の変更によってベローズ装置の初期ベ
ローズ長が変化し、封入冷媒の密度が変化する。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the second aspect of the present invention, the bellows device is fixed by the density correction thermosensitive member provided between the fixed side member and the fixed end of the bellows device. The connection position of the end to the fixed side member is changed according to the temperature of the refrigerant on the outlet side of the radiator, and the change in the connection position changes the initial bellows length of the bellows device and the density of the charged refrigerant.

【0016】請求項3の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、自由端と前記弁保
持部材との間に設けられた密度補正感温部材によってベ
ローズ装置の自由端の位置が変更され、この自由端の位
置変更によってベローズ装置の初期ベローズ長が変化
し、封入冷媒の密度が変化する。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the third aspect of the present invention, the free end of the bellows device is controlled by the density correction thermosensitive member provided between the free end and the valve holding member. The position is changed, and the change in the position of the free end changes the initial bellows length of the bellows device, and changes the density of the charged refrigerant.

【0017】請求項4の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、密度補正感温部材
によって温度上昇に応じてベローズ装置の初期ベローズ
長が伸長し、温度上昇に応じて封入冷媒の密度が低減す
る。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the fourth aspect of the present invention, the initial bellows length of the bellows device is extended according to the temperature rise by the density correction thermosensitive member, and is increased according to the temperature rise. The density of the filled refrigerant is reduced.

【0018】請求項5の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、ベローズ装置が放
熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わ
る熱に応じた封入冷媒の密度による圧力により伸縮し、
このベローズ装置の伸縮によって弁体が開閉駆動され、
放熱器と蒸発器との間の冷媒通路の連通度を制御され、
その上で、感温材料により構成された感温補償ばねによ
り開弁力が変化し、温度に応じて弁開圧が変化する。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the fifth aspect of the present invention, the bellows device is subjected to the temperature of the refrigerant at the outlet side of the radiator, and the charged refrigerant according to the heat transmitted to the charged refrigerant. Expands and contracts due to the pressure of the density of
The valve body is opened and closed by the expansion and contraction of the bellows device,
The degree of communication of the refrigerant passage between the radiator and the evaporator is controlled,
Then, the valve-opening force is changed by a temperature-sensitive compensation spring formed of a temperature-sensitive material, and the valve opening pressure is changed according to the temperature.

【0019】請求項6の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、ベローズ装置が放
熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わ
る熱に応じた封入冷媒の密度による圧力により伸縮し、
このベローズ装置の伸縮によって弁体が開閉駆動され、
放熱器と蒸発器との間の冷媒通路の連通度を制御され、
その上で、感温材料により構成された感温補償ばねによ
り閉弁力が変化し、温度に応じて弁開圧が変化する。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the sixth aspect of the present invention, the bellows device is affected by the temperature of the refrigerant at the outlet side of the radiator, and the charged refrigerant according to the heat transmitted to the charged refrigerant. Expands and contracts due to the pressure of the density of
The valve body is opened and closed by the expansion and contraction of the bellows device,
The degree of communication of the refrigerant passage between the radiator and the evaporator is controlled,
Then, the valve-closing force is changed by a temperature-sensitive compensation spring formed of a temperature-sensitive material, and the valve opening pressure is changed according to the temperature.

【0020】[0020]

【発明の実施の形態】以下に添付の図を参照してこの発
明の実施の形態を詳細に説明する。図1はこの発明によ
る高圧制御弁が適用される超臨界蒸気圧縮冷凍サイクル
装置用の一つの実施の形態を示している。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment for a supercritical vapor compression refrigeration cycle apparatus to which a high-pressure control valve according to the present invention is applied.

【0021】この冷凍サイクル装置は、圧縮機1と、放
熱器(ガスクーラ)2と、蒸発器3と、アキュムレータ
4とを有し、これらが冷媒配管5、6、7により閉ルー
プ状に連通接続され、この閉ループを炭酸ガス等による
冷媒が循環する。
This refrigeration cycle apparatus has a compressor 1, a radiator (gas cooler) 2, an evaporator 3, and an accumulator 4, which are connected to each other by refrigerant pipes 5, 6, 7 in a closed loop. A refrigerant such as carbon dioxide gas circulates through the closed loop.

【0022】放熱器2より蒸発器3へ至る冷媒通路6の
途中には、放熱器2の出口側の冷媒の圧力および温度に
感応して放熱器2と蒸発器3との連通・遮断および連通
度を定量的に制御して放熱器出口側の圧力制御を行う高
圧制御弁8と、放熱器2の出口側の冷媒の圧力と蒸発器
3の入口側の冷媒の圧力との差圧が所定値以上の場合に
開弁する逃し弁9とが互いに並列に設けられている。
In the middle of the refrigerant passage 6 extending from the radiator 2 to the evaporator 3, the communication between the radiator 2 and the evaporator 3 is controlled in response to the pressure and temperature of the refrigerant at the outlet side of the radiator 2. A high-pressure control valve 8 for quantitatively controlling the temperature and controlling the pressure on the outlet side of the radiator; and a differential pressure between the pressure of the refrigerant on the outlet side of the radiator 2 and the pressure of the refrigerant on the inlet side of the evaporator 3 is predetermined. A relief valve 9 that opens when the value is greater than or equal to the value is provided in parallel with each other.

【0023】つぎに、本発明による高圧制御弁8の実施
の形態1を図2,図3を参照して説明する。高圧制御弁
8は弁ハウジング10を有している。弁ハウジング10
は、放熱器2の出口側の冷媒配管を接続される入口ポー
ト(高圧側ポート)11と、蒸発器3の入口側の冷媒配
管を接続される出口ポート12と、連通孔13によって
入口ポート11に連通する弁室14と、弁室14の底部
に開口して弁室14を内部通路15を介して出口ポート
12に連通接続する弁ポート16とを形成されている。
Next, a first embodiment of the high-pressure control valve 8 according to the present invention will be described with reference to FIGS. The high-pressure control valve 8 has a valve housing 10. Valve housing 10
The inlet port (high pressure side port) 11 to which the refrigerant pipe on the outlet side of the radiator 2 is connected, the outlet port 12 to which the refrigerant pipe on the inlet side of the evaporator 3 is connected, and the inlet port 11 through the communication hole 13. And a valve port 16 opened at the bottom of the valve chamber 14 and communicating the valve chamber 14 to the outlet port 12 via the internal passage 15.

【0024】弁室14には、弁ポート16を開閉する弁
体17と、ベローズ装置18とが設けられている。ベロ
ーズ装置18は、固定端となる上端側に上部エンド部材
19を一体接続されたベローズ本体20と、上部エンド
部材19に連結されベローズ内部にガスを封入するため
の封入ガス管21および内部導管22を有するフランジ
状の上部部材23と、ベローズ本体20の自由端となる
下端を閉じるべくベローズ本体20の下端に溶接された
下部エンド部材24および下部エンド部材24に固定連
結された弁保持部材25と、内部ばね26とにより構成
されており、弁保持部材25の下底部に弁体17が取り
付けられている。なお、下部エンド部材24にはこれを
貫通する連通孔27が形成されている。
The valve chamber 14 is provided with a valve element 17 for opening and closing a valve port 16 and a bellows device 18. The bellows device 18 includes a bellows body 20 having an upper end member 19 integrally connected to an upper end serving as a fixed end, a sealed gas pipe 21 connected to the upper end member 19 for sealing gas inside the bellows, and an internal conduit 22. A lower end member 24 welded to the lower end of the bellows main body 20 to close a lower end serving as a free end of the bellows main body 20, and a valve holding member 25 fixedly connected to the lower end member 24. , An internal spring 26, and the valve element 17 is attached to the lower bottom of the valve holding member 25. The lower end member 24 has a communication hole 27 penetrating therethrough.

【0025】ベローズ装置18は密閉室18Aを画定し
ており、密閉室18Aには、封入ガス管21、内部導管
22によって、冷媒と同じ二酸化炭素ガスが封入されて
いる。
The bellows device 18 defines a sealed chamber 18A. The sealed chamber 18A is filled with the same carbon dioxide gas as the refrigerant by a sealed gas pipe 21 and an internal conduit 22.

【0026】弁ハウジング10には調整ねじ部材28が
ねじ係合しており、調整ねじ部材28と上部部材23と
の間には密度補正感温部材をなす皿ばね形状の上部バイ
メタル29が挟まれており、上部部材23と弁室14の
段差部30との間には密度補正感温部材をなす皿ばね形
状の下部バイメタル31が挟まれている。これにより上
部部材23は、上下に、上部バイメタル29、下部バイ
メタル31を挟まれた形態で、固定側部材である弁ハウ
ジング10に固定されている。
An adjusting screw member 28 is screw-engaged with the valve housing 10, and a disc spring-shaped upper bimetal 29 serving as a density correction thermosensitive member is sandwiched between the adjusting screw member 28 and the upper member 23. A disc spring-shaped lower bimetal 31 serving as a density correction temperature sensing member is sandwiched between the upper member 23 and the step portion 30 of the valve chamber 14. As a result, the upper member 23 is fixed to the valve housing 10 which is a fixed-side member, with the upper bimetal 29 and the lower bimetal 31 sandwiched vertically.

【0027】上部バイメタル29、下部バイメタル31
は、各々上側に低膨張材29a、31aを、下側に高膨
張材29b、31bを張り合わせれられており、弁室1
4に導入される放熱器2の出口側の冷媒の温度に感応
し、低温時には図2に示されているような形状をなして
上部部材23を下側箇所に位置させ、これに対し、高温
時には図3に示されているような形状に変形して上部部
材23を上側箇所に位置させる。これは、ベローズ装置
18の固定端の固定側部材(弁ハウジング10)に対す
る接続位置が変更されることを意味する。
Upper bimetal 29, lower bimetal 31
Has a low expansion material 29a, 31a on the upper side and a high expansion material 29b, 31b on the lower side.
In response to the temperature of the refrigerant at the outlet side of the radiator 2 introduced into the radiator 4, at the time of low temperature, the upper member 23 has a shape as shown in FIG. At times, the upper member 23 is deformed into a shape as shown in FIG. This means that the connection position of the fixed end of the bellows device 18 with respect to the fixed side member (the valve housing 10) is changed.

【0028】ベローズ装置18は、放熱器2の出口側の
冷媒の温度を及ぼされ、封入冷媒に伝わる熱に応じた封
入冷媒の密度による圧力により伸縮し、弁体17を上下
に開閉駆動する。
The bellows device 18 is affected by the temperature of the refrigerant on the outlet side of the radiator 2, expands and contracts by the pressure of the density of the sealed refrigerant according to the heat transmitted to the sealed refrigerant, and drives the valve 17 up and down.

【0029】これにより、弁体17は、放熱器2の出口
側の冷媒の温度に応じて弁ポート16の開度、換言すれ
ば、放熱器2と蒸発器3との間の冷媒通路の連通度を制
御し、放熱器出口側の圧力制御を行う。
As a result, the valve 17 opens the valve port 16 in accordance with the temperature of the refrigerant at the outlet side of the radiator 2, in other words, the communication of the refrigerant passage between the radiator 2 and the evaporator 3. Control the pressure at the outlet side of the radiator.

【0030】放熱器2の出口側の冷媒の温度が低い場合
には、上部バイメタル29、下部バイメタル31が図2
に示されているような形状をなして上部部材23を下側
箇所に位置させるが、放熱器2の出口側の冷媒の温度が
高くなると、上部バイメタル29、下部バイメタル31
が図3に示されているような形状に変形して上部部材2
3を上側箇所に位置させる。これにより、ベローズ装置
18が上方へ伸長し、すなわち、ベローズ装置18の初
期ベローズ長が長くなり、それに応じてベローズ装置1
8の内容積が増加し、ベローズ装置18の封入冷媒の密
度が低下する。
When the temperature of the refrigerant at the outlet side of the radiator 2 is low, the upper bimetal 29 and the lower bimetal 31
The upper member 23 is located at a lower position in a shape as shown in FIG. 3, but when the temperature of the refrigerant at the outlet side of the radiator 2 increases, the upper bimetal 29 and the lower bimetal 31
Is transformed into a shape as shown in FIG.
3 is located at the upper position. As a result, the bellows device 18 extends upward, that is, the initial bellows length of the bellows device 18 increases, and accordingly, the bellows device 1
8 increases, and the density of the refrigerant charged in the bellows device 18 decreases.

【0031】上述のように高温時には、ベローズ装置1
8の封入冷媒の密度が低下するため、(20℃、6.5
MPa)での二酸化炭素の密度は800kg/m3
(40℃、11.5MPa)での二酸化炭素の密度は7
00kg/m3 というように、密度を変えることがで
き、図8にて破線により示されているような圧力・温度
特性が得られ、冷凍サクイルのCOPを最大値に設定で
きる。
As described above, when the temperature is high, the bellows device 1
(20 ° C., 6.5)
The density of carbon dioxide in MPa) is 800 kg / m 3 ,
(40 ° C., 11.5 MPa), the density of carbon dioxide is 7
The density can be changed to 00 kg / m 3, the pressure-temperature characteristics as shown by the broken line in FIG. 8 can be obtained, and the COP of the frozen cycle can be set to the maximum value.

【0032】また、高温時には、ベローズ内圧の温度に
よる上昇割合が低温時に比して小さくなり、高温時の内
圧上昇を抑えることで、ベローズ装置18の耐熱性が向
上する。
At a high temperature, the rate of increase of the bellows internal pressure due to the temperature is smaller than at a low temperature. By suppressing the increase in the internal pressure at a high temperature, the heat resistance of the bellows device 18 is improved.

【0033】図4,図5はこの発明による高圧制御弁の
他の実施の形態を示している。なお、図4,図5におい
て、図2、図3に対応する部分は、図2、図3に付した
符号と同一の符号を付して、その説明を省略する。
FIGS. 4 and 5 show another embodiment of the high-pressure control valve according to the present invention. 4 and 5, parts corresponding to those in FIGS. 2 and 3 are denoted by the same reference numerals as those in FIGS. 2 and 3, and description thereof is omitted.

【0034】この実施の形態では、固定端となる上部部
材23は調整ねじ部材28によって弁ハウジング10に
対する位置を調整可能に決められている。ベローズ装置
18の下端は自由端とされ、ベローズ装置18の中間部
に接続部材32によってカップ状の弁保持部材33の上
側が固定接続されている。弁保持部材33は、ベローズ
装置18の自由端側を取り囲んでおり、下底部に弁体1
7を保持している。
In this embodiment, the position of the upper member 23 serving as a fixed end with respect to the valve housing 10 is determined by an adjusting screw member 28 so as to be adjustable. The lower end of the bellows device 18 is a free end, and the upper side of the cup-shaped valve holding member 33 is fixedly connected to an intermediate portion of the bellows device 18 by a connection member 32. The valve holding member 33 surrounds the free end side of the bellows device 18, and has a valve body 1 at the lower bottom.
7 is held.

【0035】ベローズ装置18の下部エンド部材24に
は密度補正感温部材をなすバイメタル34が取り付けら
れている。バイメタル34は下部エンド部材24と弁保
持部材33の底部との間に挟まれた形態で存在してい
る。バイメタル34は、下側に低膨張材34aを、上側
に高膨張材34bを張り合わせれられており、弁室14
に導入される放熱器2の出口側の冷媒の温度に感応し、
低温時には図4に示されているような形状をなして下部
エンド部材24を上側箇所に位置させ、これに対し、高
温時には図5に示されているような形状に変形して下部
エンド部材24を下側箇所に位置させる。これは、ベロ
ーズ装置18の自由端の位置が変更されることを意味す
る。
The lower end member 24 of the bellows device 18 is provided with a bimetal 34 serving as a density correction temperature sensing member. The bimetal 34 exists in a form sandwiched between the lower end member 24 and the bottom of the valve holding member 33. The bimetal 34 has a low expansion material 34a attached to the lower side and a high expansion material 34b attached to the upper side.
Sensitive to the temperature of the refrigerant on the outlet side of the radiator 2 introduced into the
When the temperature is low, the lower end member 24 is formed in the shape shown in FIG. 4, and the lower end member 24 is deformed into the shape shown in FIG. To the lower part. This means that the position of the free end of the bellows device 18 is changed.

【0036】この実施の形態でも、ベローズ装置18
は、放熱器2の出口側の冷媒の温度を及ぼされ、封入冷
媒に伝わる熱に応じた封入冷媒の密度による圧力により
伸縮し、弁体17を上下に開閉駆動する。これにより、
弁体17は、放熱器2の出口側の冷媒の温度に応じて弁
ポート16の開度、換言すれば、放熱器2と蒸発器3と
の間の冷媒通路の連通度を制御し、放熱器出口側の圧力
制御を行う。
Also in this embodiment, the bellows device 18
Is affected by the temperature of the refrigerant on the outlet side of the radiator 2, expands and contracts by the pressure of the density of the sealed refrigerant according to the heat transmitted to the sealed refrigerant, and drives the valve 17 up and down. This allows
The valve body 17 controls the degree of opening of the valve port 16, in other words, the degree of communication of the refrigerant passage between the radiator 2 and the evaporator 3, in accordance with the temperature of the refrigerant on the outlet side of the radiator 2, Perform pressure control on the outlet side of the vessel.

【0037】放熱器2の出口側の冷媒の温度が低い場合
には、バイメタル34が図4に示されているような形状
をなして下部エンド部材24を上側箇所に位置させる
が、放熱器2の出口側の冷媒の温度が高くなると、バイ
メタル34が図5に示されているような形状に変形して
下部エンド部材24を下側箇所に位置させる。これによ
り、ベローズ装置18が下方へ伸長し、すなわち、ベロ
ーズ装置18の初期ベローズ長が長くなり、それに応じ
てベローズ装置18の内容積が増加し、ベローズ装置1
8の封入冷媒の密度が低下する。
When the temperature of the refrigerant at the outlet side of the radiator 2 is low, the bimetal 34 has a shape as shown in FIG. When the temperature of the refrigerant on the outlet side of the first metal becomes high, the bimetal 34 is deformed into a shape as shown in FIG. 5 and the lower end member 24 is positioned at the lower position. As a result, the bellows device 18 extends downward, that is, the initial bellows length of the bellows device 18 increases, and accordingly the internal volume of the bellows device 18 increases, and the bellows device 1
8, the density of the filled refrigerant decreases.

【0038】この実施の形態でも、上述のように高温時
には、ベローズ装置18の封入冷媒の密度が低下するた
め、(20℃、6.5MPa)での二酸化炭素の密度は
800kg/m3 、(40℃、11.5MPa)での二
酸化炭素の密度は700kg/m3 というように、密度
を変えることができ、図8にて破線により示されている
ような圧力・温度特性が得られ、冷凍サクイルのCOP
を最大値に設定できる。
Also in this embodiment, as described above, at high temperatures, the density of the refrigerant charged in the bellows device 18 decreases, so that the density of carbon dioxide at (20 ° C., 6.5 MPa) is 800 kg / m 3 , The density of carbon dioxide at 40 ° C. and 11.5 MPa) can be changed to 700 kg / m 3 , and the pressure-temperature characteristics shown by the broken line in FIG. Saquil's COP
Can be set to the maximum value.

【0039】また、高温時には、ベローズ内圧の温度に
よる上昇割合が低温時に比して小さくなり、高温時の内
圧上昇を抑えることで、ベローズ装置18の耐熱性が向
上する。
At a high temperature, the rate of increase of the bellows internal pressure due to the temperature is smaller than at a low temperature. By suppressing the increase in the internal pressure at a high temperature, the heat resistance of the bellows device 18 is improved.

【0040】なお、上述の何れの実施の形態において
も、密度補正感温部材をなすバイメタルは、形状記憶合
金等の感温材料製の部材に置き換えることができる。
In any of the above-mentioned embodiments, the bimetal constituting the density correction thermosensitive member can be replaced by a member made of a thermosensitive material such as a shape memory alloy.

【0041】図6はこの発明による高圧制御弁の他の実
施の形態を示している。なお、図6においても、図2、
図3に対応する部分は、図2、図3に付した符号と同一
の符号を付して、その説明を省略する。
FIG. 6 shows another embodiment of the high-pressure control valve according to the present invention. In FIG. 6, FIG.
Parts corresponding to those in FIG. 3 are denoted by the same reference numerals as those in FIGS. 2 and 3, and description thereof is omitted.

【0042】この実施の形態では、弁保持部材25と弁
室14の底部との間に感温材料である形状記憶合金製の
感温補償ばね35が設けられており、感温補償ばね35
は弁体17を開弁方向に付勢している。形状記憶合金製
の感温補償ばね35は、弁室14内にあって放熱器2の
出口側の冷媒温度に感応し、低温時にはばね力が弱く、
高温時にはばね力が強くなる。
In this embodiment, a temperature-sensitive compensation spring 35 made of a shape-memory alloy, which is a temperature-sensitive material, is provided between the valve holding member 25 and the bottom of the valve chamber 14.
Urges the valve body 17 in the valve opening direction. The temperature-sensitive compensation spring 35 made of a shape memory alloy is in the valve chamber 14 and responds to the refrigerant temperature at the outlet side of the radiator 2, and has a low spring force at low temperatures.
At high temperatures, the spring force increases.

【0043】従って、高温時には、低温時に比して高圧
制御弁8の弁開圧が下がり、温度補償が行われる。
Therefore, when the temperature is high, the valve opening pressure of the high-pressure control valve 8 is lower than when the temperature is low, and the temperature is compensated.

【0044】図7はこの発明による高圧制御弁の他の実
施の形態を示している。なお、図7においても、図2、
図3に対応する部分は、図2、図3に付した符号と同一
の符号を付して、その説明を省略する。
FIG. 7 shows another embodiment of the high-pressure control valve according to the present invention. In FIG. 7, FIG.
Parts corresponding to those in FIG. 3 are denoted by the same reference numerals as those in FIGS. 2 and 3, and description thereof is omitted.

【0045】この実施の形態では、ベローズ装置18の
内部ばね26が感温材料である形状記憶合金により構成
されている。内部ばね26は、感温補償ばねをなし、弁
体17を閉弁方向に付勢している。形状記憶合金製の内
部ばね26は、弁室14内にあって放熱器2の出口側の
冷媒温度に感応し、低温時にはばね力が弱く、高温時に
はばね力が強くなる。
In this embodiment, the internal spring 26 of the bellows device 18 is made of a shape-memory alloy which is a temperature-sensitive material. The internal spring 26 forms a temperature-sensitive compensation spring and urges the valve element 17 in the valve closing direction. The internal spring 26 made of a shape memory alloy is located in the valve chamber 14 and is sensitive to the temperature of the refrigerant at the outlet side of the radiator 2. The spring force is weak at low temperatures and strong at high temperatures.

【0046】従って、高温時には、低温時に比して高圧
制御弁8の弁開圧が上がり、温度補償が行われる。
Therefore, when the temperature is high, the valve opening pressure of the high-pressure control valve 8 is increased as compared with when the temperature is low, and the temperature is compensated.

【0047】[0047]

【発明の効果】以上の説明から理解される如く、請求項
1に記載の発明による超臨界蒸気圧縮冷凍サイクル装置
用高圧制御弁によれば、ベローズ装置が放熱器の出口側
の冷媒の温度を及ぼされて封入冷媒に伝わる熱に応じた
封入冷媒の密度による圧力により伸縮し、このベローズ
装置の伸縮によって弁体が開閉駆動され、放熱器と蒸発
器との間の冷媒通路の連通度を制御され、その上で、密
度補正感温部材によって放熱器の出口側の冷媒の温度に
応じてベローズ装置の初期ベローズ長が変化し、封入冷
媒の密度が変化するから、最大COPで超臨界蒸気圧縮
冷凍サイクル装置が稼働するように、放熱器の出口側の
冷媒圧力を制御でき、超臨界蒸気圧縮冷凍サイクル装置
を最大COPで稼働できる。
As can be understood from the above description, according to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the first aspect of the present invention, the bellows device controls the temperature of the refrigerant at the outlet side of the radiator. The valve expands and contracts due to the pressure due to the density of the sealed refrigerant according to the heat transmitted and transmitted to the sealed refrigerant, and the expansion and contraction of this bellows device drives the valve to open and close, controlling the degree of communication of the refrigerant passage between the radiator and the evaporator. Then, the initial bellows length of the bellows device changes according to the temperature of the refrigerant at the outlet side of the radiator by the density correction thermosensitive member, and the density of the sealed refrigerant changes. The refrigerant pressure at the outlet side of the radiator can be controlled so that the refrigeration cycle apparatus operates, and the supercritical vapor compression refrigeration cycle apparatus can operate at the maximum COP.

【0048】請求項2の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、固定側部材とベロ
ーズ装置の固定端との間に設けられた密度補正感温部材
によってベローズ装置の固定端の固定側部材に対する接
続位置が放熱器の出口側の冷媒の温度に応じて変更さ
れ、この接続位置の変更によってベローズ装置の初期ベ
ローズ長が変化し、封入冷媒の密度が変化するから、最
大COPで超臨界蒸気圧縮冷凍サイクル装置が稼働する
ように、放熱器の出口側の冷媒圧力を制御でき、超臨界
蒸気圧縮冷凍サイクル装置を最大COPで稼働できる。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the second aspect of the present invention, the bellows device is fixed by the density correction temperature sensing member provided between the fixed side member and the fixed end of the bellows device. The connection position of the end with respect to the fixed side member is changed according to the temperature of the refrigerant on the outlet side of the radiator, and the change in the connection position changes the initial bellows length of the bellows device, and the density of the enclosed refrigerant changes. The refrigerant pressure at the outlet of the radiator can be controlled so that the supercritical vapor compression refrigeration cycle apparatus operates at the COP, and the supercritical vapor compression refrigeration cycle apparatus can operate at the maximum COP.

【0049】請求項3の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、自由端と前記弁保
持部材との間に設けられた密度補正感温部材によってベ
ローズ装置の自由端の位置が変更され、この自由端の位
置変更によってベローズ装置の初期ベローズ長が変化
し、封入冷媒の密度が変化する。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the third aspect of the present invention, the free end of the bellows device is controlled by the density correction temperature sensing member provided between the free end and the valve holding member. The position is changed, and the change in the position of the free end changes the initial bellows length of the bellows device, and changes the density of the charged refrigerant.

【0050】請求項4の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、密度補正感温部材
によって温度上昇に応じてベローズ装置の初期ベローズ
長が伸長し、温度上昇に応じて封入冷媒の密度が低減す
るから、最大COPで超臨界蒸気圧縮冷凍サイクル装置
が稼働するように、放熱器の出口側の冷媒圧力を制御で
き、超臨界蒸気圧縮冷凍サイクル装置を最大COPで稼
働できる。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the fourth aspect of the present invention, the initial bellows length of the bellows device is extended by the density correction thermosensitive member in accordance with the temperature rise, and is increased in response to the temperature rise. Since the density of the enclosed refrigerant is reduced, the refrigerant pressure at the outlet side of the radiator can be controlled so that the supercritical vapor compression refrigeration cycle apparatus operates at the maximum COP, and the supercritical vapor compression refrigeration cycle apparatus can operate at the maximum COP. .

【0051】請求項5の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、ベローズ装置が放
熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わ
る熱に応じた封入冷媒の密度による圧力により伸縮し、
このベローズ装置の伸縮によって弁体が開閉駆動され、
放熱器と蒸発器との間の冷媒通路の連通度を制御され、
その上で、感温材料により構成された感温補償ばねによ
り開弁力が変化し、温度に応じて弁開圧が変化するか
ら、温度補償を行え、超臨界蒸気圧縮冷凍サイクル装置
を最大COPで稼働できる。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the fifth aspect of the present invention, the bellows device is subjected to the temperature of the refrigerant at the outlet side of the radiator, and the charged refrigerant according to the heat transmitted to the charged refrigerant. Expands and contracts due to the pressure of the density of
The valve body is opened and closed by the expansion and contraction of the bellows device,
The degree of communication of the refrigerant passage between the radiator and the evaporator is controlled,
In addition, the valve opening force is changed by a temperature-sensitive compensation spring made of a temperature-sensitive material, and the valve opening pressure is changed in accordance with the temperature. Can work with

【0052】請求項6の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁によれば、ベローズ装置が放
熱器の出口側の冷媒の温度を及ぼされて封入冷媒に伝わ
る熱に応じた封入冷媒の密度による圧力により伸縮し、
このベローズ装置の伸縮によって弁体が開閉駆動され、
放熱器と蒸発器との間の冷媒通路の連通度を制御され、
その上で、感温材料により構成された感温補償ばねによ
り閉弁力が変化し、温度に応じて弁開圧が変化するか
ら、温度補償を行え、超臨界蒸気圧縮冷凍サイクル装置
を最大COPで稼働できる。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the sixth aspect of the present invention, the bellows device is subjected to the temperature of the refrigerant at the outlet side of the radiator, and the charged refrigerant according to the heat transmitted to the charged refrigerant. Expands and contracts due to the pressure of the density of
The valve body is opened and closed by the expansion and contraction of the bellows device,
The degree of communication of the refrigerant passage between the radiator and the evaporator is controlled,
In addition, the valve-closing force is changed by a temperature-sensitive compensation spring made of a temperature-sensitive material, and the valve opening pressure is changed according to the temperature. Can work with

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による高圧制御弁が適用される超臨界
蒸気圧縮冷凍サイクル装置用の一つの実施の形態を示す
ブロック線図である。
FIG. 1 is a block diagram showing one embodiment for a supercritical vapor compression refrigeration cycle apparatus to which a high-pressure control valve according to the present invention is applied.

【図2】この発明による超臨界蒸気圧縮冷凍サイクル装
置用高圧制御弁の一つの実施の形態を示す低温時の断面
図である。
FIG. 2 is a cross-sectional view of one embodiment of a high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention at a low temperature.

【図3】この発明による超臨界蒸気圧縮冷凍サイクル装
置用高圧制御弁の一つの実施の形態を示す高温時の断面
図である。
FIG. 3 is a cross-sectional view at a high temperature showing one embodiment of the high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention.

【図4】この発明による超臨界蒸気圧縮冷凍サイクル装
置用高圧制御弁の他の実施の形態を示す低温時の断面図
である。
FIG. 4 is a cross-sectional view at a low temperature showing another embodiment of the high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention.

【図5】この発明による超臨界蒸気圧縮冷凍サイクル装
置用高圧制御弁の他の実施の形態を示す高温時の断面図
である。
FIG. 5 is a cross-sectional view at a high temperature showing another embodiment of the high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention.

【図6】この発明による超臨界蒸気圧縮冷凍サイクル装
置用高圧制御弁の他の実施の形態を示す断面図である。
FIG. 6 is a cross-sectional view showing another embodiment of the high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention.

【図7】この発明による超臨界蒸気圧縮冷凍サイクル装
置用高圧制御弁の他の実施の形態を示す断面図である。
FIG. 7 is a sectional view showing another embodiment of the high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention.

【図8】二酸化炭素の蒸気圧線図である。FIG. 8 is a vapor pressure diagram of carbon dioxide.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱器 3 蒸発器 8 高圧制御弁 9 逃し弁 10 弁ハウジング 14 弁室 16 弁ポート 17 弁体 18 ベローズ装置 26 内部ばね 29 上部バイメタル 31 下部バイメタル 33 弁保持部材 34 バイメタル 35 感温補償ばね REFERENCE SIGNS LIST 1 compressor 2 radiator 3 evaporator 8 high-pressure control valve 9 relief valve 10 valve housing 14 valve chamber 16 valve port 17 valve element 18 bellows device 26 internal spring 29 upper bimetal 31 lower bimetal 33 valve holding member 34 bimetal 35 temperature compensation Spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 優 埼玉県狭山市笹井535 株式会社鷺宮製作 所狭山事業所内 Fターム(参考) 3H057 AA04 BB01 CC06 DD12 FC03 FD19 GG08 3H059 AA08 BB01 CD05 CF14 DD17 EE01 FF01 FF11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yu Oi 535 Sasai, Sayama City, Saitama Prefecture Saginomiya Works Sayama Plant F-term (reference) 3H057 AA04 BB01 CC06 DD12 FC03 FD19 GG08 3H059 AA08 BB01 CD05 CF14 DD17 EE01 FF01 FF11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と放熱器と蒸発器とを炭酸ガス等
による冷媒が順に循環し、超臨界域で運転される超臨界
蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器
へ至る冷媒通路の途中に設けられ、前記放熱器の出口側
の冷媒の温度に感応して前記放熱器と前記蒸発器との間
の冷媒通路の連通度を制御して放熱器出口側の圧力制御
を行う高圧制御弁であって、 冷媒封入の密閉室を画定し、前記放熱器の出口側の冷媒
の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷
媒の密度による圧力により伸縮するベローズ装置と、 前記放熱器の出口側の冷媒の温度を及ぼされ、温度に応
じて前記ベローズ装置の初期ベローズ長を変化させて前
記封入冷媒の密度を変化させる密度補正感温部材と、 前記ベローズ装置に接続され、前記ベローズ装置の伸縮
により開閉駆動されて弁ポートと共働して前記放熱器と
前記蒸発器との間の冷媒通路の連通度を制御する弁体と
を有している、 ことを特徴とする超臨界蒸気圧縮冷凍サイクル装置用高
圧制御弁。
1. A refrigerant flowing from the radiator to the evaporator in a supercritical vapor compression refrigeration cycle device operated in a supercritical region, in which a refrigerant such as carbon dioxide gas circulates sequentially through a compressor, a radiator, and an evaporator. It is provided in the middle of the passage, and controls the degree of communication of the refrigerant passage between the radiator and the evaporator in response to the temperature of the refrigerant on the outlet side of the radiator to control the pressure on the radiator outlet side. A high-pressure control valve, wherein the bellows device defines a closed chamber for refrigerant charging, is subjected to the temperature of the refrigerant on the outlet side of the radiator, and expands and contracts by pressure due to the density of the charged refrigerant according to the heat transmitted to the charged refrigerant. A density correction thermosensitive member that is affected by the temperature of the refrigerant on the outlet side of the radiator, changes the initial bellows length of the bellows device according to the temperature, and changes the density of the sealed refrigerant, and is connected to the bellows device. And the bellows device A supercritical steam having a valve body that is opened and closed by expansion and contraction and cooperates with a valve port to control the degree of communication of a refrigerant passage between the radiator and the evaporator. High pressure control valve for compression refrigeration cycle equipment.
【請求項2】 前記ベローズ装置は、一端を固定側部材
に接続されて固定端とされ、他端を自由端とされて当該
自由端に前記弁体を保持し、前記固定側部材と前記固定
端との間に感温材料製の密度補正感温部材が設けられ、
前記密度補正感温部材によって前記固定端の前記固定側
部材に対する接続位置が変更されることを特徴とする請
求項1に記載の超臨界蒸気圧縮冷凍サイクル装置用高圧
制御弁。
2. The bellows device has one end connected to a fixed side member to be a fixed end, the other end being a free end, holding the valve body at the free end, and fixing the valve body to the fixed side member. A density correction thermosensitive member made of a thermosensitive material is provided between the ends,
The high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to claim 1, wherein a connection position of the fixed end to the fixed side member is changed by the density correction temperature sensing member.
【請求項3】 前記ベローズ装置は、一端を固定側部材
に接続されて固定端とされ、他端を自由端とされ、中間
部に弁保持部材を接続され、前記弁保持部材に前記弁体
が取り付けられ、前記自由端と前記弁保持部材との間に
感温材料製の密度補正感温部材が設けられ、前記密度補
正感温部材によって前記自由端の位置が変更されること
を特徴とする請求項1に記載の超臨界蒸気圧縮冷凍サイ
クル装置用高圧制御弁。
3. The bellows device has one end connected to a fixed side member to be a fixed end, the other end being a free end, a valve holding member connected to an intermediate portion, and the valve body being connected to the valve body. Is attached, a density correction thermosensitive member made of a thermosensitive material is provided between the free end and the valve holding member, and the position of the free end is changed by the density correction thermosensitive member. The high pressure control valve for a supercritical vapor compression refrigeration cycle device according to claim 1.
【請求項4】 前記密度補正感温部材は、温度上昇に応
じて前記ベローズ装置を初期ベローズ長を伸長させて前
記封入冷媒の密度を低減させることを特徴とする請求項
1〜3の何れかに記載の超臨界蒸気圧縮冷凍サイクル装
置用高圧制御弁。
4. The density correction thermosensitive member according to claim 1, wherein the bellows device extends the initial bellows length according to a temperature rise to reduce the density of the charged refrigerant. 2. A high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to item 1.
【請求項5】 圧縮機と放熱器と蒸発器とを炭酸ガス等
による冷媒が順に循環し、超臨界域で運転される超臨界
蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器
へ至る冷媒通路の途中に設けられ、前記放熱器の出口側
の冷媒の温度に感応して前記放熱器と前記蒸発器との間
の冷媒通路の連通度を制御して放熱器出口側の圧力制御
を行う高圧制御弁であって、 冷媒封入の密閉室を画定し、前記放熱器の出口側の冷媒
の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷
媒の密度による圧力により伸縮するベローズ装置と、 前記ベローズ装置に接続され、前記ベローズ装置の伸縮
により開閉駆動されて弁ポートと共働して前記放熱器と
前記蒸発器との間の冷媒通路の連通度を制御する弁体
と、 感温材料により構成され、前記弁体を開弁方向に付勢す
る感温補償ばねとを有している、 ことを特徴とする超臨界蒸気圧縮冷凍サイクル装置用高
圧制御弁。
5. A refrigerant from the radiator to the evaporator of a supercritical vapor compression refrigeration cycle device operated in a supercritical region, in which a refrigerant such as carbon dioxide gas circulates sequentially through a compressor, a radiator, and an evaporator. It is provided in the middle of the passage, and controls the degree of communication of the refrigerant passage between the radiator and the evaporator in response to the temperature of the refrigerant on the outlet side of the radiator to control the pressure on the radiator outlet side. A high-pressure control valve, wherein the bellows device defines a closed chamber for refrigerant charging, is subjected to the temperature of the refrigerant on the outlet side of the radiator, and expands and contracts by pressure due to the density of the charged refrigerant according to the heat transmitted to the charged refrigerant. A valve body connected to the bellows device, driven to open and close by expansion and contraction of the bellows device, and cooperating with a valve port to control the degree of communication of a refrigerant passage between the radiator and the evaporator; It is made of material and the valve body is opened 1. A high-pressure control valve for a supercritical vapor compression refrigeration cycle device, comprising:
【請求項6】 圧縮機と放熱器と蒸発器とを炭酸ガス等
による冷媒が順に循環し、超臨界域で運転される超臨界
蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器
へ至る冷媒通路の途中に設けられ、前記放熱器の出口側
の冷媒の温度に感応して前記放熱器と前記蒸発器との間
の冷媒通路の連通度を制御して放熱器出口側の圧力制御
を行う高圧制御弁であって、 冷媒封入の密閉室を画定し、前記放熱器の出口側の冷媒
の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷
媒の密度による圧力により伸縮するベローズ装置と、 前記ベローズ装置に接続され、前記ベローズ装置の伸縮
により開閉駆動されて弁ポートと共働して前記放熱器と
前記蒸発器との間の冷媒通路の連通度を制御する弁体
と、 感温材料により構成され、前記弁体を閉弁方向に付勢す
る感温補償ばねとを有している、 ことを特徴とする超臨界蒸気圧縮冷凍サイクル装置用高
圧制御弁。
6. A refrigerant from the radiator to the evaporator of a supercritical vapor compression refrigeration cycle device operated in a supercritical region, in which a refrigerant such as carbon dioxide gas circulates sequentially through a compressor, a radiator, and an evaporator. It is provided in the middle of the passage, and controls the degree of communication of the refrigerant passage between the radiator and the evaporator in response to the temperature of the refrigerant on the outlet side of the radiator to control the pressure on the radiator outlet side. A high-pressure control valve, wherein the bellows device defines a closed chamber for refrigerant charging, is subjected to the temperature of the refrigerant on the outlet side of the radiator, and expands and contracts by pressure due to the density of the charged refrigerant according to the heat transmitted to the charged refrigerant. A valve body connected to the bellows device, driven to open and close by expansion and contraction of the bellows device, and cooperating with a valve port to control the degree of communication of a refrigerant passage between the radiator and the evaporator; It is made of material and the valve is closed 1. A high-pressure control valve for a supercritical vapor compression refrigeration cycle device, comprising:
JP2000094643A 2000-03-30 2000-03-30 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment Expired - Fee Related JP4445090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000094643A JP4445090B2 (en) 2000-03-30 2000-03-30 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094643A JP4445090B2 (en) 2000-03-30 2000-03-30 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2001280721A true JP2001280721A (en) 2001-10-10
JP4445090B2 JP4445090B2 (en) 2010-04-07

Family

ID=18609668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094643A Expired - Fee Related JP4445090B2 (en) 2000-03-30 2000-03-30 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4445090B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040330A (en) * 2005-08-01 2007-02-15 Fuji Koki Corp Electric valve
JP2007298271A (en) * 2006-05-05 2007-11-15 Otto Egelhof Gmbh & Co Kg Expansion valve control method, and expansion valve for vehicular air conditioning system particularly operated with co2 as coolant
US7299654B2 (en) * 2003-05-27 2007-11-27 Valeo Climatisation, S.A. Pressure-reducing device for an air-conditioning circuit
JP2008051439A (en) * 2006-08-25 2008-03-06 Tgk Co Ltd Expansion device
US8596552B2 (en) 2004-10-21 2013-12-03 Danfoss A/S Valve for use in a refrigeration system
EP2418406A4 (en) * 2009-04-06 2017-01-04 Kabushiki Kaisha Saginomiya Seisakusho Pressure-operated control valve
CN115751782A (en) * 2022-12-15 2023-03-07 徐州市三禾自动控制设备有限公司 Fungus is refrigerating plant for freezer
CN115854427A (en) * 2022-11-28 2023-03-28 贵州电网有限责任公司 Gear and rack driving adjusting device and method for heat dissipation load of central air conditioner external unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7299654B2 (en) * 2003-05-27 2007-11-27 Valeo Climatisation, S.A. Pressure-reducing device for an air-conditioning circuit
US8596552B2 (en) 2004-10-21 2013-12-03 Danfoss A/S Valve for use in a refrigeration system
JP2007040330A (en) * 2005-08-01 2007-02-15 Fuji Koki Corp Electric valve
JP4713977B2 (en) * 2005-08-01 2011-06-29 株式会社不二工機 Motorized valve
JP2007298271A (en) * 2006-05-05 2007-11-15 Otto Egelhof Gmbh & Co Kg Expansion valve control method, and expansion valve for vehicular air conditioning system particularly operated with co2 as coolant
JP2008051439A (en) * 2006-08-25 2008-03-06 Tgk Co Ltd Expansion device
EP2418406A4 (en) * 2009-04-06 2017-01-04 Kabushiki Kaisha Saginomiya Seisakusho Pressure-operated control valve
CN115854427A (en) * 2022-11-28 2023-03-28 贵州电网有限责任公司 Gear and rack driving adjusting device and method for heat dissipation load of central air conditioner external unit
CN115751782A (en) * 2022-12-15 2023-03-07 徐州市三禾自动控制设备有限公司 Fungus is refrigerating plant for freezer
CN115751782B (en) * 2022-12-15 2023-09-12 徐州市三禾自动控制设备有限公司 Refrigerating plant for fungus class freezer

Also Published As

Publication number Publication date
JP4445090B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US6189326B1 (en) Pressure control valve
JP2006220407A (en) Expansion valve for refrigeration cycle
JPH02166367A (en) Temperature expansion valve
JP2008020141A (en) Pressure control valve
JP2001280721A (en) High pressure control valve for supercritical steam compression refrigerating cycle device
JP2000241048A (en) Temperature-sensitive expansion valve
JP2007139208A (en) Expansion valve for refrigerating cycle
US20080127664A1 (en) Thermostatic expansion valve for refrigeration or heat-pump circuits with thermally controlled safely function
JP2007139209A (en) Pressure control valve for refrigerating cycle
JP2010112616A (en) Thermal expansion valve
JP2004142701A (en) Refrigeration cycle
JP2006266568A (en) Expansion valve
US20070180854A1 (en) Expansion device
JP3954743B2 (en) Control valve for refrigeration cycle
JP2007046808A (en) Expansion device
JP2007033021A (en) Temperature and differential pressure sensing valve
JP2006292185A (en) Expansion device and refrigerating cycle
JP3712828B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
JP2001280722A (en) Supercritical steam compression refrigerating cycle device and composite valve for supercritical steam compression refrigerating cycle device
JP2001153499A (en) Control valve for refrigerating cycle
JPH1163739A (en) Pressure control valve
JP2001241809A (en) High pressure control valve for super critical vapor compression freezing cycle device
CN112303966B (en) Temperature type expansion valve and refrigeration cycle system
JPH05118711A (en) Expansion valve
JPS63158372A (en) Expansion valve of refrigerating cycle for air conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees