JP4442035B2 - マイクロチャンネル型チップ - Google Patents

マイクロチャンネル型チップ Download PDF

Info

Publication number
JP4442035B2
JP4442035B2 JP2001003360A JP2001003360A JP4442035B2 JP 4442035 B2 JP4442035 B2 JP 4442035B2 JP 2001003360 A JP2001003360 A JP 2001003360A JP 2001003360 A JP2001003360 A JP 2001003360A JP 4442035 B2 JP4442035 B2 JP 4442035B2
Authority
JP
Japan
Prior art keywords
capillary
groove
base materials
capillaries
lower base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001003360A
Other languages
English (en)
Other versions
JP2002207031A (ja
Inventor
伸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001003360A priority Critical patent/JP4442035B2/ja
Publication of JP2002207031A publication Critical patent/JP2002207031A/ja
Application granted granted Critical
Publication of JP4442035B2 publication Critical patent/JP4442035B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、極微量のタンパクや核酸、薬物などを高速かつ高分解能に分析する電気泳動や、遺伝子増幅反応を含む化学反応一般などに用いられるマイクロチャンネル型チップに関するものである。
【0002】
【従来の技術】
極微量のタンパクや核酸などを分析する場合には、従来から電気泳動装置が用いられており、その代表的なものとしてキャピラリー電気泳動装置がある。キャピラリー電気泳動装置は、内径が100μm以下のガラスキャピラリー(以下、単にキャピラリーともいう)内に泳動媒体を充填し、一端側にサンプルを導入し、両端をバッファ液に接液させ、バッファ液を介して両端間に高電圧を印加して分析対象物をキャピラリー内で展開させるものである。キャピラリーは容積に対して表面積が大きい、すなわち冷却効率が高いことから、高電圧の印加が可能となり、DNA(デオキシリボ核酸)などの極微量サンプルを高速かつ高分解能にて分析することができる。
【0003】
キャピラリーはその外径が100〜500μm程度と細く破損しやすいため、ユーザーが行なうべきキャピラリー交換時の取扱いが容易でないという問題を有する。また、放熱が十分でない場合が生じ、分離状態に悪影響を及ぼすという問題もあった。さらに、バッファ液を介してキャピラリーの両端に電圧を印加するので、少なくともバッファ液との接液に必要な長さ寸法が必要であり、ある長さ以下には設計できないという問題もあった。
【0004】
そこで、キャピラリーに代わって、分析の高速化、装置の小型化が期待できる形態として、D. J. Harrison et al./ Anal. Chem. 1993, 283, 361-366 に示されているように、2枚の基材を接合して形成されたマイクロチャンネル型チップ(マイクロチップという)が提案されている。そのマイクロチップの例を図6に示す。
【0005】
マイクロチップ51は、一対の透明板状の無機材料(例えばガラス、石英、シリコンなど)又はプラスチックからなる基材51a,51bからなり、半導体フォトリソグラフィー技術及びエッチング技術、又はマイクロマシニング技術により、一方の基材51bの表面に互いに交差する泳動用キャピラリー溝53,55を形成し、他方の基材51aにはその溝53,55の端に対応する位置に貫通穴をアノードリザーバ57a、カソードリザーバ57c、サンプルリザーバ57s、ウエイストリザーバ57wとして設けたものである。マイクロチップ51は、両基材51a,51bを(C)に示すように重ねて接合した状態で使用される。このようなマイクロチップは2本の溝(channel)が交差して形成されていることから、クロスチャンネル型マイクロチップとも呼ばれる。
【0006】
このマイクロチップ51を用いて電気泳動を行なう場合には、分析に先立って、例えばシリンジを使った圧送により、いずれかのリザーバ、例えばアノードリザーバ57aから溝53,55内及びリザーバ57a,57c,57s,57w内に泳動媒体を充填する。次いで、リザーバ57a,57c,57s,57w内に充填された泳動媒体を除去し、短い方の溝(サンプル注入用流路)53の一方の端に対応するサンプルリザーバ57sにサンプルを注入し、他のリザーバ57a、57c,57wにバッファ液を注入する。
【0007】
泳動媒体、サンプル及びバッファ液を注入したマイクロチップ51を電気泳動装置に装着する。各リザーバ57a,57c,57s,57wに所定の電圧を印加し、サンプルを溝53中に泳動させて両溝53,55の交差部59に導く。各リザーバ57a,57c,57s,57wに印加する電圧を切り換えて、長い方の溝(分離用流路)55の両端のリザーバ57a,57c間の電圧により、交差部分9に存在するサンプルを溝55内に注入する。溝55内にサンプルを注入した後、リザーバ57s内に収容されているサンプルをバッファ液で置換する。その後、各リザーバ57a,57c,57s,57wに電気泳動用の電圧を印加して、溝55内に注入したサンプルを溝55内で分離させる。溝55の適当な位置に検出器を配置しておくことにより、電気泳動により分離されたサンプルを検出する。検出は、吸光光度法や蛍光光度法、電気化学的又は電気伝導度法などの手段により行なわれる。
【0008】
また、マイクロチップの流路デザインや泳動媒体の組成などの分析条件は、用途やサンプルに応じて異なる。他の流路デザインのマイクロチップとしては、例えば、Yining Shi et al./ Anal. Chem. 1999, 71, 5354-5361に示されているように、放射状に多数の分離用流路を備えたマイクロチャンネル型チップがある。近年はマイクロチップよりもサイズの大きいものや、複数のチャンネルを備えたもの、さらにはチャンネルの交差部をもたないストレートチャンネルを備えたものも使用されている。本発明におけるマイクロチャンネル型チップはこれらを全て包含したものである。
【0009】
【発明が解決しようとする課題】
半導体フォトリソグラフィー技術及びエッチング技術、又はマイクロマシニング技術を用いたマイクロチップの製造は加工費が高いという問題があった。さらに、ガラス基材を用いた場合、電気泳動におけるサンプルの分離に影響を及ぼすチャンネル表面のシラノール基の状態がロット間で安定せず、歩留まりが悪いという問題があった。これらの問題から、マイクロチップの価格が高くなり、市場には受け入れられにくいという問題もあった。
そこで本発明は、安価で品質のよいマイクロチャンネル型チップを提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は、板状基材に少なくとも1本の溝を備え、各溝の両端に対応する位置に開口を有し、かつ、上記溝内に板状基材とは別部材のガラスキャピラリーを備えているマイクロチャンネル型チップである。
【0011】
溝内に配置したガラスキャピラリーを分離用流路として使用する。ガラスキャピラリーは安価で提供されており、ガラスキャピラリー内壁のシラノール基の状態はロット間で安定しているので、品質のよいマイクロチャンネル型チップを安価で提供できる。
本発明にかかるマイクロチャンネル型チップはガラスキャピラリー内を反応容器として使用することもできる。
【0012】
【発明の実施の形態】
本発明の一態様は、上記板状基材は一対の板状基材により構成され、少なくとも一方の板状基材に1又は複数の溝が形成されており、一方の板状基材に上記溝の両端に対応する位置に上記開口を構成する貫通穴が形成されており、ガラスキャピラリーを上記溝内に配置した状態で一対の板状基材を貼り合わせてなることが好ましい。その結果、ガラスキャピラリーを溝内に配置した状態で一対の板状基材を貼り合わせることにより、ガラスキャピラリーを分離用流路として使用することができる。
【0013】
本発明の一態様において、貫通穴が形成されている側の板状基材(上側基材とする)はガラスキャピラリーの両端に対応して2つに分断されていることが好ましい。その結果、一旦接合した2つの上側基材と、上側基材とは他方の基材(下側基材とする)を剥離し、所望の長さのガラスキャピラリー及びそれに対応する長さの下側基材を用いて再度2つの上側基材と下側基材を接合することにより、ガラスキャピラリーの長さに応じた分離長をもつマイクロチャンネル型チップを形成することができ、容易に分離長を変更することができる。
【0015】
本発明のマイクロチャンネル型チップにおいて、複数の溝及び複数のガラスキャピラリーを備え、それらのガラスキャピラリーの一端側は他端側に比べて密になるように配列されていることが好ましい。その結果、他端側に比べて密になるように配列したガラスキャピラリーの一端側を検出部位とすることにより、特にキャピラリーの一端側を密着して配列してその密着部分を検出部位とすることにより、検出部位を小さくすることができる。
【0016】
本発明のマイクロチャンネル型チップにおいて、互いに交差するサンプル導入用溝と分離用溝の組が1又は複数組形成されており、分離用溝内にガラスキャピラリーが配置されていることが好ましい。その結果、分離用流路としてガラスキャピラリーを備えたクロスチャンネル型マイクロチップを形成できる。
【0017】
【実施例】
図1は本発明の基礎となる参考例のマイクロチップを示す構成図であり、(A)は斜視図、(B)は分解斜視図、(C)は(A)のA−A位置での断面図である。
マイクロチップ1は、一対の透明板状の無機材料(例えばガラス、石英、シリコンなど)又はプラスチックからなる基材1a,1b及びガラスキャピラリー3により構成される。キャピラリー3としては、例えば内径が50〜100μm、外径が100〜500μmのものを用いることができ、ここでは内径が75μm、外径が250μm、長さが65mmのものが設けられている。キャピラリー3の外周にはキャピラリーの強度を増加させて破損を防止するための被膜は存在せず、ガラス表面が露出したベアの状態になっている。
【0018】
上側基材1aの一表面に、例えば半導体フォトリソグラフィー技術及びエッチング技術、マイクロマシニング技術、通常のマシニング技術又はレーザ加工技術により、キャピラリー3を配置するための溝5が形成されている。上側基材1aには溝5の両端位置にリザーバ7,9を構成する貫通穴も形成されている。溝5は、幅及び深さの寸法がキャピラリー3の外径よりも例えば50μmだけ大きく形成されて300μmであり、長さがキャピラリー3の長さよりも1mmだけ短く形成されて64mmである。
下側基材1bの上側基材1aと接合される表面は平坦に形成されている。
【0019】
マイクロチップ1は、キャピラリー3の両端がリザーバ7,9内に位置する状態でキャピラリー3を溝5内に固定し、両基材1a,1bを(A)及び(C)に示すように重ねて接合した状態で使用される。
両基材1a,1bの接合及び溝5へのキャピラリー3の固定は、接着剤や水ガラスなどの塗布や、加熱による融着などにより行なう。キャピラリー3と溝5及び下側基材1bとの間の隙間に液体が浸入するのを防止するために、キャピラリー3と溝5及び下側基材1bとの間の隙間を封止することが好ましく、少なくとも、リザーバ7,9付近のキャピラリー3と溝5及び下側基材1bとの間の隙間を封止することが好ましい。
【0020】
次に、このマイクロチップ1を用いて電気泳動を行なうときの操作について説明する。
1)分析に先立って、必要に応じてキャピラリー3内及びリザーバ7内に例えばHjerten法(EOF(電気浸透流)を抑制する一般的なコーティング法であり、バインドシランとポリアクリルアミド層とで構成されている。)などにより所定のコーティング処理を施す。
2)例えばシリンジを使った圧送により、いずれかのリザーバ7,9からキャピラリー3内にポリマーなどの泳動媒体を充填する。
【0021】
3)一方のリザーバ7に予め準備したサンプルを収容し、他のリザーバ9にバッファ液を収容した後、両リザーバ7,9間に高電圧を印加し、電気泳動的にサンプルをキャピラリー3内に注入する。
4)サンプルを注入した後、リザーバ7,9経の電圧の印加を一旦停止し、リザーバ7から余分なサンプルをバッファ液に置換する。その後、両リザーバ7,9間に高電圧を印加してキャピラリー3内で電気泳動によるサンプルの分離を行なう。
【0022】
5)例えば紫外線吸収や蛍光検出による光学的検出機構や電気化学的検出機構などの検出機構をキャピラリー3のリザーバ9側の所定位置(検出部位)に配置しておき、分離されたサンプルを順次検出する。
シラノール基の状態がロット間で安定しているキャピラリー3内でサンプルの分離を行なうので、分析の再現性を向上させることができる。
【0023】
次に、このマイクロチップ1を用いて遺伝子増幅反応を行なうときの操作について説明する。遺伝子増幅反応としては、予め設定された恒温で増幅反応を行なわせるLAMP法やICAN法、INVADER法、RCAT法、又は予め設定された温度サイクルで増幅反応を行なわせるPCR(Polymerase Chain Reaction)法など、種々の遺伝子増幅法がある。ここではPCR法について説明する。ただし、本発明のマイクロチャンネル型チップの反応容器としての用途はPCR法に限定されるものではなく、他の遺伝子増幅反応、さらには化学反応一般の反応容器としても使用することができる。
【0024】
1)反応液の収容に先立って、必要に応じてキャピラリー3内及びリザーバ7内に例えば撥水処理や親水処理などの所定のコーティング処理を施す。
2)いずれかのリザーバ7,9に、DNAポリメラーゼ酵素、Pre−mix溶液、プライマー溶液及びDNAサンプルを注入する。リザーバ7又は9に注入された反応溶液は、毛細管現象によりキャピラリー3内に導入される。
【0025】
3)リザーバ7,9を専用の蓋部材やフィルムシーラ、粘着テープなどにより封止した後、マイクロチップ1を所定の温度サイクルで温調し、キャピラリー3内でPCRによりDNAサンプルを増幅する。
4)例えば紫外線吸収や蛍光検出による光学的検出機構や電気化学的検出機構などの検出機構をキャピラリー3の所定の検出部位に対応して配置しておき、反応状態を監視する。
5)反応終了後、必要に応じて反応液を取り出す。
本発明のマイクロチャンネル型チップを反応容器として用いれば、反応ボリュームを低減することができる。
【0026】
図2は一実施例を示す構成図であり、(A)は斜視図、(B)は分解斜視図、(C)は(A)のA−A位置での断面図である。
マイクロチップ11は、無機材料(例えばガラス、石英、シリコンなど)又はプラスチックからなる基材11a,11b,11c及びキャピラリー3により構成される。基材11a,11b,11cの材料は必ずしも光学的検出に用いる波長の光を透過するものでなくてもよい。キャピラリー3の外周にはキャピラリーの強度を増加させて破損を防止するための被膜が形成されており、検出部位13の被膜が除去されてガラス表面が露出している。キャピラリー3の寸法は、例えば内径が75μm、外径が250μm、長さが65mmである。
【0027】
基材11a,11b,11cは、下側基材11bの両端側に上側基材11a,11cが接合されて使用される。上側基材11aと11cは間隔をもって配置されている。
下側基材11bはキャピラリー3の長さに応じて設けられるものであり、上側基材11a,11cと接合される面は平坦に形成されている。
【0028】
上側基材11a,11cの下側基材11bと接合される面に、例えば半導体フォトリソグラフィー技術及びエッチング技術、マイクロマシニング技術、通常のマシニング技術又はレーザ加工技術により、キャピラリー3の端部を固定するための溝15a,15cが形成されている。溝15a,15cの寸法は例えば幅が300μm、深さが300μm、長さが10mmである。キャピラリー3の両端側は、溝15a,15c内に固定されて下側基材11bと上側基材11a,11cの間に配置されている。
【0029】
上側基材11a,11cにはキャピラリー3の端部に対応する位置にリザーバ17a,17cを構成する貫通穴が形成されている。溝15a,15cは、上側基材11aと11cの対向する端面からリザーバ17a,17cを構成する貫通穴までの間の表面にそれぞれ形成されている。上側基材11a,11cには、溝15a,15cに連通する接着剤充填ポート19a,19cとしての貫通穴も形成されている。
【0030】
マイクロチップ11は、接着剤充填ポート19a,19cから充填された接着剤により、キャピラリー3の両端がリザーバ7,9内に位置する状態でキャピラリー3を溝15a,15c内に固定し、両基材11a,11bを(A)及び(C)に示すように重ねて接合した状態で使用される。キャピラリー3と溝15a,15c及び下側基材11bとの間の隙間は接着剤充填ポート19a,19cから充填された接着剤により、封止されている。
【0031】
マイクロチップ11では、基材11a,11b,11c及びキャピラリー3を剥離して基材11a,11cを再利用する。キャピラリーを所望の長さのものに変更し、下側基材をキャピラリーの長さに対応したものに変更し、変更したキャピラリー及び下側基材並びに基材11a,11cを図2に示すのと同様に配置して接合することにより、マイクロチップのキャピラリーの長さ、すなわち電気泳動における分離長を容易に変更することができる。
【0032】
図3は他の参考例を示す構成図であり、(A)は斜視図、(B)は分解斜視図、(C)は(A)のA−A位置での断面図である。
マイクロチップ21は、無機材料(例えばガラス、石英、シリコンなど)又はプラスチックからなる基材21a,21b及びキャピラリー3により構成される。基材21a,21bの材料は必ずしも光学的検出に用いる波長の光を透過するものでなくてもよい。キャピラリー3の外周にはキャピラリーの強度を増加させて破損を防止するための被膜は存在せず、ガラス表面が露出したベアの状態になっている。キャピラリー3の寸法は、例えば内径が75μm、外径が300μm、長さが65mmである。
【0033】
上側基材21aの一表面に、例えば半導体フォトリソグラフィー技術及びエッチング技術、マイクロマシニング技術、通常のマシニング技術又はレーザ加工技術により、キャピラリー3を配置するための溝25が形成されている。溝25の寸法は幅が350μm、深さが350μm、長さが64mmである。上側基材21aには、溝25の両端位置にリザーバ27,29を構成する貫通穴と、キャピラリー3の検出部位13に対応する位置に検出窓31を構成する検出用貫通穴も形成されている。
下側基材21bの上側基材21aと接合される表面は平坦に形成されている。
【0034】
マイクロチップ21は、図1の実施例と同様に、キャピラリー3の両端がリザーバ27,29内に位置する状態でキャピラリー3を溝25内に固定し、両基材21a,21bを(A)及び(C)に示すように重ねて接合した状態で使用される。両基材21a,21bを接合した状態で、検出窓31の位置にはキャピラリー3の検出部位13が位置している。
【0035】
この参考例を、図1の参考例の説明で述べたのと同様にして、電気泳動部材又は反応容器として使用するとき、検出窓31を介して光学的検出による分離サンプルの検出又は反応状態の監視を行なう。これにより、基材21a,21bの材料として、光学的検出に用いる波長の光を透過しないものであっても使用することができるので、安価な材料を用いることができる。
この参考例では検出窓31を上側基材21aに形成しているが、下側基材21bに形成してもよい。
【0036】
図4は、さらに他の参考例の上側基材の下側基材と接合される面をキャピラリーを配置した状態で示す上面図である。
上側基材33の下側基材(図示は省略)と接合される面に、キャピラリー3を固定するための4本の溝35が形成されている。4本の溝35は、キャピラリー3の一端3aは間隔をもって、他端3bは密着して4本のキャピラリー3が配列されるように連通して形成されている。
【0037】
キャピラリー3の寸法は、例えば内径が75μm、外径が250μm、長さが50〜65mmである。溝35の寸法は、例えば深さが300μm、長さが49〜64mm、キャピラリー3の一端3a側の幅が300μm、キャピラリー3の他端端3b側の幅が1100μmである。
上側基材33には各キャピラリー3の一端3aに対応する位置にリザーバ35を構成する貫通穴が4つ形成されており、キャピラリー3の一端3bに対応する位置に共通のリザーバ37としての貫通穴が1つ形成されている。
【0038】
上側基材33と下側基材を、溝35内にキャピラリー3を配置した状態でキャピラリー3を内側にして貼り合わされることにより、4本のチャンネルを備えたマイクロチップが形成される。
このようなマイクロチップは、複数のチャンネルが形成されていることから、マルチチャンネル型マイクロチップとも呼ばれる。
【0039】
このマイクロチップの検出部位は、キャピラリー3の他端3b側で4本のキャピラリー3が密着して配列されている部位(図中一点鎖線で囲まれた部分)である。このように、複数本のキャピラリーの一端側又は他端側を密着して配列することにより、検出部位を小さくすることができ、検出光を走査する機構を備えた検出器やイメージセンサを備えた検出器など、各キャピラリー位置を認識して検出できる検出器を用いることにより、複数本のキャピラリーについて同時に検出を行なうことができる。
図4に示した参考例では、キャピラリー3の他端3b側を密着して配置しているが、間隔をもってキャピラリー3の他端3b側を配置してもよい。
【0040】
図5は、クロスチャンネル型マイクロチップの参考例の上側基材の下側基材と接合される面をキャピラリーを配置した状態で示す上面図である。ここではキャピラリーを断面で示す。
上側基材41の下側基材(図示は省略)と接合される面に、交差部49で互いに交差する溝43,45が形成されている。溝43,45の寸法は例えば幅が100μm、深さが50μmである。上側基材41には溝43,45の両端位置にリザーバ47としての貫通穴が形成されている。
【0041】
溝43のキャピラリー固定部位43a内にキャピラリー3が配置されている。キャピラリー3の寸法は例えば内径が75μm、外径が250μm、長さが60mmである。キャピラリー固定部位43aは、キャピラリー3を収容できるように溝43,45よりも幅及び深さが大きく形成されており、その寸法は例えば深さが300μm、幅が300μm、長さが59mmである。キャピラリー3はキャピラリー3の一端3aが交差部49と連通し、他端3bがリザーバ47内に位置するようにキャピラリー固定部位43a内に配置されている。
【0042】
上側基材41と下側基材を、キャピラリー固定部位43a内にキャピラリー3を配置した状態でキャピラリー3を内側にして貼り合わされることにより、分離チャンネルとしてキャピラリー3を備えたクロスチャンネル型マイクロチップを形成する。このように、本発明はクロスチャンネル型マイクロチップを構成することができる。
【0043】
図2に示した実施例では、一方の基材のみ、すなわち上側基材のみにキャピラリーを固定するための溝及びリザーバを構成する貫通穴を形成しているが、本発明はこれに限定されるものではなく、キャピラリーを固定するための溝とリザーバを構成する貫通穴を異なる基材に形成してもよい。また、キャピラリーを固定するための溝をキャピラリーの固定位置に対応して両方の基材に形成してもよい。
【0044】
また、本発明のマイクロチャンネル型チップは図2に示した実施例の寸法のものに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。
【0045】
【発明の効果】
本発明のマイクロチャンネル型チップは、板状基材に少なくとも1本の溝を備え、各溝の両端に対応する位置に開口を有し、かつ、上記溝内に板状基材とは別部材のガラスキャピラリーを備えているので、安価で、かつ内壁のシラノール基の状態がロット間で安定しているガラスキャピラリーを分離用流路又は反応容器として使用することができ、安価で品質のよいマイクロチャンネル型チップを提供できる。さらに、分析全体のコストを低減することもできる。
【図面の簡単な説明】
【図1】 一参考例を示す構成図であり、(A)は斜視図、(B)は分解斜視図、(C)は(A)のA−A位置での断面図である。
【図2】 一実施例を示す構成図であり、(A)は斜視図、(B)は分解斜視図、(C)は(A)のA−A位置での断面図である。
【図3】 他の参考例を示す構成図であり、(A)は斜視図、(B)は分解斜視図、(C)は(A)のA−A位置での断面図である。
【図4】 さらに他の参考例の上側基材の下側基材と接合される面をキャピラリーを配置した状態で示す上面図である。
【図5】 クロスチャンネル型マイクロチップに適用した参考例の上側基材の下側基材と接合される面をキャピラリーを配置した状態で示す上面図である。
【図6】 マイクロチップの一例を表す図であり、(A)は一方の基材の上面図、(B)は他方の基材の上面図、(C)は両基材を重ね合わせた状態での側面図である。
【符号の説明】
1 マイクロチップ(マイクロチャンネル型チップ)
1a 上側基材
1b 下側基材
3 ガラスキャピラリー
5 溝
7,9 リザーバ

Claims (3)

  1. 板状の下側基材、前記下側基材上に配置されるガラスキャピラリー、及び前記下側基材上で前記キャピラリーの両端位置に接合され前記キャピラリーを前記下側基材上に固定する一対の上側基材を備えたマイクロチャンネル型チップであって、
    前記一対の上側基材は互いに間隔をもって配置されていることによりその間に前記キャピラリーの一部が露出しており、
    前記一対の上側基材は、前記キャピラリーの端部に対応する位置に形成されリザーバを構成する貫通穴と、前記キャピラリーの端部を固定するための溝として前記下側基材と接合される面に形成され端面からリザーバを構成する前記貫通穴まで延びる溝と、表面から前記溝に連通する接着剤充填ポートとしての貫通穴とを備え、
    前記接着剤充填ポートから充填された接着剤により前記キャピラリー、前記溝及び前記下側基材との間の隙間が封止されるとともに、前記一対の上側基材が前記下側基材に対して剥離可能で再接合可能に貼り合わされることにより、前記キャピラリー及び前記下側基材を交換して前記一対の上側基材が再利用可能になっているマイクロチャンネル型チップ。
  2. 前記溝及び前記キャピラリーを複数個備え、それらのキャピラリーの一端側は他端側に比べて密になるように配列されている請求項に記載のマイクロチャンネル型チップ。
  3. 互いに交差するサンプル導入用溝と分離用溝の組が1又は複数組形成されており、前記分離用溝内に前記キャピラリーが配置されている請求項1又は2に記載のマイクロチャンネル型チップ。
JP2001003360A 2001-01-11 2001-01-11 マイクロチャンネル型チップ Expired - Lifetime JP4442035B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003360A JP4442035B2 (ja) 2001-01-11 2001-01-11 マイクロチャンネル型チップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001003360A JP4442035B2 (ja) 2001-01-11 2001-01-11 マイクロチャンネル型チップ

Publications (2)

Publication Number Publication Date
JP2002207031A JP2002207031A (ja) 2002-07-26
JP4442035B2 true JP4442035B2 (ja) 2010-03-31

Family

ID=18871714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003360A Expired - Lifetime JP4442035B2 (ja) 2001-01-11 2001-01-11 マイクロチャンネル型チップ

Country Status (1)

Country Link
JP (1) JP4442035B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164242A (ja) * 2001-12-28 2005-06-23 Cluster Technology Co Ltd 電気泳動用マイクロチップ
JP4013671B2 (ja) 2002-07-05 2007-11-28 松下電器産業株式会社 ポリメラーゼ連鎖反応容器及びその製造方法
WO2004051229A1 (ja) * 2002-12-02 2004-06-17 Nec Corporation 液体スイッチおよびそれを用いたマイクロチップ、質量分析システム
JP3819847B2 (ja) * 2003-01-09 2006-09-13 株式会社日立製作所 細胞培養による蛋白質生産プラントにおける蛋白質計測方法及びその装置
JP2007506092A (ja) * 2003-09-22 2007-03-15 株式会社島津製作所 電気泳動装置及び方法、並びに電気泳動部材及び試料分注プローブ
JP4581380B2 (ja) 2003-11-17 2010-11-17 パナソニック株式会社 核酸増幅反応容器およびその製造方法
JP4457919B2 (ja) 2005-02-28 2010-04-28 株式会社島津製作所 電気泳動プレート
JP4804091B2 (ja) * 2005-09-30 2011-10-26 凸版印刷株式会社 反応容器
JP2007121130A (ja) * 2005-10-28 2007-05-17 Fujirebio Inc マイクロ流体デバイスおよびその製造方法
JP4844533B2 (ja) * 2007-10-26 2011-12-28 株式会社島津製作所 電気泳動用チップ、電気泳動用チップのキット及び電気泳動用チップの製造方法
KR100886187B1 (ko) 2007-11-22 2009-02-27 주식회사 디지탈바이오테크놀러지 유체 분석용 칩
JP4935750B2 (ja) * 2008-04-28 2012-05-23 株式会社島津製作所 双方向電気泳動装置及び双方向電気泳動方法
EP2386865B1 (en) * 2009-01-15 2017-04-19 Panasonic Intellectual Property Management Co., Ltd. Flow channel structure and method for manufacturing same
WO2012017515A1 (ja) * 2010-08-03 2012-02-09 ミライアル株式会社 マイクロ流路デバイス
JP2012202805A (ja) * 2011-03-25 2012-10-22 Shimadzu Corp 電気泳動装置
JP5477341B2 (ja) * 2011-06-01 2014-04-23 株式会社島津製作所 マイクロチップ電気泳動方法及び装置
CN104411406B (zh) * 2012-03-16 2017-05-31 统计诊断与创新有限公司 具有集成传送模块的测试盒
JP2013195240A (ja) * 2012-03-19 2013-09-30 Shimadzu Corp キャピラリー組立品
JP6228801B2 (ja) * 2013-09-30 2017-11-08 日本電波工業株式会社 感知センサー及び感知装置
JP5833716B1 (ja) * 2014-07-24 2015-12-16 日本電信電話株式会社 血液凝固検査方法および血液凝固検査用流路チップ
EP3633366A4 (en) * 2017-04-26 2020-10-28 Shimadzu Corporation LIQUID SUPPLY DEVICE AND LIQUID CHROMATOGRAPH
JP7311834B2 (ja) * 2019-05-23 2023-07-20 ウシオ電機株式会社 マイクロチップ

Also Published As

Publication number Publication date
JP2002207031A (ja) 2002-07-26

Similar Documents

Publication Publication Date Title
JP4442035B2 (ja) マイクロチャンネル型チップ
US6857449B1 (en) Multi-layer microfluidic devices
US6494230B2 (en) Multi-layer microfluidic devices
AU773950B2 (en) High density electrophoresis device and method
Liu et al. Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels
US11543383B2 (en) System for manipulating samples in liquid droplets
US6533914B1 (en) Microfabricated injector and capillary array assembly for high-resolution and high throughput separation
US20070017812A1 (en) Optimized Sample Injection Structures in Microfluidic Separations
US8460531B2 (en) Integrated bio-analysis and sample preparation system
US20020168780A1 (en) Method and apparatus for sample injection in microfabricated devices
JP5052996B2 (ja) 電気泳動用マイクロ流路チップ及び電気泳動方法
EP1265709A2 (en) Microfluidic device and system with additional peripheral channels
JPH11502618A (ja) キャピラリー電気泳動装置および方法
JP4362987B2 (ja) マイクロチップ電気泳動におけるサンプル導入方法
US20020076806A1 (en) Sample injector system and method
JP3852327B2 (ja) 電気泳動部材用リザーバ部材及び電気泳動部材
US20060266649A1 (en) Electrophoretic member, electrophoretic device, electrophoretic method and sample dispensing probe
JP4457919B2 (ja) 電気泳動プレート
WO2001071331A1 (en) Electrophoresis microchip and system
JP2002310990A (ja) 電気泳動装置
WO2014108184A1 (en) Cartridge and system for manipulating samples in liquid droplets
WO2005040331A1 (en) Integrated bio-analysis and sample preparation system
JP2003156475A (ja) チップ型電気泳動装置
Konrad et al. Disposable electrophoresis chip for high throughput analysis of biomolecules
Xiong et al. Chip capillary electrophoresis and total genetic analysis systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R151 Written notification of patent or utility model registration

Ref document number: 4442035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

EXPY Cancellation because of completion of term