JP4002364B2 - Operation control method and apparatus for supercritical vapor compression cycle, capacity control apparatus and capacity control valve for variable capacity compressor - Google Patents

Operation control method and apparatus for supercritical vapor compression cycle, capacity control apparatus and capacity control valve for variable capacity compressor Download PDF

Info

Publication number
JP4002364B2
JP4002364B2 JP14441099A JP14441099A JP4002364B2 JP 4002364 B2 JP4002364 B2 JP 4002364B2 JP 14441099 A JP14441099 A JP 14441099A JP 14441099 A JP14441099 A JP 14441099A JP 4002364 B2 JP4002364 B2 JP 4002364B2
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
outlet side
capacity
swash plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14441099A
Other languages
Japanese (ja)
Other versions
JP2000337723A (en
Inventor
伴雄 岡田
重男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP14441099A priority Critical patent/JP4002364B2/en
Publication of JP2000337723A publication Critical patent/JP2000337723A/en
Application granted granted Critical
Publication of JP4002364B2 publication Critical patent/JP4002364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超臨界蒸気圧縮サイクルの運転制御方法および装置および容量可変コンプレッサの容量制御装置および容量制御弁に関し、特に、炭酸ガス冷媒を使用する冷凍サイクル装置のように、超臨界域で運転される超臨界蒸気圧縮サイクルの運転制御方法および装置、およびそのような冷凍サイクルで使用される容量可変コンプレッサの容量制御装置および容量制御弁に関するものである。
【0002】
【従来の技術】
近年では、オゾン層破壊を防ぐために、冷媒としてフロンに代えて炭酸ガス(CO2 )を使用する研究が行われている。炭酸ガス冷媒を使用する冷凍サイクル装置では、フロン冷媒によるものとは異なって、超臨界域で運転されるため、このような冷凍サイクルは超臨界蒸気圧縮サイクルと云われ、フロン冷媒によるもののように高圧側での冷媒の凝縮が起こらない。
そして、超臨界蒸気圧縮サイクルは、フロン冷媒によるものに比して、圧力変動が生じ易く、高圧側における冷媒の状況により成績係数が左右されると云う特性を有している。
【0003】
上述のような超臨界蒸気圧縮サイクルの運転方法、装置としては、特公平7−18602号公報に示されているように、緩衝用冷媒レシーバの液体残量を制御して高圧側の冷媒圧力を調整して超臨界域でも所定の冷房能力を得るようにしたものや、特開平9−264622号公報に示されているように、冷媒封入のダイヤフラム室の内圧と放熱器出口側の冷媒圧力との平衡関係により動作する圧力制御弁によって放熱器の出口側圧力と出口側温度とが最適制御線に沿うように制御するものや、特開平9−101063号公報に示されているように、容量可変型圧縮機の容量を制御するものが知られている。
【0004】
【発明が解決しようとする課題】
特公平7−18602号公報に示されているような、緩衝用冷媒レシーバの液体残量制御は、装置が大掛かりなものになると共に制御が難しく、実用性に欠けている。特開平9−264622号公報に示されているように、冷媒封入のダイヤフラム室の内圧と放熱器出口側の冷媒圧力との平衡関係により動作する圧力制御弁によって最適制御するものでは、高圧側の制御はできるが、高圧側の冷媒密度が液相に近い状態であることから、コンプレッサ回転数が変わった時に高圧側の冷媒密度が大きく変動し、これに合わせた弁の動きで、冷凍サイクル装置の低圧側への冷媒流量が大幅に変動し、このため、蒸発器側の圧力変動が大きく、冷媒回路を安定制御することが難しい。
【0005】
特開平9−101063号公報に示されている冷凍サイクルは、炭酸ガス冷媒を使用する冷凍サイクルで、容量可変型圧縮機の容量を制御するが、その制御の具体性に欠けており、炭酸ガス冷媒を使用する冷凍サイクル装置を広域に亙って最適運転する技術を提供するには至って居ない。
【0006】
この発明は、上述の如き問題点を解消するためになされたもので、高圧側の冷媒圧力を最適密度線を超えない圧力に保ち、炭酸ガス冷媒等を使用する超臨界蒸気圧縮サイクルを広域に亙って最適運転できるようにする運転制御方法および装置、および超臨界蒸気圧縮サイクルで使用されて好適な容量可変コンプレッサの容量制御装置および容量制御弁を提供することを目的としている。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、請求項1記載の発明による超臨界蒸気圧縮サイクルの運転制御方法は、斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮サイクルの運転制御方法において、前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有する容量制御弁の前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減するものである。
【0008】
また、上述の目的を達成するために、請求項2記載の発明による超臨界蒸気圧縮サイクルの運転制御装置は、斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮サイクルの運転制御装置において、前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有する容量制御弁を備え、該容量制御弁の前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減ものである。
【0009】
また、上述の目的を達成するために、請求項3記載の発明による容量可変コンプレッサの容量制御装置は、斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを冷媒が順に循環する冷凍サイクルで使用される斜板式容量可変コンプレッサの容量制御装置において、前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有し、前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減するものである。
【0010】
また、上述の目的を達成するために、請求項4記載の発明による容量制御弁は、斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを冷媒が順に循環する冷凍サイクルで使用される容量制御弁において、前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有し、前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を斜板式容量可変コンプレッサのクランク室に導き、前記斜板式容量可変コンプレッサの容量を低減するものである。
【0011】
請求項5記載の容量制御弁は、前記流体封入ベローズに超臨界蒸気圧縮サイクルを最適運転させる密度の冷媒が封入されているものである。
【0012】
請求項6記載の容量制御弁は、前記流体封入ベローズの容積を可変設定できるものである。
【0013】
請求項1記載の発明による超臨界蒸気圧縮サイクルの運転制御方法では、容量制御弁の流体封入ベローズに放熱器の出口側の冷媒圧力、冷媒温度が作用し、放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、流体封入ベローズが収縮して弁体が弁ポートを開き、放熱器の出口側の冷媒が斜板式容量可変コンプレッサのクランク室に入り、放熱器の出口側の冷媒圧力、冷媒温度に応じて斜板式容量可変コンプレッサの容量が低減する
【0014】
請求項2記載の発明による超臨界蒸気圧縮サイクルの運転制御装置では、容量制御弁の流体封入ベローズに放熱器の出口側の冷媒圧力、冷媒温度が作用し、放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、流体封入ベローズが収縮して弁体が弁ポートを開き、放熱器の出口側の冷媒が斜板式容量可変コンプレッサのクランク室に入り、放熱器の出口側の冷媒圧力、冷媒温度に応じて斜板式容量可変コンプレッサの容量が低減する
【0015】
請求項3記載の発明による容量可変コンプレッサの容量制御装置では、容量制御弁の流体封入ベローズに放熱器の出口側の冷媒圧力、冷媒温度が作用し、放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、流体封入ベローズが収縮して弁体が弁ポートを開き、放熱器の出口側の冷媒が斜板式容量可変コンプレッサのクランク室に入り、放熱器の出口側の冷媒圧力、冷媒温度に応じて斜板式容量可変コンプレッサの容量が低減する
【0016】
請求項4記載の発明による容量制御弁では、流体封入ベローズに放熱器の出口側の冷媒圧力、冷媒温度が作用し、放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、流体封入ベローズが収縮して弁体が弁ポートを開き、放熱器の出口側の冷媒が斜板式容量可変コンプレッサのクランク室に入り、斜板式容量可変コンプレッサの容量が低減する。
【0017】
請求項5記載の容量制御弁では、流体封入ベローズに超臨界蒸気圧縮サイクルを最適運転させる密度の冷媒が封入されており、流体封入ベローズはその冷媒による内圧と放熱器の出口側の冷媒圧力との平衡関係により動作する。
【0018】
請求項6記載の容量制御弁では、流体封入ベローズの容積を可変設定することで、ベローズ内部の冷媒密度が変化する
【0019】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。
【0020】
図1はこの発明による超臨界蒸気圧縮サイクルの運転制御装置および容量可変コンプレッサの容量制御装置の一つの実施の形態を示している。
【0021】
この超臨界蒸気圧縮サイクルは、コンプレッサとして容量可変コンプレッサ1が使用され、容量可変コンプレッサ1と、放熱器(ガスクーラ)2と、容量制御弁3と、膨張弁4と、蒸発器5が冷媒通路(配管)6、7、8、9、10によりループ状に連通接続され、この閉ループに封入された炭酸ガス等による冷媒が循環する。
【0022】
容量可変コンプレッサ1は、斜板式のものであり、圧縮機ハウジング11により画定されたクランク室12と、各々一方のストロークエンド部にてクランク室12に連通している複数個のシリンダ室13とを有している。シリンダ室13の各々にはピストン14が軸線方向に摺動自在に嵌合しており、各ピストン14のクランク室12側にピスントロッド15の一端が連結されている。
【0023】
圧縮機ハウジング11は駆動軸16を回転可能に支持しており、駆動軸16は、プーリ17に掛け渡された図示されていない駆動ベルトにより図示されていないエンジンと駆動連結され、エンジンによって回転駆動される。
【0024】
駆動軸16にはクランク室12内においてウオブル板(斜板)18が公知の連繋機構(図示省略)により取付角度変更可能にトルク伝達関係にて連結されており、ウオブル板18のシリンダ室13側の板面にはピスントロッド15が軸力伝達可能に係合している。
【0025】
ウオブル板18が傾斜状態にて駆動軸16により回転駆動されることにより、各シリンダ室13のピストン14はウオブル板18の傾斜角に応じたストロークをもって往復動し、その傾斜角がクランク室12の圧力と各シリンダ室13の吸入圧力(圧縮機吸入圧力)との差圧に応じて調整される。
【0026】
この場合、容量可変コンプレッサ1は、クランク室12の圧力の上昇に応じてウオブル板18の傾斜角が減少してピストン14のストロークが低減することにより吐出容量を低減し、クランク室12の圧力の低下に応じてウオブル板18の傾斜角が増大してピストン14のストロークが増大することにより吐出容量を増大し、クランク室12の圧力が各シリンダ室13の吸入圧力に実質的に等しい圧力になることによってフルロード運転状態になる。
【0027】
各シリンダ室13には各々一方向弁による吸入弁、吐出弁(図示省略)を有する吸入ポート19と吐出ポート20とが形成されており、各シリンダ室4の吸入ポート19は吸入通路21によって吸入接続ポート23に連通し、吐出ポート20は吐出通路24によって吐出接続ポート25に連通しており、吸入接続ポート23は冷媒通路10によって蒸発器5の出力側に接続され、吐出接続ポート24は冷媒通路6によって放熱器2の入口側に接続されている。
【0028】
容量制御弁3は、放熱器2の出口側の冷媒圧力、冷媒温度を検出し、放熱器2の出口側の冷媒圧力、冷媒温度に応じて開閉し、放熱器2の出口側の冷媒を導管25によって容量可変コンプレッサ1のクランク室接続ポート26に与えるようになっている。クランク室接続ポート26は圧縮機ハウジング11に形成された通路27によってクランク室12に連通している。
【0029】
容量制御弁3が開弁することにより、放熱器2の出口側の冷媒がクランク室12に供給されると、クランク室12の圧力が上昇し、容量可変コンプレッサ1の容量が低減する。
【0030】
このコンプレッサ容量制御により、高圧側の冷媒圧力を最適密度線上の圧力に保って放熱器2の出口側の冷媒圧力を最適状態に制御することがでる。なお、蒸発器5側は蒸発器5の出口側の冷媒温度に感応する感温式の膨張弁4によって最適状態に制御される。
【0031】
次に、図2を参照して容量制御弁3の具体的構成について説明する。
【0032】
容量制御弁3は、ハウジング31と、ハウジング31のボアー32にOリング33、34等を介して気密装着されて止め輪35により固定された内部ボティ36とを有している。
【0033】
内部ボティ36は内部に弁室37を画定している。弁室37は、一方において、連通孔38、ポート39によって冷媒通路7と連通し、他方において、連通孔40、ポート41によって冷媒通路8と連通し、放熱器2の出口側の通路の一部をなしている。
【0034】
内部ボティ36には弁室37とポート42、43とを連通接続する弁ポート44が形成されており、弁ポート44はボール弁体45により開閉される。ポート42、43には導管25が接続されている。
【0035】
内部ボティ36には、下部エンドフランジ46、ベローズ本体47、上部エンドフランジ48による流体封入ベローズ49が配置されており、上部エンドフランジ48にボール弁体45が固着されている。下部エンドフランジ46は内部ボティ36にねじ係合している調整ねじ部材50により内部ボティ36に固定されている。
【0036】
下部エンドフランジ46には冷媒充填口51が形成されており、冷媒充填口51はベローズ本体47の内部に冷媒を充填した後にプラグ52により密封される。これにより、ベローズ本体47の内部に冷媒が封入される。炭酸ガス冷媒を使用する超臨界蒸気圧縮サイクルでは、超臨界蒸気圧縮サイクルを最適運転させる密度の冷媒が封入される。
【0037】
流体封入ベローズ49内には、ベローズ本体47を伸長方向に付勢する圧縮コイルばね53と、ベローズ本体47の最大収縮量を規制するためめストッパ54が設けられてる。
【0038】
流体封入ベローズ49は、弁室37内にあって放熱器2の出口側の冷媒圧力および冷媒温度に感応し、超臨界状態の冷媒の温度に相応するよる、内圧およびバイアスばねとして作用する圧縮コイルばね53のばね力の圧力と放熱器2の出口側の冷媒圧力との平衡関係により動作し、放熱器2の出口側の冷媒温度が所定値で、放熱器2の出口側の冷媒圧力が所定値(最適圧)以下である状態下では、流体封入ベローズ49は伸長状態を保ち、ボール弁体45を弁座部44aに押し付けて弁ポート44を閉じる。この状態では、容量可変コンプレッサ1はフルロード運転状態になる。
【0039】
放熱器2の出口側の冷媒温度が所定値の状態下で、放熱器2の出口側の冷冷媒圧力が所定値(最適圧)より高くなると、流体封入ベローズ49が収縮し、ボール弁体45が弁座部44aより離れて弁ポート44が開かれる。弁ポート44が開かれると、弁室37、弁ポート44、ポート42、43、導管25を通って容量可変コンプレッサ1のクランク室12に放熱器2の出口側の冷媒が導入され、クランク室12の圧力が上昇する。これにより、容量可変コンプレッサ1の容量が低減し、放熱器2の出口側の冷媒圧力が最適密度線以上の圧力にならないように保たれる。
【0040】
超臨界状態での運転では、エンジン回転数の変化により、高圧側の冷媒圧力(高圧冷媒密度が高いため)が比較的大幅に急変するが、流体封入ベローズ49は瞬時に応答することができるので、冷媒圧力の急変に適切に対応できる。
【0041】
また、調整ねじ部材50の内部ボティ36に対するねじ係合位置を調整することにより、流体封入ベローズ49の容積が可変設定される。この流体封入ベローズ49の容積の可変設定により、ベローズ本体47の内部の冷媒密度が変化する。
【0042】
これにより、図3に示されているように、最適密度線の特性を選択的に得ることができる。
【0043】
【発明の効果】
以上の説明から理解される如く、請求項1記載の発明による超臨界蒸気圧縮サイクルの運転制御方法によれば、斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮サイクルの運転制御方法において、前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有する容量制御弁の前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減するものとした。
【0044】
このため、流体封入ベローズに放熱器の出口側の冷媒圧力、冷媒温度が作用し、放熱器の出口側の冷媒温度が所定値の時に放熱器の出口側の冷媒圧力が所定値以上になれば、流体封入ベローズが収縮して弁体が弁ポートを開き、放熱器の出口側の冷媒が斜板式容量可変コンプレッサのクランク室に入り、斜板式容量可変コンプレッサの容量が低減し、放熱器の出口側の冷媒状態(圧力、温度)に応じて斜板式容量可変コンプレッサの容量制御が行われ、放熱器の出口側の冷媒圧力をサイクル特性上の最適圧に保つことができ、超臨界蒸気圧縮サイクルを広域に亙って最適運転できるようになる。
【0045】
請求項2記載の発明による超臨界蒸気圧縮サイクルの運転制御装置によれば、斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮サイクルの運転制御装置において、前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有する容量制御弁を備え、該容量制御弁の前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減ものとした。
【0046】
このため、流体封入ベローズに放熱器の出口側の冷媒圧力、冷媒温度が作用し、放熱器の出口側の冷媒温度が所定値の時に放熱器の出口側の冷媒圧力が所定値以上になれば、流体封入ベローズが収縮して弁体が弁ポートを開き、放熱器の出口側の冷媒が斜板式容量可変コンプレッサのクランク室に入り、斜板式容量可変コンプレッサの容量が低減し、放熱器の出口側の冷媒状態に応じて斜板式容量可変コンプレッサの容量制御が行われ、放熱器の出口側の冷媒圧力をサイクル特性上の最適圧に保つことができ、高圧側の冷媒圧力を最適密度線上の圧力に保って超臨界蒸気圧縮サイクルを広域に亙って最適運転できるようになる。
【0047】
請求項3記載の発明による容量可変コンプレッサの容量制御装置によれば、斜板式容量可変容量可変コンプレッサと放熱器と膨張弁と蒸発器とを冷媒が順に循環する冷凍サイクルで使用される斜板式容量可変コンプレッサの容量制御装置において、前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有し、前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減するものとした。
【0048】
このため、流体封入ベローズに放熱器の出口側の冷媒圧力、冷媒温度が作用し、放熱器の出口側の冷媒温度が所定値の時に放熱器の出口側の冷媒圧力が所定値以上になれば、流体封入ベローズが収縮して弁体が弁ポートを開き、放熱器の出口側の冷媒が斜板式容量可変コンプレッサのクランク室に入り、斜板式容量可変コンプレッサの容量が低減し、放熱器の出口側の冷媒状態に応じて斜板式容量可変コンプレッサの容量制御が行われ、放熱器の出口側の冷媒圧力をサイクル特性上の最適圧に保つことができ、高圧側の冷媒圧力を最適密度線を超えない圧力に保って超臨界蒸気圧縮サイクル等の冷凍サイクルを広域に亙って最適運転できるようになる。
【0049】
請求項4記載の発明による容量制御弁によれば、斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを冷媒が順に循環する冷凍サイクル装置で使用される容量制御弁において、放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、流体封入ベローズにより駆動され、放熱器の出口側の冷媒温度が所定値の時に放熱器の出口側の冷媒圧力が所定値以上になれば弁ポートを開く弁体とを有し、弁ポートが開かれることにより前記放熱器の出口側の冷媒を斜板式容量可変コンプレッサのクランク室に導き、斜板式容量可変コンプレッサの容量を低減するものとした。
【0050】
このため、流体封入ベローズに放熱器の出口側の冷媒圧力、冷媒温度が作用し、放熱器の出口側の冷媒温度が所定値の時に放熱器の出口側の冷媒圧力が所定値以上になれば、流体封入ベローズが収縮して弁体が弁ポートを開き、放熱器の出口側の冷媒が斜板式容量可変コンプレッサのクランク室に入り、斜板式容量可変コンプレッサの容量が低減し、放熱器の出口側の冷媒圧力に応じて斜板式容量可変コンプレッサの容量制御が行われ、放熱器の出口側の冷媒圧力を放熱器の出口側の冷媒温度に相応したサイクル特性上の最適圧に保つことができ、高圧側の冷媒圧力を最適密度線を超えない圧力に保って超臨界蒸気圧縮サイクル等の冷凍サイクルを広域に亙って最適運転できるようになる。
【0051】
請求項5記載の容量制御弁によれば、前記流体封入ベローズには超臨界蒸気圧縮サイクルを最適運転させる密度の冷媒が封入されているものとした。
【0052】
このため、流体封入ベローズは超臨界蒸気圧縮サイクルを最適運転させる密度の冷媒による内圧と放熱器の出口側の冷媒圧力との平衡関係により動作し、高圧側の冷媒圧力を最適密度線を超えない圧力に保って炭酸ガス冷媒等を使用する超臨界蒸気圧縮サイクルを広域に亙って最適運転できるようなる。
【0053】
請求項6記載の容量制御弁によれば、流体封入ベローズに超臨界蒸気圧縮サイクルを最適運転させる密度の冷媒が封入されており、流体封入ベローズはその冷媒による内圧と放熱器の出口側の冷媒圧力との平衡関係により動作するものとした。
【0054】
このため、流体封入ベローズの容積を可変設定することで、ベローズ内部の冷媒密度が変化し、最適密度線の特性を選択的に得ることができる。
【図面の簡単な説明】
【図1】この発明による超臨界蒸気圧縮サイクルの運転制御装置および容量可変コンプレッサの容量制御装置の一つの実施の形態を示す全体構成図である。
【図2】この発明による容量制御弁の具体的構成を示す断面図である。
【図3】冷媒圧力−温度特性を示すグラフである。
【符号の説明】
1 容量可変コンプレッサ
2 放熱器
3 容量制御弁
4 膨張弁
5 蒸発器
12 クランク室
13 シリンダ室
14 ピストン
16 駆動軸
18 ウオブル板
23 吸入接続ポート
25 吐出接続ポート
36 内部ボティ
37 弁室
44 弁ポート
45 ボール弁体
49 流体封入ベローズ
50 調整ねじ部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation control method and apparatus for a supercritical vapor compression cycle, a capacity control apparatus and a capacity control valve for a variable capacity compressor, and in particular, is operated in a supercritical region like a refrigeration cycle apparatus using a carbon dioxide refrigerant. The present invention relates to a supercritical vapor compression cycle operation control method and apparatus, and a capacity control apparatus and capacity control valve for a variable capacity compressor used in such a refrigeration cycle.
[0002]
[Prior art]
In recent years, in order to prevent destruction of the ozone layer, research has been conducted on the use of carbon dioxide (CO 2 ) instead of chlorofluorocarbon as a refrigerant. A refrigeration cycle apparatus using a carbon dioxide refrigerant is operated in a supercritical region, unlike a chlorofluorocarbon refrigerant, so such a refrigeration cycle is called a supercritical vapor compression cycle, like a chlorofluorocarbon refrigerant. The refrigerant does not condense on the high pressure side.
The supercritical vapor compression cycle has characteristics that pressure fluctuations are more likely to occur than in the case of using a chlorofluorocarbon refrigerant, and the coefficient of performance depends on the state of the refrigerant on the high pressure side.
[0003]
As an operation method and apparatus of the supercritical vapor compression cycle as described above, as shown in Japanese Examined Patent Publication No. 7-18602, the amount of refrigerant on the high pressure side is controlled by controlling the remaining amount of liquid in the buffering refrigerant receiver. Adjusting to obtain a predetermined cooling capacity even in the supercritical region, or as disclosed in Japanese Patent Laid-Open No. 9-264622, the internal pressure of the diaphragm chamber filled with refrigerant, the refrigerant pressure on the outlet side of the radiator, The pressure control valve that operates according to the equilibrium relationship of the radiator controls the outlet side pressure and the outlet side temperature of the radiator along the optimum control line, as disclosed in JP-A-9-101063, One that controls the capacity of a variable compressor is known.
[0004]
[Problems to be solved by the invention]
As shown in Japanese Patent Publication No. 7-18602, the control of the remaining amount of liquid in the buffering refrigerant receiver is large in size, difficult to control, and lacks practicality. As shown in Japanese Patent Laid-Open No. 9-264622, in the case of optimal control by a pressure control valve that operates according to the equilibrium relationship between the internal pressure of the refrigerant-filled diaphragm chamber and the refrigerant pressure on the radiator outlet side, Although it can be controlled, the refrigerant density on the high-pressure side is close to the liquid phase, so the refrigerant density on the high-pressure side fluctuates greatly when the compressor speed changes, and the refrigeration cycle device is controlled by the movement of the valve in accordance with this. The refrigerant flow rate to the low pressure side fluctuates greatly, and therefore the pressure fluctuation on the evaporator side is large, and it is difficult to stably control the refrigerant circuit.
[0005]
The refrigeration cycle disclosed in Japanese Patent Application Laid-Open No. 9-101063 is a refrigeration cycle that uses a carbon dioxide refrigerant, and controls the capacity of the variable capacity compressor, but lacks the concreteness of the control. It has not yet provided a technique for optimally operating a refrigeration cycle apparatus using a refrigerant over a wide area.
[0006]
The present invention has been made to solve the above-described problems, and maintains a supercritical vapor compression cycle using a carbon dioxide refrigerant or the like while keeping the refrigerant pressure on the high pressure side at a pressure not exceeding the optimum density line. It is an object of the present invention to provide an operation control method and apparatus that enables optimal operation over a long period of time, and a capacity control apparatus and capacity control valve for a variable capacity compressor that are suitable for use in a supercritical vapor compression cycle.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the operation control method of the supercritical vapor compression cycle according to the first aspect of the present invention includes a swash plate type variable capacity compressor, a radiator, an expansion valve, and an evaporator in which a refrigerant such as carbon dioxide gas is sequentially supplied. In the operation control method of the supercritical vapor compression cycle that circulates and operates in the supercritical region, the fluid-filled bellows exerted the refrigerant pressure and refrigerant temperature on the outlet side of the radiator, and the fluid-filled bellows are driven, When the refrigerant temperature on the outlet side of the radiator is a predetermined value, if the refrigerant pressure on the outlet side of the radiator exceeds a predetermined value, the valve port of the capacity control valve having a valve body that opens the valve port is opened. wherein the radiator on the outlet side of the refrigerant introduced into a crankcase of the swash plate type variable displacement compressor, the outlet side refrigerant pressure before Symbol radiator, the swash plate type variable displacement compressor according to the refrigerant temperature by It is intended to reduce the capacity.
[0008]
In order to achieve the above-mentioned object, an operation control device for a supercritical vapor compression cycle according to the second aspect of the present invention provides a swash plate type variable capacity compressor, a radiator, an expansion valve, and an evaporator with a refrigerant such as carbon dioxide gas. In the supercritical vapor compression cycle operation control device that circulates in order and is operated in the supercritical region, is driven by the fluid-filled bellows that exerts the refrigerant pressure and refrigerant temperature on the outlet side of the radiator, and the fluid-filled bellows. A capacity control valve having a valve body that opens a valve port if the refrigerant pressure on the outlet side of the radiator becomes equal to or higher than a predetermined value when the refrigerant temperature on the outlet side of the radiator is a predetermined value. a coolant outlet side of the radiator by the valve port of the valve is opened leading to the crank chamber of the swash plate type variable displacement compressor, before Symbol radiator of the refrigerant on the outlet side pressure of the front depending on the coolant temperature Those you reduce the capacity of the swash plate type variable displacement compressor.
[0009]
In order to achieve the above object, a capacity control apparatus for a variable capacity compressor according to a third aspect of the present invention is a refrigeration cycle in which refrigerant circulates in order through a swash plate variable capacity compressor, a radiator, an expansion valve, and an evaporator. In the capacity control device of the swash plate type variable capacity compressor used in the above, a fluid-filled bellows exerted on the refrigerant pressure and refrigerant temperature on the outlet side of the radiator, driven by the fluid-filled bellows, and on the outlet side of the radiator If the refrigerant pressure on the outlet side of the radiator becomes a predetermined value or higher when the refrigerant temperature is a predetermined value, a valve body that opens a valve port is provided, and by opening the valve port, the outlet side of the radiator the refrigerant introduced into a crankcase of the swash plate type variable displacement compressor, the outlet side refrigerant pressure before Symbol radiator, to reduce the capacity of the swash plate type variable displacement compressor according to the refrigerant temperature It is intended.
[0010]
In order to achieve the above object, the capacity control valve according to the present invention is used in a refrigeration cycle in which refrigerant circulates through a swash plate variable capacity compressor, a radiator, an expansion valve, and an evaporator in order. In the capacity control valve, a fluid- filled bellows exerted on the refrigerant pressure and refrigerant temperature on the outlet side of the radiator, and the radiator when the refrigerant temperature on the outlet side of the radiator is a predetermined value driven by the fluid-filled bellows A valve body that opens a valve port if the refrigerant pressure on the outlet side of the engine reaches a predetermined value or more, and the valve port is opened to allow the refrigerant on the outlet side of the radiator to pass through the crank chamber of the swash plate type variable capacity compressor the lead, thereby reducing the capacity of the swash plate type variable displacement compressor.
[0011]
According to a fifth aspect of the present invention, the fluid control bellows is filled with a refrigerant having a density for optimally operating a supercritical vapor compression cycle.
[0012]
The capacity control valve according to claim 6 can variably set the volume of the fluid- filled bellows.
[0013]
In the operation control method of the supercritical vapor compression cycle according to the first aspect of the invention, the refrigerant pressure and the refrigerant temperature on the outlet side of the radiator act on the fluid-filled bellows of the capacity control valve, and the refrigerant temperature on the outlet side of the radiator becomes If the refrigerant pressure on the outlet side of the radiator exceeds a predetermined value at a predetermined value, the fluid-filled bellows contracts, the valve body opens the valve port, and the refrigerant on the outlet side of the radiator passes through the swash plate capacity variable compressor. The capacity of the swash plate type variable capacity compressor is reduced in accordance with the refrigerant pressure and refrigerant temperature on the outlet side of the radiator after entering the crank chamber .
[0014]
In the operation control device for the supercritical vapor compression cycle according to the second aspect of the invention, the refrigerant pressure and refrigerant temperature on the outlet side of the radiator act on the fluid-filled bellows of the capacity control valve, and the refrigerant temperature on the outlet side of the radiator becomes If the refrigerant pressure on the outlet side of the radiator exceeds a predetermined value at a predetermined value, the fluid-filled bellows contracts, the valve body opens the valve port, and the refrigerant on the outlet side of the radiator passes through the swash plate capacity variable compressor. The capacity of the swash plate type variable capacity compressor is reduced in accordance with the refrigerant pressure and refrigerant temperature on the outlet side of the radiator after entering the crank chamber .
[0015]
In the capacity control device for the capacity variable compressor according to the invention of claim 3, the refrigerant pressure and the refrigerant temperature on the outlet side of the radiator act on the fluid-filled bellows of the capacity control valve, and the refrigerant temperature on the outlet side of the radiator is a predetermined value. If the refrigerant pressure on the outlet side of the radiator exceeds a predetermined value at this time, the fluid-filled bellows contracts, the valve body opens the valve port, and the refrigerant on the outlet side of the radiator becomes the crank chamber of the swash plate type variable capacity compressor The capacity of the swash plate type variable capacity compressor is reduced according to the refrigerant pressure and refrigerant temperature on the outlet side of the radiator.
[0016]
In the capacity control valve according to the invention of claim 4, when the refrigerant pressure and the refrigerant temperature on the outlet side of the radiator act on the fluid- filled bellows, and the refrigerant temperature on the outlet side of the radiator has a predetermined value, the outlet side of the radiator When the refrigerant pressure of the refrigerant exceeds a predetermined value, the fluid- filled bellows contracts, the valve body opens the valve port, the refrigerant on the outlet side of the radiator enters the crank chamber of the swash plate type variable compressor, and the swash plate type variable variable compressor Reduced capacity.
[0017]
The capacity control valve according to claim 5, wherein, in the fluid filled bellows and refrigerant density for optimal operation supercritical vapor compression cycle is sealed, fluid-filled bellows and the refrigerant pressure on the outlet side of the internal pressure and the radiator by the refrigerant It operates by the equilibrium relation of
[0018]
In the capacity control valve according to the sixth aspect, the refrigerant density in the bellows changes by variably setting the volume of the fluid- filled bellows.
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0020]
FIG. 1 shows an embodiment of an operation control apparatus for a supercritical vapor compression cycle and a capacity control apparatus for a variable displacement compressor according to the present invention.
[0021]
In this supercritical vapor compression cycle, a variable capacity compressor 1 is used as a compressor. A variable capacity compressor 1, a radiator (gas cooler) 2, a capacity control valve 3, an expansion valve 4, and an evaporator 5 are connected to a refrigerant passage ( Piping) 6, 7, 8, 9, and 10 are connected in a loop shape, and a refrigerant such as carbon dioxide enclosed in the closed loop circulates.
[0022]
The variable capacity compressor 1 is of a swash plate type, and includes a crank chamber 12 defined by a compressor housing 11 and a plurality of cylinder chambers 13 communicating with the crank chamber 12 at one stroke end portion. Have. A piston 14 is fitted in each cylinder chamber 13 so as to be slidable in the axial direction, and one end of a piston rod 15 is connected to the crank chamber 12 side of each piston 14.
[0023]
The compressor housing 11 rotatably supports a drive shaft 16, and the drive shaft 16 is drivingly connected to an engine (not shown) by a drive belt (not shown) spanned on a pulley 17, and is driven to rotate by the engine. Is done.
[0024]
A wobble plate (swash plate) 18 is connected to the drive shaft 16 in the crank chamber 12 in a torque transmission relationship so that the mounting angle can be changed by a known connecting mechanism (not shown). The piston rod 15 is engaged with the plate surface so as to transmit axial force.
[0025]
When the wobble plate 18 is rotationally driven by the drive shaft 16 in an inclined state, the piston 14 of each cylinder chamber 13 reciprocates with a stroke corresponding to the inclination angle of the wobble plate 18, and the inclination angle of the crank chamber 12 The pressure is adjusted in accordance with the differential pressure between the pressure and the suction pressure (compressor suction pressure) of each cylinder chamber 13.
[0026]
In this case, the variable displacement compressor 1 reduces the discharge capacity by decreasing the inclination angle of the wobble plate 18 and reducing the stroke of the piston 14 as the pressure in the crank chamber 12 increases, thereby reducing the pressure in the crank chamber 12. In response to the decrease, the inclination angle of the wobble plate 18 increases and the stroke of the piston 14 increases, thereby increasing the discharge capacity, and the pressure in the crank chamber 12 becomes substantially equal to the suction pressure in each cylinder chamber 13. It will be in a full load operation state.
[0027]
Each cylinder chamber 13 is formed with a suction port 19 and a discharge port 20 each having a suction valve and a discharge valve (not shown) by a one-way valve. The suction port 19 of each cylinder chamber 4 is sucked by a suction passage 21. The discharge port 20 communicates with the discharge connection port 25 through the discharge passage 24, the suction connection port 23 is connected to the output side of the evaporator 5 through the refrigerant passage 10, and the discharge connection port 24 communicates with the refrigerant. The passage 6 is connected to the inlet side of the radiator 2.
[0028]
The capacity control valve 3 detects the refrigerant pressure and refrigerant temperature on the outlet side of the radiator 2, opens and closes according to the refrigerant pressure and refrigerant temperature on the outlet side of the radiator 2, and connects the refrigerant on the outlet side of the radiator 2 to the conduit. 25 is applied to the crank chamber connection port 26 of the variable displacement compressor 1. The crank chamber connection port 26 communicates with the crank chamber 12 by a passage 27 formed in the compressor housing 11.
[0029]
When the refrigerant on the outlet side of the radiator 2 is supplied to the crank chamber 12 by opening the capacity control valve 3, the pressure in the crank chamber 12 increases and the capacity of the variable capacity compressor 1 decreases.
[0030]
By this compressor capacity control, the refrigerant pressure on the outlet side of the radiator 2 can be controlled to the optimum state while maintaining the refrigerant pressure on the high pressure side at the pressure on the optimum density line. The evaporator 5 side is controlled to an optimum state by a temperature-sensitive expansion valve 4 that is sensitive to the refrigerant temperature on the outlet side of the evaporator 5.
[0031]
Next, a specific configuration of the capacity control valve 3 will be described with reference to FIG.
[0032]
The capacity control valve 3 includes a housing 31 and an internal body 36 that is airtightly attached to the bore 32 of the housing 31 via O-rings 33 and 34 and fixed by a retaining ring 35.
[0033]
The inner body 36 defines a valve chamber 37 therein. On the one hand, the valve chamber 37 communicates with the refrigerant passage 7 through the communication hole 38 and the port 39, and on the other hand, communicates with the refrigerant passage 8 through the communication hole 40 and the port 41, and a part of the passage on the outlet side of the radiator 2. I am doing.
[0034]
A valve port 44 that connects the valve chamber 37 and the ports 42 and 43 to each other is formed in the internal body 36, and the valve port 44 is opened and closed by a ball valve body 45. A conduit 25 is connected to the ports 42 and 43.
[0035]
A fluid-filled bellows 49 including a lower end flange 46, a bellows main body 47, and an upper end flange 48 is disposed in the inner body 36, and a ball valve body 45 is fixed to the upper end flange 48. The lower end flange 46 is fixed to the inner body 36 by an adjusting screw member 50 that is threadedly engaged with the inner body 36.
[0036]
A refrigerant filling port 51 is formed in the lower end flange 46, and the refrigerant filling port 51 is sealed by a plug 52 after filling the inside of the bellows body 47 with the refrigerant. As a result, the refrigerant is sealed inside the bellows main body 47. In a supercritical vapor compression cycle using a carbon dioxide refrigerant, a refrigerant having a density for optimal operation of the supercritical vapor compression cycle is enclosed.
[0037]
In the fluid-filled bellows 49, there are provided a compression coil spring 53 for urging the bellows body 47 in the extending direction and a stopper 54 for restricting the maximum contraction amount of the bellows body 47.
[0038]
The fluid-filled bellows 49 is in the valve chamber 37 and is sensitive to the refrigerant pressure and refrigerant temperature on the outlet side of the radiator 2, and acts as an internal pressure and bias spring according to the temperature of the refrigerant in the supercritical state. The operation is based on an equilibrium relationship between the pressure of the spring force of the spring 53 and the refrigerant pressure on the outlet side of the radiator 2, the refrigerant temperature on the outlet side of the radiator 2 is a predetermined value, and the refrigerant pressure on the outlet side of the radiator 2 is predetermined. Under a state where the value is less than the optimum value (optimal pressure), the fluid-filled bellows 49 maintains an extended state, and the ball valve body 45 is pressed against the valve seat portion 44a to close the valve port 44. In this state, the variable capacity compressor 1 is in a full load operation state.
[0039]
When the refrigerant temperature on the outlet side of the radiator 2 is at a predetermined value and the cold refrigerant pressure on the outlet side of the radiator 2 becomes higher than a predetermined value (optimum pressure), the fluid-filled bellows 49 contracts, and the ball valve body 45 However, the valve port 44 is opened away from the valve seat 44a. When the valve port 44 is opened, the refrigerant on the outlet side of the radiator 2 is introduced into the crank chamber 12 of the variable displacement compressor 1 through the valve chamber 37, the valve port 44, the ports 42 and 43, and the conduit 25. The pressure increases. Thereby, the capacity | capacitance of the capacity | capacitance variable compressor 1 reduces, and the refrigerant | coolant pressure of the exit side of the heat radiator 2 is maintained so that it may not become the pressure more than an optimal density line.
[0040]
In operation in a supercritical state, the refrigerant pressure on the high pressure side (because of the high pressure refrigerant density is high) changes relatively drastically due to changes in the engine speed, but the fluid-filled bellows 49 can respond instantaneously. It can respond appropriately to sudden changes in refrigerant pressure.
[0041]
Further, the volume of the fluid-filled bellows 49 is variably set by adjusting the screw engagement position of the adjustment screw member 50 with respect to the internal body 36. Due to the variable setting of the volume of the fluid-filled bellows 49, the refrigerant density inside the bellows body 47 changes.
[0042]
Thereby, as shown in FIG. 3, the characteristics of the optimum density line can be selectively obtained.
[0043]
【The invention's effect】
As can be understood from the above description, according to the operation control method of the supercritical vapor compression cycle according to the first aspect of the present invention, the swash plate type variable capacity compressor, the radiator, the expansion valve, and the evaporator are made of refrigerant such as carbon dioxide gas. In the operation control method of the supercritical vapor compression cycle that is circulated in order and operated in the supercritical region, the fluid-filled bellows exerted the refrigerant pressure and the refrigerant temperature on the outlet side of the radiator, and the fluid-filled bellows are driven. When the refrigerant temperature on the outlet side of the radiator is a predetermined value, if the refrigerant pressure on the outlet side of the radiator exceeds a predetermined value, the valve port of the capacity control valve having a valve body that opens the valve port is opened. directing a coolant outlet side of the radiator to the crank chamber of the swash plate type variable capacity compressor by being, the outlet side refrigerant pressure before Symbol radiator, the swash plate type variable displacement co according to the refrigerant temperature It was assumed to reduce the capacity of the presser.
[0044]
For this reason, if the refrigerant pressure and the refrigerant temperature on the outlet side of the radiator act on the fluid-filled bellows, and the refrigerant temperature on the outlet side of the radiator is a predetermined value, the refrigerant pressure on the outlet side of the radiator becomes a predetermined value or more. , The fluid-filled bellows contracts, the valve element opens the valve port, the refrigerant on the outlet side of the radiator enters the crank chamber of the swash plate type variable compressor, the capacity of the swash plate type variable compressor decreases, and the outlet of the radiator The capacity control of the swash plate type variable capacity compressor is performed according to the refrigerant state (pressure, temperature) on the side, and the refrigerant pressure on the outlet side of the radiator can be kept at the optimum pressure in the cycle characteristics, and the supercritical vapor compression cycle Can be operated optimally over a wide area.
[0045]
According to the operation control apparatus for the supercritical vapor compression cycle according to the second aspect of the present invention, refrigerant such as carbon dioxide is circulated in order through the swash plate variable capacity compressor, the radiator, the expansion valve, and the evaporator in the supercritical region. In the operation control device of the supercritical vapor compression cycle to be operated, the refrigerant pressure on the outlet side of the radiator, the fluid-filled bellows exerted on the refrigerant temperature, and the refrigerant on the outlet side of the radiator driven by the fluid-filled bellows When the refrigerant pressure on the outlet side of the radiator reaches a predetermined value or more when the temperature is a predetermined value, a capacity control valve having a valve body that opens the valve port is provided, and the valve port of the capacity control valve is opened wherein the radiator on the outlet side of the refrigerant introduced into a crankcase of the swash plate type variable displacement compressor, the outlet side refrigerant pressure before Symbol radiator, the swash plate type variable displacement compressor according to the refrigerant temperature by It was assumed that to reduce the capacity.
[0046]
For this reason, if the refrigerant pressure and the refrigerant temperature on the outlet side of the radiator act on the fluid-filled bellows, and the refrigerant temperature on the outlet side of the radiator is a predetermined value, the refrigerant pressure on the outlet side of the radiator becomes a predetermined value or more. The fluid-filled bellows contracts, the valve element opens the valve port, the refrigerant on the outlet side of the radiator enters the crank chamber of the swash plate type variable compressor, the capacity of the swash plate type variable compressor decreases, and the outlet of the radiator The capacity control of the swash plate capacity variable compressor is performed according to the refrigerant state on the side, and the refrigerant pressure on the outlet side of the radiator can be maintained at the optimum pressure in the cycle characteristics, and the refrigerant pressure on the high pressure side is on the optimum density line. The supercritical vapor compression cycle can be optimally operated over a wide area while maintaining the pressure.
[0047]
According to the capacity control device of the variable displacement compressor according to the third aspect of the present invention, the swash plate type capacity and a swash plate type variable capacity variable displacement compressor and the radiator and the expansion valve evaporator refrigerant used in the refrigeration cycle that circulates in the order In the variable compressor capacity control device, when the refrigerant pressure on the outlet side of the radiator and the fluid-filled bellows exerted on the refrigerant temperature are driven by the fluid-filled bellows, and the refrigerant temperature on the outlet side of the radiator is a predetermined value When the refrigerant pressure on the outlet side of the radiator reaches a predetermined value or more, a valve body that opens a valve port is provided, and the refrigerant on the outlet side of the radiator is variable in the swash plate capacity by opening the valve port. led to the crank chamber of the compressor, the outlet side refrigerant pressure before Symbol radiator, was assumed to reduce the capacity of the swash plate type variable displacement compressor according to the coolant temperature.
[0048]
For this reason, if the refrigerant pressure and the refrigerant temperature on the outlet side of the radiator act on the fluid-filled bellows, and the refrigerant temperature on the outlet side of the radiator is a predetermined value, the refrigerant pressure on the outlet side of the radiator becomes a predetermined value or more. , The fluid-filled bellows contracts, the valve element opens the valve port, the refrigerant on the outlet side of the radiator enters the crank chamber of the swash plate type variable compressor, the capacity of the swash plate type variable compressor decreases, and the outlet of the radiator The capacity control of the swash plate type variable capacity compressor is performed according to the refrigerant state on the side, and the refrigerant pressure on the outlet side of the radiator can be maintained at the optimum pressure on the cycle characteristics, and the refrigerant pressure on the high pressure side is adjusted to the optimum density line. The refrigeration cycle such as the supercritical vapor compression cycle can be optimally operated over a wide area while maintaining the pressure not exceeding.
[0049]
According to the capacity control valve of the invention described in claim 4, in the capacity control valve used in the refrigeration cycle apparatus in which the refrigerant circulates in order through the swash plate type variable capacity compressor, the radiator, the expansion valve, and the evaporator, The refrigerant pressure on the outlet side and the fluid- filled bellows that are affected by the refrigerant temperature, and driven by the fluid-filled bellows, when the refrigerant temperature on the outlet side of the radiator is a predetermined value, the refrigerant pressure on the outlet side of the radiator can exceed A valve body that opens the valve port, and by opening the valve port, the refrigerant on the outlet side of the radiator is led to the crank chamber of the swash plate type variable variable compressor to reduce the capacity of the swash plate type variable variable compressor It was.
[0050]
For this reason, if the refrigerant pressure and the refrigerant temperature on the outlet side of the radiator act on the fluid- filled bellows, and the refrigerant temperature on the outlet side of the radiator is a predetermined value, the refrigerant pressure on the outlet side of the radiator becomes a predetermined value or more. , The fluid- filled bellows contracts, the valve element opens the valve port, the refrigerant on the outlet side of the radiator enters the crank chamber of the swash plate type variable compressor, the capacity of the swash plate type variable compressor decreases, and the outlet of the radiator The capacity control of the swash plate type variable capacity compressor is performed according to the refrigerant pressure on the side, and the refrigerant pressure on the outlet side of the radiator can be maintained at the optimum pressure on the cycle characteristics corresponding to the refrigerant temperature on the outlet side of the radiator. The refrigerant pressure on the high-pressure side is kept at a pressure not exceeding the optimum density line, and the refrigeration cycle such as the supercritical vapor compression cycle can be optimally operated over a wide area.
[0051]
According to the capacity control valve of the fifth aspect, the fluid- filled bellows is filled with a refrigerant having a density for optimal operation of the supercritical vapor compression cycle.
[0052]
For this reason, the fluid- filled bellows operates based on an equilibrium relationship between the internal pressure of the refrigerant having the density for optimal operation of the supercritical vapor compression cycle and the refrigerant pressure on the outlet side of the radiator, and the refrigerant pressure on the high-pressure side does not exceed the optimum density line. A supercritical vapor compression cycle that uses carbon dioxide refrigerant or the like while maintaining pressure can be optimally operated over a wide area.
[0053]
According to the capacity control valve of claim 6, the fluid- filled bellows is filled with a refrigerant having a density for optimal operation of the supercritical vapor compression cycle, and the fluid- filled bellows has an internal pressure by the refrigerant and a refrigerant on the outlet side of the radiator. It was assumed to operate by an equilibrium relationship with pressure.
[0054]
For this reason, by setting the volume of the fluid- filled bellows variably, the refrigerant density inside the bellows changes, and the characteristics of the optimum density line can be selectively obtained.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing one embodiment of an operation control device for a supercritical vapor compression cycle and a displacement control device for a variable displacement compressor according to the present invention.
FIG. 2 is a cross-sectional view showing a specific configuration of a capacity control valve according to the present invention.
FIG. 3 is a graph showing refrigerant pressure-temperature characteristics.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Variable displacement compressor 2 Radiator 3 Capacity control valve 4 Expansion valve 5 Evaporator 12 Crank chamber 13 Cylinder chamber 14 Piston 16 Drive shaft 18 Wobble plate 23 Suction connection port 25 Discharge connection port 36 Internal body 37 Valve chamber 44 Valve port 45 Ball Valve body 49 Fluid-filled bellows 50 Adjustment screw member

Claims (6)

斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮サイクルの運転制御方法において、
前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有する容量制御弁の前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減することを特徴とする超臨界蒸気圧縮サイクルの運転制御方法。
In the operation control method of a supercritical vapor compression cycle in which a refrigerant such as carbon dioxide gas is circulated in order through a swash plate type variable capacity compressor, a radiator, an expansion valve, and an evaporator, and operated in a supercritical region,
A fluid-filled bellows exerted on the refrigerant pressure and refrigerant temperature on the outlet side of the radiator, and a refrigerant on the outlet side of the radiator when driven by the fluid-filled bellows and the refrigerant temperature on the outlet side of the radiator is a predetermined value When the pressure exceeds a predetermined value, the valve port of the capacity control valve having a valve body that opens the valve port is opened, thereby leading the refrigerant on the outlet side of the radiator to the crank chamber of the swash plate type variable capacity compressor. , before Symbol radiator of the refrigerant on the outlet side pressure of the supercritical operation control method of the vapor compression cycle, characterized in that to reduce the capacity of the swash plate type variable displacement compressor according to the coolant temperature.
斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮サイクルの運転制御装置において、
前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有する容量制御弁を備え、該容量制御弁の前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減ることを特徴とする超臨界蒸気圧縮サイクルの運転制御装置。
In the operation control device of the supercritical vapor compression cycle in which a refrigerant such as carbon dioxide circulates in order through a swash plate type variable capacity compressor, a radiator, an expansion valve, and an evaporator, and is operated in a supercritical region,
A fluid-filled bellows exerted on the refrigerant pressure and refrigerant temperature on the outlet side of the radiator, and a refrigerant on the outlet side of the radiator when driven by the fluid-filled bellows and the refrigerant temperature on the outlet side of the radiator is a predetermined value And a capacity control valve having a valve body that opens a valve port when the pressure exceeds a predetermined value, and opening the valve port of the capacity control valve causes the refrigerant on the outlet side of the radiator to pass through the swash plate capacity. led to the crank chamber of the variable compressor, before Symbol radiator of the refrigerant pressure on the outlet side, the operation control of the supercritical vapor compression cycle, wherein the benzalkonium to reduce the capacity of the swash plate type variable displacement compressor according to the refrigerant temperature apparatus.
斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを冷媒が順に循環する冷凍サイクルで使用される斜板式容量可変コンプレッサの容量制御装置において、
前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有し、前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を前記斜板式容量可変コンプレッサのクランク室に導き、前記放熱器の出口側の冷媒圧力、冷媒温度に応じて前記斜板式容量可変コンプレッサの容量を低減することを特徴とする斜板式容量可変コンプレッサの容量制御装置。
In a capacity control device of a swash plate type variable capacity compressor used in a refrigeration cycle in which a refrigerant circulates in order through a swash plate type variable capacity compressor, a radiator, an expansion valve, and an evaporator,
A fluid-filled bellows exerted on the refrigerant pressure and refrigerant temperature on the outlet side of the radiator, and a refrigerant on the outlet side of the radiator when driven by the fluid-filled bellows and the refrigerant temperature on the outlet side of the radiator is a predetermined value A valve body that opens a valve port if the pressure exceeds a predetermined value, and opens the valve port to guide the refrigerant on the outlet side of the radiator to the crank chamber of the swash plate type variable capacity compressor; serial radiator of the refrigerant pressure on the outlet side, displacement control of the swash plate type variable capacity compressor, characterized in that to reduce the capacity of the swash plate type variable displacement compressor according to the coolant temperature.
斜板式容量可変コンプレッサと放熱器と膨張弁と蒸発器とを冷媒が順に循環する冷凍サイクルで使用される容量制御弁において、
前記放熱器の出口側の冷媒圧力、冷媒温度を及ぼされる流体封入ベローズと、
前記流体封入ベローズにより駆動され、前記放熱器の出口側の冷媒温度が所定値の時に前記放熱器の出口側の冷媒圧力が所定値以上になれば、弁ポートを開く弁体とを有し、
前記弁ポートが開かれることにより前記放熱器の出口側の冷媒を斜板式容量可変コンプレッサのクランク室に導き、前記斜板式容量可変コンプレッサの容量を低減することを特徴とする容量制御弁。
In a capacity control valve used in a refrigeration cycle in which a refrigerant circulates in order through a swash plate type variable capacity compressor, a radiator, an expansion valve, and an evaporator,
The refrigerant pressure on the outlet side of the radiator, the fluid- filled bellows exerted the refrigerant temperature, and
Driven by the fluid-filled bellows, and when the refrigerant temperature on the outlet side of the radiator is a predetermined value, if the refrigerant pressure on the outlet side of the radiator becomes a predetermined value or more, a valve body that opens a valve port,
Capacity control valve, characterized by reducing the radiator on the outlet side of the refrigerant introduced into a crank chamber of a swash plate type variable capacity compressor, capacity of the swash plate type variable capacity compressor by the valve port is opened.
前記流体封入ベローズには超臨界蒸気圧縮サイクルを最適運転させる密度の冷媒が封入されていることを特徴とする請求項4記載の容量制御弁。5. The capacity control valve according to claim 4, wherein the fluid- filled bellows is filled with a refrigerant having a density for optimal operation of the supercritical vapor compression cycle. 前記流体封入ベローズの容積を可変設定できることを特徴する請求項4または5記載の容量制御弁。6. The capacity control valve according to claim 4, wherein the volume of the fluid- filled bellows can be variably set.
JP14441099A 1999-05-25 1999-05-25 Operation control method and apparatus for supercritical vapor compression cycle, capacity control apparatus and capacity control valve for variable capacity compressor Expired - Fee Related JP4002364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14441099A JP4002364B2 (en) 1999-05-25 1999-05-25 Operation control method and apparatus for supercritical vapor compression cycle, capacity control apparatus and capacity control valve for variable capacity compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14441099A JP4002364B2 (en) 1999-05-25 1999-05-25 Operation control method and apparatus for supercritical vapor compression cycle, capacity control apparatus and capacity control valve for variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2000337723A JP2000337723A (en) 2000-12-08
JP4002364B2 true JP4002364B2 (en) 2007-10-31

Family

ID=15361533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14441099A Expired - Fee Related JP4002364B2 (en) 1999-05-25 1999-05-25 Operation control method and apparatus for supercritical vapor compression cycle, capacity control apparatus and capacity control valve for variable capacity compressor

Country Status (1)

Country Link
JP (1) JP4002364B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694763B2 (en) * 2002-05-30 2004-02-24 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
DE10338388B3 (en) * 2003-08-21 2005-04-21 Daimlerchrysler Ag Method for controlling an air conditioning system

Also Published As

Publication number Publication date
JP2000337723A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US7096679B2 (en) Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
JP4431462B2 (en) Swash plate type variable capacity compressor and electromagnetic control valve
JP3942851B2 (en) Capacity control valve
US5071321A (en) Variable displacement refrigerant compressor passive destroker
JP2001132650A (en) Compression capacity control device for refrigerating cycle
US6260369B1 (en) Flow control valve for a variable displacement refrigerant compressor
JPH10325393A (en) Variable displacement swash plate type clutchless compressor
JPH0949662A (en) Compression type air conditioner
JP4152674B2 (en) Capacity control valve for variable capacity compressor
JPH1182296A (en) Variable delivery compressor
JP2005098597A (en) Refrigerating cycle
JPH01182580A (en) Variable displacement oscillating compressor
JP4002364B2 (en) Operation control method and apparatus for supercritical vapor compression cycle, capacity control apparatus and capacity control valve for variable capacity compressor
US7021901B2 (en) Variable displacement compressor
US4890458A (en) Refrigerating circuit for car air conditioning
JPH10205443A (en) Variable displacement compressor
JP2001201213A (en) Supercritical refrigeration cycle
JP2001349278A (en) Control valve for variable displacement compressor
JP3603107B2 (en) Displacement control valve for variable displacement compressor
JP2946711B2 (en) Variable capacity swinging swash plate type compressor
JPH03134268A (en) Variable displacement swash plate type compressor
JP4091232B2 (en) Control valve for variable capacity compressor
JP4474697B2 (en) Control valve
JP3104821B2 (en) Control valve for variable displacement compressor
JP2001082618A (en) Pressure sensitive control valve, and control valve for variable displacement compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees