JP4444990B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP4444990B2
JP4444990B2 JP2007176168A JP2007176168A JP4444990B2 JP 4444990 B2 JP4444990 B2 JP 4444990B2 JP 2007176168 A JP2007176168 A JP 2007176168A JP 2007176168 A JP2007176168 A JP 2007176168A JP 4444990 B2 JP4444990 B2 JP 4444990B2
Authority
JP
Japan
Prior art keywords
photosensitive portion
solid
state imaging
charge transfer
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007176168A
Other languages
Japanese (ja)
Other versions
JP2008010879A (en
Inventor
隆二 近藤
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007176168A priority Critical patent/JP4444990B2/en
Publication of JP2008010879A publication Critical patent/JP2008010879A/en
Application granted granted Critical
Publication of JP4444990B2 publication Critical patent/JP4444990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、固体撮像装置に関し、特に画素数の多い固体撮像装置に関する。   The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device having a large number of pixels.

固体撮像装置として、電荷結合装置(CCD)を用いて信号電荷を転送するCCD固体撮像装置や感光素子からの画像信号をMOSトランジスタで増幅した後出力するMOS型固体撮像装置等が知られている。感光素子としては、主にホトダイオードが用いられ、受光領域内に多数の画素が行列状に配置される。感光素子の配列は、行方向および列方向にそれぞれ一定ピッチで正方行列的に配列される場合や行方向および列方向に1つおきに位置をずらして(例えば1/2ピッチずつずらして)配列されるハニカム配列がある。   Known solid-state imaging devices include CCD solid-state imaging devices that transfer signal charges using a charge-coupled device (CCD), MOS-type solid-state imaging devices that amplify image signals from photosensitive elements and output them after MOS transistors, and the like. . As the photosensitive element, a photodiode is mainly used, and a large number of pixels are arranged in a matrix in the light receiving region. The photosensitive elements are arranged in a square matrix at a constant pitch in the row direction and the column direction, or every other position in the row direction and the column direction (for example, shifted by 1/2 pitch). There is a honeycomb arrangement.

オンチップカラーフィルタを備える固体撮像装置の場合、感光素子や信号転送部を形成した半導体チップ上にカラーフィルタ層が形成される。多くの場合、カラーフィルタ層の上に、さらにオンチップマイクロレンズが配置され、入射する光を効率的に感光素子に入射させるようにしている。   In the case of a solid-state imaging device including an on-chip color filter, a color filter layer is formed on a semiconductor chip on which a photosensitive element and a signal transfer unit are formed. In many cases, an on-chip microlens is further disposed on the color filter layer so that incident light is efficiently incident on the photosensitive element.

解像度の高い画像信号を得るためには、画素数を増加させることが望まれる。各画素は、一般的に同一形状で形成されるが、各画素から得られる画像信号は、必ずしも同一の機能、重要性を有するものではない。例えば、解像度を支配する輝度信号を得るためには、可視領域全体の光量、又は緑色領域の光量の信号が必要である。緑色信号から輝度信号を得る場合、高解像度の画像信号を得ようとすれば、緑色画素の数が多いほうが望ましい。   In order to obtain an image signal with high resolution, it is desired to increase the number of pixels. Each pixel is generally formed in the same shape, but the image signals obtained from each pixel do not necessarily have the same function and importance. For example, in order to obtain a luminance signal that dominates the resolution, a light amount signal for the entire visible region or a light amount signal for the green region is required. When a luminance signal is obtained from a green signal, it is desirable that the number of green pixels is large in order to obtain a high-resolution image signal.

本発明の目的は、高解像度の固体撮像装置を提供することである。   An object of the present invention is to provide a high-resolution solid-state imaging device.

本発明の他の目的は、目的に応じて機能を使い分けることのできる固体撮像装置を提供することである。   Another object of the present invention is to provide a solid-state imaging device capable of properly using functions according to the purpose.

本発明のさらに他の目的は、補助的な機能を有すると共に、補助的機能により主たる機能が低下する程度を最小限に抑えた固体撮像装置を提供することである。   Still another object of the present invention is to provide a solid-state imaging device having an auxiliary function and minimizing the extent to which the main function is reduced by the auxiliary function.

本発明の他の目的は、占有面積を増加させることなく、解像度を高くでき、感度の低下を抑制できる固体撮像装置を提供することである。   Another object of the present invention is to provide a solid-state imaging device capable of increasing the resolution and suppressing the decrease in sensitivity without increasing the occupied area.

本発明の一観点によれば、受光領域を有する半導体基板と、前記半導体基板の受光領域に行列状に形成された多数の画素であって、各画素が相対的に広い面積を有する主感光部と相対的に狭い面積を有する従感光部とを含む多数の画素と、前記主感光部と従感光部を含む1画素の上方に1つの開口を有する遮光膜と、前記各画素の前記従感光部を覆って形成された全て緑色の従カラーフィルタ群と、前記主感光部、前記従感光部のいずれからも選択的に画像信号を取り出すことのできる電荷読出機構と、を有する固体撮像装置が提供される。 According to one aspect of the present invention, a main substrate having a light receiving region and a plurality of pixels formed in a matrix in the light receiving region of the semiconductor substrate, each pixel having a relatively large area. And a plurality of pixels including a relatively photosensitive area having a relatively small area, a light-shielding film having one opening above one pixel including the main photosensitive area and the secondary photosensitive area, and the secondary sensitivity of each pixel. A solid-state imaging device having an all-green secondary color filter group formed so as to cover a portion, and a charge readout mechanism capable of selectively extracting an image signal from either the main photosensitive portion or the secondary photosensitive portion. Provided.

本発明によれば、高解像度の画像信号を読み出すことができる。   According to the present invention, a high-resolution image signal can be read out.

高画質の画像を再生することが可能となる。   It becomes possible to reproduce high-quality images.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(A)〜(C)、図2(A)〜(C)は、本発明の実施例による固体撮像装置を説明するための平面図、断面図及びブロック図である。図1(A)において、2つの画素PIXが横に並んで示されている。各画素PIXは、2つのホトダイオード領域21、22を含む。ホトダイオード領域21は、相対的に広い面積を有し、主たる感光部を構成する。ホトダイオード22は、相対的に狭い面積を有し、従たる感光部を構成する。画素PIXの右側に、垂直電荷転送路(VCCD)6が配置されている。   1A to 1C and 2A to 2C are a plan view, a cross-sectional view, and a block diagram for explaining a solid-state imaging device according to an embodiment of the present invention. In FIG. 1A, two pixels PIX are shown side by side. Each pixel PIX includes two photodiode regions 21 and 22. The photodiode region 21 has a relatively large area and constitutes a main photosensitive portion. The photodiode 22 has a relatively small area and constitutes a secondary photosensitive portion. A vertical charge transfer path (VCCD) 6 is arranged on the right side of the pixel PIX.

なお、図示した構成はハニカム構造の画素配列であり、図示した2つの画素の上側および下側の画素は、横方向に半ピッチずれた位置に配置される。各画素PIXの左側に示されているVCCD6は、上側および下側の画素PIXからの電荷を読み出し、転送するためのものである。   The illustrated configuration is a honeycomb-structured pixel arrangement, and the upper and lower pixels of the two illustrated pixels are arranged at positions shifted by a half pitch in the horizontal direction. The VCCD 6 shown on the left side of each pixel PIX is for reading and transferring charges from the upper and lower pixels PIX.

点線で示すように、4層駆動するためのポリシリコン電極14、15、18、19(まとめてELで示す)がVCCD6の上方に配置される。例えば、2層ポリシリコンで転送電極を形成する場合、転送電極14、18は例えば第1層ポリシリコン層で形成され、転送電極15、19は第2層ポリシリコン層で形成される。転送電極14は、従たる感光部22からVCCD6への電荷読み出しも制御する。転送電極15は、主たる感光部21からVCCD6への電荷読み出しも制御する。   As indicated by dotted lines, polysilicon electrodes 14, 15, 18, and 19 (collectively indicated by EL) for driving four layers are arranged above the VCCD 6. For example, when the transfer electrode is formed of two-layer polysilicon, the transfer electrodes 14 and 18 are formed of, for example, a first polysilicon layer, and the transfer electrodes 15 and 19 are formed of a second polysilicon layer. The transfer electrode 14 also controls charge reading from the subordinate photosensitive unit 22 to the VCCD 6. The transfer electrode 15 also controls charge reading from the main photosensitive portion 21 to the VCCD 6.

図1(B)、(C)は、図1(A)に示す1点破線IB‐IBおよびIC‐I
Cに沿う断面図である。n型半導体基板16の1表面に、p型ウエル17が形成されている。p型ウエル17の表面領域に、2つのn型領域21、22が形成され、主ホトダイオード部および従ホトダイオード部を構成している。p+型領域27は、画素、VCCD等の電気的な分離を行なうためのチャネルストップ領域である。
1B and 1C show one-dot broken lines IB-IB and IC-I shown in FIG.
It is sectional drawing which follows C. A p-type well 17 is formed on one surface of the n-type semiconductor substrate 16. Two n-type regions 21 and 22 are formed in the surface region of the p-type well 17 to constitute a main photodiode portion and a sub-photodiode portion. The p + type region 27 is a channel stop region for performing electrical separation of pixels, VCCDs, and the like.

図1(C)に示すように、ホトダイオードを構成するn型領域21の近傍に、VCCDを構成するn型領域6が配置されている。n型領域21、6の間のp型ウエル17が、読み出しトランジスタを構成する。   As shown in FIG. 1C, an n-type region 6 constituting a VCCD is arranged in the vicinity of an n-type region 21 constituting a photodiode. The p-type well 17 between the n-type regions 21 and 6 constitutes a read transistor.

半導体基板表面上には、酸化シリコン膜等の絶縁層が形成され、その上にポリシリコンで形成された転送電極ELが形成される。転送電極ELは、VCCD6の上方を覆うように配置されている。転送電極ELの上に、さらに酸化シリコン等の絶縁層が形成され、その上にVCCD等の構成要素を覆い、主ホトダイオード部および従ホトダイオードを含む1画素の上方に1つの開口を有する遮光膜12がタングステン等により形成されている。遮光膜12を覆うように、ホスホシリケートガラス等で形成された層間絶縁膜13が形成され、その表面が平坦化されている。   An insulating layer such as a silicon oxide film is formed on the surface of the semiconductor substrate, and a transfer electrode EL made of polysilicon is formed thereon. The transfer electrode EL is disposed so as to cover the upper part of the VCCD 6. An insulating layer such as silicon oxide is further formed on the transfer electrode EL, covers a component such as a VCCD thereon, and has a light shielding film 12 having one opening above one pixel including the main photodiode portion and the sub-photodiode. Is formed of tungsten or the like. An interlayer insulating film 13 made of phosphosilicate glass or the like is formed so as to cover the light shielding film 12, and the surface thereof is flattened.

層間絶縁膜13の上に、カラーフィルタ層10が形成されている。カラーフィルタ層10は、例えば赤色領域25、緑色領域26等3色以上の色領域を含む。カラーフィルタ層10の上に、各画素に対応してマイクロレンズ11がレジスト材料等により形成されている。   A color filter layer 10 is formed on the interlayer insulating film 13. The color filter layer 10 includes three or more color regions such as a red region 25 and a green region 26, for example. On the color filter layer 10, microlenses 11 are formed of a resist material or the like corresponding to each pixel.

図1(B)に示すように、マイクロレンズ11は各画素の上に1つ形成されており、その下方には2種類のカラーフィルタ25、26が配置されている。カラーフィルタ25は、主たる感光部21の上方を覆って形成され、少なくとも垂直方向から感光部21に入射する光が透過するように配置されている。カラーフィルタ26を透過した光は、主に従たる感光部22に入射するように配置されている。マイクロレンズ11は、上方より入射する光を、遮光膜12が画定する開口内に集光させる機能を有する。なお、感光部21,22に合わせて、2つのマイクロレンズを設けてもよい。   As shown in FIG. 1B, one microlens 11 is formed on each pixel, and two types of color filters 25 and 26 are disposed below the microlens 11. The color filter 25 is formed so as to cover the top of the main photosensitive portion 21 and is disposed so that light incident on the photosensitive portion 21 from at least the vertical direction is transmitted. The light transmitted through the color filter 26 is disposed so as to be incident on the main photosensitive portion 22. The microlens 11 has a function of condensing light incident from above into an opening defined by the light shielding film 12. Two microlenses may be provided in accordance with the photosensitive portions 21 and 22.

図2(A)は、受光領域PS内の画素PIXおよびVCCD6の配置を示す。画素PIXは、各行において1列おきに配置されると共に、各列において1行おきに配置され、いわゆるハニカム構造を構成している。各画素PIXは、上述のように主たる感光部と従たる感光部とを含む。VCCD6は、各列に近接して蛇行して配置されている。   FIG. 2A shows the arrangement of the pixels PIX and VCCD 6 in the light receiving region PS. The pixels PIX are arranged at every other column in each row and at every other row in each column to constitute a so-called honeycomb structure. Each pixel PIX includes a main photosensitive portion and a secondary photosensitive portion as described above. The VCCD 6 is arranged in a meandering manner close to each column.

受光領域PSの右側には、垂直転送電極ELを駆動するためのVCCD駆動回路2が配置されている。又、受光領域PS下方には、VCCD6から電荷を受け、横方向に転送する水平電荷転送路(HCCD)3が配置されている。HCCD3の左側には、出力アンプ4が配置されている。   A VCCD driving circuit 2 for driving the vertical transfer electrode EL is arranged on the right side of the light receiving region PS. A horizontal charge transfer path (HCCD) 3 that receives charges from the VCCD 6 and transfers them in the horizontal direction is disposed below the light receiving region PS. An output amplifier 4 is disposed on the left side of the HCCD 3.

図2(B)は、固体撮像装置のシステム構成を示す。固体撮像素子51は、半導体チップで構成され、受光領域PSおよび周辺回路領域を含む。駆動回路52は、固体撮像素子を駆動する駆動信号を供給する。主たる感光部の蓄積電荷を読み出す信号と、従たる感光部の蓄積電荷を読み出す信号を供給する。   FIG. 2B shows a system configuration of the solid-state imaging device. The solid-state image sensor 51 is formed of a semiconductor chip and includes a light receiving region PS and a peripheral circuit region. The drive circuit 52 supplies a drive signal for driving the solid-state imaging device. A signal for reading out the accumulated charge of the main photosensitive portion and a signal for reading out the accumulated charge of the subordinate photosensitive portion are supplied.

固体撮像装置51からの2種類の出力信号は、処理回路53で処理される。記憶装置54は、処理回路53から画像信号を受け、記憶する2つの領域を有する。一方の領域は、主たる感光部に基づく画像信号を記憶し、他方の領域は従たる感光部に基づく画像信号を記憶する。処理回路53で処理された画像信号は、表示装置55、インターフェイス56、テレビジョンTV57等に供給される。   Two types of output signals from the solid-state imaging device 51 are processed by the processing circuit 53. The storage device 54 has two areas for receiving and storing image signals from the processing circuit 53. One area stores an image signal based on the main photosensitive part, and the other area stores an image signal based on the subordinate photosensitive part. The image signal processed by the processing circuit 53 is supplied to the display device 55, the interface 56, the television TV 57, and the like.

図1(B)、(C)に示すような構成においては、2種類のカラーフィルタを透過した光が必ずしも完全に分離して2つの感光部21、22に入射するとは限らない。すなわち、感光部において混色が生じる可能性がある。しかしながら、マイクロレンズ11を透過した光は、必ず2種類のカラーフィルタ25、26のいずれかを通る。すなわち、感光部21,22で生じうる混色は、2種類の混色に限られる。   In the configuration as shown in FIGS. 1B and 1C, the light transmitted through the two types of color filters is not necessarily completely separated and incident on the two photosensitive portions 21 and 22. That is, color mixing may occur in the photosensitive part. However, the light transmitted through the microlens 11 always passes through one of the two types of color filters 25 and 26. That is, the color mixture that can occur in the photosensitive portions 21 and 22 is limited to two types of color mixture.

予め、一方のカラーフィルタを透過した光がどのような割合で2つの感光部に入射し、他方のカラーフィルタを透過した光がどのような割合で2つの感光部に入射するかを調べておき、2つの感光部の受光信号をどのように換算すれば各色信号成分が導出できるかを設定しておけば、処理回路53の処理により2つの感光部に入射した光を整理することができる。   In advance, the proportion of light transmitted through one color filter is incident on the two photosensitive portions, and the proportion of light transmitted through the other color filter is incident on the two photosensitive portions in advance. By setting how the light reception signals of the two photosensitive portions are converted to derive each color signal component, the light incident on the two photosensitive portions can be organized by the processing of the processing circuit 53.

たとえば、出荷前に、受光領域全体に一定照度の赤色光、緑色光、青色光を照射し、各感光部からの出力信号を得る。同一画素の2つの感光部の信号により、1つのフィルタを通過した光がどのように2つの感光部に分配されるかが判る。2つのフィルタを通過した光が2つの感光部に入射する場合は、各感光部は2色の入射光の一定割合を受光している。この割合は固定値なので、換算することにより目的とする色の光量を計算することができる。処理回路53は、予めこれらの数値を記憶しておく。     For example, before shipment, the entire light receiving area is irradiated with red light, green light, and blue light having a constant illuminance, and output signals from the respective photosensitive units are obtained. From the signals of the two photosensitive portions of the same pixel, it can be seen how the light passing through one filter is distributed to the two photosensitive portions. When the light that has passed through the two filters enters two photosensitive portions, each photosensitive portion receives a certain proportion of incident light of two colors. Since this ratio is a fixed value, the light quantity of the target color can be calculated by conversion. The processing circuit 53 stores these numerical values in advance.

なお、主たる感光部での混色は無視できる程度に抑え、従たる感光部の信号のみ混色を解消する処理を行ってもよい。     It should be noted that the color mixing at the main photosensitive portion may be suppressed to a negligible level, and processing for eliminating the color mixing may be performed only for the signal of the subordinate photosensitive portion.

なお、上述の実施例において従たる感光部22の上方には全て緑色のフィルタ26が配置されている。従って、従たる感光部の検出信号を用いて、全画素位置での緑色信号(輝度信号)を得ることができる。全画素位置での輝度信号を得ることにより、必要に応じてさらに補間を行い、高解像度の画像を再生することが可能となる。   Note that a green filter 26 is disposed above the photosensitive portion 22 according to the above-described embodiment. Therefore, a green signal (luminance signal) at all pixel positions can be obtained using the detection signal of the subsequent photosensitive portion. By obtaining luminance signals at all pixel positions, it is possible to perform further interpolation as necessary to reproduce a high-resolution image.

主たる感光部21の画像信号は、通常のCCD型固体撮像装置の画像信号と同様に扱うことができる。必要に応じて、主たる感光部からの信号のみで画像を再生することもできる。   The image signal of the main photosensitive portion 21 can be handled in the same manner as the image signal of a normal CCD type solid-state imaging device. If necessary, an image can be reproduced only with a signal from the main photosensitive portion.

図2(C)は、従たる感光部から得た信号を補間して補間信号を得る方法を示す。画素P1,P2,P3,P4は全て緑色の従たる感光部である。輝度信号算出の基礎となる画素数が増加しているので、解像度を向上することができる。通常のベイヤ配列では、上下、又は左右の2個のみが緑色画素である。補間画素IPの緑色信号を作成する場合も、2つの信号の平均値とするしかない。   FIG. 2C shows a method of obtaining an interpolation signal by interpolating the signal obtained from the subordinate photosensitive portion. Pixels P1, P2, P3, and P4 are all green subordinate photosensitive portions. Since the number of pixels serving as the basis for calculating the luminance signal is increasing, the resolution can be improved. In a normal Bayer array, only the top and bottom or left and right are green pixels. Even when the green signal of the interpolation pixel IP is created, the average value of the two signals can only be obtained.

上下、左右4つの緑色画素があれば、4つの信号値を用いて補間画素の信号値を作成することができる。たとえば、3つの画素信号がほぼ同一で、1つのみが異なる値の場合、被写体の境界であることが考えられる。この場合、1つのみ異なる信号は無視し、残りの3つの信号から平均値を得る事ができる。このようにして、高解像度の画像信号を得る事ができる。主たる感光部からの信号を処理するときに、得た高解像度の情報を利用することができる。   If there are four upper, lower, left and right green pixels, the signal value of the interpolation pixel can be created using the four signal values. For example, when three pixel signals are substantially the same and only one has a different value, it may be a boundary of the subject. In this case, only one different signal is ignored, and an average value can be obtained from the remaining three signals. In this way, a high resolution image signal can be obtained. The high-resolution information obtained can be used when processing the signal from the main photosensitive part.

図3(A)、(B)は、本発明の他の実施例による固体撮像装置の構成を示す。主たる感光部21と従たる感光部22の間にp+型分離領域29が形成されている。又、その上方には分離領域29に対応した位置に遮光膜28が形成されている。遮光膜28、分離領域29を用いることにより、入射する光を効率的に分離すると共に、感光部21、22に一旦蓄積された電荷がその後混合することを防止する。その他の構成は図1、図2に示す実施例と同様である。 3A and 3B show the configuration of a solid-state imaging device according to another embodiment of the present invention. A p + type separation region 29 is formed between the main photosensitive portion 21 and the secondary photosensitive portion 22. Further, a light shielding film 28 is formed at a position corresponding to the separation region 29 above it. By using the light shielding film 28 and the separation region 29, the incident light is efficiently separated and the charges once accumulated in the photosensitive portions 21 and 22 are prevented from being mixed thereafter. Other configurations are the same as those of the embodiment shown in FIGS.

図4(A)、(B)は、その他の変形例を示す。   4A and 4B show other modified examples.

図4(A)は、2つの感光部21、22が斜め方向に分離されている構成を示す。主たる感光部21と従たる感光部22の分離形状はVCCDに蓄積電荷を読み出すことができれば特に限定されない。ただし、従たる感光部の面積を主たる感光部の面積に較べ小さな値とする。主たる感光部の面積減少を抑制し、感度低下を最小限に抑える。   FIG. 4A shows a configuration in which two photosensitive portions 21 and 22 are separated in an oblique direction. The separation shape of the main photosensitive portion 21 and the secondary photosensitive portion 22 is not particularly limited as long as the accumulated charge can be read out to the VCCD. However, the area of the subordinate photosensitive part is set to a smaller value than the area of the main photosensitive part. Suppresses the area reduction of the main photosensitive area and minimizes the decrease in sensitivity.

図4(B)は、マイクロレンズ11が主たる感光部に対応するカラーフィルタ上にのみ形成されている構成を示す。従たる感光部に対応するカラーフィルタ26の上にはマイクロレンズが配置されていない。このため、従たる感光部22に入射する面積当りの光量は少なくなる。逆に、強い光が入射しても従たる感光部22が飽和することが少なく、広いダイナミックレンジを実現することができる。なお、従たる感光部に対応するカラーフィルタを省略し、透明領域とすることもできる。   FIG. 4B shows a configuration in which the microlens 11 is formed only on the color filter corresponding to the main photosensitive portion. No microlens is disposed on the color filter 26 corresponding to the subordinate photosensitive portion. For this reason, the amount of light per area incident on the secondary photosensitive portion 22 is reduced. On the contrary, even if intense light is incident, the subordinate photosensitive portion 22 is hardly saturated and a wide dynamic range can be realized. The color filter corresponding to the subordinate photosensitive portion can be omitted to make a transparent region.

以上、ハニカム構造の固体撮像装置を例にとって説明したが、固体撮像装置の画素配列はハニカム構成に限らない。   As described above, the solid-state imaging device having the honeycomb structure has been described as an example. However, the pixel arrangement of the solid-state imaging device is not limited to the honeycomb configuration.

図4(C)は、全画素PIXが(n x m)の正方行列的に配置された例を示す。各画素PIXは、主たる感光部21と従たる感光部22を含む。これら2種類の感光部から隣接するVCCDに選択的に電荷を転送することができる構成となっている。   FIG. 4C shows an example in which all pixels PIX are arranged in a square matrix of (n x m). Each pixel PIX includes a main photosensitive portion 21 and a secondary photosensitive portion 22. The charge can be selectively transferred from these two types of photosensitive portions to the adjacent VCCD.

さらに、CCD型固体撮像装置以外の固体撮像装置に適応することも可能である。   Furthermore, the present invention can be applied to a solid-state imaging device other than a CCD solid-state imaging device.

図4(D)は、MOS型固体撮像装置の構成例を示す。各画素画が複数領域のホトダイオード21、22を含む。主たる感光部21、従たる感光部22に対応してそれぞれMOSトランジスタが接続されており、各感光部の蓄積電荷を選択的に読み出すことができる。   FIG. 4D shows a configuration example of a MOS type solid-state imaging device. Each pixel image includes a plurality of regions of photodiodes 21 and 22. A MOS transistor is connected to each of the main photosensitive unit 21 and the secondary photosensitive unit 22 so that the accumulated charge of each photosensitive unit can be selectively read out.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば種々の変更、改良、組み合わせが可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

本発明の実施例による固体撮像装置の構成を示す平面図及び断面図である。It is the top view and sectional drawing which show the structure of the solid-state imaging device by the Example of this invention. 図1に示す固体撮像装置の全体構成を示す平面図及びブロック図である。It is the top view and block diagram which show the whole structure of the solid-state imaging device shown in FIG. 本発明の他の実施例による固体撮像装置の構成を示す平面図及び断面図である。It is the top view and sectional drawing which show the structure of the solid-state imaging device by the other Example of this invention. 本発明の実施例の変形例を示す平面図及び断面図である。It is the top view and sectional drawing which show the modification of the Example of this invention.

符号の説明Explanation of symbols

2 VCCD駆動回路
3 HCCD
4 出力アンプ
6 VCCD
16 半導体基板(n型領域)
17 p型ウエル
21 n型領域(主たる感光部)
22 n型領域(従たる感光部)
EL 転送電極
14、15、18、19 ポリシリコン電極
10 カラーフィルタ層
11 マイクロレンズ
12 遮光膜
13 層間絶縁膜
25、26 カラーフィルタ
2 VCCD drive circuit 3 HCCD
4 Output amplifier 6 VCCD
16 Semiconductor substrate (n-type region)
17 p-type well 21 n-type region (main photosensitive area)
22 n-type region (subordinate photosensitive part)
EL transfer electrode 14, 15, 18, 19 Polysilicon electrode 10 Color filter layer 11 Micro lens 12 Light-shielding film 13 Interlayer insulating film 25, 26 Color filter

Claims (4)

受光領域を有する半導体基板と、
前記半導体基板の受光領域に行列状に形成された多数の画素であって、各画素が相対的に広い面積を有する主感光部と相対的に狭い面積を有する従感光部とを含む多数の画素と、
前記主感光部と従感光部を含む1画素の上方に1つの開口を有する遮光膜と、
前記各画素の前記従感光部を覆って形成された全て緑色の従カラーフィルタ群と、
前記主感光部、前記従感光部のいずれからも選択的に画像信号を取り出すことのできる電荷読出機構と、
を有する固体撮像装置。
A semiconductor substrate having a light receiving region;
A large number of pixels formed in a matrix in the light receiving region of the semiconductor substrate, each pixel including a main photosensitive portion having a relatively large area and a secondary photosensitive portion having a relatively small area When,
A light-shielding film having one opening above one pixel including the main photosensitive portion and the secondary photosensitive portion;
An all-green sub-color filter group formed to cover the sub-photosensitive portion of each pixel;
A charge readout mechanism capable of selectively extracting an image signal from either the main photosensitive portion or the secondary photosensitive portion;
A solid-state imaging device.
前記電荷読出機構は、
前記画素の各列に沿って前記半導体基板に形成された垂直電荷転送路と、
前記垂直電荷転送路の電荷転送を制御すると共に、前記主感光部および従感光部のいずれからも前記垂直電荷転送路に電荷を読み出せる形状で、前記半導体基板上方に形成された垂直転送電極群と、
前記垂直電荷転送路の一端に隣接して前記半導体基板に形成され、前記垂直電荷転送路から電荷を受け、1行ずつの電荷信号を転送できる水平電荷転送路と、
前記半導体基板上方に形成され、前記水平電荷転送路の電荷転送を制御する水平転送電極群と、
を含む請求項1記載の固体撮像装置。
The charge readout mechanism is:
Vertical charge transfer paths formed in the semiconductor substrate along each column of the pixels;
A group of vertical transfer electrodes formed above the semiconductor substrate in a shape that controls charge transfer in the vertical charge transfer path and can read charges from the main photosensitive portion and the secondary photosensitive portion to the vertical charge transfer path. When,
A horizontal charge transfer path formed on the semiconductor substrate adjacent to one end of the vertical charge transfer path, receiving charges from the vertical charge transfer path, and transferring a charge signal for each row;
A horizontal transfer electrode group formed above the semiconductor substrate and controlling charge transfer of the horizontal charge transfer path;
The solid-state imaging device according to claim 1, comprising:
さらに、
前記各画素の前記主感光部を覆って形成された主カラーフィルタと、
前記主感光部および前記従感光部からの画像信号を処理し、各感光部に入射した光を整理する処理回路と、
を有する請求項1または2に記載の固体撮像装置。
further,
A main color filter group formed to cover the main photosensitive portion of each pixel ;
A processing circuit for processing image signals from the main photosensitive portion and the secondary photosensitive portion and organizing light incident on each photosensitive portion;
The solid-state imaging device according to claim 1, comprising:
前記多数の画素が、行方向、列方向共に1つ置きに位置をずらせたハニカム状に配列されている請求項1〜3のいずれか1項に記載の固体撮像装置。   The solid-state imaging device according to any one of claims 1 to 3, wherein the plurality of pixels are arranged in a honeycomb shape in which the positions are shifted every other in the row direction and the column direction.
JP2007176168A 2007-07-04 2007-07-04 Solid-state imaging device Expired - Fee Related JP4444990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007176168A JP4444990B2 (en) 2007-07-04 2007-07-04 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007176168A JP4444990B2 (en) 2007-07-04 2007-07-04 Solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002016835A Division JP4050906B2 (en) 2002-01-25 2002-01-25 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2008010879A JP2008010879A (en) 2008-01-17
JP4444990B2 true JP4444990B2 (en) 2010-03-31

Family

ID=39068738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007176168A Expired - Fee Related JP4444990B2 (en) 2007-07-04 2007-07-04 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4444990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978614B2 (en) 2008-11-25 2012-07-18 ソニー株式会社 Solid-state imaging device

Also Published As

Publication number Publication date
JP2008010879A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4050906B2 (en) Solid-state imaging device
KR101497715B1 (en) Solid-state imaging device and camera
US7812873B2 (en) Image pickup device and image pickup system
US7541628B2 (en) Image sensors including active pixel sensor arrays
KR101068698B1 (en) Solid state imaging device
US7671314B2 (en) Image sensor including active pixel sensor array with photoelectric conversion region
US8946611B2 (en) Solid-state imaging element and manufacturing method thereof, and electronic information device
US7138618B2 (en) Solid-state image pickup device and image pickup camera
KR102545845B1 (en) Semiconductor device and electronic apparatus
JP2009026984A (en) Solid-state imaging element
JP2006120773A (en) Photoelectric converting film laminating single-plate color solid-state imaging apparatus
KR100837454B1 (en) Solid-state image sensing device
JP5789446B2 (en) MOS type solid-state imaging device and imaging apparatus
JP2005110104A (en) Solid-state imaging apparatus
JP2010021450A (en) Solid-state image sensor
JP4444990B2 (en) Solid-state imaging device
JP5619093B2 (en) Solid-state imaging device and solid-state imaging system
JP4251313B2 (en) Solid-state imaging device
JP2005243946A (en) Solid state image sensor and its drive method
JP2001053264A (en) Solid-state image pickup element
JPH02143561A (en) Color image sensor
JP2012064851A (en) Solid state image pick-up device, method of manufacturing the same, electronic apparatus
JP2010258268A (en) Solid-state imaging element, imaging device, and method of manufacturing solid-state imaging element
JP2011243791A (en) Solid state image sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees