JP4441324B2 - Biaxially oriented polyester film and magnetic recording medium - Google Patents

Biaxially oriented polyester film and magnetic recording medium Download PDF

Info

Publication number
JP4441324B2
JP4441324B2 JP2004147413A JP2004147413A JP4441324B2 JP 4441324 B2 JP4441324 B2 JP 4441324B2 JP 2004147413 A JP2004147413 A JP 2004147413A JP 2004147413 A JP2004147413 A JP 2004147413A JP 4441324 B2 JP4441324 B2 JP 4441324B2
Authority
JP
Japan
Prior art keywords
film
polyester
biaxially oriented
weight
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004147413A
Other languages
Japanese (ja)
Other versions
JP2005329548A (en
Inventor
家康 小林
伸次 室
剛 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2004147413A priority Critical patent/JP4441324B2/en
Publication of JP2005329548A publication Critical patent/JP2005329548A/en
Application granted granted Critical
Publication of JP4441324B2 publication Critical patent/JP4441324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は、二軸配向積層ポリエステルフィルムに関し、さらに詳しくは寸法安定性とスリット性に優れた、特にリニアトラック方式の磁気記録媒体のベースフィルムに適した二軸配向積層ポリエステルフィルムおよびそれを用いた磁気記録媒体に関する。   The present invention relates to a biaxially oriented laminated polyester film, and more particularly, a biaxially oriented laminated polyester film excellent in dimensional stability and slit property, and particularly suitable for a base film of a linear track type magnetic recording medium, and the same The present invention relates to a magnetic recording medium.

ポリエチレンテレフタレートフィルムに代表されるポリエステルフィルムは、優れた機械的特性、熱的特性、電気的特性、表面特性、光学特性、また、耐熱性、耐薬品性などの性質を利用して、磁気記録媒体用、コンデンサー用、包装用など種々の用途に幅広く用いられている。   Polyester films typified by polyethylene terephthalate films are magnetic recording media that make use of excellent mechanical properties, thermal properties, electrical properties, surface properties, optical properties, and heat and chemical resistance. It is widely used in various applications such as for packaging, condensers and packaging.

これらの用途に用いられるフィルムは通常その用途に応じた幅に裁断される。この裁断時に切り粉が生じたりすることを防ぐ技術として特開昭63−251221などが知られている。裁断時の問題を解決する手法としては特開昭63−95933などの技術が知られている。また、フィルムを裁断する際にカッターの周囲の温度を20゜C以下の低温にして裁断するなどことにより対処してきた。   Films used for these applications are usually cut to a width according to the application. Japanese Patent Laid-Open No. 63-251221 is known as a technique for preventing chips from being generated during cutting. As a technique for solving the problem at the time of cutting, a technique such as Japanese Patent Laid-Open No. 63-95933 is known. Further, when cutting the film, it has been dealt with by cutting the temperature around the cutter at a low temperature of 20 ° C. or lower.

しかしながら、これらの用途製品の高品質化、コンパクト化などのニーズにしたがい、ポリエステルフィルムに対する要求特性もますます厳しくなってきている。上記の各用途の中でも、特に、磁気記録媒体用途では、高品質化とともに、長時間記録化、コンパクト化にともないベースフィルムは厚みが10μm以下というように薄膜化されてきている。   However, in accordance with the needs for higher quality and compactness of products for these applications, the required characteristics for polyester films are becoming increasingly severe. Among the above-mentioned applications, particularly in magnetic recording medium applications, the base film has been thinned to have a thickness of 10 μm or less along with high quality, long-time recording, and downsizing.

そして、これらのフィルムを、シェアーカッターなどを用いて裁断し、巻き取っていく時に、フィルムエッジが裁断面にそって盛り上がる「ハイエッジ」と呼ばれる現象が発生するという問題があった。このハイエッジが生じたままフィルムを巻き取っていくと、フィルムのエッジ部分のみが伸びてしまい、例えば、表面に磁性層を設けて磁気テープとしたような場合には、平面性が損なわれ、RF出力波形に乱れを生じたりする。この問題を解決するために、フィルムを構成するポリエステルの数平均分子量や固有粘度を特定の範囲にすることが、特開平7−6351号公報(特許文献1)や特開平10−214415号公報(特許文献2)で提案されている。   When these films are cut using a shear cutter or the like and wound up, there is a problem that a phenomenon called “high edge” occurs in which the film edge rises along the cut surface. When the film is wound with this high edge generated, only the edge portion of the film is stretched. For example, when a magnetic layer is provided on the surface to form a magnetic tape, the flatness is impaired, and RF The output waveform may be disturbed. In order to solve this problem, the number average molecular weight and intrinsic viscosity of the polyester constituting the film may be set within a specific range, such as JP-A-7-6351 (Patent Document 1) and JP-A-10-214415 ( This is proposed in Patent Document 2).

ところで、このハイエッジと言う問題は、特許文献2にも記載されているように、長手方向に比べて、幅方向の剛性を極めて高めたときに発生する特有の問題であった。そのため、幅方向に比べて長手方向の剛性が同じか、それよりも高めたフィルムにはもともとハイエッジという問題は存在せず、良好に使用されてきた。   By the way, the problem of the high edge is a unique problem that occurs when the rigidity in the width direction is extremely increased as compared with the longitudinal direction, as described in Patent Document 2. For this reason, a film having the same or higher rigidity in the longitudinal direction than the width direction does not have the problem of a high edge and has been used well.

特開平7−6351号公報Japanese Unexamined Patent Publication No. 7-6351 特開平10−214415号公報Japanese Patent Laid-Open No. 10-214415

ところが、近年の記録密度を高密度化した、例えばデータストレージなどに用いるフィルムでは、フィルムのエッジ部分の位置がデータを読み書きする際に基準とされることから、フィルムのエッジ部分で平面性を低下させる「ハイエッジ」のような異常がないだけでは不十分で、さらにエッジ部分の切断面の形状も要求されるようになってきて、幅方向に比べて長手方向の剛性が同じかより高めたフィルムでも、十分な対応が取れなくなってきていた。また、特許文献2では、一方の層の固有粘度を0.55dl/g以下にすることが提案されているが、このような積層フィルムを実際に作って裁断してみたところ、裁断部分の形状がいびつで、データの読み書きの基準として該エッジ部を用いることはできないものであった。   However, in recent years, the recording density has been increased, for example, in the film used for data storage, etc., since the position of the edge portion of the film is used as a reference when reading and writing data, the flatness is reduced at the edge portion of the film. It is not enough that there is no abnormality such as “high edge”, and the shape of the cut surface of the edge part is also required, and the film has the same or higher rigidity in the longitudinal direction compared to the width direction. However, it was becoming impossible to take sufficient measures. Further, Patent Document 2 proposes that the intrinsic viscosity of one layer be 0.55 dl / g or less, but when actually making such a laminated film and cutting it, the shape of the cut portion was determined. However, the edge portion cannot be used as a reference for reading and writing data.

したがって、本発明の目的は、目的とする幅に裁断したときに、その最断されたエッジ部を、データの読み書きの基準として用いても、問題を起こすことのない二軸配向積層ポリエステルフィルムおよびそれを用いた磁気記録媒体を提供することにある。   Therefore, an object of the present invention is to provide a biaxially oriented laminated polyester film that does not cause a problem even when the cut edge portion is used as a reference for data reading and writing when it is cut into a desired width. It is to provide a magnetic recording medium using the same.

かくして本発明によれば、本発明の目的は、少なくとも2つのポリエステル層からなる積層フィルムで、各層を構成するポリエステルの重量平均分子量が2000〜36000の範囲にあり、長手方向の弾性率が6.0GPa以上で、幅方向の弾性率が4.0以上、かつ長手方向の弾性率が幅方向の弾性率と同じかそれよりも大きく、かつフィルムの厚みが2〜10μmの範囲にある二軸配向積層ポリエステルフィルムによって達成され、またその好ましい態様として、ポリエステルがポリエチレン−2,6−ナフタレートであること、一方のフィルム表面は、中心線表面粗さが10nm以下で、他方のフィルム表面は、中心線表面粗さが一方のフィルム表面のそれよりも大きくかつ5〜30nmであることおよび磁気記録媒体のベースフィルムに用いることの少なくともいずれかを具備する二軸配向積層ポリエステルフィルムも提供される。 Thus, according to the present invention, an object of the present invention is a laminated film consisting of at least two polyester layers, the weight average molecular weight of the polyester constituting the layers is in the range of 2 9 000-36000, a longitudinal elastic modulus 6.0 GPa or more, the elastic modulus in the width direction is 4.0 or more, the elastic modulus in the longitudinal direction is the same as or larger than the elastic modulus in the width direction, and the film thickness is in the range of 2 to 10 μm. Achieving with an axially oriented laminated polyester film, and as a preferred embodiment thereof, the polyester is polyethylene-2,6-naphthalate, one film surface has a center line surface roughness of 10 nm or less, and the other film surface is The center line surface roughness is larger than that of one film surface and is 5 to 30 nm, and the base film of the magnetic recording medium A biaxially oriented laminated polyester film comprising at least one of the films is also provided.

また、本発明によれば、本発明の二軸配向積層ポリエステルフィルムの片面に磁性層が積層された磁気記録媒体も提供される。   The present invention also provides a magnetic recording medium in which a magnetic layer is laminated on one side of the biaxially oriented laminated polyester film of the present invention.

上述の通り、本発明の二軸配向ポリエステルフィルムは、少なくとも2つのポリエステル層からなる積層フィルムで、各層を構成するポリエステルの重量平均分子量が28000〜36000の範囲にあり、長手方向の弾性率が6.0GPa以上で、幅方向の弾性率が4.0以上、かつ長手方向の弾性率が幅方向の弾性率と同じかそれよりも大きく、かつフィルムの厚みが3〜7μmの範囲にある。なお、説明の便宜上、“フィルムの長手方向”を、製膜方向、縦方向、MD方向またはMD、“フィルムの長手方向および厚み方向に直交する方向”を、幅方向、横方向、TD方向またはTD、“弾性率”をヤング率、“長手方向の弾性率”をEMD、“幅方向の弾性率”をETD、“表面粗さ”をRa、“一方の表面”を表面A、“他方の表面”を表面B、“一方の表面の表面粗さ”をRaA、“他方の表面の表面粗さ”をRaB、“重量平均分子量”をMw、と称することがある。 As described above, the biaxially oriented polyester film of the present invention is a laminated film composed of at least two polyester layers, the weight average molecular weight of the polyester constituting each layer is in the range of 28000 to 36000, and the elastic modulus in the longitudinal direction is 6 It is 0.0 GPa or more, the elastic modulus in the width direction is 4.0 or more, the elastic modulus in the longitudinal direction is the same as or larger than the elastic modulus in the width direction, and the film thickness is in the range of 3 to 7 μm. For convenience of explanation, “film longitudinal direction” is the film forming direction, longitudinal direction, MD direction or MD, and “direction perpendicular to the film longitudinal direction and thickness direction” is the width direction, lateral direction, TD direction or TD, “elastic modulus” is Young's modulus, “longitudinal modulus” is E MD , “width modulus” is E TD , “surface roughness” is Ra, “one surface” is surface A, “ The “other surface” may be referred to as surface B, “surface roughness of one surface” may be referred to as RaA, “surface roughness of the other surface” may be referred to as RaB, and “weight average molecular weight” may be referred to as Mw.

まず、EMDが下限未満であると、磁気テープの縦方向強度が弱くなり、記録・再生時に長手方向に強い力がかかると、容易に破断したり、伸びてしまう。一方、ETDが下限未満であると、リニアトラック方式の磁気テープとした場合、温湿度変化時の幅方向の寸法変化が大きくなり、トラックずれによる記録・再生のエラーが発生してしまう。好ましいEMDは、7GPa以上、さらに8GPa以上である。また、好ましいETDは、5GPa以上、さらに6GPa以上である。 First, if the EMD is less than the lower limit, the longitudinal strength of the magnetic tape becomes weak, and if a strong force is applied in the longitudinal direction during recording / reproduction, the magnetic tape easily breaks or stretches. On the other hand, if the ETD is less than the lower limit, when the linear track type magnetic tape is used, the dimensional change in the width direction at the time of temperature / humidity change becomes large, and a recording / playback error due to track deviation occurs. Preferred E MD is more than 7 GPa, it is more 8GPa more. Also preferred E TD is more 5 GPa, is more 6GPa more.

また、リニアトラック方式の磁気テープ用として供したときの長手方向の伸びを少なくする点から、EMDはETDと同じかより大きいことが必要である。EMDはETDよりも1GPa以上、さらに2GPa以上、特に3GPa以上大きいことが、ハイエッジの問題を解消しつつ、さらに分子鎖が長手方向により配向して、長手方向、すなわち製膜方向のスリット性を向上できることから好ましい。なお、EMDとETDの和は、10〜20GPa、さらには12〜16GPaであることが好ましい。EMDとETDの和が10GPa未満であると、磁気テープの強度が弱くなり、テープが容易に破断したり、また温湿度変化時の寸法変化が大きくなり、トラックずれによる記録・再生のエラーが発生しやすくなる。一方、20GPaを超えると、フィルム製膜時、延伸倍率が高くなり、フィルム破断が多発し、製品歩留りが著しく悪くなる。 From the viewpoint of reducing the longitudinal stretch when subjected for the magnetic tape of linear track system, E MD is required to be greater than or equal to the E TD. E MD is 1GPa or more than E TD, further 2GPa or more, and particularly greater than 3 GPa, while eliminating the problem of high edge, further the molecular chains were oriented with the longitudinal direction, longitudinal direction, i.e. film formation direction of the slit of Can be improved. Incidentally, the sum of E MD and E TD is, 10~20GPa, further particularly 12~16GPa. If the sum of E MD and E TD is less than 10 GPa, the strength of the magnetic tape will be weak, the tape will be easily broken, and the dimensional change during temperature / humidity changes will be large. Is likely to occur. On the other hand, if it exceeds 20 GPa, the stretch ratio becomes high during film formation, the film breaks frequently, and the product yield is remarkably deteriorated.

さらに、フィルムを構成する各ポリエステル層のMwが、上限を超えると、幅方向に剛性が高められていないフィルムであることからハイエッジのような異常は発生しないものの、切断面がフィルムの幅方向に向かって膨らみ、データを読み書きする際の基準としては不十分なものとなってしまう。一方、該Mwが下限を下回ると、十分な力学特性が得られず、製膜が困難になる。好ましいMwは、28000〜37000の範囲、さらに29000〜36000の範囲である。なお、該Mwは、全てのポリエステル層がその範囲に入っていることが必要であり、全体で平均して満足すれば良いというものではない。   Furthermore, if the Mw of each polyester layer constituting the film exceeds the upper limit, although it is a film whose rigidity is not increased in the width direction, abnormalities such as high edges do not occur, but the cut surface is in the width direction of the film. It swells up and becomes insufficient as a standard for reading and writing data. On the other hand, when the Mw is below the lower limit, sufficient mechanical properties cannot be obtained, and film formation becomes difficult. Preferred Mw is in the range of 28000-37000, and more preferably in the range of 29000-36000. In addition, this Mw needs that all the polyester layers are in the range, and it does not have to be satisfied on average as a whole.

最後に、フィルムの厚みが上限を超えると、磁気記録媒体としたときに、カートリッジ内に納めることができる磁気記録媒体の磁性層の表面積が減少し、十分な記録容量が得られなくなる。一方、フィルムの厚みが下限を下回ると、磁気テープとして記録・再生したときに、長手方向に強い力がかかると、容易に破断したり、伸びてしまう。   Finally, if the thickness of the film exceeds the upper limit, when the magnetic recording medium is used, the surface area of the magnetic layer of the magnetic recording medium that can be accommodated in the cartridge decreases, and a sufficient recording capacity cannot be obtained. On the other hand, if the thickness of the film is lower than the lower limit, when a strong force is applied in the longitudinal direction when recording / reproducing as a magnetic tape, the film is easily broken or stretched.

本発明によれば、EMDが6GPa以上、ETDが4GPa以上およびEMDがETDと同じかそれよりも大きく、かつフィルムを構成するポリエステルのMwが26000〜38000の範囲にある二軸配向ポリエステルフィルムであることによって、電磁変換特性と搬送性と寸法安定性とに優れ、しかもスリット性をも兼備する磁気記録媒体のベースフィルムに適した二軸配向積層ポリエステルフィルムが提供される。 According to the present invention, E MD is more than 6 GPa, biaxially oriented with E TD is equal to or greater than the 4GPa above and E MD is E TD, and Mw of the polyester constituting the film is in the range of from 26,000 to 38,000 By being a polyester film, a biaxially oriented laminated polyester film suitable for a base film of a magnetic recording medium that is excellent in electromagnetic conversion characteristics, transportability, and dimensional stability and also has slitting properties is provided.

そして、本発明の二軸配向ポリエステルフィルムをベースフィルムとして磁気記録媒体に用いると、トラックずれによるエラーレートの発生がなく、出力特性および走行性に優れ、しかも長時間使用に耐えるデジタルデータストレージテープとして有用な磁気記録媒体を得ることができる。   And, when the biaxially oriented polyester film of the present invention is used as a base film for a magnetic recording medium, as a digital data storage tape that does not generate an error rate due to track deviation, has excellent output characteristics and running properties, and can withstand long-term use. A useful magnetic recording medium can be obtained.

以下、本発明の二軸配向ポリエステルフィルムおよびそれを用いた磁気記録媒体について説明する。
<ポリエステル>
本発明におけるポリエステルとしては、例えばポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリエチレン―2,6―ナフタレート、ポリエチレン―α、β―ビス(2―クロルフェノキシ)エタン―4,4′―ジカルボキシレート等が挙げられる。これらのポリエステルは、繰返し単位が、他の第3成分に変更された共重合体でも、ブレンド体であってもよい。これらポリエステルの中でも、強度を比較的高く発現させやすいことから、ポリエチレンテレフタレートおよびポリエチレン―2,6―ナフタレート(以下、PENと称することがある。)が好ましく、特に高強度化という観点から、PENが最も好ましい。もちろん、ここでいうPENは、単独でも、他のポリエステルとの共重合体や、2種以上のポリエステルの混合体であってもかまわない。具体的には、その繰返し構造単位が実質的にエチレン―2,6―ナフタレートのみならず、繰返し構造単位を基準として、好ましくは10モル%以下、さらに好ましくは5モル%以下が他の第3成分であるPEN共重合体及びポリマー混合物であってもよい。また、ポリエチレンテレフタレートにポリイミドなどの機能剤を添加して、強度を向上させたポリエチレンテレフタレートも好ましい。
Hereinafter, the biaxially oriented polyester film of the present invention and a magnetic recording medium using the same will be described.
<Polyester>
Examples of the polyester in the present invention include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethylene-α, β-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylate. Etc. These polyesters may be a copolymer in which the repeating unit is changed to another third component or a blend. Among these polyesters, polyethylene terephthalate and polyethylene-2,6-naphthalate (hereinafter sometimes referred to as PEN) are preferable because strength is relatively high and easily expressed, and PEN is particularly preferable from the viewpoint of increasing strength. Most preferred. Of course, PEN as used herein may be used alone, as a copolymer with other polyesters, or as a mixture of two or more polyesters. Specifically, the repeating structural unit is preferably not only ethylene-2,6-naphthalate but also preferably 10 mol% or less, more preferably 5 mol% or less, based on the repeating structural unit. The component PEN copolymer and polymer mixture may be sufficient. Further, polyethylene terephthalate in which strength is improved by adding a functional agent such as polyimide to polyethylene terephthalate is also preferable.

該ポリエステルは、フィルムにしたときのMwが、前述の範囲に入るものであれば、特に制限されない。好ましくは、フィルムに製膜する前のポリエステルのMwが、28000〜56000、さらに30000〜52000のポリエステルフィルムを用いるか、Mw34000〜56000のポリエステルと、Mw23000〜38000のポリエステルとを2種類併用するか、ポリエステルを乾燥する際に調湿して、その後の溶融押出工程でフィルムにしたときのMwが、前述の範囲に入るまで低下させることなどが挙げられる。フィルムに製膜する前のポリエステルのMwが過度に高いと、製膜時に過剰に熱分解を惹き起こさなくては、フィルムでのMwが前述の範囲まで低下せず、他方、フィルムに製膜する前のポリエステルのMwが過度に低いと、製膜時の熱分解によって、フィルムでのMwが前述の範囲よりも小さくなりやすい。   The polyester is not particularly limited as long as the Mw when formed into a film falls within the above range. Preferably, the polyester Mw before film formation is 28000-56000, further using a polyester film of 30000-52000, Mw 34,000-56000 polyester and Mw 23,000-38000 polyester in combination, For example, the Mw when the polyester is dried and dried to form a film in the subsequent melt-extrusion step is decreased until it falls within the aforementioned range. If the Mw of the polyester before film formation is excessively high, Mw in the film does not decrease to the above-mentioned range without causing excessive thermal decomposition during film formation. If the Mw of the previous polyester is excessively low, the Mw in the film tends to be smaller than the above range due to thermal decomposition during film formation.

本発明で使用するポリエステルは、特にその製法を限定されず、それ自体公知の方法を任意に採用することができる。例えば、ポリエチレン―2,6―ナフタレートの場合酸成分のエステル形成性誘導体、例えば、ジ低級アルキル―2,6―ナフタレートとエチレングリコールとをエステル交換反応させてから重縮合反応させることで製造でき、通常これらの反応は触媒の存在下で反応させる。   The production method of the polyester used in the present invention is not particularly limited, and a method known per se can be arbitrarily adopted. For example, in the case of polyethylene-2,6-naphthalate, an ester-forming derivative of an acid component, for example, a di-lower alkyl-2,6-naphthalate and ethylene glycol can be produced by a transcondensation reaction and then a polycondensation reaction, Usually, these reactions are carried out in the presence of a catalyst.

本発明で使用するポリエステルには、製膜時のフィルムの巻取り性や、フィルムの搬送性等を良くするため、滑剤として有機又は無機の不活性粒子を含有させてもよい。   The polyester used in the present invention may contain organic or inorganic inert particles as a lubricant in order to improve the winding property of the film during film formation, the transportability of the film, and the like.

<ポリエステルフィルム>
本発明の二軸配向積層ポリエステルフィルムは、一方のフィルム表面(表面A)は、中心線表面粗さ(RaA)が10nm以下で、他方のフィルム表面(表面B)は、中心線表面粗さ(RaB)が表面Aのそれよりも大きくかつ5〜30nmであることが好ましい。表面A、すなわち磁気記録媒体のベースフィルムとして用いるときに磁性層が形成される側の表面は、RaAが上限を超えると、磁気テープとしたとき磁性層面が粗化し、電磁変換特性が低下する。好ましいRaAは、0.1〜7nm、さらに0.5〜5nmの範囲である。また、表面B、すなわち磁気記録媒体のベースフィルムとして用いるときに磁性層が形成されない側(非磁性層側)の表面は、RaBが上限を超えると、ロール状態で保管している間に、平坦な磁性層側表面に、非磁性層側の粗い表面形状が転写、すなわち磁性層面が粗化して電磁変換特性が低下し、下限未満であると、搬送性が低下し、しわなどが発生する。また、このように二軸配向ポリエステルフィルムの両表面の粗さを変えて、電磁変換特性と搬送性を向上させる観点から、RaAとRaBが同じでは、向上効果が得られず、少なくともRaBはRaAよりも粗いことが必要である。このようなRaAとRaBとを二軸配向ポリエステルフィルムに兼備させるには、得られる表面形状が異なる少なくとも2つのポリエステル層を積層することが必要である。そして、得られる表面形状の調整は、後述のポリエステル層に含有させる不活性粒子によって調整できる。例えば、不活性粒子を含有しないか、含有しても粒径の小さいな不活性粒子を少量含有するポリエステル層の片面に、粒径の大きな不活性粒子を含有するか、より多くの不活性粒子を含有するポリエステル層を積層すればよく。両者の間にさらに第3のポリエステル層を介在させても良い。
<Polyester film>
In the biaxially oriented laminated polyester film of the present invention, one film surface (surface A) has a centerline surface roughness (RaA) of 10 nm or less, and the other film surface (surface B) has a centerline surface roughness ( RaB) is preferably larger than that of surface A and 5 to 30 nm. When RaA exceeds the upper limit of the surface A, that is, the surface on which the magnetic layer is formed when used as a base film of a magnetic recording medium, the surface of the magnetic layer becomes rough when used as a magnetic tape, and electromagnetic conversion characteristics deteriorate. A preferable RaA is in the range of 0.1 to 7 nm, more preferably 0.5 to 5 nm. Further, the surface B, that is, the surface on the side where the magnetic layer is not formed (non-magnetic layer side) when used as a base film of a magnetic recording medium, is flat during storage in a roll state when RaB exceeds the upper limit. A rough surface shape on the nonmagnetic layer side is transferred to the surface of the magnetic layer, that is, the surface of the magnetic layer is roughened to deteriorate the electromagnetic conversion characteristics, and if it is less than the lower limit, the transportability is lowered and wrinkles are generated. In addition, from the viewpoint of improving electromagnetic conversion characteristics and transportability by changing the roughness of both surfaces of the biaxially oriented polyester film in this way, if RaA and RaB are the same, an improvement effect cannot be obtained, and at least RaB is RaA. Need to be coarser than. In order to combine such RaA and RaB in a biaxially oriented polyester film, it is necessary to laminate at least two polyester layers having different surface shapes. And adjustment of the surface shape obtained can be adjusted with the inert particle contained in the below-mentioned polyester layer. For example, one side of a polyester layer that does not contain inert particles or contains a small amount of inert particles that are small in size, but contains a large number of inert particles or more inert particles. It is sufficient to laminate a polyester layer containing A third polyester layer may be further interposed between the two.

このような表面粗さは、フィルムを構成するポリエステルに、不活性微粒子を含有させることによって調整できる。不活性粒子としては、例えば周期律表第IIA、第IIB、第IVA、第IVBの元素を含有する無機微粒子(例えば、カオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素など)、シリコーン樹脂、架橋ポリスチレン等の如き耐熱性の高い高分子よりなる微粒子などが挙げられる。好ましくは表面Aを形成するポリエステル層Aは、不活性粒子を含有しないか、含有する場合は、平均粒径0.02〜0.5μm、更には0.03〜0.4μmの不活性粒子を、ポリエステル層Aの重量を基準として、0.01〜0.4重量%(対ポリマー)、さらには0.02〜0.3重量%(対ポリマー)含有することが好ましい。また、表面Bを形成するポリエステル層Bは、平均粒径0.03〜1.0μm、更には0.04〜0.8μmの不活性粒子を、ポリエステル層Bの重量を基準として、0.05〜1.0重量%(対ポリマー)、さらには0.08〜0.5重量%(対ポリマー)含有することが好ましい。このさい、使用する不活性粒子は、1種類に限定されず、平均粒径の異なる2種類以上の不活性粒子を用いてもよい。   Such surface roughness can be adjusted by including inactive fine particles in the polyester constituting the film. As the inert particles, for example, inorganic fine particles (for example, kaolin, alumina, titanium oxide, calcium carbonate, silicon dioxide, etc.) containing the elements of Periodic Tables IIA, IIB, IVA, and IVB, silicone resins, crosslinks Examples thereof include fine particles made of a polymer having high heat resistance such as polystyrene. Preferably, the polyester layer A forming the surface A does not contain or contains inert particles, and in the case of containing the inert particles having an average particle size of 0.02 to 0.5 μm, and further 0.03 to 0.4 μm. Based on the weight of the polyester layer A, it is preferable to contain 0.01 to 0.4% by weight (with respect to polymer), and more preferably 0.02 to 0.3% by weight (with respect to polymer). Further, the polyester layer B forming the surface B has an average particle size of 0.03 to 1.0 μm, more preferably 0.04 to 0.8 μm, based on the weight of the polyester layer B. It is preferable to contain -1.0weight% (with respect to a polymer), and also 0.08 to 0.5weight% (with respect to a polymer). At this time, the inert particles to be used are not limited to one type, and two or more types of inert particles having different average particle diameters may be used.

本発明の二軸配向積層ポリエステルフィルムは、幅方向の湿度膨張係数(以下、αh渡渉することがある。)が0〜15ppm/%RH、さらに3〜10ppm/%RHであることが好ましい。αhが、上記範囲を外れると、湿度変化による寸法変化が大きくなり、トラックずれが発生してエラーとなる。このような湿度膨張係数は、幅方向の弾性率を高めることなどによって調整できる。   The biaxially oriented laminated polyester film of the present invention preferably has a humidity expansion coefficient in the width direction (hereinafter sometimes referred to as αh) of 0 to 15 ppm /% RH, and more preferably 3 to 10 ppm /% RH. When αh is out of the above range, a dimensional change due to a change in humidity increases, and a track shift occurs, resulting in an error. Such a humidity expansion coefficient can be adjusted by increasing the elastic modulus in the width direction.

本発明の二軸配向積層ポリエステルフィルムは、幅方向の温度膨張係数(以下、αtと称することがある。)が−10〜10ppm/℃であることが好ましい。αtが−10ppm/℃より小さい、または10ppm/℃より大きいと、温度変化による寸法変化が大きくなり、温度が変化したときにトラックずれが発生し、エラーとなる。このようなαtは、ヤング率を上記範囲内にしつつ、熱固定処理によって熱寸法安定性を付与することなどによって調整できる。   The biaxially oriented laminated polyester film of the present invention preferably has a temperature expansion coefficient in the width direction (hereinafter sometimes referred to as αt) of −10 to 10 ppm / ° C. When αt is smaller than −10 ppm / ° C. or larger than 10 ppm / ° C., the dimensional change due to the temperature change becomes large, and when the temperature changes, the track shift occurs and an error occurs. Such αt can be adjusted by, for example, imparting thermal dimensional stability by a heat setting process while keeping the Young's modulus within the above range.

<製造方法>
本発明の二軸配向積層ポリエステルフィルムは、例えば以下のような方法で製造することができる。まず、含有する不活性粒子の粒径や含有量が異なるポリエステルペレットを少なくとも2つ用意し、それらを乾燥した後、それぞれ別の押出し機に供給し、溶融状態でダイの内部で2層またはそれ以上の層が積層された状態とする。その後、その積層状態を維持させつつ、冷却ドラムの上に押し出して積層未延伸フィルムを作成する。ポリエチレン―2,6―ナフタレートフィルムの場合、この未延伸フィルムを縦方向に100〜170℃の温度で5〜8倍の倍率で延伸し、次いで上記延伸方向と直交する方向、すなわち幅方向に115〜180℃の温度で4〜7倍の倍率で延伸する。または必要に応じて縦また横方向の延伸を2段階以上に分割実施してもよい(縦多段延伸、縦−横−縦の3段延伸、縦−横−縦−横の4段延伸等)。また同時二軸延伸にて実施してもよい。このようにして全延伸倍率は、面積延伸倍率として10〜60倍、更には20〜50倍が好ましい。この際、ポリエステルフィルムによるスリット性向上効果を発現させるため、縦方向の延伸倍率から横方向の延伸倍率を差し引いた値は0.5倍以上あることが好ましい。また二軸配向フィルムは180〜250℃の温度で熱固定することが好ましく、更には200〜230℃で熱固定するのが好ましく、熱固定時間は1〜60秒が好ましい。
<Manufacturing method>
The biaxially oriented laminated polyester film of the present invention can be produced, for example, by the following method. First, prepare at least two polyester pellets with different inert particle sizes and contents, dry them, and then feed them to different extruders, and in the molten state, two layers or more The above layers are stacked. Then, while maintaining the laminated state, it is extruded onto a cooling drum to create a laminated unstretched film. In the case of a polyethylene-2,6-naphthalate film, this unstretched film is stretched in the machine direction at a temperature of 100 to 170 ° C. at a magnification of 5 to 8 times, and then in the direction perpendicular to the stretch direction, that is, in the width direction. Stretch at a magnification of 4 to 7 times at a temperature of 115 to 180 ° C. Alternatively, longitudinal and lateral stretching may be divided into two or more stages as necessary (longitudinal multistage stretching, longitudinal-horizontal-longitudinal three-stage stretching, longitudinal-horizontal-vertical-horizontal four-stage stretching, etc.). . Moreover, you may implement by simultaneous biaxial stretching. Thus, the total draw ratio is preferably 10 to 60 times, more preferably 20 to 50 times as the area draw ratio. Under the present circumstances, in order to express the slit property improvement effect by a polyester film, it is preferable that the value which deducted the draw ratio of the horizontal direction from the draw ratio of the vertical direction is 0.5 times or more. The biaxially oriented film is preferably heat-set at a temperature of 180 to 250 ° C., more preferably 200 to 230 ° C., and the heat setting time is preferably 1 to 60 seconds.

<磁気記録媒体>
本発明の二軸配向積層ポリエステルフィルムは、寸法安定性に必要な弾性率と優れた平坦性と走行性とを有しながら、しかも優れたスリット性をも兼備することから、高密度磁気記録媒体、特にディジタル記録型磁気機記録媒体のベースフィルムとして好ましく用いられる。
<Magnetic recording medium>
The biaxially oriented laminated polyester film of the present invention has an elastic modulus necessary for dimensional stability, excellent flatness and running property, and also has excellent slit property, so that it is a high-density magnetic recording medium. In particular, it is preferably used as a base film of a digital recording type magnetic machine recording medium.

本発明の磁気記録媒体は、上記本発明の支持体の片側表面(積層の場合は平坦側表面)に、磁性層を塗布、あるいは真空蒸着、スパッタリング、イオンプレーティング等の方法により、鉄、コバルト、クロム又はこれらを主成分とする合金もしくは酸化物より成る強磁性金属薄膜層を形成し、またその表面に、目的、用途、必要に応じてダイアモンドライクカーボン(DLC)等の保護層、含フッ素カルボン酸系潤滑層を順次設け、更に磁性層と反対側の表面にバックコート層を設けることにより、形成される。   The magnetic recording medium of the present invention is obtained by applying a magnetic layer to one side surface (or flat side surface in the case of lamination) of the above-described support of the present invention, or by a method such as vacuum deposition, sputtering, or ion plating. A ferromagnetic metal thin film layer made of chromium or an alloy or oxide containing these as a main component is formed, and a protective layer such as diamond-like carbon (DLC) is formed on the surface, if necessary, fluorine-containing It is formed by sequentially providing a carboxylic acid-based lubricating layer and further providing a backcoat layer on the surface opposite to the magnetic layer.

このようにして得られた磁気記録媒体は、優れた寸法安定性とスリット性を有することから、テープの高容量化を実現するために、線記録密度のアップ、トラック密度のアップ、テープの長尺化がなされている、特にQIC、DLT、更に高容量のスーパーDLT、LTOなどのリニアトラック方式を採用するデータストレージ用途に好適に使用できる。   Since the magnetic recording medium thus obtained has excellent dimensional stability and slitting properties, in order to realize a high capacity of the tape, the linear recording density is increased, the track density is increased, and the tape length is increased. It can be suitably used for data storage applications that employ linear track systems such as QIC, DLT, higher capacity super DLT, and LTO, which are scaled.

以下、実施例に基づいて本発明をさらに説明する。尚、本発明における種々の物性値及び特性は、以下のようにして測定されたものであり、かつ定義される。
(1)ヤング率
東洋ボールドウイン(株)の引張試験機「テンシロン」を用いて、温度20℃、湿度50%に調節された室内において、フィルムを試料幅10mm、長さ15cmに切り、チャック間100mmにして引張速度10mm/分、チャート速度500mm/分で引張り、得られる荷重―伸び曲線の立ち上り部の接線よりヤング率を計算する。
Hereinafter, the present invention will be further described based on examples. The various physical property values and characteristics in the present invention are measured and defined as follows.
(1) Young's modulus Using a tensile tester “Tensilon” manufactured by Toyo Baldwin Co., Ltd., in a room adjusted to a temperature of 20 ° C. and a humidity of 50%, the film was cut into a sample width of 10 mm and a length of 15 cm, and between chucks. The Young's modulus is calculated from the tangent of the rising portion of the load-elongation curve obtained by pulling at 100 mm and pulling at a pulling speed of 10 mm / min and a chart speed of 500 mm / min.

(2)表面粗さ(Ra)
小坂研究所(株)製の触針式表面粗さ計(サーフコーダ30C)を用いて針の半径2μm、触針用30mgの条件下でチャート(フィルム表面粗さ曲線)をかかせる。フィルム表面粗さ曲線から、その中心線の方向に測定長さLの部分を抜き取り、この抜き取り部分の中心線をX軸とし、縦倍率の方向をY軸として、粗さ曲線をY=f(X)で表したとき、次式で与えられるRa(μm)をフィルム平均粗さとして定義する。
(2) Surface roughness (Ra)
Using a stylus type surface roughness meter (Surfcoder 30C) manufactured by Kosaka Laboratory Co., Ltd., a chart (film surface roughness curve) is applied under the conditions of a needle radius of 2 μm and a stylus 30 mg. From the film surface roughness curve, a portion of the measurement length L is extracted in the direction of the center line, the center line of the extraction portion is taken as the X axis, the direction of the vertical magnification is taken as the Y axis, and the roughness curve is represented by Y = f ( When represented by X), Ra (μm) given by the following formula is defined as the film average roughness.

Figure 0004441324
本発明では、測定長を1.25mmとし、カットオフ値を0.08mmとして、5回測定した平均値をRaとする。
Figure 0004441324
In the present invention, the measurement length is 1.25 mm, the cutoff value is 0.08 mm, and the average value measured five times is Ra.

(3)不活性粒子の平均粒径
島津製作所製CP―50型セントリフュグルパーティクルサイズアナライザー(Centrifugal Particle Size Analyzer)を用いて測定する。得られる遠心沈降曲線をもとに算出する各粒径の粒径とその存在量との累積曲線から、50マスパーセント(mass percent)に相当する粒径を読み取り、この値を上記平均粒径とする。
(3) Average particle diameter of inert particles Measured using a CP-50 type Centrifugal Particle Size Analyzer manufactured by Shimadzu Corporation. The particle size corresponding to 50 mass percent is read from the cumulative curve of the particle size and the abundance of each particle size calculated based on the centrifugal sedimentation curve obtained, and this value is taken as the average particle size. To do.

(4)温度膨張係数(αt)
フィルムサンプルを幅方向が測定方向となるように長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、窒素雰囲気下(0%RH)、60℃で30分前処理し、その後室温まで降温させる。その後25℃から70℃まで2℃/minで昇温し、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出する。なお、測定方向が試料の長手方向であり、10回測定し、その平均値を用いた。
(4) Temperature expansion coefficient (αt)
A film sample was cut into a length of 15 mm and a width of 5 mm so that the width direction was the measurement direction, set in TMA3000 manufactured by Vacuum Riko, pretreated at 60 ° C. for 30 minutes in a nitrogen atmosphere (0% RH), and then to room temperature. Let the temperature drop. Thereafter, the temperature is raised from 25 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature is measured, and the temperature expansion coefficient (αt) is calculated from the following equation. Note that the measurement direction was the longitudinal direction of the sample, 10 measurements were taken, and the average value was used.

Figure 0004441324
ここで、L40:40℃のときのサンプル長(mm)
60:60℃のときのサンプル長(mm)
△T:20(=60−40)℃
0.5×10−6:石英ガラスの温度膨張係数である。
Figure 0004441324
Here, L 40 : sample length at 40 ° C. (mm)
L 60 : sample length at 60 ° C. (mm)
ΔT: 20 (= 60-40) ° C.
0.5 × 10 −6 : The temperature expansion coefficient of quartz glass.

(5)湿度膨張係数(αh)
フィルムサンプルを幅方向が測定方向となるように長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、30℃の雰囲気下で、窒素雰囲気下から、湿度30%RH、および湿度70%RHの一定に保ち、その時のサンプルの長さを測定し、次式にて湿度膨張係数を算出する。なお、測定方向が試料の長手方向であり、10個の試料について行い、その平均値をαhとした。
(5) Humidity expansion coefficient (αh)
A film sample was cut into a length of 15 mm and a width of 5 mm so that the width direction would be the measurement direction, set in a TMA3000 manufactured by Vacuum Riko, under a nitrogen atmosphere at 30 ° C., a humidity of 30% RH, and a humidity of 70%. RH is kept constant, the length of the sample at that time is measured, and the humidity expansion coefficient is calculated by the following equation. The measurement direction was the longitudinal direction of the sample, and 10 samples were measured. The average value was αh.

Figure 0004441324
ここで、L30:30%RHのときのサンプル長(mm)
70:70%RHのときのサンプル長(mm)
△H:40(=70−30)%RHである。
Figure 0004441324
Here, sample length (mm) when L 30 : 30% RH
Sample length when L 70 is 70% RH (mm)
ΔH: 40 (= 70-30)% RH.

(6)トラックずれ(エラーレート)
ヒューレットパッカード社製、LTO1のドライブを用いて、10℃、10%RHの温湿度下で記録した後30℃、80%RHの温湿度下で再生し、温湿度変化による磁気テープの磁気ヘッドに対するトラックずれ幅を測定し、以下の基準で評価した。
◎:800nm以下
○:800nmを超え1200nm以下
×:1200nmを超える。
これらのずれ幅の絶対値が少ないほど良好であることを示す。
(6) Track deviation (error rate)
Using a LTO1 drive manufactured by Hewlett-Packard Company, recording was performed at 10 ° C. and 10% RH temperature and then played back at 30 ° C. and 80% RH temperature. The track deviation width was measured and evaluated according to the following criteria.
(Double-circle): 800 nm or less (circle): Over 800 nm and 1200 nm or less x: Over 1200 nm.
It shows that it is so favorable that the absolute value of these deviation | shift widths is small.

(7)ポリエステルフィルムの厚み
フィルム全体の厚みはマイクロメーターにてランダムに10点測定し、その平均値を用いる。
各層の厚みについては、不活性粒子の含有量が多い方のポリエステル層の層厚みを下記に述べる方法にて測定し、他方のポリエステル層の層厚みは、全厚みより前述の層厚を引き算して求める。すなわち、二次イオン質量分析装置(SIMS)を用いて、被覆層を除いた表層から深さ5,000nmの範囲のフィルム中の粒子の内最も高濃度の粒子に起因する金属元素(M+)とポリエステルの炭化水素(C+)の濃度比(M+/C+)を粒子濃度とし、表面から深さ5,000nmまで厚さ方向の分析を行う。表層では表面という界面のために粒子濃度は低く、表面から遠ざかるにつれて粒子濃度は高くなる。本発明の場合、粒子濃度は一旦安定値1になったのち、上昇して安定値2になる場合と、単調に減少する場合とがある。この分布曲線をもとに、前者の場合は、(安定値1+安定値2)/2の粒子濃度を与える深さをもって、また後者の場合は粒子濃度が安定値1の1/2になる深さ(この深さは安定値1を与える深さよりも深い)をもって、薄いポリエステル層の厚み(μm)とする。
(7) Thickness of polyester film The thickness of the entire film is measured at 10 points at random using a micrometer, and the average value is used.
As for the thickness of each layer, the layer thickness of the polyester layer having a higher content of inert particles is measured by the method described below, and the layer thickness of the other polyester layer is calculated by subtracting the above-mentioned layer thickness from the total thickness. Ask. That is, using a secondary ion mass spectrometer (SIMS), the metal element (M +) caused by the highest concentration of particles in the film having a depth of 5,000 nm from the surface layer excluding the coating layer The concentration ratio (M + / C +) of hydrocarbon (C +) of polyester is defined as the particle concentration, and analysis in the thickness direction is performed from the surface to a depth of 5,000 nm. In the surface layer, the particle concentration is low due to the interface of the surface, and the particle concentration increases as the distance from the surface increases. In the case of the present invention, the particle concentration may once rise to a stable value 1 and then rise to a stable value 2 or may monotonously decrease. Based on this distribution curve, the former has a depth that gives a particle concentration of (stable value 1 + stable value 2) / 2, and the latter has a depth at which the particle concentration is ½ of the stable value 1. The thickness (μm) of the thin polyester layer is defined as the depth (this depth is deeper than the depth that provides the stable value 1).

測定条件は、以下のとおりである。
(a)測定装置
二次イオン質量分析装置(SIMS);パーキン・エルマー株式会社
(PERKIN ELMER INC.)製、「6300」
(b)測定条件
一次イオン種:O2+
一次イオン加速電圧:12KV
一次イオン電流:200nA
ラスター領域:400μm□
分析領域:ゲート30%
測定真空度:6.0×10−9Torr
E−GUNN:0.5KV−3.0A
The measurement conditions are as follows.
(A) Measurement device Secondary ion mass spectrometer (SIMS); manufactured by PERKIN ELMER INC., “6300”
(B) Measurement conditions Primary ion species: O 2+
Primary ion acceleration voltage: 12KV
Primary ion current: 200 nA
Raster area: 400 μm
Analysis area: 30% gate
Measurement vacuum: 6.0 × 10 −9 Torr
E-GUNN: 0.5KV-3.0A

なお、表層から5,000nmの範囲に最も多く存在する粒子がシリコーン樹脂以外の有機高分子粒子の場合はSIMSでは測定が難しいので、表面からエッチングしながらFT−IR(フーリエトランスフォーム赤外分光法)、粒子によってはXPS(X線光電分光法)などで上記同様の濃度分布曲線を測定し、層厚(μm)を求める。   In the case where organic polymer particles other than silicone resin are the most abundant particles in the range of 5,000 nm from the surface layer, it is difficult to measure by SIMS, so FT-IR (Fourier transform infrared spectroscopy while etching from the surface) ) Depending on the particle, a concentration distribution curve similar to the above is measured by XPS (X-ray photoelectric spectroscopy) or the like to determine the layer thickness (μm).

(8)スリット性
二軸配向ポリエステルフィルムをシェアカッターを用いて、製膜方向に裁断し、フィルムの製膜方向から走査型電子顕微鏡で裁断面を観察し、以下のとおり評価した。
A.ハイエッジ
フィルムの厚み方向に、フィルム表面から突き出した高さ(H)を10点測定し、その平均値を以下の基準で評価した。
◎:0.1μm以下
○:0.1μmを超え、0.2μm以下
×:0.2μm以上
B.端面形状
フィルムの幅方向に、フィルムのシェアカッターによる切断開始点よりも突き出した幅(p)高さを10点測定し、その平均値を、以下の基準で評価した。
◎:フィルムの厚み(t)に対して、10%以下
○:フィルムの厚み(t)に対して、10%を超え15%以下
×:フィルムの厚み(t)に対して、15%を超える
(8) Slit property The biaxially oriented polyester film was cut in the film forming direction using a shear cutter, the cut surface was observed with a scanning electron microscope from the film forming direction of the film, and evaluated as follows.
A. Ten heights (H) protruding from the film surface were measured in the thickness direction of the high edge film, and the average value was evaluated according to the following criteria.
A: 0.1 μm or less ○: Over 0.1 μm, 0.2 μm or less X: 0.2 μm or more End face shape In the width direction of the film, the width (p) height protruding from the cutting start point of the film by the shear cutter was measured at 10 points, and the average value was evaluated according to the following criteria.
A: 10% or less with respect to the film thickness (t) B: Over 10% and 15% or less with respect to the film thickness (t) X: Over 15% with respect to the film thickness (t)

(9)重量平均分子量
1,1,1,3,3,3−ヘキサフルオロイソプロパノールとオルソクロロフェノールの混合溶媒を用い、さらに移動相としてクロロホルムを用いて、GPCにて測定した。
(9) Weight average molecular weight Measured by GPC using a mixed solvent of 1,1,1,3,3,3-hexafluoroisopropanol and orthochlorophenol and further using chloroform as a mobile phase.

[実施例1]
平均粒径0.1μmの球状シリカ粒子を0.1重量%含有した、重量平均分子量30000のポリエチレン―2,6―ナフタレート(以下、PENと称することがある。)と重量平均分子量45000のPENとの、重量比50:50の樹脂組成物1と、平均粒径0.3μmの球状シリカ粒子を0.15重量%、平均粒径0.1μmの球状シリカ粒子を0.10重量%含有した、重量平均分子量30000のPENと重量平均分子量 45000のPENとの、重量比50:50の樹脂組成物2とを、それぞれ180℃で5時間乾燥した後、押出機ホッパーに供給し、押出機内で300℃で溶融状態として表面Aに樹脂組成物1の溶融物が、表面Bに樹脂組成物2が位置するように積層し、積層状態を維持させたままT型押出ダイから、表面仕上げ0.3S、表面温度60℃に保持したキャスティングドラム上に押出して、急冷固化せしめ、積層未延伸フィルムを得た。
[Example 1]
Polyethylene-2,6-naphthalate having a weight average molecular weight of 30000 (hereinafter sometimes referred to as PEN) containing 0.1% by weight of spherical silica particles having an average particle diameter of 0.1 μm, and PEN having a weight average molecular weight of 45,000 A resin composition 1 having a weight ratio of 50:50, 0.15% by weight of spherical silica particles having an average particle diameter of 0.3 μm, and 0.10% by weight of spherical silica particles having an average particle diameter of 0.1 μm, A PEN having a weight average molecular weight of 30,000 and a PEN having a weight average molecular weight of 45,000 and a resin composition 2 having a weight ratio of 50:50 were each dried at 180 ° C. for 5 hours, and then supplied to an extruder hopper. The molten resin composition 1 is laminated on the surface A in a molten state at 0 ° C., and the surface composition is laminated so that the resin composition 2 is positioned on the surface B. The film was extruded on a casting drum maintained at a temperature of 0.3S and a surface temperature of 60 ° C., and rapidly solidified to obtain a laminated unstretched film.

このようにして得られた積層未延伸フィルムを120℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して5.4倍に延伸し、急冷し、続いてステンターに供給し、125℃にて横方向に4.8倍延伸した。さらに引き続いて225℃で3秒間熱固定し、厚み6.0μmの二軸配向積層フィルムを得た。得られたフィルムのヤング率は縦方向8GPa、横方向7GPaで、表面Aを形成するポリエステル層の厚みは2.0μmで、表面Bを形成するポリエステル層の厚みは4.0μmであった。なお、表面Aおよび表面Bを形成するポリエステル層の厚みは、吐出量によって調整した。   The laminated unstretched film thus obtained was preheated at 120 ° C., and further heated by an infrared heater having a surface temperature of 830 ° C. from above 14 mm between low-speed and high-speed rolls and stretched 5.4 times. Then, it was rapidly cooled, then supplied to a stenter, and stretched 4.8 times in the transverse direction at 125 ° C. Subsequently, the film was heat-fixed at 225 ° C. for 3 seconds to obtain a biaxially oriented laminated film having a thickness of 6.0 μm. The Young's modulus of the obtained film was 8 GPa in the vertical direction and 7 GPa in the horizontal direction, the thickness of the polyester layer forming the surface A was 2.0 μm, and the thickness of the polyester layer forming the surface B was 4.0 μm. In addition, the thickness of the polyester layer which forms the surface A and the surface B was adjusted with the discharge amount.

一方、下記に示す組成物をボールミルに入れ、16時間混練、分散した後、イソシアネート化合物(バイエル社製のデスモジュールL)5重量部を加え、1時間高速剪断分散して磁性塗料とした。
磁性塗料の組成:
針状Fe粒子 100重量部
塩化ビニル―酢酸ビニル共重合体 15重量部
(積水化学製エスレック7A)
熱可塑性ポリウレタン樹脂 5重量部
酸化クロム 5重量部
カーボンブラック 5重量部
レシチン 2重量部
脂肪酸エステル 1重量部
トルエン 50重量部
メチルエチルケトン 50重量部
シクロヘキサノン 50重量部
On the other hand, the composition shown below was put in a ball mill, kneaded and dispersed for 16 hours, and then 5 parts by weight of an isocyanate compound (Desmodur L manufactured by Bayer) was added, and high-speed shear dispersion was performed for 1 hour to obtain a magnetic paint.
Magnetic paint composition:
Needle-like Fe particles 100 parts by weight Vinyl chloride-vinyl acetate copolymer 15 parts by weight (Surek Chemical Co., Ltd. SREC 7A)
Thermoplastic polyurethane resin 5 parts by weight Chromium oxide 5 parts by weight Carbon black 5 parts by weight Lecithin 2 parts by weight Fatty acid ester 1 part by weight Toluene 50 parts by weight Methyl ethyl ketone 50 parts by weight Cyclohexanone 50 parts by weight

この磁性塗料を上述の二軸配向積層PENフィルムの表面Aに乾燥後の塗布厚さ0.5μmとなるように塗布し、次いで2500ガウスの直流磁場中で配向処理を実施し、100℃で加熱乾燥後、スーパーカレンダー処理(線圧200kg/cm、温度80℃)をして巻き取った。この巻き取ったロールを55℃のオーブン中に3日間放置した。   This magnetic coating is applied to the surface A of the above-described biaxially oriented laminated PEN film so that the coating thickness after drying is 0.5 μm, and then subjected to an orientation treatment in a DC magnetic field of 2500 gauss and heated at 100 ° C. After drying, it was rolled up by super calendering (linear pressure 200 kg / cm, temperature 80 ° C.). The wound roll was left in an oven at 55 ° C. for 3 days.

さらに下記組成のバックコート層塗料を、磁性層が形成された二軸配向積層PENフィルムの表面Bに乾燥後の厚さ1μmとなるように塗布し、乾燥させ、さらに6.35mm(=1′/4)に裁断し、磁気テープを得た。
バックコート層塗料の組成:
カーボンブラック 100重量部
熱可塑性ポリウレタン樹脂 60重量部
イソシアネート化合物 18重量部
(日本ポリウレタン工業社製コロネートL)
シリコーンオイル 0.5重量部
メチルエチルケトン 250重量部
トルエン 50重量部
得られた二軸配向積層ポリエステルフィルムおよび磁気テープの特性を表1に示す。
Further, a back coat layer paint having the following composition was applied to the surface B of the biaxially oriented laminated PEN film on which the magnetic layer was formed so that the thickness after drying was 1 μm, dried, and further 6.35 mm (= 1 ′ / 4) to obtain a magnetic tape.
Backcoat layer paint composition:
Carbon black 100 parts by weight Thermoplastic polyurethane resin 60 parts by weight Isocyanate compound 18 parts by weight (Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd.)
Silicone oil 0.5 parts by weight Methyl ethyl ketone 250 parts by weight Toluene 50 parts by weight Properties of the obtained biaxially oriented laminated polyester film and magnetic tape are shown in Table 1.

[実施例2]
樹脂組成物1を、不活性粒子を含有しない、重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比25:75の樹脂組成物3に、樹脂組成物2を平均粒径0.3μmの球状シリカ粒子を0.15重量%、平均粒径0.1μmの球状シリカ粒子を0.10重量%含有した、重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比25:75の樹脂組成物4に変更し、表面Aおよび表面Bを形成するポリエステル層の厚みと延伸倍率を変更した以外は、実施例1と同様な操作を繰り返した。
得られた二軸配向ポリエステルフィルムおよび磁気テープの特性を表1に示す。
[Example 2]
Resin composition 1 is a resin composition 3 having a weight average molecular weight of 45,000 and PEN having a weight average molecular weight of 30000, which contains no inert particles, and a weight ratio of 25:75. Resin composition 2 has an average particle diameter of 0. Weight ratio of PEN having a weight average molecular weight of 45,000 and PEN having a weight average molecular weight of 30,000, containing 0.15% by weight of spherical silica particles having a size of 3 μm and 0.10% by weight of spherical silica particles having an average particle diameter of 0.1 μm The same operation as in Example 1 was repeated except that the resin composition 4 was changed to 25:75 and the thickness and the draw ratio of the polyester layer forming the surface A and the surface B were changed.
Table 1 shows the properties of the obtained biaxially oriented polyester film and magnetic tape.

[実施例3]
樹脂組成物1を、平均粒径0.1μmの球状シリカ粒子を0.1重量%含有した、重量平均分子量45000のPENの樹脂組成物5に変更し、樹脂組成物2を、平均粒径0.3μmの球状シリカ粒子を0.15重量%、平均粒径0.1μmの球状シリカ粒子を0.1重量%含有した、重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比40:60の樹脂組成物6に変更し、乾燥する際に、調湿された湿り空気を用い、かつ延伸倍率を変更した以外は、実施例1と同様な操作を繰り返した。
得られた二軸配向ポリエステルフィルムおよび磁気テープの特性を表1に示す。
[Example 3]
The resin composition 1 was changed to a resin composition 5 of PEN having a weight average molecular weight of 45000 containing 0.1% by weight of spherical silica particles having an average particle diameter of 0.1 μm, and the resin composition 2 was changed to an average particle diameter of 0 Weight ratio of PEN having a weight average molecular weight of 45,000 and PEN having a weight average molecular weight of 30,000, containing 0.15% by weight of spherical silica particles having a size of 3 μm and 0.1% by weight of spherical silica particles having an average particle diameter of 0.1 μm When changing to 40:60 resin composition 6 and drying, the same operation as in Example 1 was repeated except that the humidity-conditioned humid air was used and the draw ratio was changed.
Table 1 shows the properties of the obtained biaxially oriented polyester film and magnetic tape.

[実施例4]
樹脂組成物1の代わりに、樹脂組成物1の重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比を10:90に変更した樹脂組成物7を用い、樹脂組成物2の代わりに、樹脂組成物2の重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比を10:90に変更した樹脂組成物8を用いた以外は、実施例1と同様な操作を繰り返した。
得られた二軸配向ポリエステルフィルムおよび磁気テープの特性を表1に示す。
[Example 4]
Instead of the resin composition 1, a resin composition 7 in which the weight ratio of the PEN having a weight average molecular weight of 45,000 and the PEN having a weight average molecular weight of 30000 of the resin composition 1 is changed to 10:90 is used. Instead, the same operation as in Example 1 was used except that the resin composition 8 in which the weight ratio of the PEN having a weight average molecular weight of 45,000 and the PEN having a weight average molecular weight of 30000 of the resin composition 2 was changed to 10:90 was used. Was repeated.
Table 1 shows the properties of the obtained biaxially oriented polyester film and magnetic tape.

[比較例1]
樹脂組成物1の重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比を0:10に変更した樹脂組成物9を樹脂組成物1に変わりに用い、樹脂組成物2の重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比を0:10に変更した樹脂組成物10を樹脂組成物2に変わりに用い、延伸倍率を調整した以外は、実施例1と同様な操作を繰り返した。
得られた二軸配向ポリエステルフィルムおよび磁気テープの特性を表1に示す。
[Comparative Example 1]
Resin composition 9 in which the weight ratio of PEN having a weight average molecular weight of 45,000 and PEN having a weight average molecular weight of 30000 of resin composition 1 was changed to 0:10 was used instead of resin composition 1, and the weight of resin composition 2 Example 1 except that the resin composition 10 in which the weight ratio of PEN having an average molecular weight of 45000 and PEN having a weight average molecular weight of 30000 was changed to 0:10 was used instead of the resin composition 2 and the draw ratio was adjusted. Similar operations were repeated.
Table 1 shows the properties of the obtained biaxially oriented polyester film and magnetic tape.

[比較例2]
樹脂組成物1の重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比を10:0に変更した樹脂組成物11を樹脂組成物1に変わりに用い、樹脂組成物2の重量平均分子量45000のPENと重量平均分子量30000のPENとの、重量比を10:0に変更した樹脂組成物12を樹脂組成物2に変わりに用い、延伸倍率を調整した以外は、実施例1と同様な操作を繰り返した。
得られた二軸配向ポリエステルフィルムおよび磁気テープの特性を表1に示す。
[Comparative Example 2]
The resin composition 11 in which the weight ratio of the PEN having a weight average molecular weight of 45000 and the PEN having a weight average molecular weight of 30000 of the resin composition 1 is changed to 10: 0 is used instead of the resin composition 1, and the weight of the resin composition 2 is used. Example 1 except that the resin composition 12 in which the weight ratio of PEN having an average molecular weight of 45000 and PEN having a weight average molecular weight of 30000 was changed to 10: 0 was used instead of the resin composition 2 and the draw ratio was adjusted. Similar operations were repeated.
Table 1 shows the properties of the obtained biaxially oriented polyester film and magnetic tape.

[比較例3]
延伸倍率を変更した以外は、実施例2と同様な操作を繰り返した。
得られた二軸配向ポリエステルフィルムおよび磁気テープの特性を表1に示す。
[Comparative Example 3]
The same operation as in Example 2 was repeated except that the draw ratio was changed.
Table 1 shows the properties of the obtained biaxially oriented polyester film and magnetic tape.

Figure 0004441324
Figure 0004441324

Claims (5)

少なくとも2つのポリエステル層からなる積層フィルムで、各層を構成するポリエステルの重量平均分子量が2000〜36000の範囲にあり、長手方向の弾性率が6.0GPa以上で、幅方向の弾性率が4.0GPa以上、かつ長手方向の弾性率が幅方向の弾性率と同じかそれよりも大きく、かつフィルムの厚みが2〜10μmの範囲にあることを特徴とする二軸配向積層ポリエステルフィルム。 A laminated film consisting of at least two polyester layers, there weight average molecular weight of polyester constituting each layer in the range of 2 9 000-36000, in the longitudinal direction of the elastic modulus is more than 6.0 GPa, the width direction of the elastic modulus 4 A biaxially oriented laminated polyester film characterized by having a thickness of 0.0 GPa or more, an elastic modulus in the longitudinal direction equal to or greater than an elastic modulus in the width direction, and a film thickness in the range of 2 to 10 μm. ポリエステルがポリエチレン−2,6−ナフタレートである請求項1記載の二軸配向積層ポリエステルフィルム。   The biaxially oriented laminated polyester film according to claim 1, wherein the polyester is polyethylene-2,6-naphthalate. 一方のフィルム表面は、中心線表面粗さが10nm以下で、他方のフィルム表面は、中心線表面粗さが一方のフィルム表面のそれよりも大きくかつ5〜30nmである請求項1記載の二軸配向積層ポリエステルフィルム。   The biaxial film according to claim 1, wherein one film surface has a center line surface roughness of 10 nm or less, and the other film surface has a center line surface roughness larger than that of one film surface and 5 to 30 nm. Oriented laminated polyester film. 磁気記録媒体のベースフィルムに用いる請求項1記載の二軸配向積層ポリエステルフィルム。   The biaxially oriented laminated polyester film according to claim 1, which is used for a base film of a magnetic recording medium. 請求項1に記載の二軸配向積層ポリエステルフィルムと、その片面に形成された磁性層とからなることを特徴とする磁気記録媒体。   A magnetic recording medium comprising the biaxially oriented laminated polyester film according to claim 1 and a magnetic layer formed on one side thereof.
JP2004147413A 2004-05-18 2004-05-18 Biaxially oriented polyester film and magnetic recording medium Expired - Lifetime JP4441324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147413A JP4441324B2 (en) 2004-05-18 2004-05-18 Biaxially oriented polyester film and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147413A JP4441324B2 (en) 2004-05-18 2004-05-18 Biaxially oriented polyester film and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2005329548A JP2005329548A (en) 2005-12-02
JP4441324B2 true JP4441324B2 (en) 2010-03-31

Family

ID=35484519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147413A Expired - Lifetime JP4441324B2 (en) 2004-05-18 2004-05-18 Biaxially oriented polyester film and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4441324B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301711B2 (en) * 2014-04-11 2018-03-28 帝人フィルムソリューション株式会社 Oriented laminated polyester film

Also Published As

Publication number Publication date
JP2005329548A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP2989080B2 (en) Laminated polyester film for magnetic recording media
US8404371B2 (en) Biaxially oriented polyester film and magnetic recording tape
US6190753B1 (en) Biaxially oriented polyester film for magnetic recording media
KR20020076279A (en) Biaxially oriented layered polyester film and magnetic recording medium
JP7303999B2 (en) LAMINATED POLYESTER FILM AND MAGNETIC RECORDING TAPE USING THE SAME
JP6072623B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP2004292656A (en) Biaxially orientated thermoplastic resin film and laminated biaxially orientated thermoplastic resin film, and magnetic recording medium
JP4441324B2 (en) Biaxially oriented polyester film and magnetic recording medium
JPH09226063A (en) Laminated film
JP6049337B2 (en) Biaxially oriented polyester film and coated magnetic recording tape using the same
JP6087529B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
EP1367087B1 (en) Polyester film and recording tape
JP2005330311A (en) Biaxially oriented polyester film and magnetic recording medium
JP5749505B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP3933360B2 (en) Laminated thermoplastic resin film
JP4118491B2 (en) Biaxially oriented polyester film
JP4746163B2 (en) Laminated film
JP3856630B2 (en) Laminated thermoplastic resin film
JPH05318577A (en) Biaxially oriented polyester film for magnetic recording medium
JP2002329312A (en) Base for magnetic recording medium and magnetic recording tape
JPH09207290A (en) Laminated film
JP3051263B2 (en) Laminated polyester film for magnetic recording media
JP3856626B2 (en) Laminated thermoplastic resin film
JP2004310899A (en) Support base for magnetic recording medium
JP2022053506A (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4441324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250