JP2001324245A - High pressure control valve for supercritical vapor compression freezing cycle - Google Patents

High pressure control valve for supercritical vapor compression freezing cycle

Info

Publication number
JP2001324245A
JP2001324245A JP2000141376A JP2000141376A JP2001324245A JP 2001324245 A JP2001324245 A JP 2001324245A JP 2000141376 A JP2000141376 A JP 2000141376A JP 2000141376 A JP2000141376 A JP 2000141376A JP 2001324245 A JP2001324245 A JP 2001324245A
Authority
JP
Japan
Prior art keywords
refrigerant
valve
radiator
outlet side
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000141376A
Other languages
Japanese (ja)
Inventor
Masaru Oi
優 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2000141376A priority Critical patent/JP2001324245A/en
Publication of JP2001324245A publication Critical patent/JP2001324245A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

PROBLEM TO BE SOLVED: To control optimally refrigerant pressure on an outlet side of a heat dissipater with high accuracy by sensibly sensing refrigerant temperature on the outlet side of the heat dissipator in a supercritical vapor compression freezing cycle apparatus. SOLUTION: A high pressure control valve is provided in which a refrigerant passage extending between a heat dissipater and an evaporator of a supercritical vapor compression freezing cycle apparatus is controlled in its degree of communication to control pressure on an outlet side of the heat dissipater. In the control valve, there are provided bellows apparatus 24 which defines a closed chamber 30 in which a refrigerant is encapsulated and is subjected to temperature of the refrigerant existent on the outlet side of the heat dissipater and is compressed with pressure by density of the encapsulated refrigerant in response to heat transmitted to the encapsulated refrigerant, a valve structure 28 connected with the bellows apparatus 24 and opened and closed by expansion of the bellows apparatus 24 to cooperate with a valve port 15 and hereby control the degree of the communication between the heat dissipater and the evaporator, and a temperature sensitive cylinder 37 encapsulated with the refrigerant and connected with the closed chamber 30 for applying pressure by density of the encapsulated refrigerant in response to heat transmitted from a refrigerant piping on an outlet side of the heat dissipater to the encapsulated refrigerant to the closed chamber 30 of the bellows apparatus 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、炭酸ガス等によ
る冷媒を用いて超臨界域で運転される超臨界蒸気圧縮冷
凍サイクル装置において使用される高圧制御弁に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-pressure control valve used in a supercritical vapor compression refrigeration cycle apparatus operated in a supercritical region using a refrigerant such as carbon dioxide.

【0002】[0002]

【従来の技術】炭酸ガス(CO2 )等の冷媒を超臨界域
で使用する超臨界蒸気圧縮冷凍サイクル装置では、放熱
器の出口側の冷媒の圧力と温度とが最適制御線に沿うよ
うに制御されるよう、特開平9−264622号公報に
示されているように、冷媒封入のダイヤフラム室の内圧
と放熱器出口側の冷媒圧力との平衡関係により動作する
高圧制御弁(圧力制御弁)を放熱器より蒸発器へ至る冷
媒通路の途中に設け、この高圧制御弁による放熱器−蒸
発器間の冷媒通路の連通度制御によって放熱器の出口側
の冷媒の圧力制御を行うものが知られている。
2. Description of the Related Art In a supercritical vapor compression refrigeration cycle apparatus using a refrigerant such as carbon dioxide (CO 2 ) in a supercritical region, the pressure and temperature of the refrigerant at the outlet side of a radiator are adjusted so as to follow an optimal control line. To be controlled, a high-pressure control valve (pressure control valve) that operates based on an equilibrium relationship between the internal pressure of the refrigerant chamber and the refrigerant pressure at the radiator outlet side as disclosed in Japanese Patent Application Laid-Open No. 9-264622. Is provided in the middle of the refrigerant passage from the radiator to the evaporator, and the pressure of the refrigerant at the outlet side of the radiator is controlled by controlling the communication degree of the refrigerant passage between the radiator and the evaporator by the high-pressure control valve. ing.

【0003】[0003]

【発明が解決しようとする課題】超臨界蒸気圧縮冷凍サ
イクル装置で使用される従来の高圧制御弁は、高圧制御
弁の弁室内に入った放熱器出口側の冷媒温度、圧力に感
応するから、放熱器と高圧制御弁との間の冷媒配管長の
影響を受け、放熱器出口側の冷媒温度を敏感に精度よく
感知できず、放熱器出口側の冷媒圧力を高精度に最適制
御することが難しい。
The conventional high-pressure control valve used in the supercritical vapor compression refrigeration cycle apparatus is sensitive to the temperature and pressure of the refrigerant at the outlet of the radiator in the valve chamber of the high-pressure control valve. Due to the influence of the length of the refrigerant pipe between the radiator and the high-pressure control valve, the refrigerant temperature at the radiator outlet cannot be sensed sensitively and accurately. difficult.

【0004】この発明は、上述の如き問題点を解消する
ためになされたもので、放熱器出口側の冷媒温度を敏感
に感知し、放熱器出口側の冷媒圧力を高精度に最適制御
する超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is an ultra-sensitive device which sensitively senses the refrigerant temperature at the radiator outlet side and optimally controls the refrigerant pressure at the radiator outlet side with high precision. It is an object of the present invention to provide a high-pressure control valve for a critical vapor compression refrigeration cycle device.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1に記載の発明による超臨界蒸気圧縮冷凍
サイクル装置用高圧制御弁は、圧縮機と放熱器と蒸発器
とを炭酸ガス等による冷媒が順に循環し、超臨界域で運
転される超臨界蒸気圧縮冷凍サイクル装置の前記放熱器
より前記蒸発器へ至る冷媒通路の途中に設けられ、前記
放熱器の出口側の冷媒の温度に感応して前記放熱器と前
記蒸発器との間の冷媒通路の連通度を制御して放熱器出
口側の圧力制御を行う高圧制御弁であって、冷媒封入の
密閉室を画定し、前記放熱器の出口側の冷媒の温度を及
ぼされ、封入冷媒に伝わる熱に応じた封入冷媒の密度に
よる圧力により伸縮するベローズ装置と、前記ベローズ
装置に接続され、前記ベローズ装置の伸縮により開閉駆
動されて弁ポートと共働して前記放熱器と前記蒸発器と
の間の冷媒通路の連通度を制御する弁体と、冷媒を封入
されて前記密閉室に接続され、放熱器の出口側の冷媒配
管から封入冷媒に伝わる熱に応じた封入冷媒の密度によ
る圧力を前記ベローズ装置の前記密閉室に及ぼす感温筒
とを有しているものである。
According to a first aspect of the present invention, there is provided a high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus, comprising: a compressor, a radiator, and an evaporator. Refrigerant by gas or the like is sequentially circulated, provided in the middle of a refrigerant passage from the radiator to the evaporator of the supercritical vapor compression refrigeration cycle device operated in a supercritical region, the refrigerant on the outlet side of the radiator A high-pressure control valve that controls the degree of communication of a refrigerant passage between the radiator and the evaporator in response to temperature to perform pressure control on a radiator outlet side, and defines a closed chamber for refrigerant charging, A bellows device that is affected by the temperature of the refrigerant at the outlet side of the radiator and expands and contracts by pressure due to the density of the sealed refrigerant according to the heat transmitted to the sealed refrigerant, and is connected to the bellows device and is opened and closed by the expansion and contraction of the bellows device. Being valve port A valve body that cooperates to control the degree of communication of a refrigerant passage between the radiator and the evaporator; a refrigerant sealed therein and connected to the closed chamber; And a temperature-sensitive cylinder that exerts pressure on the sealed chamber of the bellows device according to the density of the sealed refrigerant according to the heat transmitted to the bellows device.

【0006】請求項2に記載の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁は、さらに、前記弁体
は、最大閉弁位置において、前記弁ポートより微少量離
れた位置に位置して完全締切を行わず、微少流量の冷媒
流量を確保するものである。
In the high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the present invention, the valve body is located at a position a minute distance from the valve port at the maximum valve closing position. This is to secure a very small flow rate of the refrigerant without performing a complete cutoff.

【0007】請求項3に記載の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁は、さらに、前記弁ポ
ートは弁ハウジングに形成され、前記弁体はねじ係合に
よって前記弁ハウジングに固定されるカセット部材に組
み込まれて当該カセット部材に設けられたストッパによ
り閉弁方向の移動を制限され、前記カセット部材の前記
弁ハウジングに対するねじ係合位置の調整により、最大
閉弁位置での前記弁体の前記弁ポートよりの離間量が調
整可能であるものである。
According to a third aspect of the present invention, in the high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus, the valve port is formed in a valve housing, and the valve body is fixed to the valve housing by screw engagement. The movement in the valve closing direction is restricted by a stopper provided on the cassette member incorporated in the cassette member, and the valve body at the maximum valve closing position is adjusted by adjusting a screw engagement position of the cassette member with the valve housing. The distance from the valve port can be adjusted.

【0008】請求項1に記載の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁によれば、ベローズ装
置の外側から密閉室の封入冷媒に伝わる熱と、放熱器の
出口側の冷媒配管から感温筒の封入冷媒に伝わる熱とに
より、封入冷媒の密度による圧力がベローズ有効面積に
加わり、これに応じてベローズ装置が伸縮し、弁体が開
閉駆動される。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the first aspect of the present invention, heat transmitted from the outside of the bellows device to the sealed refrigerant in the closed chamber and the refrigerant pipe on the outlet side of the radiator are provided. Due to the heat transmitted to the sealed refrigerant in the thermosensitive cylinder, pressure due to the density of the sealed refrigerant is applied to the effective area of the bellows, and the bellows device expands and contracts accordingly, and the valve is driven to open and close.

【0009】請求項2に記載の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁によれば、弁体は、最
大閉弁位置においても、弁ポートより微少量離れた位置
に位置して完全締切を行わず、微少流量の冷媒流量を確
保することで、放熱器出口側の冷媒温度が感度良く感知
される。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the second aspect of the present invention, the valve body is located at a position slightly away from the valve port even at the maximum valve closing position and is completely removed. By securing a minute flow rate of the refrigerant without performing the cutoff, the refrigerant temperature at the radiator outlet side can be sensed with high sensitivity.

【0010】請求項3に記載の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁によれば、カセット部
材の弁ハウジングに対するねじ係合位置の調整によって
最大閉弁位置での弁体の弁ポートよりの離間量が調整さ
れ、この離間量調整により、弁体が最大閉弁位置に位置
している状態での冷媒流量(必要最小流量)が調整され
る。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the third aspect of the present invention, the valve port of the valve body at the maximum valve closing position by adjusting the screw engagement position of the cassette member with the valve housing. The amount of separation is adjusted, and the adjustment of the amount of separation adjusts the flow rate (required minimum flow rate) of the refrigerant in a state where the valve body is located at the maximum valve closing position.

【0011】[0011]

【発明の実施の形態】以下に添付の図を参照してこの発
明の実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】図1はこの発明による高圧制御弁が組み込
まれる超臨界蒸気圧縮冷凍サイクル装置を示している。
この冷凍サイクル装置は、圧縮機1と、放熱器(ガスク
ーラ)2と、蒸発器3と、アキュムレータ4が冷媒配管
5、6、7により閉ループ状に連通接続され、この閉ル
ープを炭酸ガス等による冷媒が循環する。
FIG. 1 shows a supercritical vapor compression refrigeration cycle apparatus incorporating a high-pressure control valve according to the present invention.
In this refrigeration cycle apparatus, a compressor 1, a radiator (gas cooler) 2, an evaporator 3, and an accumulator 4 are connected and connected in a closed loop by refrigerant pipes 5, 6, and 7, and the closed loop is formed by a refrigerant such as carbon dioxide. Circulates.

【0013】放熱器2より蒸発器3へ至る冷媒通路6の
途中には、放熱器2の出口側の冷媒の圧力および温度に
感応して放熱器2と蒸発器3との連通・遮断および連通
度を定量的に制御して放熱器出口側の圧力制御を行う高
圧制御弁8と、放熱器2の出口側の冷媒の圧力を設定値
以下に抑える逃し弁9とが互いに並列に設けられてい
る。
In the middle of the refrigerant passage 6 from the radiator 2 to the evaporator 3, communication / blocking and communication between the radiator 2 and the evaporator 3 are made in response to the pressure and temperature of the refrigerant at the outlet of the radiator 2. A high-pressure control valve 8 for quantitatively controlling the degree and controlling the pressure on the outlet side of the radiator 2 and a relief valve 9 for suppressing the pressure of the refrigerant on the outlet side of the radiator 2 to a set value or less are provided in parallel with each other. I have.

【0014】つぎに、本発明による高圧制御弁8の詳細
構造を図2を参照して説明する。高圧制御弁8は弁ハウ
ジング10を有している。弁ハウジング10は、放熱器
出口側の冷媒配管6aを接続される入口ポート(高圧側
ポート)11と、蒸発器3の入口側の冷媒配管6bを接
続される出口ポート12と、連通孔13によって入口ポ
ート11に連通するボア14と、ボア14の底部に開口
してボア14を出口ポート12に連通接続する弁ポート
15とを形成されている。
Next, the detailed structure of the high-pressure control valve 8 according to the present invention will be described with reference to FIG. The high-pressure control valve 8 has a valve housing 10. The valve housing 10 includes an inlet port (high-pressure port) 11 to which the refrigerant pipe 6a on the radiator outlet side is connected, an outlet port 12 to which the refrigerant pipe 6b on the inlet side of the evaporator 3 is connected, and a communication hole 13. A bore 14 communicating with the inlet port 11 and a valve port 15 opening at the bottom of the bore 14 and communicating the bore 14 with the outlet port 12 are formed.

【0015】ボア14にはカセット部材20が挿入さ
れ、カセット部材20は、ねじ部16によって、図2の
上下方向に、ねじ止め位置調整可能に弁ハウジング10
にねじ止めされている。
A cassette member 20 is inserted into the bore 14, and the cassette member 20 is adjusted by a screw portion 16 in the vertical direction in FIG.
It is screwed to.

【0016】カセット部材20は、外周面に形成されて
連通孔13および入口ポート11とを連通する円環状の
外周凹溝21と、底部全面開口のベローズ収容弁室22
と、外周凹溝21とベローズ収容弁室22とを連通接続
する高圧側連通孔23とを有している。
The cassette member 20 has an annular outer peripheral groove 21 formed on the outer peripheral surface and communicating with the communication hole 13 and the inlet port 11, and a bellows housing valve chamber 22 having a bottom opening entirely.
And a high-pressure side communication hole 23 for communicating and connecting the outer peripheral groove 21 and the bellows housing valve chamber 22.

【0017】ベローズ収容弁室22にはベローズ装置2
4が配置されている。ベローズ装置24は、上端側に上
部部材25を一体接続されたベローズ本体26と、ベロ
ーズ本体26の下端を閉じるべくベローズ本体26の下
端に溶接されたエンド部材27およびエンド部材27に
固定されたニードル形状の弁体28と、ベローズ内部に
おいてベローズ本体26の上端と弁体28との間に設け
られた補助ばね29により構成され、ベローズ本体26
の内側に冷媒封入の密閉室30を画定している。
The bellows storage valve chamber 22 has a bellows device 2
4 are arranged. The bellows device 24 includes a bellows body 26 having an upper member 25 integrally connected to an upper end thereof, an end member 27 welded to a lower end of the bellows body 26 to close a lower end of the bellows body 26, and a needle fixed to the end member 27. The bellows body 26 includes a valve body 28 having a shape, and an auxiliary spring 29 provided between the upper end of the bellows body 26 and the valve body 28 inside the bellows.
Defines a sealed chamber 30 in which refrigerant is sealed.

【0018】上部部材25はベローズ本体26内部に弁
体28の側へ延在して圧縮方向のストッパを兼ねたガイ
ド管部31を一体に有している。ガイド管部31は、弁
体28に形成されたガイド孔32に摺動可能に嵌合し、
ベローズ装置24の伸縮をガイドするようになってい
る。また、上部部材25にはベローズ内部にガスを封入
するためにガイド管部31に連通しているキャピラリチ
ューブ33が取り付けられている。
The upper member 25 integrally has a guide tube 31 extending inside the bellows body 26 toward the valve body 28 and also serving as a stopper in the compression direction. The guide tube portion 31 is slidably fitted in a guide hole 32 formed in the valve body 28,
The bellows device 24 is configured to guide expansion and contraction. The upper member 25 is provided with a capillary tube 33 that communicates with the guide tube 31 for sealing gas inside the bellows.

【0019】カセット部材20にはねじ部34によって
アジャストねじ部材35がねじ止め位置調整可能にねじ
止めされている。アジャストねじ部材35は、上部部材
25を介してベローズ装置24の上端側に連繋し、ねじ
止め位置に応じてベローズ内圧を所定の設定値に設定す
る。
An adjusting screw member 35 is screwed to the cassette member 20 by a screw portion 34 so that the screwing position can be adjusted. The adjusting screw member 35 is connected to the upper end side of the bellows device 24 via the upper member 25, and sets the bellows internal pressure to a predetermined set value according to the screwing position.

【0020】キャピラリチューブ33にはに感温筒37
が連通接続されている。キャピラリチューブ33、感温
筒37にはベローズ装置24の密閉室30に封入した冷
媒と同じ冷媒が封入されており、感温筒37は放熱器2
の出口近傍の冷媒配管6aの外壁に密着し、断熱材によ
って固定されている(図1参照)。
The capillary tube 33 has a thermosensitive tube 37.
Are connected. The same refrigerant as the refrigerant sealed in the closed chamber 30 of the bellows device 24 is sealed in the capillary tube 33 and the temperature sensing tube 37.
And closely fixed to the outer wall of the refrigerant pipe 6a in the vicinity of the outlet (see FIG. 1).

【0021】エンド部材27にはこれを貫通する貫通孔
38が形成されており、貫通孔38によってベローズ収
容弁室22がボア14の底部に連通している。
The end member 27 is formed with a through hole 38 penetrating the end member 27, and the bellows housing valve chamber 22 communicates with the bottom of the bore 14 through the through hole 38.

【0022】カセット部材20のベローズ収容弁室22
にはストッパリング39が係止されている。ストッパリ
ング39は、ベローズ装置24のエンド部材27および
エンド部材27に溶接された弁体28の最降下位置、換
言すれば、弁体28の最大閉弁位置を規定している。
The bellows housing valve chamber 22 of the cassette member 20
Is locked with a stopper ring 39. The stopper ring 39 defines the end member 27 of the bellows device 24 and the lowest position of the valve body 28 welded to the end member 27, in other words, the maximum valve closing position of the valve body 28.

【0023】ストッパリング39により定められる弁体
28の最大閉弁位置(弁リフト量=0)は、図示されて
いるように、弁体28が弁ポート15より微少量離れた
位置で、弁ポート15を完全には締切らない位置であ
り、弁体28は、図3に示されているように、最大閉弁
位置において、弁ポート15に微少な流路開口面積ΔA
を持ち、微少流量の冷媒流量を確保する。
The maximum valve closing position (valve lift amount = 0) of the valve body 28 determined by the stopper ring 39 is such that the valve body 28 is slightly away from the valve port 15 as shown in FIG. 3, the valve body 28 is in a position where the valve port 28 is not completely closed, and as shown in FIG.
To secure a very small flow rate of the refrigerant.

【0024】図4に、二酸化炭素の飽和蒸気線と、理想
とされる高圧制御弁特性を示している。このような特性
を得るために、ベローズ装置24の密閉室30、キャピ
ラリチューブ33、感温筒37には、CO2 ガスあるい
はCO2 ガスとN2 ガスとの混合冷媒が所定量封入さ
れ、封入密度の微調整をアジャストねじ部材35によっ
て行われるようになっている。
FIG. 4 shows a saturated vapor line of carbon dioxide and ideal high-pressure control valve characteristics. In order to obtain such characteristics, a predetermined amount of CO 2 gas or a mixed refrigerant of CO 2 gas and N 2 gas is sealed in the closed chamber 30, the capillary tube 33, and the temperature sensing tube 37 of the bellows device 24, and sealed. Fine adjustment of the density is performed by the adjusting screw member 35.

【0025】つぎに、上述のように構成された高圧制御
弁8の動作について説明する。放熱器2で冷却されたC
2 冷媒は、冷媒配管6aを通って入口ポート11、連
通孔13、高圧側連通孔23よりベローズ収容弁室22
に入り、ベローズ装置24の外側から密閉室30の封入
冷媒に伝わる熱と、放熱器2の出口側の冷媒配管6aか
ら感温筒37の封入冷媒に直接的に伝わる熱とにより、
封入冷媒の密度による圧力がベローズ有効面積に加わ
り、弁体28を閉じる方向に作用する。さらに、ベロー
ズ圧縮荷重も弁体28を閉じる方向に作用している。逆
に、弁体28を開く方向には、(放熱器出口側圧力=ベ
ローズ外側圧力×ベローズ有効面積)の力が作用し、こ
のバランスにより、弁開度が決定され、図3に示されて
いるような弁リフト量に応じた流路開口面積が得られ、
ベローズ外圧、つまり、放熱器出口側圧力が制御され
る。
Next, the operation of the high-pressure control valve 8 configured as described above will be described. C cooled by radiator 2
The O 2 refrigerant passes through the refrigerant pipe 6 a and passes through the inlet port 11, the communication hole 13, and the high-pressure communication hole 23 through the bellows-containing valve chamber 22.
And the heat transmitted from the outside of the bellows device 24 to the enclosed refrigerant in the closed chamber 30 and the heat transmitted directly from the refrigerant pipe 6a on the outlet side of the radiator 2 to the enclosed refrigerant in the temperature-sensitive cylinder 37,
The pressure due to the density of the sealed refrigerant is applied to the bellows effective area, and acts in a direction to close the valve body 28. Further, the bellows compression load also acts in a direction to close the valve body 28. Conversely, a force of (radiator outlet pressure = bellows outer pressure × bellows effective area) acts in the direction in which the valve element 28 is opened, and the valve opening is determined by this balance, as shown in FIG. The flow path opening area according to the valve lift amount is obtained,
The bellows external pressure, that is, the pressure on the radiator outlet side is controlled.

【0026】上述したように、ベローズ装置24の外側
から密閉室30の封入冷媒に伝わる熱と、放熱器2の出
口側の冷媒配管6aから感温筒37の封入冷媒に伝わる
熱とにより、封入冷媒の密度による圧力がベローズ有効
面積に加わり、これに応じてベローズ装置24が伸縮
し、弁体28が開閉駆動されるから、放熱器出口側の冷
媒温度に敏感に感応して放熱器出口側の冷媒圧力が高精
度に最適制御される。
As described above, the heat is transferred from the outside of the bellows device 24 to the sealed refrigerant in the closed chamber 30 and the heat transferred from the refrigerant pipe 6a on the outlet side of the radiator 2 to the sealed refrigerant in the temperature-sensitive cylinder 37. The pressure due to the density of the refrigerant is applied to the effective area of the bellows, and the bellows device 24 expands and contracts accordingly, and the valve body 28 is driven to open and close. The refrigerant pressure is optimally controlled with high precision.

【0027】弁体28は、最大閉弁位置においても、弁
ポート15より微少量離れた位置に位置して完全締切を
行わず、微少流量の冷媒流量を確保するから、放熱器出
口側の冷媒温度をさらに感度良く感応でき、超臨界蒸気
圧縮冷凍サイクル装置の最適制御性を確保できる。
Since the valve body 28 is located at a position slightly away from the valve port 15 even at the maximum valve closing position and does not shut off completely and secures a very small flow rate of the refrigerant, the refrigerant at the radiator outlet side is secured. The temperature can be more sensitively sensed, and the optimal controllability of the supercritical vapor compression refrigeration cycle device can be secured.

【0028】また、カセット部材20の弁ハウジング1
0に対するねじ係合位置の調整によってカセット部材2
0全体が弁ハウジング10に対して上下変位し、最大閉
弁位置での弁体28の弁ポート15よりの離間量を容易
に調整することができる。この離間量調整により、弁体
28が最大閉弁位置に位置している状態での冷媒流量
(必要最小流量)を微調整でき、必要最小流量を最適値
に設定できる。ちなみに、調整後のカセット部材20に
は、接着剤又は止めねじによる緩み止め処理が施され
る。
The valve housing 1 of the cassette member 20
Of the cassette member 2 by adjusting the screw engagement position with respect to
0 is vertically displaced relative to the valve housing 10, and the amount of separation of the valve body 28 from the valve port 15 at the maximum valve closing position can be easily adjusted. By adjusting the separation amount, the refrigerant flow rate (required minimum flow rate) in a state where the valve body 28 is located at the maximum valve closing position can be finely adjusted, and the required minimum flow rate can be set to an optimum value. Incidentally, the adjusted cassette member 20 is subjected to a loosening prevention process using an adhesive or a set screw.

【0029】なお、冷凍サイクル装置で使用する冷媒
は、二酸化炭素に限られることはなく、メタン、エタ
ン、プロパン等の流体を冷媒として使用することもでき
る。
The refrigerant used in the refrigeration cycle apparatus is not limited to carbon dioxide, and a fluid such as methane, ethane, and propane can be used as the refrigerant.

【0030】[0030]

【発明の効果】以上の説明から理解される如く、請求項
1に記載の発明による超臨界蒸気圧縮冷凍サイクル装置
用高圧制御弁によれば、ベローズ装置の外側から密閉室
の封入冷媒に伝わる熱と、放熱器の出口側の冷媒配管か
ら感温筒の封入冷媒に伝わる熱とにより、封入冷媒の密
度による圧力がベローズ有効面積に加わり、これに応じ
てベローズ装置が伸縮し、弁体が開閉駆動されるから、
放熱器出口側の冷媒温度に敏感に感応して放熱器出口側
の冷媒圧力を高精度に最適制御することができる。
As will be understood from the above description, according to the high pressure control valve for a supercritical vapor compression refrigeration cycle device according to the first aspect of the present invention, heat transmitted from the outside of the bellows device to the refrigerant sealed in the closed chamber is obtained. And the heat transmitted from the refrigerant pipe on the outlet side of the radiator to the sealed refrigerant in the thermosensitive cylinder, adds pressure due to the density of the sealed refrigerant to the effective area of the bellows, the bellows device expands and contracts accordingly, and the valve opens and closes Because it is driven
The refrigerant pressure on the radiator outlet side can be optimally controlled with high precision in sensitive response to the refrigerant temperature on the radiator outlet side.

【0031】請求項2に記載の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁によれば、弁体は、最
大閉弁位置においても、弁ポートより微少量離れた位置
に位置して完全締切を行わず、微少流量の冷媒流量を確
保するから、放熱器出口側の冷媒温度をさらに感度良く
感知でき、超臨界蒸気圧縮冷凍サイクル装置の最適制御
性を確保することができる。
According to the high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the second aspect of the present invention, the valve body is located at a position slightly away from the valve port even at the maximum valve closing position and is completely removed. Since a minute flow rate of the refrigerant is secured without performing the cut-off, the refrigerant temperature at the radiator outlet side can be sensed with higher sensitivity, and the optimal controllability of the supercritical vapor compression refrigeration cycle apparatus can be secured.

【0032】請求項3に記載の発明による超臨界蒸気圧
縮冷凍サイクル装置用高圧制御弁によれば、カセット部
材の弁ハウジングに対するねじ係合位置の調整によって
最大閉弁位置での弁体の弁ポートよりの離間量が調整さ
れるから、この離間量調整により、弁体が最大閉弁位置
に位置している状態での冷媒流量(必要最小流量)が容
易に調整され、必要最小流量を最適値に設定できる。
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the third aspect of the present invention, the valve port of the valve body at the maximum valve closing position is adjusted by adjusting the screw engagement position of the cassette member with the valve housing. Since the amount of separation is adjusted, the amount of refrigerant can be easily adjusted by adjusting the amount of separation so that the coolant flow rate (required minimum flow rate) when the valve body is located at the maximum valve closing position is adjusted to the optimum value. Can be set to

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による高圧制御弁が組み込まれる超臨
界蒸気圧縮冷凍サイクル装置を示す回路図である。
FIG. 1 is a circuit diagram showing a supercritical vapor compression refrigeration cycle device incorporating a high-pressure control valve according to the present invention.

【図2】この発明による超臨界蒸気圧縮冷凍サイクル装
置用高圧制御弁の一つの実施の形態を示す断面図であ
る。
FIG. 2 is a sectional view showing one embodiment of a high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to the present invention.

【図3】この発明による高圧制御弁の弁開特性を示す弁
リフト−流路開口面積特性図である。
FIG. 3 is a valve lift-flow path opening area characteristic diagram showing valve opening characteristics of the high-pressure control valve according to the present invention.

【図4】二酸化炭素の飽和蒸気線と、理想とされる高圧
制御弁特性を示すグラフである。
FIG. 4 is a graph showing a saturated vapor line of carbon dioxide and ideal high-pressure control valve characteristics.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱器 3 蒸発器 4 アキュムレータ 8 高圧制御弁 9 逃し弁 10 弁ハウジング 11 入口ポート 12 出口ポート 14 ボア 15 弁ポート 16 ねじ部 20 カセット部材 22 ベローズ収容弁室 24 ベローズ装置 28 弁体 30 密閉室 37 感温筒 DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Evaporator 4 Accumulator 8 High-pressure control valve 9 Relief valve 10 Valve housing 11 Inlet port 12 Outlet port 14 Bore 15 Valve port 16 Screw part 20 Cassette member 22 Bellows accommodation valve room 24 Bellows device 28 Valve element 30 Closed room 37 Temperature sensing tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と放熱器と蒸発器とを炭酸ガス等
による冷媒が順に循環し、超臨界域で運転される超臨界
蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器
へ至る冷媒通路の途中に設けられ、前記放熱器の出口側
の冷媒の温度に感応して前記放熱器と前記蒸発器との間
の冷媒通路の連通度を制御して放熱器出口側の圧力制御
を行う高圧制御弁であって、 冷媒封入の密閉室を画定し、前記放熱器の出口側の冷媒
の温度を及ぼされ、封入冷媒に伝わる熱に応じた封入冷
媒の密度による圧力により伸縮するベローズ装置と、 前記ベローズ装置に接続され、前記ベローズ装置の伸縮
により開閉駆動されて弁ポートと共働して前記放熱器と
前記蒸発器との間の冷媒通路の連通度を制御する弁体
と、 冷媒を封入されて前記密閉室に接続され、放熱器の出口
側の冷媒配管から封入冷媒に伝わる熱に応じた封入冷媒
の密度による圧力を前記ベローズ装置の前記密閉室に及
ぼす感温筒と、 を有していることを特徴とする超臨界蒸気圧縮冷凍サイ
クル装置用高圧制御弁。
1. A refrigerant flowing from the radiator to the evaporator in a supercritical vapor compression refrigeration cycle device operated in a supercritical region, in which a refrigerant such as carbon dioxide gas circulates sequentially through a compressor, a radiator, and an evaporator. It is provided in the middle of the passage, and controls the degree of communication of the refrigerant passage between the radiator and the evaporator in response to the temperature of the refrigerant on the outlet side of the radiator to control the pressure on the radiator outlet side. A high-pressure control valve, wherein the bellows device defines a closed chamber for refrigerant charging, is subjected to the temperature of the refrigerant on the outlet side of the radiator, and expands and contracts by pressure due to the density of the charged refrigerant according to the heat transmitted to the charged refrigerant. A valve body connected to the bellows device, driven to open and close by expansion and contraction of the bellows device, and cooperating with a valve port to control the degree of communication of a refrigerant passage between the radiator and the evaporator; Sealed and connected to the closed chamber, A temperature-sensitive cylinder that exerts pressure on the sealed chamber of the bellows device according to the density of the sealed refrigerant according to the heat transmitted from the refrigerant pipe on the outlet side of the heater to the sealed refrigerant; High pressure control valve for vapor compression refrigeration cycle equipment.
【請求項2】 前記弁体は、最大閉弁位置において、前
記弁ポートより微少量離れた位置に位置して完全締切を
行わず、微少流量の冷媒流量を確保することを特徴とす
る請求項1に記載の超臨界蒸気圧縮冷凍サイクル装置用
高圧制御弁。
2. The valve body according to claim 1, wherein the valve body is located at a position slightly distant from the valve port at the maximum valve closing position and does not perform a complete shutoff, thereby ensuring a very small flow rate of the refrigerant. 2. The high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to 1.
【請求項3】 前記弁ポートは弁ハウジングに形成さ
れ、前記弁体はねじ係合によって前記弁ハウジングに固
定されるカセット部材に組み込まれて当該カセット部材
に設けられたストッパにより閉弁方向の移動を制限さ
れ、前記カセット部材の前記弁ハウジングに対するねじ
係合位置の調整により、最大閉弁位置での前記弁体の前
記弁ポートよりの離間量が調整可能であることを特徴と
する請求項2記載の超臨界蒸気圧縮冷凍サイクル装置用
高圧制御弁。
3. The valve port is formed in a valve housing, and the valve body is incorporated in a cassette member fixed to the valve housing by screw engagement, and is moved in a valve closing direction by a stopper provided in the cassette member. 3. The amount of separation of the valve body from the valve port at the maximum valve closing position can be adjusted by adjusting the screw engagement position of the cassette member with respect to the valve housing. A high-pressure control valve for a supercritical vapor compression refrigeration cycle device according to claim 1.
JP2000141376A 2000-05-15 2000-05-15 High pressure control valve for supercritical vapor compression freezing cycle Withdrawn JP2001324245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141376A JP2001324245A (en) 2000-05-15 2000-05-15 High pressure control valve for supercritical vapor compression freezing cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141376A JP2001324245A (en) 2000-05-15 2000-05-15 High pressure control valve for supercritical vapor compression freezing cycle

Publications (1)

Publication Number Publication Date
JP2001324245A true JP2001324245A (en) 2001-11-22

Family

ID=18648501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141376A Withdrawn JP2001324245A (en) 2000-05-15 2000-05-15 High pressure control valve for supercritical vapor compression freezing cycle

Country Status (1)

Country Link
JP (1) JP2001324245A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1691149A3 (en) * 2005-01-13 2007-10-10 Denso Corporation Expansion valve for refrigerating cycle
US8596552B2 (en) 2004-10-21 2013-12-03 Danfoss A/S Valve for use in a refrigeration system
CN104034200A (en) * 2014-04-25 2014-09-10 武汉工程大学 Mechanical type automatic water saving device
WO2020021607A1 (en) * 2018-07-23 2020-01-30 東洋電機製造株式会社 Pantograph

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8596552B2 (en) 2004-10-21 2013-12-03 Danfoss A/S Valve for use in a refrigeration system
EP1691149A3 (en) * 2005-01-13 2007-10-10 Denso Corporation Expansion valve for refrigerating cycle
CN104034200A (en) * 2014-04-25 2014-09-10 武汉工程大学 Mechanical type automatic water saving device
CN104034200B (en) * 2014-04-25 2016-02-24 武汉工程大学 Mechanical automatic water saving device
WO2020021607A1 (en) * 2018-07-23 2020-01-30 東洋電機製造株式会社 Pantograph

Similar Documents

Publication Publication Date Title
US7707844B2 (en) Thermostatic expansion valve with bypass passage
US6189326B1 (en) Pressure control valve
JP2006220407A (en) Expansion valve for refrigeration cycle
JP2008020141A (en) Pressure control valve
JP2002054861A (en) Thermostatic expansion valve
JP2007139209A (en) Pressure control valve for refrigerating cycle
JP2000241048A (en) Temperature-sensitive expansion valve
JP2001324245A (en) High pressure control valve for supercritical vapor compression freezing cycle
JP4445090B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
JP4044714B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
JP4256565B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
JP2002071037A (en) Relief valve, high pressure control valve with relief valve and super critical vapor refrigerating cycle device
JP3954743B2 (en) Control valve for refrigeration cycle
JP2006105449A (en) Temperature sensitive control valve and refrigerating cycle device
JP2001153499A (en) Control valve for refrigerating cycle
JP2001263865A (en) Supercritical vapor compression refrigeration cycle and pressure control valve
JP2000220917A (en) Supercooling degree control type expansion valve
JP2002349732A (en) Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system
JP3476619B2 (en) Expansion valve
JPH02254270A (en) Temperature actuating type expansion valve
JPS5810623B2 (en) Expansion valve using shape memory alloy
JP2001280722A (en) Supercritical steam compression refrigerating cycle device and composite valve for supercritical steam compression refrigerating cycle device
WO2001001053A1 (en) Electro-thermal expansion valve system
JPH10325480A (en) Refrigerating cold storage device, flow rate correcting bypass valve of refrigerant, and temperature expansion valve
JP2004100771A (en) Relief valve, high pressure control valve with relief valve and refrigerating cycle device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807