JP4442555B2 - Polishing method - Google Patents

Polishing method Download PDF

Info

Publication number
JP4442555B2
JP4442555B2 JP2005357898A JP2005357898A JP4442555B2 JP 4442555 B2 JP4442555 B2 JP 4442555B2 JP 2005357898 A JP2005357898 A JP 2005357898A JP 2005357898 A JP2005357898 A JP 2005357898A JP 4442555 B2 JP4442555 B2 JP 4442555B2
Authority
JP
Japan
Prior art keywords
polishing
electropolishing
electrolytic
metal film
cmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005357898A
Other languages
Japanese (ja)
Other versions
JP2006114929A (en
Inventor
修三 佐藤
毅 野上
善哉 安田
成郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005357898A priority Critical patent/JP4442555B2/en
Publication of JP2006114929A publication Critical patent/JP2006114929A/en
Application granted granted Critical
Publication of JP4442555B2 publication Critical patent/JP4442555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、研磨方法に関し、詳しくは銅配線形成に伴う銅めっき膜表面の凹凸面を平坦化して埋め込み配線形成する際に行う電解研磨と化学的機械研磨とを繰り返し行う研磨方法に関するものである。   The present invention relates to a polishing method, and more particularly, to a polishing method for repeatedly performing electrolytic polishing and chemical mechanical polishing performed when a buried wiring is formed by flattening the concavo-convex surface of a copper plating film surface associated with copper wiring formation. .

銅配線に用いる銅めっき膜の電解研磨における終点の検出は、研磨時間により管理していた。   The detection of the end point in the electrolytic polishing of the copper plating film used for the copper wiring was controlled by the polishing time.

しかしながら、電解研磨においては、残存する銅膜部分の面積が減少し、微細配線部分への電解集中により、銅の溶出除去速度が局所的に加速するため、時間管理による終点判定では終点の検出マージンが小さく、微細配線の消失、巨大配線の残存などの課題を残している。   However, in electropolishing, the area of the remaining copper film is reduced, and the copper elution and removal speed is locally accelerated due to the electrolytic concentration on the fine wiring. However, there are still problems such as disappearance of fine wiring and remaining huge wiring.

さらに終点における電流値は全面銅で覆われていた場合に比べてはるかに小さいもので電流集中による局所的な抵抗値変化も加わり、積算電流の累積値から除去量を推測する(例えば、特許文献1参照)ことのみでは正確な終点判定は困難である。   Furthermore, the current value at the end point is much smaller than when the entire surface is covered with copper, and a local resistance value change due to current concentration is also added, and the removal amount is estimated from the accumulated value of the integrated current (for example, Patent Documents) 1)), it is difficult to accurately determine the end point.

この結果、銅膜の被研磨面は表面粗度が粗い不安定な面に形成される、溝配線部に埋め込まれた銅がオーバ研磨され、銅配線表面の後退により配線断面積が不足する、ディッシングが発生する、エロージョンが発生する、等の問題が生じている。このように、銅残り、オーバ研磨などによる局所的な不均一により、配線のショート、オープンを発生する。   As a result, the surface to be polished of the copper film is formed on an unstable surface with a rough surface roughness, the copper embedded in the groove wiring portion is over-polished, and the wiring cross-sectional area is insufficient due to the receding of the copper wiring surface, Problems such as dishing and erosion have occurred. In this way, short-circuiting and opening of the wiring occur due to local non-uniformity due to copper residue, over-polishing and the like.

特に、終点での電解研磨が溝配線部のみになっている場合には、銅表面の面積が当初の全面に銅膜が形成されていた状態の100%の状態からパターン密度まで銅膜の被研磨面積が減少している。このため、微細な溝配線部の銅に電解研磨が集中しやすくなるので、取り残された巨大残存部分や幅広配線部と、独立微細配線部との研磨速度差が増大し、独立微細配線部の研磨速度が加速的に上昇してしまう。さらに、陽極電流密度の極端な変化による電解研磨条件の変動、光沢電解研磨条件から外れることにより、表面の粗化等の不良を発生することになる。   In particular, when the electrolytic polishing at the end point is only for the trench wiring portion, the copper film is covered from the 100% state where the copper film is formed on the entire surface to the pattern density. The polishing area is decreasing. For this reason, since the electropolishing easily concentrates on the copper in the fine trench wiring portion, the polishing rate difference between the remaining huge remaining portion or wide wiring portion and the independent fine wiring portion increases, and the independent fine wiring portion The polishing speed increases at an accelerated rate. Further, the electropolishing conditions fluctuate due to an extreme change in the anode current density, and the glossy electropolishing conditions deviate, thereby causing defects such as surface roughening.

特開2001-077177号公報Japanese Patent Laid-Open No. 2001-077177

解決しようとする問題点は、被研磨面の品質を落とすことなく、研磨速度を速めることができない点である。   The problem to be solved is that the polishing rate cannot be increased without degrading the quality of the surface to be polished.

本発明は、電解研磨と化学的機械研磨もしくは化学的バフ研磨とを併用することで、被研磨面の品質を落とすことなく、研磨速度を速めることを課題とする。   An object of the present invention is to increase the polishing rate without degrading the quality of the surface to be polished by using electrolytic polishing and chemical mechanical polishing or chemical buffing in combination.

本発明の研磨方法は、ウエハ表面に凹凸のパターンが形成され、その凹部を埋め込むようにこのウエハ表面に形成された金属膜を研磨する研磨方法において、金属膜の研磨は、電解研磨と、6.9kPa以下の低研磨圧の化学的機械研磨又は化学的バフ研磨とを交互に行い、これら電解研磨と、化学的機械研磨又は化学的バフ研磨との一組の研磨工程を2回以上行うことを特徴とする。 The polishing method of the present invention, patterns of irregularities on the wafer surface is formed, a polishing method of polishing a metal film formed on the wafer surface so as to fill the recess, polishing gold Shokumaku includes electrolytic polishing, 6.9kPa have chemical mechanical polishing or row alternately chemically buffing or lower polishing pressure, and these electrolytic polishing, chemical mechanical polishing or a set of polishing two or more times the chemical buffing It is characterized by performing .

本発明の研磨方法では、金属膜の研磨を電解研磨と化学的機械研磨もしくは化学的バフ研磨とを交互に行うことから、電解研磨によって金属膜表面の面粗さを粗くしているので、その後の化学的機械研磨もしくは化学的バフ研磨では、研磨速度が速くなる。また、電解研磨後の表面を化学的機械研磨もしくは化学的バフ研磨によって研磨することから、研磨表面の品質を化学的機械研磨もしくは化学的バフ研磨のみで研磨したときと同等の平滑な被研磨面の品質を得ることができ、かつ研磨速度を速くすることができる。そして、電解研磨と化学的機械研磨もしくは化学的バフ研磨とを交互に行うことから、被研磨面の品質を落とすことなく、研磨速度を速めることができる。   In the polishing method of the present invention, the surface of the metal film surface is roughened by electrolytic polishing because the metal film is alternately polished by electrolytic polishing and chemical mechanical polishing or chemical buff polishing. In the chemical mechanical polishing or chemical buffing, the polishing rate is increased. In addition, since the surface after electropolishing is polished by chemical mechanical polishing or chemical buffing, the surface to be polished is the same as when polished by chemical mechanical polishing or chemical buffing alone. Can be obtained, and the polishing rate can be increased. Since the electrolytic polishing and the chemical mechanical polishing or the chemical buffing are alternately performed, the polishing rate can be increased without degrading the quality of the surface to be polished.

本発明の研磨方法は、金属膜の研磨を電解研磨と化学的機械研磨もしくは化学的バフ研磨とを交互に行うため、化学的機械研磨もしくは化学的バフ研磨のみで研磨したときと同等の平滑な被研磨面の品質を得ることができ、また被研磨面の面内均一性も優れたものとなり、かつ研磨速度を速くすることができる。もしくは同等の研磨速度であれば低い圧力で研磨を行うことができる。よって、電解集中による微細配線の消失が防止されるとともに、電解研磨条件の変化による金属膜の被研磨表面の荒れが防止できるという利点がある。   In the polishing method of the present invention, the polishing of the metal film is alternately performed by electrolytic polishing and chemical mechanical polishing or chemical buffing, so that the smoothness equivalent to that obtained by only chemical mechanical polishing or chemical buffing is used. The quality of the surface to be polished can be obtained, the in-plane uniformity of the surface to be polished is excellent, and the polishing rate can be increased. Alternatively, polishing can be performed at a low pressure at an equivalent polishing rate. Therefore, there is an advantage that the fine wiring can be prevented from disappearing due to the electrolytic concentration and the surface to be polished of the metal film can be prevented from being rough due to the change of the electrolytic polishing conditions.

本発明の研磨方法に係る一実施の形態の実施例を説明する。   An example of one embodiment according to the polishing method of the present invention will be described.

本発明の研磨方法は、ウエハ表面に形成された凹部を埋め込むように該ウエハ表面に形成された金属膜を研磨する研磨方法において、金属膜の研磨を電解研磨とCMPもしくは化学的バフ研磨とを交互に行う研磨方法である。この電解研磨の終点は、複数回行う電解研磨のうち最終工程における電解研磨工程において、後に説明する終点検出法を用いることができる。なお、最終工程前の電解研磨では、例えば研磨時間で研磨終点を判断する。また、電解研磨とCMPの回数は、予め実験により最適回数を求めておくことが望ましい。   The polishing method of the present invention is a polishing method for polishing a metal film formed on a wafer surface so as to fill a recess formed on the wafer surface. In the polishing method, the metal film is polished by electrolytic polishing and CMP or chemical buff polishing. This is an alternate polishing method. As the end point of this electropolishing, an end point detection method described later can be used in the electropolishing step in the final step among the electropolishing performed a plurality of times. In the electrolytic polishing before the final process, for example, the polishing end point is determined by the polishing time. Further, it is desirable that the optimum number of times of electrolytic polishing and CMP is obtained in advance through experiments.

上記CMPは、例えば、砥粒入りスラリーを用いた遊離砥粒CMP、固定砥粒パッドを用いたCMP、砥粒フリースラリーを用いたCMP等を採用することができる。   As the CMP, for example, loose abrasive CMP using a slurry containing abrasive grains, CMP using a fixed abrasive pad, CMP using abrasive-free slurry can be employed.

本発明の研磨方法では、金属膜の研磨を電解研磨とCMPもしくは化学的バフ研磨とを交互に行うことから、図1の(1)に示すように、電解研磨前の平滑の金属膜32表面は、図1の(2)に示すように、電解研磨によって金属膜表面は多孔質状に変質するため、その表面の面粗さは粗くなる。このような表面状態をCMPもしくは化学的バフ研磨で研磨するので、CMPもしくは化学的バフ研磨における研磨速度は速くなる。その際、CMPの研磨圧力を、通常のCMPよりも1/7〜1/10に低減することができる。したがって、下地に、一般的な低誘電率有機膜や多孔質状の低誘電率絶縁膜のような脆弱な膜を用いても、下地を破壊することなく、CMPを行うことができるようになる。そして、低圧のCMPを行った結果、図1の(3)に示すように、金属膜32の表面は平滑な面に仕上がる。   In the polishing method of the present invention, the polishing of the metal film is carried out alternately by electrolytic polishing and CMP or chemical buff polishing. Therefore, as shown in FIG. As shown in (2) of FIG. 1, the surface of the metal film is roughened by electropolishing, so that the surface roughness becomes rough. Since such a surface state is polished by CMP or chemical buffing, the polishing rate in CMP or chemical buffing is increased. At this time, the polishing pressure of CMP can be reduced to 1/7 to 1/10 as compared with normal CMP. Therefore, even if a fragile film such as a general low dielectric constant organic film or a porous low dielectric constant insulating film is used as the base, CMP can be performed without destroying the base. . As a result of performing low-pressure CMP, the surface of the metal film 32 is finished as a smooth surface as shown in FIG.

例えば、通常のCMPでは、研磨圧力は27.5kPa〜48.1kPaであり、研磨速度は200nm/min〜600nm/minであり、被研磨面の平坦性は良くないか普通であり、面内均一性は3%〜5%である。一方、低研磨圧のCMPでは、研磨圧力は6.9kPa以下であり、研磨速度は100nm/min以下であるが、被研磨面の平坦性は良好であり、面内均一性は5%程度である。   For example, in normal CMP, the polishing pressure is 27.5 kPa to 48.1 kPa, the polishing rate is 200 nm / min to 600 nm / min, and the flatness of the surface to be polished is not good or normal, and the surface is uniform. Sex is 3% to 5%. On the other hand, in CMP with a low polishing pressure, the polishing pressure is 6.9 kPa or less and the polishing rate is 100 nm / min or less, but the flatness of the surface to be polished is good and the in-plane uniformity is about 5%. is there.

また、電解研磨の溶出特性は、電圧/電流密度が50mA/cm2 以上と高い場合、溶出速度は最大800nm/minであり、面内均一性は3%以下となった。一方、電圧/電流密度が20mA/cm2 以下と低い場合、溶出速度は200nm/min以下であり、面内均一性は3%以下となった。 In addition, when the voltage / current density was as high as 50 mA / cm 2 or more, the dissolution rate of electropolishing was a maximum dissolution rate of 800 nm / min and an in-plane uniformity of 3% or less. On the other hand, when the voltage / current density was as low as 20 mA / cm 2 or less, the elution rate was 200 nm / min or less, and the in-plane uniformity was 3% or less.

上記結果より、電解研磨により形成した表面の面粗さの粗い層(以下変質層という)は低い研磨圧力であっても、比較的高速に研磨することが可能であることがわかった。そこで、電解研磨とCMPとを組み合わせて交互に複数回行うことによって、効率良く研磨を行うことが可能になる。   From the above results, it was found that a layer having a rough surface (hereinafter referred to as an altered layer) formed by electrolytic polishing can be polished at a relatively high speed even at a low polishing pressure. Therefore, efficient polishing can be performed by alternately performing electrolytic polishing and CMP a plurality of times.

また、図2の(1)に示すように、電解研磨による金属膜32の変質層33の形成とCMPによる変質層33の研磨とがつりあっている場合には、すなわち、電解研磨により荒らした金属膜32表面がCMPによって平滑にされる場合には、平滑で光沢のある良好な研磨面を得ることができる。一方、図2の(2)に示すように、電解研磨による金属膜32の変質層33が厚く形成された場合には、CMPによる研磨でも変質層33を完全に研磨することができない。すなわち、電解研磨により荒らした金属膜32表面がCMPによって平滑にならない場合である。このような状態で電解研磨とCMPとを繰り返し行うと、被研磨表面は非常にあれた面となり、研磨効果が全く得られない。また、図2の(3)に示すように、電解研磨による金属膜32の変質層33の形成が薄すぎると、CMPによって変質層33の研磨は容易になるが、所望の厚さを研磨するのに時間がかかり過ぎることになり、十分な研磨スループットの向上が望めない。   In addition, as shown in FIG. 2A, when the formation of the altered layer 33 of the metal film 32 by electropolishing is balanced with the polishing of the altered layer 33 by CMP, that is, the metal roughened by electropolishing. When the surface of the film 32 is smoothed by CMP, a smooth and glossy good polished surface can be obtained. On the other hand, as shown in (2) of FIG. 2, when the altered layer 33 of the metal film 32 is formed thick by electrolytic polishing, the altered layer 33 cannot be completely polished even by polishing by CMP. That is, the surface of the metal film 32 roughened by electropolishing is not smoothed by CMP. If electrolytic polishing and CMP are repeated in such a state, the surface to be polished becomes very rough and no polishing effect is obtained. Further, as shown in (3) of FIG. 2, if the formation of the altered layer 33 of the metal film 32 by electropolishing is too thin, the altered layer 33 can be easily polished by CMP, but a desired thickness is polished. Therefore, it takes too much time, and a sufficient improvement in polishing throughput cannot be expected.

以上、説明したように、上記研磨方法では、電解研磨後の面粗さを粗くした表面をCMPもしくは化学的バフ研磨によって研磨することから、CMPもしくは化学的バフ研磨のみで研磨したときと同等に、平滑な光沢のある被研磨面を得ることができ、かつ研磨速度を速くすることができる。このように、電解研磨とCMPもしくは化学的バフ研磨とを交互に行うことから、被研磨面の品質を落とすことなく、研磨速度を速めることができるので、研磨スループットを向上させることが可能になる。   As described above, in the above polishing method, the surface having a rough surface after electropolishing is polished by CMP or chemical buffing, so that it is equivalent to polishing by CMP or chemical buffing alone. A smooth and polished surface can be obtained, and the polishing rate can be increased. As described above, since electrolytic polishing and CMP or chemical buff polishing are alternately performed, the polishing rate can be increased without degrading the quality of the surface to be polished, so that the polishing throughput can be improved. .

次に、各種研磨シーケンスの一例を、図3によって説明する。図3では、(1)、(2)に従来技術の研磨シーケンスを示し、(3)に本発明の研磨シーケンスを示す。   Next, examples of various polishing sequences will be described with reference to FIG. In FIG. 3, (1) and (2) show the polishing sequence of the prior art, and (3) shows the polishing sequence of the present invention.

研磨シーケンスを実施する試料は、以下のような構造となっている。すなわち、ウエハ表面に絶縁膜が形成され、その絶縁膜に配線溝が形成されている。その配線溝内面および絶縁膜表面にはバリア層として窒化タンタル膜が形成されている。さらに、通常の銅めっき技術によって、上記配線溝を埋め込むように上記バリア層上に銅膜が形成されている。上記配線溝以外の部分における銅膜は1.200μmの厚さを有している。   A sample for performing the polishing sequence has the following structure. That is, an insulating film is formed on the wafer surface, and a wiring groove is formed in the insulating film. A tantalum nitride film is formed as a barrier layer on the inner surface of the wiring groove and the insulating film surface. Further, a copper film is formed on the barrier layer so as to fill the wiring groove by a normal copper plating technique. The copper film in the portion other than the wiring trench has a thickness of 1.200 μm.

図3(1)は、通常のCMPのみで上記銅膜の研磨を行った場合であり、研磨圧力P=0.280kgf/cm2に設定し、3分間のCMPを4回行った。1回のCMPによる銅膜の除去量は0.300μmであるから、4回のCMPで1.200μmの銅膜が除去された。このプロセスでは電解研磨を行っていないので電解研磨による除去量は0である。上記プロセスでは、黒塗りの三角印で示すときに、窒化タンタル膜が露出した。したがって、最後のCMPはオーバ研磨となる。 FIG. 3 (1) shows a case where the copper film is polished by only normal CMP. The polishing pressure P is set to 0.280 kgf / cm 2 and CMP for 3 minutes is performed four times. Since the removal amount of the copper film by one CMP is 0.300 μm, the 1.200 μm copper film was removed by four CMPs. In this process, since electropolishing is not performed, the removal amount by electropolishing is zero. In the above process, the tantalum nitride film was exposed as indicated by black triangles. Therefore, the last CMP is over-polishing.

図3(2)は、低圧のCMPのみで上記銅膜の研磨を行った場合であり、研磨圧力P=0.060kgf/cm 2 に設定し、3分間のCMPを16回行った。1回のCMPによる銅膜の除去量は0.075μmであるから、16回のCMPで1.200μmの銅膜が除去された。このプロセスでは電解研磨を行っていないので電解研磨による除去量は0である。上記プロセスでは、黒塗りの三角印で示すときに、窒化タンタル膜が露出した。したがって、13回目以降のCMPはオーバ研磨となる。 FIG. 3B shows a case where the copper film is polished only by low-pressure CMP. The polishing pressure P is set to 0.060 kgf / cm 2 and CMP for 3 minutes is performed 16 times. Since the removal amount of the copper film by one CMP is 0.075 μm, the 1.200 μm copper film was removed by 16 CMPs. In this process, since electropolishing is not performed, the removal amount by electropolishing is zero. In the above process, the tantalum nitride film was exposed as indicated by black triangles. Therefore, the 13th and subsequent CMPs are over-polished.

図3(3)は、本発明の実施の形態に係る研磨方法であり、低圧のCMPと電解研磨とを交互に行い、窒化タンタル膜が露出した後は低圧のCMPのみで上記銅膜の研磨を行った場合であり、研磨圧力P=0.060kgf/cm 2 (≒5.88kPa)に設定し、3分間のCMPを合計で8回行い、電解研磨を合計で5回行った。1回のCMPによる銅膜の除去量は0.075μmであるから、8回のCMPで0.600μmの銅膜が除去された。また1回の電解研磨による研磨量は0.0167μmであるから、5回の電解研磨で0.0833μmの銅膜が除去されたことになる。 FIG. 3 (3) shows a polishing method according to an embodiment of the present invention, in which low-pressure CMP and electrolytic polishing are alternately performed, and after the tantalum nitride film is exposed, the copper film is polished only by low-pressure CMP. The polishing pressure P was set to 0.060 kgf / cm 2 (≈5.88 kPa) , CMP for 3 minutes was performed 8 times in total, and electrolytic polishing was performed 5 times in total. Since the removal amount of the copper film by one CMP is 0.075 μm, the 0.600 μm copper film was removed by eight CMPs. In addition, since the polishing amount by one electrolytic polishing is 0.0167 μm, the 0.0833 μm copper film is removed by five electrolytic polishings.

上記(3)の場合、CMPによる研磨量と電解研磨による研磨量の合計が銅膜の厚さと一致しないのは、以下の理由による。すなわち、電解研磨では被研磨面全面を一様に研磨するのではなく、研磨量以上に深さ方向に深く研磨されている。すなわち、変質層は研磨量以上に深く形成されている。このため、CMPにより研磨したとき、この変質層が容易に形成されるため、低圧のCMPであってもCMP自体の研磨量以上に研磨される。これによって、CMPによる研磨量と電解研磨による研磨量の合計が銅膜の厚さと一致しなくとも、余剰な銅膜が完全に除去されることになる。   In the case of (3) above, the total of the polishing amount by CMP and the polishing amount by electrolytic polishing does not match the thickness of the copper film for the following reason. That is, in the electrolytic polishing, the entire surface to be polished is not uniformly polished, but is deeply polished in the depth direction more than the polishing amount. That is, the altered layer is formed deeper than the polishing amount. For this reason, since this deteriorated layer is easily formed when polished by CMP, even the low-pressure CMP is polished more than the polishing amount of CMP itself. As a result, even if the sum of the polishing amount by CMP and the polishing amount by electrolytic polishing does not coincide with the thickness of the copper film, the excess copper film is completely removed.

上記(3)のプロセスでは、黒塗りの三角印で示すときに、バリア層が露出した。したがって、最後の3回のCMPはオーバ研磨となる。最終の電解研磨では、後に説明する研磨方法による終点検出法により終点を検出した。   In the process (3), the barrier layer was exposed when indicated by black triangles. Therefore, the last three CMPs are over-polished. In the final electrolytic polishing, the end point was detected by the end point detection method by the polishing method described later.

なお、図3において、通常圧のCMPは研磨時間が3分、研磨速度はおよそ0.100μm/min、1回のCMPの研磨量は0.300μmである。また、低圧のCMPは研磨時間が3分、研磨速度はおよそ0.025μm/min、1回のCMPの研磨量は0.075μmである。電解研磨は、研磨時間を10秒、研磨速度は0.100μm/min、1回の研磨量は0.0167μmである。上記各プロセスにおいては、バリア層が露出した時点を境にオーバ研磨とし、その研磨量はそれまでの研磨量の30%相当分とした。   In FIG. 3, the normal pressure CMP has a polishing time of 3 minutes, the polishing rate is about 0.100 μm / min, and the polishing amount of one CMP is 0.300 μm. The low pressure CMP has a polishing time of 3 minutes, the polishing rate is about 0.025 μm / min, and the polishing amount of one CMP is 0.075 μm. Electrolytic polishing has a polishing time of 10 seconds, a polishing rate of 0.100 μm / min, and a polishing amount of 0.0167 μm. In each of the above processes, over-polishing was performed at the time when the barrier layer was exposed, and the amount of polishing was equivalent to 30% of the amount of polishing so far.

次に、上記結果を図4にまとめた。図4に示すように、通常の研磨圧力のCMPでは、研磨時間が12分であった。しかし、前記背景技術で説明したような問題点が生じた。低圧の研磨圧力によるCMPでは研磨時間が48分となり、スループットの低下が著しくなった。一方、電解研磨と低圧のCMPを交互に行う研磨方法では、1回の電解研磨時間が5秒の場合は総研磨時間が24分であり、1回の電解研磨時間が10秒の場合は総研磨時間が21分であり、被研磨表面が良好であり、効率のよい研磨が実現できることがわかった。 Next, the results are summarized in FIG. As shown in FIG. 4, the polishing time was 12 minutes in CMP at a normal polishing pressure. However, the problems described in the background art have occurred. In CMP using a low polishing pressure, the polishing time was 48 minutes, and the throughput was significantly reduced. On the other hand, in the polishing method in which electrolytic polishing and low-pressure CMP are alternately performed, the total polishing time is 24 minutes when one electropolishing time is 5 seconds, and the total polishing time when one electropolishing time is 10 seconds. It was found that the polishing time was 21 minutes, the surface to be polished was good, and efficient polishing could be realized.

次に、本発明の研磨方法を実現する電解研磨装置の一例を、図5の概略構成図によって説明する。   Next, an example of an electrolytic polishing apparatus that realizes the polishing method of the present invention will be described with reference to the schematic configuration diagram of FIG.

図5に示すように、電解研磨装置1は、電解研磨液12が貯えられた電解研磨チャンバ11が備えられている。この電解研磨チャンバ11内には、ウエハ31表面に形成された金属膜32が電解研磨液12に浸漬されるように図示しないウエハホルダが備えられている。また、上記ウエハ31側に陰極が接続され、上記電解液12側に陽極が接続される電源21が備えられている。また、電源21と陰極もしくは陽極との間には、その間を流れる電流を検出する電流検出器22が接続されている。この電流検出器22には、電流検出器22で得た電流の変化によって金属膜32の電解研磨終点を判定する終点判定部23が接続されている。さらに終点判定部23は、電源21に接続され、電解研磨終点が判定されたときに、電源21の電圧印加を停止するように指令するものである。この終点判定部23における金属膜32の電解研磨終点は、例えば電解研磨時の電流波形の変化を微分して求める。   As shown in FIG. 5, the electropolishing apparatus 1 includes an electropolishing chamber 11 in which an electropolishing liquid 12 is stored. A wafer holder (not shown) is provided in the electropolishing chamber 11 so that the metal film 32 formed on the surface of the wafer 31 is immersed in the electropolishing liquid 12. Further, a power source 21 having a cathode connected to the wafer 31 side and an anode connected to the electrolyte solution 12 side is provided. In addition, a current detector 22 for detecting a current flowing between the power source 21 and the cathode or anode is connected. Connected to the current detector 22 is an end point determination unit 23 that determines an electropolishing end point of the metal film 32 based on a change in current obtained by the current detector 22. Further, the end point determination unit 23 is connected to the power source 21 and instructs to stop the voltage application of the power source 21 when the end point of electropolishing is determined. The electropolishing end point of the metal film 32 in the end point determination unit 23 is obtained, for example, by differentiating a change in current waveform during electropolishing.

次に、電解研磨時に流れる電流と研磨時間との関係を、図6によって説明する。この電解研磨は、前記図5によって説明した電解研磨装置を用いる。   Next, the relationship between the current flowing during electropolishing and the polishing time will be described with reference to FIG. This electropolishing uses the electropolishing apparatus described with reference to FIG.

この研磨方法は、ウエハ表面に形成された凹部を埋め込むようにウエハ表面に形成された金属膜を電解研磨する研磨方法であり、その研磨の際に得られる電流波形の変化によって金属膜の電解研磨終点を判定する。   This polishing method is a polishing method in which a metal film formed on the wafer surface is electropolished so as to fill a recess formed in the wafer surface, and the electropolishing of the metal film is performed by changing the current waveform obtained during the polishing. Determine the end point.

例えば、ウエハ表面に形成された絶縁膜に配線溝パターンを形成し、その配線溝の内面および絶縁膜表面にバリア層を形成する。さらに配線溝を埋め込むようにバリア層上に金属膜(例えば銅膜)を形成する。   For example, a wiring groove pattern is formed in the insulating film formed on the wafer surface, and a barrier layer is formed on the inner surface of the wiring groove and the insulating film surface. Further, a metal film (for example, a copper film) is formed on the barrier layer so as to fill the wiring groove.

このような構成の金属膜を例えば印加電圧一定にして電解研磨する場合、図6の(1)に示すように、電解研磨時の電流波形は、下地のバリヤ層が露出する際に特徴的な電流波形を示す。そこで、この電流波形を監視することにより電解研磨終点を検出する。   When the metal film having such a configuration is electropolished with a constant applied voltage, for example, the current waveform during electropolishing is characteristic when the underlying barrier layer is exposed, as shown in FIG. The current waveform is shown. Therefore, the electropolishing end point is detected by monitoring the current waveform.

その検出方法としては、例えば、電解研磨時の電流波形の変化を微分して求める。そして予め求めておいた終点位置の電流波形の勾配(もしくは勾配の変化)と測定した電流波形の勾配(もしくは勾配の変化)とが一致した点を研磨終点とする。このように、電流波形を監視することで正確に電解研磨終点を判定することができるようになる。   As the detection method, for example, the change in the current waveform during electropolishing is differentiated. The point at which the slope of the current waveform at the end point position (or change in slope) obtained in advance matches the slope of the measured current waveform (or change in slope) is taken as the polishing end point. Thus, the end point of electropolishing can be accurately determined by monitoring the current waveform.

なお、通常、溝配線の下層には導電性下地パターンが形成され、各配線溝内の金属膜はその下地パターンによって接続されているため、後に図6の(2)で説明するような電流変動を起こすことなく急激に電流値が低下する。   Normally, a conductive base pattern is formed in the lower layer of the trench wiring, and the metal film in each wiring trench is connected by the base pattern, so that the current fluctuation as described later with reference to FIG. The current value drops rapidly without causing

また、図6の(1)に示すように、急激に電流が低下した後、電流の低下速度が低減される(B部)。その部分を研磨終点としてもよい。なお、平坦な面に形成されたいわゆるベタ膜上の金属膜を電解研磨した場合には、図6の(2)に示すように、電流が急激に低下し始める時に、ある所定の時間だけ、電流値が大きく変動する(図面C部)。これは、下地にパターンが形成されていないため、金属膜が研磨されて島状に残ったときに、急激に抵抗変動が生じるためである。   Further, as shown in (1) of FIG. 6, after the current is suddenly reduced, the rate of current reduction is reduced (part B). That portion may be the polishing end point. In addition, when the metal film on the so-called solid film formed on the flat surface is electropolished, as shown in (2) of FIG. 6, when the current starts to rapidly decrease, only for a predetermined time, The current value varies greatly (part C in the drawing). This is because since the pattern is not formed on the base, when the metal film is polished and remains in an island shape, the resistance fluctuates rapidly.

さらに、電解研磨初期にはウエハの全面が金属膜に覆われた状態であるが、例えば、一定電圧を印加する電解研磨の場合、その電流値は残存する銅膜の厚さ減少に伴い増大する抵抗値に比例して減少することから、金属膜の概略の残膜量を推定することができる。詳細な電流波形監視への移行はこの抵抗値が適当な値にきた時点から設定することで簡略化することもできる。   Further, the entire surface of the wafer is covered with a metal film at the initial stage of electropolishing. For example, in the case of electropolishing where a constant voltage is applied, the current value increases as the thickness of the remaining copper film decreases. Since it decreases in proportion to the resistance value, the approximate remaining film amount of the metal film can be estimated. The transition to detailed current waveform monitoring can be simplified by setting the resistance value from an appropriate value.

同様に、一定電流を印加する電解研磨の場合も、電圧値の変化から概略の残膜値を推定できる。   Similarly, in the case of electrolytic polishing in which a constant current is applied, an approximate remaining film value can be estimated from a change in voltage value.

本発明の研磨方法に係わる一実施の形態を説明する模式断面図である。It is a schematic cross section explaining one embodiment concerning the polishing method of the present invention. 本発明の研磨方法に係わる研磨状態の形態を説明する模式断面図である。It is a schematic cross section explaining the form of the grinding | polishing state concerning the grinding | polishing method of this invention. 各研磨方法に係わる実際の研磨シーケンスの一例を説明する図である。It is a figure explaining an example of the actual grinding | polishing sequence concerning each grinding | polishing method. 各研磨方法による研磨時間の比較図である。It is a comparison figure of polish time by each polish method. 電解研磨装置に係る一実施の形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment which concerns on an electropolishing apparatus. 電解研磨時に流れる電流と研磨時間の関係図である。FIG. 6 is a relationship diagram between current flowing during electropolishing and polishing time.

符号の説明Explanation of symbols

32…金属膜   32 ... Metal film

Claims (6)

ウエハ表面に凹凸のパターンが形成され、その凹部を埋め込むように該ウエハ表面に形成された金属膜を研磨する研磨方法において、
前記金属膜の研磨は、電解研磨と、6.9kPa以下の低研磨圧の化学的機械研磨又は化学的バフ研磨とを交互に行い、前記電解研磨と、前記化学的機械研磨又は化学的バフ研磨との一組の研磨工程を2回以上行う
研磨方法。
In a polishing method for polishing a metal film formed on the wafer surface so that a concave-convex pattern is formed on the wafer surface and the concave portion is embedded,
The polishing of the metal film, and electrolytic polishing, have alternating row following a chemical mechanical polishing or chemical buffing low polishing pressure 6.9 kPa, the electrolytic polishing, the chemical mechanical polishing or chemical buff A polishing method in which a set of polishing steps with polishing is performed twice or more .
前記電解研磨は、前記金属膜表面を粗な状態にし、
前記化学的機械研磨又は化学的バフ研磨は前記電解研磨により荒らした前記金属膜表面を、前記電解研磨工程ごとに平滑にする請求項1記載の研磨方法。
The electrolytic polishing makes the surface of the metal film rough,
The chemical mechanical polishing or chemical buffing, the said metal film surface roughened by electrolytic polishing, the polishing method of the Motomeko 1, wherein you smooth every electropolishing process.
前記複数工程の電解研磨のうち最終工程における電解研磨の終点は、前記金属膜を電解研磨した際に得られる電流波形の変化によって判定する請求項1又は2に記載の研磨方法。 It said plurality endpoints of electrolytic polishing in the final step of electropolishing step, the polishing method according to Motomeko 1 or 2 you determined by changes in the current waveform obtained when the electrolytic polishing the metal film. 前記電解研磨の終点は、前記電流波形の変化を微分して求めた電流波形の勾配、又は前記勾配の変化が、予め求めておいた電解研磨の終点位置における電流波形の勾配、又は前記勾配の変化と一致した点とする請求項3記載の研磨方法。 The end point of the electropolishing is the gradient of the current waveform obtained by differentiating the change of the current waveform, or the change of the gradient is the gradient of the current waveform at the end point of electropolishing that has been obtained in advance, or the gradient請 Motomeko 3 polishing method according to the point that matches the change. 前記電解研磨と、前記化学的機械研磨又は化学的バフ研磨とは、予め実験により最適回数を求めておく請求項1〜4のいずれかに記載の研磨方法。The polishing method according to any one of claims 1 to 4, wherein the electrolytic polishing and the chemical mechanical polishing or the chemical buff polishing are obtained in advance by experiments in an optimum number of times. 前記凹凸のパターンは、前記ウエハ表面上に設けられた低誘電率有機膜又は多孔質状の低誘電率絶縁膜より成る下地層の上に形成される請求項1〜5のいずれかに記載の研磨方法。The said uneven | corrugated pattern is formed on the base layer which consists of a low dielectric constant organic film or a porous low dielectric constant insulating film provided on the wafer surface. Polishing method.
JP2005357898A 2005-12-12 2005-12-12 Polishing method Expired - Fee Related JP4442555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357898A JP4442555B2 (en) 2005-12-12 2005-12-12 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357898A JP4442555B2 (en) 2005-12-12 2005-12-12 Polishing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001366341A Division JP3807295B2 (en) 2001-11-30 2001-11-30 Polishing method

Publications (2)

Publication Number Publication Date
JP2006114929A JP2006114929A (en) 2006-04-27
JP4442555B2 true JP4442555B2 (en) 2010-03-31

Family

ID=36383118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357898A Expired - Fee Related JP4442555B2 (en) 2005-12-12 2005-12-12 Polishing method

Country Status (1)

Country Link
JP (1) JP4442555B2 (en)

Also Published As

Publication number Publication date
JP2006114929A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP2003168665A (en) Polishing method and electrolytic polishing apparatus
US6848977B1 (en) Polishing pad for electrochemical mechanical polishing
US7323416B2 (en) Method and composition for polishing a substrate
KR102350350B1 (en) Polishing pads and systems and methods of making and using the same
TWI279290B (en) Polishing pad for electrochemical-mechanical polishing
US6299741B1 (en) Advanced electrolytic polish (AEP) assisted metal wafer planarization method and apparatus
US6837983B2 (en) Endpoint detection for electro chemical mechanical polishing and electropolishing processes
US20040248412A1 (en) Method and composition for fine copper slurry for low dishing in ECMP
KR20010093086A (en) Method to decrease dishing rate during CMP in metal semiconductor structures
US20070187258A1 (en) Method for electrochemically polishing a conductive material on a substrate
WO2006009634A1 (en) Continuous contour polishing of a multi-material surface
US7399516B2 (en) Long-life workpiece surface influencing device structure and manufacturing method
JP2002093758A (en) Polishing system and polishing pad for use therein and polishing method
US7690966B1 (en) Method and apparatus for detecting planarization of metal films prior to clearing
JP4442555B2 (en) Polishing method
US6848975B2 (en) Electrochemical planarization of metal feature surfaces
JP2007189081A (en) Polishing pad, polishing method and wiring forming method
JP2001212752A (en) Polishing body, polishing device, semiconductor device manufacturing method and semiconductor device
US20220384185A1 (en) SURFACE PROCESSING APPARATUS AND SURFACE PROCESSING METHOD FOR SiC SUBSTRATE
US20050287932A1 (en) Article for polishin substrate surface
Tseng et al. Microreplicated pad conditioner for copper and copper barrier CMP applications
JP4400795B2 (en) Evaluation substrate and CMP condition evaluation method
CN115394631A (en) Surface treatment method for SiC substrate
Mukherjee et al. Planarization of copper damascene interconnects by spin-etch process: a chemical approach
Sampurno et al. Correlation of Pad Topography, Friction Force and Removal Rate during Tungsten Chemical Mechanical Planarization

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees