JP6049337B2 - Biaxially oriented polyester film and coated magnetic recording tape using the same - Google Patents

Biaxially oriented polyester film and coated magnetic recording tape using the same Download PDF

Info

Publication number
JP6049337B2
JP6049337B2 JP2012162812A JP2012162812A JP6049337B2 JP 6049337 B2 JP6049337 B2 JP 6049337B2 JP 2012162812 A JP2012162812 A JP 2012162812A JP 2012162812 A JP2012162812 A JP 2012162812A JP 6049337 B2 JP6049337 B2 JP 6049337B2
Authority
JP
Japan
Prior art keywords
layer
particles
film
polyester film
biaxially oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012162812A
Other languages
Japanese (ja)
Other versions
JP2014019137A (en
Inventor
良敬 田中
良敬 田中
真哉 渡邊
真哉 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Film Solutions Ltd
Original Assignee
Teijin Film Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Film Solutions Ltd filed Critical Teijin Film Solutions Ltd
Priority to JP2012162812A priority Critical patent/JP6049337B2/en
Publication of JP2014019137A publication Critical patent/JP2014019137A/en
Application granted granted Critical
Publication of JP6049337B2 publication Critical patent/JP6049337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は、データストレージなどの塗布型磁気記録テープのベースフィルムなど、極めて平坦な表面を有しながらも高温での加工性に優れる二軸配向ポリエステルフィルムに関する。   The present invention relates to a biaxially oriented polyester film excellent in processability at high temperatures while having a very flat surface, such as a base film of a coating type magnetic recording tape for data storage.

ポリエステルフィルムは、比較的安価で、優れた機械的特性を有することから磁気記録テープのベースフィルムに用いられてきた。そして、磁気記録テープのベースフィルムに用いる場合、ポリエステルフィルムには粗大な突起や欠点がない平坦な表面を有することが求められる。一方、磁性層をポリエステルフィルムに塗布して形成する塗布型磁気記録テープでは、ベースフィルムの巻取性や塗布工程でのハンドリング性が不安定であると、均一な磁性層を効率的に製造することができず、ポリエステルフィルムに滑剤としての粒子を含有させて、表面に突起などを形成することが求められる。この2つの要求は相反するものであり、これらの要求を満たすために、特許文献1〜5には、表面欠点を低減するために触媒種を特定のものにすること、フィルム中に含有させる粒子として粗大粒子の少ないものを用いること、およびそのような処理を行った表面欠点の少ないフィルムが提案されている。また特許文献6〜7には、空間周波数に着目したベースフィルムのウネリ成分を低減することで原反形状の安定化や磁気記録媒体としての電磁変換特性に優れた二軸配向ポリエステルフィルムの提案がなされている。   Polyester films have been used as base films for magnetic recording tapes because they are relatively inexpensive and have excellent mechanical properties. And when using for the base film of a magnetic-recording tape, it is calculated | required that a polyester film has a flat surface without a rough protrusion and a fault. On the other hand, in a coating type magnetic recording tape formed by coating a magnetic layer on a polyester film, a uniform magnetic layer is efficiently produced if the winding property of the base film and handling properties in the coating process are unstable. In other words, it is required that the polyester film contains particles as a lubricant to form protrusions on the surface. These two requirements are contradictory, and in order to satisfy these requirements, Patent Documents 1 to 5 disclose that the catalyst species should be specific in order to reduce surface defects, and particles to be included in the film. A film having a small number of coarse particles and a film having a small surface defect subjected to such a treatment have been proposed. Patent Documents 6 to 7 propose a biaxially oriented polyester film that is excellent in the stability of the original fabric shape and the electromagnetic conversion characteristics as a magnetic recording medium by reducing the undulation component of the base film focusing on the spatial frequency. Has been made.

しかしながら、近年の高密度記録の要求はすさまじく、特に記録容量が極めて高いデータストレージなどの塗布型磁気記録テープでは、前述の特許文献1〜5で表面欠点がないとされたフィルムや特許文献6〜7でウネリが少ないとされたフィルムでも十分に応えられなくなってきた。   However, in recent years, the demand for high-density recording is tremendous. Particularly in the case of a coating type magnetic recording tape such as a data storage having a very high recording capacity, the film described in Patent Documents 1 to 5 described above that has no surface defects or Patent Documents 6 to 6 are used. Even the film that is said to have less undulation in 7 can no longer respond sufficiently.

特開2004−114492号公報JP 2004-114492 A 特開2003−291288号公報JP 2003-291288 A 特開2002−363311号公報JP 2002-36311 A 特開2002−363310号公報JP 2002-363310 A 特開2002−059520号公報JP 2002-059520 A 特開2001−341265号公報JP 2001-341265 A 特開2004−091753号公報JP 2004091753 A

本発明の目的は、極めて表面の平坦な塗膜層を高速で形成しようとすると、塗膜層をより高温で乾燥させる必要があるが、搬送ロールに貼りついたりフィルムがシワになったり、その高速化にはかなりの制限がある中で、表面粗さ(RaA)が1.5nm以下のような極めて平坦な表面を有しながらも、例えばポリエステルのガラス転移温度を超えるような高温での加工性に優れる二軸配向積層ポリエステルフィルムを用いた塗布型磁気記録テープを提供することにある。 The purpose of the present invention is to form a coating film layer with a very flat surface at a high speed, and it is necessary to dry the coating film layer at a higher temperature. While there is a considerable limitation in speeding up, processing at a high temperature such as exceeding the glass transition temperature of polyester while having a very flat surface with a surface roughness (RaA) of 1.5 nm or less An object of the present invention is to provide a coating type magnetic recording tape using a biaxially oriented laminated polyester film having excellent properties.

本発明者らは上記課題を解決しようと鋭意研究した結果、磁性層を形成する表面を極めて平坦に仕上げたとしても、該フィルムの熱収縮率を低減させておくことで、搬送性などの加工性も具備した二軸配向ポリエステルフィルムを用いた塗布型磁気記録テープを提供できることを発見し、本発明に到達した。 As a result of diligent research to solve the above problems, the present inventors have reduced the heat shrinkage rate of the film even if the surface on which the magnetic layer is to be formed is extremely flat. The present inventors have found that a coating type magnetic recording tape using a biaxially oriented polyester film having the properties can be provided, and have reached the present invention.

かくして本発明によれば、少なくとも一方の表面が、平均粒子径0.05−0.2μmの不活性粒子を50ppm(質量基準)以上含有し、その表面粗さ(RaA)が1.5nm以下で、地肌指数が96〜99.99%の範囲で、ベアリングカーブの落差が10−30nmの範囲である二軸配向ポリエステルフィルムと、その磁性層を形成する側の表面に塗布形成された磁性層とからなる塗布型磁気記録テープであって、
該二軸配向ポリエステルフィルムはその厚みが2.0μm以上4.5μm以下で、そのフィルム幅方向における130℃30分での熱収縮率が3%以下である塗布型磁気記録テープが提供される。
Thus, according to the present invention, at least one surface contains 50 ppm (mass basis) or more of inert particles having an average particle diameter of 0.05 to 0.2 μm, and the surface roughness (RaA) is 1.5 nm or less. A biaxially oriented polyester film having a background index in the range of 96 to 99.99% and a bearing curve drop in the range of 10-30 nm, and a magnetic layer coated on the surface on which the magnetic layer is formed; An application type magnetic recording tape comprising :
The biaxially oriented polyester film in the thickness of 2.0μm or more 4.5μm or less, the heat shrinkage factor at 130 ° C. 30 minutes in the film width direction of that is 3% or less coating type magnetic recording tape is provided .

また、本発明によれば、本発明の好ましい態様として、ポリエステルがエチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とすること、少なくとも2つの層を有した他方の表面の表面粗さ(RaB)が2.0nm以上6.0nm以下であること、少なくとも2つの層を有した際により表面粗さの小さい平坦な面を有する層の厚みtA(μm)と、より表面粗さ大きい粗面を有する層の厚みtB(μm)の比(tA/tB)が、0.5以上9以下であること、より表面粗さの大きい粗面を有する層が、より表面粗さの小さい平坦な面を有する層が含有する不活性粒子の平均粒子径に対して、0.01μm以上平均粒子径の大きな不活性粒子を含有し、より表面粗さの大きい粗面を有する層に添加している不活性粒子の平均粒子径DpB(nm)の比(tA/DpB)が10以上30以下であること、フィルム製膜方向における130℃での熱収縮率が3%以下であること、フィルム製膜方向のヤング率が5GPa以上であること、含有する不活性粒子が球状シリカ粒子、架橋ポリスチレン粒子、シリコーン粒子、シリカーアクリル複合粒子のいずれかであることの少なくとも1つを具備する二軸配向ポリエステルフィルムと、その磁性層を形成する側の表面に塗布形成された磁性層とからなる塗布型磁気記録テープも提供される。 Further, according to the present invention, a preferred embodiment of the present invention, the polyester is ethylene terephthalate or ethylene-2,6-naphthalene dicarboxylate as a main recurring unit, the other surface having two layers even without least Surface roughness (RaB) of 2.0 nm or more and 6.0 nm or less, the thickness tA (μm) of a layer having a flat surface with a smaller surface roughness when having at least two layers, and more surface The ratio (tA / tB) of the thickness tB (μm) of the layer having a rough surface having a large roughness is 0.5 or more and 9 or less, and the layer having a rough surface having a larger surface roughness is more surface roughness. A layer having a rough surface having a larger surface roughness than the average particle diameter of the inert particles contained in the layer having a small flat surface, containing inert particles having a large average particle diameter of 0.01 μm or more. Attendant The ratio of the average particle diameter DpB (nm) of the inert particles (tA / DpB) is 10 or more and 30 or less, and the thermal shrinkage rate at 130 ° C. in the film forming direction is 3% or less, it film formation direction of the Young's modulus is not less than 5 GPa, it comprises inert particles spherical silica particles containing, crosslinked polystyrene particles, silicone particles, at least one of it is either silica-acrylic composite particles a biaxially oriented polyester film, coating type magnetic recording tape comprising a magnetic layer coated on the surface of the side forming the magnetic layer is also provided.

本発明の二軸配向ポリエステルフィルムは、極めて平坦な表面を有するという優れた表面性を有しながらも、塗布の高温環境でも低い熱収縮率であることから工程ロールへの接触時に折れシワなどの問題が起こらず、実用上必要な搬送性などの加工性も具備し、しかも塗布型磁気記録テープ、特にデータストレージのベースフィルムに用いたときに、エラーとなる微小な表面欠点までも低減されていることから、電磁変換特性に優れたデータストレージを提供することができる。   The biaxially oriented polyester film of the present invention has excellent surface properties such as having a very flat surface, but also has a low heat shrinkage rate even in a high temperature environment of coating, so that it can be folded and wrinkled when contacting a process roll. There are no problems, workability such as transportability necessary for practical use is provided, and even minute surface defects that cause errors when applied to coated magnetic recording tapes, especially data storage base films, are reduced. Therefore, it is possible to provide data storage having excellent electromagnetic conversion characteristics.

以下、本発明について、詳述する。なお、説明の便宜上、フィルムの製膜方向を、機械軸方向、縦方向、長手方向、MD方向と称することがあり、製膜方向と厚み方向とに直交する方向を、幅方向、横方向、TD方向と称することがある。   Hereinafter, the present invention will be described in detail. For convenience of explanation, the film forming direction of the film may be referred to as a mechanical axis direction, a vertical direction, a longitudinal direction, and an MD direction, and a direction orthogonal to the film forming direction and the thickness direction is referred to as a width direction, a lateral direction, Sometimes referred to as TD direction.

本発明におけるポリエステルは、フィルムへの製膜が可能なものであれば、それ自体公知のものを採用できる。例えば、ジオール成分と芳香族ジカルボン酸成分との重縮合によって得られる芳香族ポリエステルが好ましい。かかる芳香族ジカルボン酸成分としては、例えばテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸などの6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸が挙げられる。また、かかるジオール成分としては、例えばエチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオールが挙げられる。   As the polyester in the present invention, a known polyester can be adopted as long as it can be formed into a film. For example, an aromatic polyester obtained by polycondensation of a diol component and an aromatic dicarboxylic acid component is preferable. Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid, and the like. 6,6 ′-(alkylenedioxy) di-2-naphthoic acid. Examples of the diol component include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol.

これらの中でも、高温での加工時の寸法安定性の点からは、エチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするものが好ましく、特にエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするものが好ましい。ここでいう主たるとは、好ましくは60モル%以上、70モル%以上、80モル%以上、さらに90モル%以上を意味する。   Among these, ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate is the main repeating unit from the viewpoint of dimensional stability during processing at high temperature, and ethylene-2,6-naphthalene is particularly preferable. Those having carboxylate as the main repeating unit are preferred. The term “main” as used herein means preferably 60 mol% or more, 70 mol% or more, 80 mol% or more, and more preferably 90 mol% or more.

また、より環境変化に対する寸法安定性を向上させる観点から、国際公開2008/096612号パンフレットに記載された6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸成分および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸成分などの6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合したものも挙げられる。好ましい(アルキレンジオキシ)ジ−2−ナフトエ酸成分の共重合量は、全ジカルボン酸成分のモル数を基準として、5〜40モル%の範囲、さらに6〜35モル%の範囲、特に7〜30モル%の範囲である。なお、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合する場合は、エチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレート成分と、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分との合計量が、全酸成分の90モル%以上であることが好ましい。   Further, from the viewpoint of further improving the dimensional stability against environmental changes, the 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component described in International Publication No. 2008/096612 pamphlet, 6,6 ′-( 6,6 ′-(alkylenedioxy) di-2-naphthoic acid components such as trimethylenedioxy) di-2-naphthoic acid component and 6,6 ′-(butylenedioxy) di-2-naphthoic acid component The thing copolymerized is also mentioned. The copolymerization amount of the (alkylenedioxy) di-2-naphthoic acid component is preferably in the range of 5 to 40 mol%, more preferably in the range of 6 to 35 mol%, particularly 7 to 7 mol, based on the number of moles of the total dicarboxylic acid component. It is in the range of 30 mol%. In the case of copolymerizing the 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, an ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate component and 6,6 ′-(alkylenediene) The total amount of the (oxy) di-2-naphthoic acid component is preferably 90 mol% or more of the total acid component.

本発明におけるポリエステルは、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を含有しない場合はο−クロロフェノール中、35℃において、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を含有する場合はP−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒中、35℃において、測定したときの固有粘度が0.40dl/g以上であることが好ましく、0.40〜1.0dl/gであることがさらに好ましい。固有粘度が0.4dl/g未満ではフィルム製膜時に切断が多発したり、成形加工後の製品の強度が不足したりすることがある。一方、固有粘度が1.0dl/gを超える場合は重合時の生産性が低下する。   When the polyester in the present invention does not contain a 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, it is 6,6 ′-(alkylenedioxy) di- in o-chlorophenol at 35 ° C. When the 2-naphthoic acid component is contained, the intrinsic viscosity when measured in a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio) at 35 ° C. is 0. It is preferably 40 dl / g or more, more preferably 0.40 to 1.0 dl / g. If the intrinsic viscosity is less than 0.4 dl / g, cutting may occur frequently during film formation, or the strength of the product after forming may be insufficient. On the other hand, when the intrinsic viscosity exceeds 1.0 dl / g, productivity during polymerization is lowered.

本発明におけるポリエステルの融点は、200〜300℃であることが好ましく、更に好ましくは210〜290℃、特に好ましくは220〜280℃である。融点が下限に満たないと二軸配向フィルムの耐熱性が不十分な場合があり、融点が上限を超える場合は溶融混練する際の温度が非常に高温になり、熱劣化などを引き起こしやすくなる。   The melting point of the polyester in the present invention is preferably 200 to 300 ° C, more preferably 210 to 290 ° C, and particularly preferably 220 to 280 ° C. If the melting point is less than the lower limit, the heat resistance of the biaxially oriented film may be insufficient, and if the melting point exceeds the upper limit, the temperature during melt kneading becomes very high, which tends to cause thermal degradation.

なお、本発明におけるポリエステルは、本発明の効果を損なわない範囲で、それ自体公知の他の共重合成分をさらに共重合、例えば繰り返し単位のモル数に対して10モル%以下、さらに5モル%以下の範囲で共重合していてもよいし、他の熱可塑性樹脂などを、例えば20重量%以下、さらに10重量%以下の範囲でブレンドしても良い。   The polyester in the present invention is further copolymerized with other copolymer components known per se within a range not impairing the effects of the present invention, for example, 10 mol% or less, further 5 mol% with respect to the number of moles of repeating units. Copolymerization may be carried out in the following range, and other thermoplastic resins and the like may be blended in a range of, for example, 20% by weight or less, and further 10% by weight or less.

ところで、本発明の二軸配向ポリエステルフィルムは、上述のポリエステルから製造できるが、巻取りや搬送などの加工特性を実用上問題ない範囲で維持しつつ、データストレージにしたときの電磁変換特性を高度に維持させる観点から、磁性層を形成する側の表面は、平均粒子径0.05−0.2μmの粒子を、表面を形成するフィルム層の質量を基準として、50ppm以上含有しつつ、その表面粗さ(RaA)が1.5nm以下である必要がある。含有する不活性粒子の平均粒子径がこの範囲より小さい場合や、含有量が少ない場合は、搬送性が悪化してフィルムにスクラッチと称されるキズが入りやすくなり、エラーレートやドロップアウトの悪化を招く。また、平均粒子径や表面粗さ(RaA)がこれらの範囲を超える場合、例えば記憶容量が3TB以上などの高記録密度のデータストレージのベースフィルムに用いると、表面が粗くなりすぎてしまい、電磁変換特性が悪化してしまう。好ましい平均粒子径の範囲は、0.06−0.2μm、更に好ましくは0.08−0.18μmである。また、好ましい含有量の範囲は、55ppm以上、より好ましくは60ppm以上、更に好ましくは65ppm以上、特に好ましくは70ppm以上である。表面粗さ(RaA)の好ましい範囲は、1.4nm以下、更に好ましくは1.3nm以下である。   By the way, the biaxially oriented polyester film of the present invention can be produced from the above-mentioned polyester. However, while maintaining the processing characteristics such as winding and transporting within a practically practical range, the electromagnetic conversion characteristics when data storage is used are advanced. From the viewpoint of maintaining the magnetic layer, the surface on the side on which the magnetic layer is formed contains particles having an average particle diameter of 0.05 to 0.2 μm, based on the mass of the film layer forming the surface, at 50 ppm or more. The roughness (RaA) needs to be 1.5 nm or less. When the average particle size of the inert particles contained is smaller than this range, or when the content is small, the transportability is deteriorated, and scratches called scratches are likely to enter the film, and the error rate and dropout are deteriorated. Invite. In addition, when the average particle diameter and the surface roughness (RaA) exceed these ranges, the surface becomes too rough when used for a data storage base film having a high recording density such as a storage capacity of 3 TB or more. Conversion characteristics will deteriorate. A preferred average particle size range is 0.06-0.2 μm, more preferably 0.08-0.18 μm. Moreover, the range of preferable content is 55 ppm or more, More preferably, it is 60 ppm or more, More preferably, it is 65 ppm or more, Most preferably, it is 70 ppm or more. The preferable range of the surface roughness (RaA) is 1.4 nm or less, more preferably 1.3 nm or less.

含有させる不活性粒子としては、もともと粗大粒子を含まないか含有するとしても極めて少ない粒子が好ましい。そのため、粒径分布曲線がシャープなものにしやすく、一次粒子の状態で存在しやすい粒子が好ましく、シリコーン粒子、架橋アクリル樹脂粒子、架橋ポリエステル粒子、架橋ポリスチレン粒子などの有機高分子粒子および球状シリカ粒子、シリカと有機高分子の複合体粒子、からなる群から選ばれる少なくとも1種の粒子であることが好ましく、特にシリコーン粒子、架橋ポリスチレン粒子および球状シリカ粒子、シリカーアクリルの複合体粒子からなる群から選ばれる少なくとも1種の粒子であることが好ましい。もちろん、これらの粒子を含有させる場合は、さらに粗大粒子をなくすため、フィルターでのろ過を行ったり、分散剤で粒子の表面を処理したり、押出機での混練を強化することが好ましい。   As the inert particles to be contained, particles that do not contain coarse particles or contain very few particles are preferable. Therefore, particles that are easy to have a sharp particle size distribution curve and are likely to exist in the form of primary particles are preferable. Organic polymer particles such as silicone particles, crosslinked acrylic resin particles, crosslinked polyester particles, and crosslinked polystyrene particles, and spherical silica particles It is preferably at least one particle selected from the group consisting of composite particles of silica and organic polymer, and in particular, a group consisting of silicone particles, crosslinked polystyrene particles and spherical silica particles, and silica-acrylic composite particles It is preferably at least one kind of particle selected from Of course, when these particles are contained, it is preferable to filter with a filter, to treat the surface of the particles with a dispersant, or to enhance kneading with an extruder in order to eliminate coarse particles.

ところで、上記粒子は、粒子の粒径分布曲線を見たときの全粒子の粒子径の相対標準偏差が20%以下、さらに15%以下であることが好ましい。そういった観点から、粒径分布曲線を見たときに、単一のピークを有することが好ましい。ピークが単一かどうかは、横軸に粒子径、縦軸に粒子頻度の粒径分布曲線を作成し、横軸の粒子径の測定ピッチを0.01μmとしたとき、ピークが1つしかないか、ピークが複数あったとしても、ピークとピークとの間に低いピークの方の高さに対して50%以下となる凹みが存在しないことを意味する。   By the way, it is preferable that the relative standard deviation of the particle size of all the particles when the particle size distribution curve of the particles is viewed is 20% or less, more preferably 15% or less. From such a viewpoint, it is preferable to have a single peak when viewing the particle size distribution curve. Whether or not there is a single peak is determined by creating a particle size distribution curve with the particle diameter on the horizontal axis and the particle frequency on the vertical axis, and when the measurement pitch of the particle diameter on the horizontal axis is 0.01 μm, there is only one peak. Even if there are a plurality of peaks, it means that there is no dent that is 50% or less with respect to the height of the lower peak between the peaks.

つぎに、ポリエステルフィルムの製造方法について説明する。まず、本発明におけるポリエステルの製造方法は、例えば芳香族ジカルボン酸もしくはそのエステル形成性誘導体とアルキレングリコールとをエステル化反応もしくはエステル交換反応させてポリエステルの前駆体を合成する第一反応と、該前駆体を重縮合反応させる第二反応とからなり、それ自体公知の方法を採用できる。   Below, the manufacturing method of a polyester film is demonstrated. First, the polyester production method of the present invention includes, for example, a first reaction in which an aromatic dicarboxylic acid or an ester-forming derivative thereof and an alkylene glycol are esterified or transesterified to synthesize a polyester precursor, and the precursor It consists of a second reaction in which the product is polycondensed, and a method known per se can be adopted.

好ましい第一反応の条件については、常圧下で行ってもよいが、0.05MPa〜0.5MPaの加圧下で行うことが反応速度をより速めやすいことから好ましい。また、第一反応の温度は、210℃〜270℃の範囲で行うことが好ましい。反応圧力を上記範囲内とすることで反応の進行を進みやすくしつつ、ジアルキレングリコールに代表される副生物の発生を抑制できる。このとき、アルキレングリコール成分は、第一反応を行う反応系に存在する酸成分に対し1.1〜6モル倍用いることが、反応速度及び樹脂の物性維持の点から好ましい。より好ましくは2〜5モル倍、さらに好ましくは3〜5モル倍である。   The preferable first reaction condition may be performed under normal pressure, but it is preferable to perform the reaction under a pressure of 0.05 MPa to 0.5 MPa because the reaction rate can be easily increased. Moreover, it is preferable to perform the temperature of 1st reaction in the range of 210 to 270 degreeC. By making the reaction pressure within the above range, it is possible to suppress the generation of by-products typified by dialkylene glycol while facilitating the progress of the reaction. At this time, the alkylene glycol component is preferably used in an amount of 1.1 to 6 moles relative to the acid component present in the reaction system in which the first reaction is carried out from the viewpoint of maintaining the reaction rate and the physical properties of the resin. More preferably, it is 2-5 mol times, More preferably, it is 3-5 mol times.

また、第一反応の反応速度をより早くするには、それ自体公知の触媒を用いることが好ましく、たとえばLi,Na,K,Mg,Ca,Mn、Co、Tiなどの金属成分を有する金属化合物が好ましく挙げられ、これらの中でも加圧下で行う場合は、反応の進みやすさの点からMnやTi化合物が好ましい。特にMn化合物は、含有させる不活性粒子の分散性をより向上させやすいことから好ましい。   Further, in order to increase the reaction rate of the first reaction, it is preferable to use a catalyst known per se, for example, a metal compound having a metal component such as Li, Na, K, Mg, Ca, Mn, Co, and Ti. Among these, when performing under pressure, Mn and Ti compounds are preferable from the viewpoint of easy progress of the reaction. In particular, a Mn compound is preferable because the dispersibility of the inert particles to be contained is easily improved.

添加する触媒量は、第一反応中に存在する全酸成分のモル数を基準として、金属元素換算で、10〜150ミリモル%の範囲にあることが好ましく、さらに20〜100ミリモル%、特に30〜70ミリモル%の範囲にあることが反応速度を促進しつつ、触媒起因の粗大不溶性異物の生成を抑制でき、さらに得られる共重合芳香族ポリエステルの耐熱性を高度に維持できることから好ましい。なお、チタン化合物を添加する場合の添加時期は、第一反応のエステル化反応開始時から存在するように添加し、前述のとおり、引き続き重縮合反応触媒として使用することが好ましい。もちろん、重縮合反応速度をコントロールする目的で2回以上に分けて添加してもよい。   The amount of catalyst to be added is preferably in the range of 10 to 150 mmol%, more preferably 20 to 100 mmol%, especially 30, in terms of metal elements, based on the number of moles of all acid components present in the first reaction. It is preferable to be in the range of ˜70 mmol% because the reaction rate can be promoted, the formation of coarse insoluble foreign matters due to the catalyst can be suppressed, and the heat resistance of the resulting copolymerized aromatic polyester can be maintained at a high level. In addition, when adding a titanium compound, it is preferable to add so that it may exist from the time of the esterification reaction start of a 1st reaction, and as above-mentioned, it uses continuously as a polycondensation reaction catalyst. Of course, it may be added in two or more times for the purpose of controlling the polycondensation reaction rate.

つぎに、第一反応で得られた前駆体を重縮合反応させる第二反応について説明する。
本発明では、得られるポリエステルに、高度の熱安定性を付与させる目的で、第二反応における重縮合反応の開始以前に、反応系にリン化合物からなる熱安定剤を添加することが好ましい。具体的なリン化合物としては、化合物中にリン元素を有するものであれば特に限定されず、例えば、リン酸、亜リン酸、リン酸トリメチルエステル、リン酸トリブチルエステル、リン酸トリフェニルエステル、リン酸モノメチルエステル、リン酸ジメチルエステル、フェニルホスホン酸、フェニルホスホン酸ジメチルエステル、フェニルホスホン酸ジエチルエステル、リン酸アンモニウム、トリエチルホスホノアセテート、メチルジエチルホスホノアセテートなどを挙げることができ、これらのリン化合物は二種以上を併用してもよい。なお、リン化合物の添加時期は、第一反応が実質的に終了してから第二反応である重縮合反応初期の間に行うことが好ましく、添加は一度に行ってもよいし、2回以上に分割して行ってもよい。
Next, the second reaction in which the precursor obtained in the first reaction is polycondensed will be described.
In the present invention, for the purpose of imparting a high degree of thermal stability to the obtained polyester, it is preferable to add a thermal stabilizer composed of a phosphorus compound to the reaction system before the start of the polycondensation reaction in the second reaction. The specific phosphorus compound is not particularly limited as long as it has a phosphorus element in the compound. For example, phosphoric acid, phosphorous acid, phosphoric acid trimethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, phosphorus Acid monomethyl ester, phosphoric acid dimethyl ester, phenylphosphonic acid, phenylphosphonic acid dimethyl ester, phenylphosphonic acid diethyl ester, ammonium phosphate, triethylphosphonoacetate, methyldiethylphosphonoacetate, etc., and these phosphorus compounds May use 2 or more types together. The addition timing of the phosphorus compound is preferably performed during the initial stage of the polycondensation reaction, which is the second reaction after the first reaction is substantially completed, and the addition may be performed at one time or two or more times. You may divide into.

ところで、重縮合反応の温度は270℃〜300℃の範囲で行い、重縮合反応中の圧力は50Pa以下の減圧下で行うのが好ましい。重縮合反応中の圧力が上限より高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合芳香族ポリエステルを得ることが困難になる。重縮合触媒としては、それ自体公知のTi,Al,Sb,Geなどの金属化合物を好適に使用でき、これらの中でもMn−Sbを使用した場合、後述するマスターポリエステル中の粒子の分散性を向上できることから好ましい。   By the way, the polycondensation reaction is preferably performed at a temperature in the range of 270 ° C. to 300 ° C., and the pressure during the polycondensation reaction is preferably performed under a reduced pressure of 50 Pa or less. If the pressure during the polycondensation reaction is higher than the upper limit, the time required for the polycondensation reaction becomes long and it becomes difficult to obtain a copolymerized aromatic polyester having a high degree of polymerization. As the polycondensation catalyst, known metal compounds such as Ti, Al, Sb, and Ge can be suitably used. Among these, when Mn-Sb is used, the dispersibility of particles in the master polyester described later is improved. It is preferable because it is possible.

また、粒子を含有させる方法については、アルキレングリコールのスラリー状態として、さらにフィルターなどによって粗大粒子を低減し、それを重合工程で添加して粒子含有量が0.02〜1.0重量%の粒子含有マスターポリエステルを作成し、該マスターポリエステルを、粒子を含有しないポリエステルで希釈するのが、粒子の凝集による粗大突起を低減する上で好ましい。   In addition, as for the method of incorporating particles, as a slurry state of alkylene glycol, coarse particles are further reduced by a filter or the like, and added in the polymerization step, whereby particles having a particle content of 0.02 to 1.0% by weight. It is preferable to prepare a containing master polyester and dilute the master polyester with a polyester containing no particles in order to reduce coarse protrusions due to aggregation of particles.

このようにして得られるポリエステルは、本発明の効果を阻害しない範囲で、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、ワックスなどの滑剤、難燃剤、離型剤、核剤、を必要に応じて配合しても良い。なお、磁性層を形成する側の表面における地肌指数を所望の範囲とする観点から、ポリエステルと非相溶な他の熱可塑性ポリマー、顔料、充填剤、ガラス繊維、炭素繊維、層状ケイ酸塩などは含有させないことが好ましい。   The polyester thus obtained contains a stabilizer such as an ultraviolet absorber, a lubricant such as an antioxidant, a plasticizer, and a wax, a flame retardant, a release agent, and a nucleating agent as long as the effects of the present invention are not impaired. You may mix | blend as needed. In addition, from the viewpoint of making the background index on the surface on the side where the magnetic layer is formed into a desired range, other thermoplastic polymers that are incompatible with polyester, pigments, fillers, glass fibers, carbon fibers, layered silicates, etc. Is preferably not contained.

ところで、本発明の二軸配向ポリエステルフィルムは、少なくとも一方の表面が、好ましくは磁性層を形成する表面など、より表面粗さが平坦な側の表面が、地肌指数は80〜99.99%の範囲である。更に好ましくは85〜99.5%の範囲、特に好ましくは90〜99.5%の範囲、もっとも好ましくは96〜99.5%の範囲であることが好ましい。この地肌指数は、非接触式三次元表面粗さ計によって測定された値であり、フィルム表面における突起や凹み部分を除外した面の面積比率を示す数値である。この地肌指数が電磁変換特性やテープカートリッジ保存後のエラーレートと密接な関係にあることを見出したのが本発明の特徴の一つである。地肌指数が、上記範囲にあることで、高度の電磁変換特性やテープカートリッジ保存後のエラーレートの低減を高度に図ることできる。また高温での加工をフィルムに施すような場合、例えば磁性層を塗布して乾燥させるような工程においては、地肌指数が上記範囲にあることで、塗布層の均一な乾燥を可能にしたり、仮にフィルムの粘弾性が低下してしまうような高温での加工となったとしても、高温時に変化する突起自体が少ないことから処理前後の表面性変化を抑制したりできる。このような地肌指数を所望の範囲にするには、後述の反対側、好ましくは表面粗さの粗い粗面層側の粒子を後述のように制御することが効果的であるが、それだけでなく該二軸配向ポリエステルフィルムの製造工程において延伸温度を後述するような条件にて延伸させることも極めて効果的である。なお、地肌指数を大きくしたい場合は、フィルムの横延伸時に粘弾性ができるだけ低くなる温度で、なおかつ、その温度自体で結晶が瞬時に進まない比較的高い温度での延伸といった条件を選択すればよく、他方小さくしたい場合は、フィルムの横延伸時に粘弾性の低下が起き始める温度での延伸といった、延伸温度を低くする条件を選択すればよい。   By the way, the biaxially oriented polyester film of the present invention has a surface index of 80 to 99.99% on at least one surface, preferably a surface with a flatr surface roughness, such as a surface forming a magnetic layer. It is a range. More preferably, it is in the range of 85 to 99.5%, particularly preferably in the range of 90 to 99.5%, and most preferably in the range of 96 to 99.5%. The background index is a value measured by a non-contact type three-dimensional surface roughness meter, and is a numerical value indicating the area ratio of the surface excluding protrusions and dents on the film surface. It is one of the features of the present invention that the background index is closely related to the electromagnetic conversion characteristics and the error rate after storage of the tape cartridge. When the background index is within the above range, it is possible to highly reduce the electromagnetic conversion characteristics and the error rate after storing the tape cartridge. In addition, when the film is processed at a high temperature, for example, in the step of applying and drying the magnetic layer, the background index is in the above range, so that the coating layer can be uniformly dried, Even if the film is processed at a high temperature at which the viscoelasticity of the film is lowered, the surface property change before and after the treatment can be suppressed because there are few protrusions that change at a high temperature. In order to make such a surface index within a desired range, it is effective to control the particles on the opposite side, which will be described later, preferably on the rough surface layer side having a rough surface roughness, as described later. In the production process of the biaxially oriented polyester film, it is very effective to stretch the film under the conditions described below. In order to increase the background index, it is sufficient to select conditions such as stretching at a temperature at which the viscoelasticity is as low as possible during transverse stretching of the film and at a relatively high temperature at which the crystal does not progress instantaneously at that temperature itself. On the other hand, if it is desired to reduce the stretching temperature, a condition for lowering the stretching temperature may be selected, such as stretching at a temperature at which a decrease in viscoelasticity starts during transverse stretching of the film.

また本発明の二軸配向ポリエステルフィルムは、フィルムの幅方向における130℃における熱収縮率が3%以下であることを必要とする。好ましくは、2.9%以下、更に好ましくは、2.8%以下、特に2.3%以下である。上述のような地肌指数を具備しつつ、このように低い熱収縮率とすることで、高温環境での塗布工程でのシワが低減でき搬送ロール接触時の折れシワを低減し搬送性したり、乾燥時の加工性を確保したりでき、表面性と高度に両立することが可能になる。一方、縦方向の130℃における熱収縮率も3%以下であることが好ましい。より好ましくは、2.9%以下、更に好ましくは2.8%以下、特に好ましくは2.3%以下である。塗布工程など高温環境で張力がかかるフィルムのシワを低減することが可能になる。   Further, the biaxially oriented polyester film of the present invention requires that the heat shrinkage rate at 130 ° C. in the width direction of the film is 3% or less. Preferably, it is 2.9% or less, more preferably 2.8% or less, particularly 2.3% or less. By having such a low thermal shrinkage rate while having a background index as described above, wrinkles in the coating process in a high-temperature environment can be reduced, and folding wrinkles at the time of conveyance roll contact can be reduced and conveyance performance can be achieved. Processability at the time of drying can be ensured, and it is possible to achieve a high balance between surface properties. On the other hand, the heat shrinkage rate at 130 ° C. in the longitudinal direction is also preferably 3% or less. More preferably, it is 2.9% or less, further preferably 2.8% or less, and particularly preferably 2.3% or less. It becomes possible to reduce wrinkles of a film that is tensioned in a high temperature environment such as a coating process.

また、本発明の二軸配向ポリエステルフィルムは、少なくとも一方の表面が、好ましくは磁性層を形成する表面など、より表面粗さが平坦な側の表面が、ベアリング落差10〜30nmの範囲である。さらに好ましくは、10〜28nm、特に好ましくは、10〜25nmの範囲である。このベアリング落差は、非接触式三次元表面粗さ計によって測定された表面データから作成されたベアリングカーブにおいて、ベアリング面積が0.4%の領域に見られる、急峻なカーブの落ち込みを示している。この値が大きいと、高い突起と低い突起との高さの差が大きいことを示し、この値が低いと、概して同じ高さ突起が均一して存在していることを示す。特に、磁気テープに用いられるフィルムにおいては、磁性層側に急峻な突起が存在すると、すなわちベアリング落差が大きすぎると、該当箇所でヘッドとフィルムのスペーシングが大きくなり、電磁変換特性やドロップアウトを引き起こす。一方で、この値が小さすぎると、フィルム上に小さい突起しかないことから、搬送性が悪化する。搬送性と磁気テープとしての特性を具備するために、上記の範囲が好ましい。このようなベアリング落差の範囲にするには、フィルムに添加する粒子の粒径や濃度を前述した範囲内で配合することが好ましい。   In the biaxially oriented polyester film of the present invention, at least one surface preferably has a surface with a flatr surface roughness, such as a surface on which a magnetic layer is formed, within a bearing drop of 10 to 30 nm. More preferably, it is 10-28 nm, Most preferably, it is the range of 10-25 nm. This bearing drop shows a steep curve drop seen in a region where the bearing area is 0.4% in a bearing curve created from surface data measured by a non-contact type three-dimensional surface roughness meter. . A large value indicates a large difference in height between the high and low protrusions, and a low value indicates that the same height protrusions are generally present uniformly. In particular, in a film used for magnetic tape, if there is a steep protrusion on the magnetic layer side, that is, if the bearing head is too large, the head and film spacing at the corresponding location will increase, resulting in electromagnetic conversion characteristics and dropout. cause. On the other hand, if this value is too small, there is only a small protrusion on the film, so that the transportability deteriorates. The above-mentioned range is preferable in order to have transportability and characteristics as a magnetic tape. In order to make such a bearing drop range, it is preferable to blend the particle size and concentration of the particles added to the film within the aforementioned range.

本発明の二軸配向ポリエステルフィルムは、例えば積層フィルムの場合、磁性層用のポリエステルポリマーと、反対面を形成する用のポリエステルポリマーとを用意し、これらを溶融状態で積層してダイからシート状に共押出する工程、得られたシート状物を冷却固化することで、積層未延伸ポリエステルフィルムとする工程、そして得られた積層未延伸ポリエステルフィルムを製膜方向と幅方向に延伸することで製造できる。溶融状態で押し出す工程での温度は、未溶融物がなく、過度にポリエステルの熱劣化が進まない温度であれば特に制限されず、例えば、ポリエステルの融点(Tm:℃)ないし(Tm+70)℃の温度で行うことが好ましい。つぎに、冷却については、得られる積層未延伸ポリエステルフィルムの平坦性を維持しつつ、厚み斑も少なくするために、フィルム製膜方向に沿ってダイの下方に設置された回転する冷却ドラムを用い、それにシート状物を密着させて冷却するのが好ましい。つづいて、延伸については、積層未延伸ポリエステルフィルムを、一軸方向(縦方向または横方向)に(ポリエステルのガラス転移温度(Tg)−10)℃〜(Tg+60)℃の温度で2.5倍以上、好ましくは3倍以上の倍率で延伸し、次いで上記延伸方向と直交する方向にTg〜(Tg+60)℃の温度で2.5倍以上、好ましくは3倍以上の倍率で延伸するのが好ましい。この際、前述した地肌指数を所望の範囲内に収めるため、横延伸温度は、(Tg+25)〜(Tg+60℃)の範囲で延伸させることが望ましい。更に好ましくは(Tg+30)〜(Tg+60℃)、特に好ましくは(Tg+30)〜(Tg+55℃)が望ましく、最も望ましくは (Tg+35)〜(Tg+55℃)の範囲が望ましい。この際、横延伸温度は、段階的に引き上げることが好ましく、いずれの温度も上記範囲内にあることが好ましい。横延伸温度がTgに対して低すぎたりすると過度な延伸時応力が粒子に集中し、その結果、粒子周辺のボイドが大きくなることで突起が高く且つ、大きなものとなる。一方、上述した温度領域でマイルドに横延伸させた場合、同時に横延伸倍率を通常よりも高くすることで粗面層側を平坦化させることができ、その結果、所望の高さと大きさを有する突起を形成することが可能になる。   For example, in the case of a laminated film, the biaxially oriented polyester film of the present invention is prepared by preparing a polyester polymer for a magnetic layer and a polyester polymer for forming an opposite surface, and laminating these in a molten state to form a sheet from a die. Manufactured by coextruding to the film, cooling and solidifying the obtained sheet-like material to form a laminated unstretched polyester film, and stretching the obtained laminated unstretched polyester film in the film forming direction and the width direction it can. The temperature in the process of extruding in a molten state is not particularly limited as long as there is no unmelted material and the temperature of the polyester does not excessively deteriorate. For example, the melting point of the polyester (Tm: ° C.) to (Tm + 70) ° C. It is preferable to carry out at temperature. Next, for cooling, in order to reduce the thickness unevenness while maintaining the flatness of the obtained laminated unstretched polyester film, a rotating cooling drum installed below the die along the film forming direction is used. It is preferable to cool the sheet-like material in close contact with it. Subsequently, for stretching, the laminated unstretched polyester film is uniaxially (longitudinal or transverse) (polyester glass transition temperature (Tg) −10) ° C. to (Tg + 60) ° C. to 2.5 times or more. Preferably, the film is stretched at a magnification of 3 times or more, and then stretched at a temperature of Tg to (Tg + 60) ° C. at a temperature of 2.5 times or more, preferably at a magnification of 3 times or more in the direction orthogonal to the stretching direction. At this time, in order to keep the above-mentioned background index within a desired range, it is desirable that the transverse stretching temperature is stretched in the range of (Tg + 25) to (Tg + 60 ° C.). More preferred is (Tg + 30) to (Tg + 60 ° C.), particularly preferred is (Tg + 30) to (Tg + 55 ° C.), and most preferred is a range of (Tg + 35) to (Tg + 55 ° C.). At this time, the transverse stretching temperature is preferably increased stepwise, and any temperature is preferably within the above range. If the transverse stretching temperature is too low with respect to Tg, excessive stretching stress concentrates on the particles, and as a result, the voids around the particles become larger and the protrusions are higher and larger. On the other hand, when mildly stretched in the temperature range described above, the rough surface layer side can be flattened by simultaneously increasing the transverse stretch ratio higher than usual, and as a result, it has a desired height and size. Protrusions can be formed.

さらに必要に応じて縦方向および/または横方向に再度延伸してもよい。このように延伸したときの全延伸倍率は、面積延伸倍率(縦方向の延伸倍率×横方向の延伸倍率)として9倍以上が好ましく、12〜35倍がさらに好ましく、15〜30倍が特に好ましい。さらにまた、二軸配向フィルムは、(Tm−70)〜(Tm−10)℃の温度で熱固定することができ、例えば180〜250℃で熱固定するのが好ましい。熱固定時間は0.1〜60秒が好ましい。また、前述の延伸は逐次二軸延伸で説明したが、縦方向と横方向に同時に延伸する同時二軸延伸を用いても良い。   Further, if necessary, the film may be stretched again in the machine direction and / or the transverse direction. The total draw ratio when stretched in this way is preferably 9 times or more, more preferably 12 to 35 times, and particularly preferably 15 to 30 times as an area draw ratio (longitudinal draw ratio x transverse draw ratio). . Furthermore, the biaxially oriented film can be heat-set at a temperature of (Tm-70) to (Tm-10) ° C., and is preferably heat-set at, for example, 180 to 250 ° C. The heat setting time is preferably 0.1 to 60 seconds. Moreover, although the above-mentioned extending | stretching was demonstrated by sequential biaxial stretching, you may use simultaneous biaxial stretching which extends | stretches simultaneously in the vertical direction and a horizontal direction.

また本発明の二軸配向ポリエステルフィルムは熱固定しながら、もしくは熱固定後に幅方向に弛緩しても良い。このように幅方向に弛緩することで、フィルムの幅方向の熱収縮率を適切な範囲に保つことができる。この弛緩自体は縦方向に行うこともできる。一方で、弛緩を実施するとフィルムのヤング率が低下し、所望のヤング率を確保できず、加工時に張力をかけられないこと等から、不具合を生じることもある。そのため、適切な弛緩率はフィルムのポリマー種類や製膜条件に強く依存するが、例えば、ポリエチレン−2,6−ナフタレートフィルムの製膜では、弛緩時の温度を190℃にして、弛緩率0.3%で製膜することが好ましい。   Further, the biaxially oriented polyester film of the present invention may be relaxed in the width direction while being heat-set or after heat-set. By relaxing in the width direction in this way, the heat shrinkage rate in the width direction of the film can be maintained in an appropriate range. This relaxation itself can also take place in the longitudinal direction. On the other hand, if relaxation is performed, the Young's modulus of the film is lowered, and a desired Young's modulus cannot be ensured, and tension may not be applied during processing. Therefore, the appropriate relaxation rate strongly depends on the polymer type of the film and the film forming conditions. For example, in the case of forming a polyethylene-2,6-naphthalate film, the relaxation temperature is set to 190 ° C., and the relaxation rate is 0. It is preferable to form a film at 3%.

本発明の二軸配向ポリエステルフィルムは、高密度磁気記録媒体のベースフィルムとして用いた際に優れた寸法安定性を発現するために、長手方向のヤング率が5GPa以上であることが好ましい。長手方向のヤング率が上述より低いと、フィルムのハンドリングで長手方向に張力がかかった際に伸びやすくなり不具合が起こる。一方上限については、制限はないが、上記ハンドリングの観点から高い方が好ましい。幅方向のヤング率は、ベースフィルムでの温度膨張係数を後述の範囲とさせやすい観点から、4〜15GPa、さらに5〜14GPa、特に6〜13GPa、もっとも好ましくは7〜11GPaの範囲であることが好ましい。幅方向のヤング率が下限未満では、磁気記録テープとしたときの温度膨張係数を小さくすることが困難となったり塗布工程での搬送張力に対してフィルムにシワが入りやすくなったりしてしまう、他方上限を超えると、磁気記録テープとしたときの温度膨張係数が過度に小さくなってしまう。   The biaxially oriented polyester film of the present invention preferably has a Young's modulus in the longitudinal direction of 5 GPa or more in order to exhibit excellent dimensional stability when used as a base film of a high-density magnetic recording medium. If the Young's modulus in the longitudinal direction is lower than that described above, the film tends to be stretched when tension is applied in the longitudinal direction during film handling, resulting in a problem. On the other hand, although there is no restriction | limiting about an upper limit, the higher one is preferable from a viewpoint of the said handling. The Young's modulus in the width direction is 4 to 15 GPa, more preferably 5 to 14 GPa, particularly 6 to 13 GPa, and most preferably 7 to 11 GPa from the viewpoint of easily setting the temperature expansion coefficient of the base film to the range described later. preferable. If the Young's modulus in the width direction is less than the lower limit, it becomes difficult to reduce the temperature expansion coefficient when it is used as a magnetic recording tape, or wrinkles are likely to enter the film with respect to the conveyance tension in the coating process. On the other hand, when the upper limit is exceeded, the temperature expansion coefficient when the magnetic recording tape is formed becomes excessively small.

本発明の二軸配向ポリエステルフィルムの全厚みは、2.0μm以上8.0μm以下が好ましい。好ましい全厚みの下限は2.5μm、さらに3μmである。好ましい全厚みの上限は7μm、さらに6μm、特に4.5μmである。厚みが下限より小さい場合は、テープに腰がなくなるため、電磁変換特性が低下したり、塗布工程におけるシワが入りやすくなったりする。厚みが上限を超える場合は、テープ1巻あたりのテープ長さが短くなるため、磁気テープの小型化、高容量化が困難になりやすい。   The total thickness of the biaxially oriented polyester film of the present invention is preferably 2.0 μm or more and 8.0 μm or less. The lower limit of the preferable total thickness is 2.5 μm, and further 3 μm. The upper limit of the preferable total thickness is 7 μm, further 6 μm, particularly 4.5 μm. When the thickness is smaller than the lower limit, the tape loses its elasticity, so that the electromagnetic conversion characteristics are deteriorated and wrinkles are easily formed in the coating process. When the thickness exceeds the upper limit, the tape length per one tape is shortened, so that it is difficult to reduce the size and increase the capacity of the magnetic tape.

ところで、本発明の二軸配向ポリエステルフィルムは、より走行性や巻き取り性などを向上させる観点から、積層フィルムであることが好ましい。より表面粗さの小さい平坦な表面を有する層をA層とし、より表面粗さの大きい粗面を有する層をB層として、以下説明する。   By the way, it is preferable that the biaxially oriented polyester film of the present invention is a laminated film from the viewpoint of further improving running properties and winding properties. A layer having a flat surface with a smaller surface roughness is referred to as A layer, and a layer having a rough surface with a larger surface roughness is referred to as B layer.

本発明の二軸配向ポリエステルフィルムが積層フィルムである場合、前述のA層が、上記表面粗さ(RaA)、地肌指数、ベアリングカーブを満たし、他方B層はその表面粗さ(RaB)が2.0〜6.0nmの範囲にあることが好ましい。好ましいB層の表面粗さ(RaB)の下限は、2.2nm、さらに2.5nm、特に4.0nmであり、上限は5.8nmである。B層の表面粗さ(RaB)がこの範囲の下限より低いと、B層が平坦過ぎるためにフィルムのハンドリングに不具合が起きる。一方、上記範囲より粗いとB層の表面粗さを形成するB層表面の突起が突き上げることでA層に影響を及ぼす。こうした観点から、磁気テープのベースフィルムに用いる場合、A層の表面に磁性層を形成するのが好ましい。   When the biaxially oriented polyester film of the present invention is a laminated film, the aforementioned A layer satisfies the surface roughness (RaA), background index, and bearing curve, while the B layer has a surface roughness (RaB) of 2. It is preferable to be in the range of 0.0 to 6.0 nm. The lower limit of the surface roughness (RaB) of the preferred B layer is 2.2 nm, further 2.5 nm, particularly 4.0 nm, and the upper limit is 5.8 nm. If the surface roughness (RaB) of the B layer is lower than the lower limit of this range, the B layer is too flat, causing problems in handling the film. On the other hand, if it is rougher than the above range, the protrusion on the surface of the B layer forming the surface roughness of the B layer is pushed up, which affects the A layer. From such a viewpoint, when used for a base film of a magnetic tape, it is preferable to form a magnetic layer on the surface of the A layer.

ところで、より走行性や巻き取り性を向上させる観点から、B層はA層が含有する不活性粒子よりも、平均粒子径が0.05μm以上大きい不活性粒子を含有することが好ましい。特に好ましいのは、A層に含有させる不活性粒子と同じものと、上記A層が含有する不活性粒子よりも、平均粒子径が0.05μm以上大きい不活性粒子とを含有させたものが好ましい。B層に含有させる、A層が含有する不活性粒子よりも平均粒子径が大きい不活性粒子の好ましい平均粒子径は0.15〜0.25μm、さらに0.16〜0.24μmである。なお、B層に含有させる不活性粒子の種類や粒径分布は、前述の説明と同様なことが言える。   By the way, from the viewpoint of further improving the running property and winding property, the B layer preferably contains inert particles having an average particle diameter of 0.05 μm or more larger than the inert particles contained in the A layer. Particularly preferred are those containing the same inert particles contained in the A layer and inert particles having an average particle diameter of 0.05 μm or more larger than the inert particles contained in the A layer. . The preferable average particle diameter of the inert particles contained in the B layer and having an average particle diameter larger than that of the inert particles contained in the A layer is 0.15 to 0.25 μm, and further 0.16 to 0.24 μm. In addition, it can be said that the kind and particle size distribution of the inert particles contained in the B layer are the same as described above.

本発明において、A層とB層の厚みの比(tA/tB)は、0.33〜9.0の範囲にあることが好ましい。好ましい下限は、0.5、更に0.6、よりさらに0.8、特に2.0である。好ましい上限は、8.0、更に7.0、より更に6.0、特に5.0である。上記下限未満の場合、磁性層を形成しない粗面層側のB層に含まれる粒子の突上げが発生し、電磁変換特性を悪化しやすくさせる。他方、上記上限以上の場合、磁性層を形成しない粗面層の滑剤が脱落しやすくなること、通常回収した樹脂は平坦性を損なわないためにB層にしか用いることができないため、再利用できる割合が極端に低下することなどの問題が起こる。   In the present invention, the thickness ratio (tA / tB) of the A layer and the B layer is preferably in the range of 0.33 to 9.0. Preferred lower limits are 0.5, further 0.6, even more 0.8, in particular 2.0. A preferred upper limit is 8.0, further 7.0, even 6.0, especially 5.0. When the amount is less than the lower limit, the particles contained in the B layer on the rough surface layer side where the magnetic layer is not formed are pushed up, and electromagnetic conversion characteristics are easily deteriorated. On the other hand, when the amount is equal to or more than the above upper limit, the lubricant of the rough surface layer that does not form the magnetic layer is easy to drop off, and the resin that is usually recovered can be reused because it can be used only for the B layer so as not to impair flatness. Problems such as an extremely low rate occur.

さらに、本発明の二軸配向ポリエステルフィルムは、A層の厚みtA(μm)と、B層に添加した不活性粒子のうち、最も平均粒子径が大きい不活性粒子の平均粒子径(DpB:μm)の比(tA/DpB)が15以上になるようすることが好ましい。上記下限未満であると、磁気層を形成しないB層中の粒子が磁性層に突上げ、平坦性を悪化させやすい。他方、上限に関しては、所望のフィルムが得られる範囲内であれば、特に制限はない。好ましいtA/DpBは、15〜25、さらに15〜22である。   Furthermore, the biaxially oriented polyester film of the present invention has a thickness tA (μm) of the A layer and an average particle diameter of the inert particles having the largest average particle diameter among the inert particles added to the B layer (DpB: μm). ) Ratio (tA / DpB) is preferably 15 or more. If it is less than the above lower limit, the particles in the B layer that do not form the magnetic layer are pushed up to the magnetic layer, and the flatness tends to be deteriorated. On the other hand, the upper limit is not particularly limited as long as a desired film can be obtained. Preferred tA / DpB is 15 to 25, more preferably 15 to 22.

本発明の二軸配向ポリエステルフィルムは、高密度磁気記録テープ、特にディジタル記録型磁気記録テープのベースフィルムとして好ましく用いられる。そこで、本発明の二軸配向ポリエステルフィルムを用いた磁気記録媒体について、さらに説明する。   The biaxially oriented polyester film of the present invention is preferably used as a base film for high-density magnetic recording tapes, particularly digital recording magnetic recording tapes. Therefore, the magnetic recording medium using the biaxially oriented polyester film of the present invention will be further described.

本発明の磁気記録媒体は、上述の二軸配向ポリエステルフィルムに磁性層を形成することで製造できる。なお、本発明の二軸配向ポリエステルフィルムの表面には、磁性層などとの接着性を向上させるために、本発明の効果を損なわない範囲で、それ自体公知の易接着機能を有する塗膜層などを形成しても良い。   The magnetic recording medium of the present invention can be produced by forming a magnetic layer on the above-mentioned biaxially oriented polyester film. It should be noted that the surface of the biaxially oriented polyester film of the present invention has a well-known easy adhesion function as long as the effect of the present invention is not impaired in order to improve the adhesion with a magnetic layer or the like. Etc. may be formed.

本発明の磁気記録テープにおける磁性層は、鉄または鉄を主成分とする針状微細磁性粉やバリウムフェライトをポリ塩化ビニル、塩化ビニル・酢酸ビニル共重合体等のバインダーに均一分散し、その塗液を塗布して形成したものであり、前述のとおり、本発明の二軸配向ポリエステルフィルムを使用することで、加工性を維持しつつ、電磁変換特性やエラーレート性能に選りすぐれた磁気記録テープとすることができる。   The magnetic layer in the magnetic recording tape of the present invention is prepared by uniformly dispersing iron or acicular fine magnetic powder or barium ferrite in a binder such as polyvinyl chloride or a vinyl chloride / vinyl acetate copolymer. A magnetic recording tape that is formed by applying a liquid, and as described above, is excellent in electromagnetic conversion characteristics and error rate performance while maintaining processability by using the biaxially oriented polyester film of the present invention. It can be.

ところで、前述の通り記録密度を高めていくには磁性体を微細化していくことが必要で、そのため塗液から溶剤などの除去が難しくなり、加工性を維持しようとすると、乾燥などをより高温で行う必要がでてきた。そして、極めて平坦な表面を有するフィルムを高温で加工しようとすると、シワなどの問題があることを新たに見出し、本発明に到達した。   By the way, as described above, in order to increase the recording density, it is necessary to make the magnetic material finer. Therefore, it becomes difficult to remove the solvent from the coating liquid, and if the workability is maintained, drying or the like is performed at a higher temperature. It was necessary to do in. And when it was going to process the film which has a very flat surface at high temperature, there existed new problems, such as wrinkles, and it reached | attained this invention.

なお、磁性層は、その厚みが1μm以下、さらに0.1〜1μmとなるように塗布するのが、特に短波長領域での出力、S/N、C/N等の電磁変換特性に優れ、ドロップアウト、エラーレートの少ない高密度記録用塗布型磁気記録テープとする観点から好ましい。また、必要に応じて、塗布型磁性層の下地層として、微細な酸化チタン粒子等を含有する非磁性層を磁性層と同様の有機バインダー中に分散し、塗設することも好ましい。   In addition, it is excellent in electromagnetic conversion characteristics such as output in a short wavelength region, S / N, C / N, etc., particularly when the magnetic layer is applied so that the thickness is 1 μm or less, and further 0.1 to 1 μm. This is preferable from the viewpoint of a coating type magnetic recording tape for high density recording with low dropout and error rate. If necessary, it is also preferable to disperse and coat a nonmagnetic layer containing fine titanium oxide particles or the like in the same organic binder as that of the magnetic layer as the underlayer of the coating type magnetic layer.

また、磁性層の表面には、目的、用途、必要に応じてダイアモンドライクカーボン(DLC)等の保護層、含フッ素カルボン酸系潤滑層を順次設け、さらに他方の表面に、公知のバックコート層を設けてもよい。
このようにして得られる塗布型磁気記録テープは、データ8ミリ、DDSIV、DLT、S−DLT、LTO等のデータ用途の磁気テープとして極めて有用である。
Further, a protective layer such as diamond-like carbon (DLC) and a fluorine-containing carboxylic acid-based lubricating layer are sequentially provided on the surface of the magnetic layer as required, and a known backcoat layer is provided on the other surface. May be provided.
The coating type magnetic recording tape thus obtained is extremely useful as a magnetic tape for data use such as data 8 mm, DDSIV, DLT, S-DLT, LTO and the like.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明におけるポリエステル、二軸配向ポリエステルフィルムおよびデータストレージの特性は、下記の方法で測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the characteristic of the polyester in this invention, a biaxially-oriented polyester film, and data storage was measured and evaluated by the following method.

(1)固有粘度
得られたポリエステルの固有粘度は、前述のとおり、o−クロロフェノール、35℃で測定し、o−クロロフェノールでは均一に溶解するのが困難な場合は、p−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いて35℃で測定して求めた。
(1) Intrinsic viscosity As described above, the intrinsic viscosity of the obtained polyester is measured at o-chlorophenol at 35 ° C. When it is difficult to dissolve uniformly with o-chlorophenol, p-chlorophenol / It was determined by measurement at 35 ° C. using a mixed solvent of 1,1,2,2-tetrachloroethane (40/60 weight ratio).

(2)フィルム中の粒子の粒径
フィルム表面層のポリエステルをプラズマ低温灰化処理法(例えばヤマト科学製、PR−503型)で除去し、粒子を露出させる。処理条件はポリエステルは灰化されるが粒子はダメージを受けない条件を選択する。これをSEM(走査型電子顕微鏡)にて1万倍程度の倍率で粒子を観察し、粒子の画像(粒子によってできる光の濃淡)をイメージアナライザー(例えば、ケンブリッジインストルメント製、QTM900)に結びつけ、観察箇所を変えて少なくとも5,000個の粒子の面積円相当径(Di)を求める。この結果から粒子の粒径分布曲線を作成した。なお、粒子種の同定はSEM−XMA、ICPによる金属元素の定量分析などを使用して行うことができる。また、添加する不活性粒子の平均粒径は、同様な測定を行って各粒子の粒径を求め、数平均を平均粒径とした。
(2) Particle size of particles in the film The polyester in the film surface layer is removed by a plasma low-temperature ashing method (for example, PR-503, manufactured by Yamato Kagaku) to expose the particles. The treatment conditions are such that the polyester is ashed but the particles are not damaged. This is observed with a SEM (scanning electron microscope) at a magnification of about 10,000 times, and an image of the particle (light density produced by the particle) is connected to an image analyzer (for example, QTM900, manufactured by Cambridge Instrument) The observation area is changed, and the area equivalent circle diameter (Di) of at least 5,000 particles is obtained. From this result, a particle size distribution curve of the particles was prepared. The identification of the particle type can be performed using SEM-XMA, quantitative analysis of metal elements by ICP, or the like. Moreover, the average particle diameter of the inert particle to add was measured similarly, the particle diameter of each particle | grain was calculated | required, and the number average was made into the average particle diameter.

(3)粒子の含有量
(3−1)各層中の粒子の総含有量
積層二軸配向ポリエステルフィルムからポリエステルA層、ポリエステルB層を各々100g程度削り採ってサンプリングし、ポリエステルは溶解し粒子は溶解させない溶媒を選択して、サンプルを溶解した後、粒子をポリエステルから遠心分離し、サンプル重量に対する粒子の比率(重量%)をもって各層中の粒子総含有量とする。
(3) Content of particles (3-1) Total content of particles in each layer The polyester A layer and the polyester B layer were sampled by scraping about 100 g each from the laminated biaxially oriented polyester film, the polyester was dissolved, and the particles were After selecting the solvent not to be dissolved and dissolving the sample, the particles are centrifuged from the polyester, and the ratio of the particles to the sample weight (% by weight) is the total particle content in each layer.

(3−2)各層中の無機粒子の総含有量
積層ポリエステルフィルムの無機粒子が存在する場合は、ポリエステルA層、ポリエステルB層を各々削り採って100g程度サンプリングし、これを白金ルツボ中にて1,000℃程度の炉の中で3時間以上燃焼させ、次いでルツボ中の燃焼物をテレフタル酸(粉体)と混合し50グラムの錠型のプレートを作成する。このプレートを波長分散型蛍光X線を用いて各元素のカウント値をあらかじめ作成してある元素毎の検量線より換算し各層中の無機粒子の総含有量を決定する。蛍光X線を測定する際のX線管はCr管が好ましくRh管で測定してもよい。X線出力は4KWと設定し分光結晶は測定する元素毎に変更する。材質の異なる無機粒子が複数種類存在する場合は、この測定により各材質の無機粒子の含有量を決定する。
(3-2) Total content of inorganic particles in each layer When inorganic particles of the laminated polyester film are present, the polyester A layer and the polyester B layer are each scraped and sampled about 100 g, and this is sampled in a platinum crucible. Burn in a furnace at about 1,000 ° C. for 3 hours or more, then mix the burned product in the crucible with terephthalic acid (powder) to make a 50 gram tablet plate. This plate is converted using a wavelength-dispersed fluorescent X-ray to calculate the count value of each element from a calibration curve for each element that has been prepared in advance, and the total content of inorganic particles in each layer is determined. The X-ray tube for measuring fluorescent X-rays is preferably a Cr tube and may be measured with an Rh tube. The X-ray output is set to 4 kW, and the spectral crystal is changed for each element to be measured. When there are a plurality of types of inorganic particles of different materials, the content of the inorganic particles of each material is determined by this measurement.

(3−3)各層中の各種粒子の含有量(無機粒子が存在しない場合)
層中に無機粒子が存在しない場合は、前記(2)により求めたピークを構成する各粒子の個数割合と平均粒径と粒子の密度から各ピーク領域に存在する粒子の重量割合を算出し、これと前記(3−1)で求めた各層中の粒子の総含有量とから、各ピーク領域に存在する粒子の含有量(重量%)を求める。
なお、代表的な微粒子の密度は下記のとおりである。
架橋シリコーン樹脂の密度 : 1.35g/cm
架橋ポリスチレン樹脂の密度: 1.05g/cm
架橋アクリル樹脂の密度 : 1.20g/cm
なお、樹脂の密度は(3−1)の方法でポリエステルから遠心分離した粒子をさらに分別し、例えば、ピクノメーターにより「微粒子ハンドブック:朝倉書店、1991年版、150頁」に記載の方法で測定することができる。
(3-3) Content of various particles in each layer (when no inorganic particles are present)
When inorganic particles are not present in the layer, the weight ratio of the particles present in each peak region is calculated from the number ratio of each particle constituting the peak determined by the above (2), the average particle diameter, and the density of the particles, From this and the total content of particles in each layer determined in (3-1) above, the content (% by weight) of particles present in each peak region is determined.
The typical fine particle density is as follows.
Density of crosslinked silicone resin: 1.35 g / cm 3
Cross-linked polystyrene resin density: 1.05 g / cm 3
Cross-linked acrylic resin density: 1.20 g / cm 3
The resin density is further determined by separating the particles centrifuged from the polyester by the method (3-1), and measured by a method described in “Fine Particles Handbook: Asakura Shoten, 1991 edition, page 150”, for example, with a pycnometer. be able to.

(3−4)各層中の各種粒子の含有量(無機粒子が存在する場合)
層中に無機粒子が存在する場合は、前記(3−1)で求めた各層中の粒子の総含有量と前記(3−2)で求めた各層中の無機粒子の総含有量とから層中の有機粒子と無機粒子の含有量をそれぞれ算出し、有機粒子の含有量は上記(3−3)の方法で、無機粒子の含有量は上記(3−2)の方法で、それぞれ含有量(重量%)を求める。
(3-4) Content of various particles in each layer (when inorganic particles are present)
When inorganic particles are present in the layer, the layer is determined from the total content of particles in each layer determined in (3-1) and the total content of inorganic particles in each layer determined in (3-2). The content of the organic particles and the inorganic particles in each is calculated, the content of the organic particles is the method (3-3), and the content of the inorganic particles is the method (3-2). (Wt%) is determined.

(4)フィルムおよび各ポリエステル層の厚み
(4−1)フィルムの厚み
ゴミが入らないようにフィルムを10枚重ね、打点式電子マイクロメータにて厚みを測定し、1枚当たりのフィルム厚みを計算する。
(4) Thickness of film and each polyester layer (4-1) Thickness of film 10 films are stacked so that dust does not enter, the thickness is measured with a dot-type electronic micrometer, and the film thickness per sheet is calculated. To do.

(4−2)各ポリエステル層の厚み
2次イオン質量分析装置(SIMS)を用いて、表層から深さ3,000nm迄の範囲のフィルム中の粒子の内もっとも高濃度の粒子に起因する元素とポリエステルの炭素元素の濃度比(M+/C+)を粒子濃度とし、表面から深さ3,000nmまで厚さ方向の分析を行う。表層では表面という界面のために粒子濃度は低く表面から遠ざかるにつれて粒子濃度は高くなる。そして一旦極大値となった粒子濃度がまた減少し始める。この濃度分布曲線をもとに表層粒子濃度が極大値の1/2となる深さ(この深さは極大値となる深さよりも深い)を求め、これを表層厚さとする。そして、先ほどのフィルムの厚みと表層厚みとから、各層の厚みを算出する。
条件は次のとおりである。
(a)測定装置:2次イオン質量分析装置(SIMS)
(b)測定条件
1次イオン種 :O2+
1次イオン加速電圧:12KV
1次イオン電流:200nA
ラスター領域 :400μm□
分析領域 :ゲート30%
測定真空度 :0.8Pa(6.0×10−3Torr)
E−GUN :0.5KV−3.0A
なお、表層から深さ3000nm迄の範囲にもっとも多く含有する粒子が有機高分子粒子の場合はSIMSでは測定が難しいので、表面からエッチングしながらXPS(X線光電子分光法)、IR(赤外分光法)などで上記同様のデプスプロファイルを測定し、表層厚さを求めてもよい。
(4-2) Thickness of each polyester layer Using a secondary ion mass spectrometer (SIMS), an element caused by the highest concentration of particles in the film ranging from the surface layer to a depth of 3,000 nm The concentration ratio (M + / C +) of the carbon element in the polyester is defined as the particle concentration, and analysis in the thickness direction is performed from the surface to a depth of 3,000 nm. In the surface layer, the particle concentration is low due to the interface of the surface, and the particle concentration increases as the distance from the surface increases. And the particle concentration once reached the maximum value starts to decrease again. Based on this concentration distribution curve, a depth at which the surface layer particle concentration is ½ of the maximum value (this depth is deeper than the depth at which the maximum value is reached) is determined, and this is defined as the surface layer thickness. Then, the thickness of each layer is calculated from the thickness of the film and the thickness of the surface layer.
The conditions are as follows.
(A) Measuring device: secondary ion mass spectrometer (SIMS)
(B) Measurement conditions Primary ion species: O 2+
Primary ion acceleration voltage: 12KV
Primary ion current: 200 nA
Raster area: 400 μm
Analysis area: 30% gate
Measurement degree of vacuum: 0.8 Pa (6.0 × 10 −3 Torr)
E-GUN: 0.5KV-3.0A
In addition, when the most contained particles in the range from the surface layer to a depth of 3000 nm are organic polymer particles, it is difficult to measure with SIMS. The depth profile similar to the above may be measured by the method) to obtain the surface layer thickness.

(5)ヤング率
フィルムを試料幅10mm、長さ15cmに切り、チャック間100mmにして、引張速度10m/min、チャート速度500mm/minの条件でインストロンタイプの万能引張試験装置にて引っ張る。得られる荷重−伸び曲線の立上り部の接線よりヤング率を計算する。
(5) Young's modulus The film is cut into a sample width of 10 mm and a length of 15 cm, and the distance between chucks is set to 100 mm, and the film is pulled with an Instron type universal tensile tester under the conditions of a tensile speed of 10 m / min and a chart speed of 500 mm / min. The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(6)表面粗さ(Ra)
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて測定倍率25倍、測定面積283μm×213μm(=0.0603mm)の条件にて測定し、該粗さ計に内蔵された表面解析ソフトMetroProにより中心面平均粗さ(Ra)を求め、これを表面粗さ(Ra)とした。なお、測定は測定箇所を変えて10回行い、それらの平均値を中心面平均粗さ(Ra)とした。また積層ポリエステルフィルムの平坦な側(A層側)の表面の表面粗さをRaA、粗い側(B層側)の表面の粗さをRaBとした。
(6) Surface roughness (Ra)
Measured using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022) at a measurement magnification of 25 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ), and incorporated in the roughness meter The center surface average roughness (Ra) was determined by the surface analysis software MetroPro, which was defined as the surface roughness (Ra). The measurement was performed 10 times while changing the measurement location, and the average value thereof was defined as the center plane average roughness (Ra). The surface roughness of the flat side (A layer side) of the laminated polyester film was RaA, and the surface roughness of the rough side (B layer side) was RaB.

(7)地肌指数
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて、上述(6)の条件にてRaを測定後、該粗さ計に内蔵されたソフトMetro Proにより、表面のセンターラインから高さ方向に凸側と凹側にそれぞれ5nmずつ離れたラインを引き、それ以上の高さを有するものを突起と認識させ、さらに0.5μm以上の面積を有する突起を突起数としてカウントした。この突起全ての突起面積を合計し、測定面積283μm×213μm=(0.0603mm)から差し引いた値を測定面積に対する百分率で表した数値を本発明でいう地肌指数として求めた。
(7) Background Index After measuring Ra under the condition (6) above using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022), the software Metro Pro built in the roughness meter By drawing a line that is 5 nm away from the center line on the surface in the height direction on the convex side and the concave side, respectively, a thing having a height higher than that is recognized as a protrusion, and further has an area of 0.5 μm 2 or more The protrusions were counted as the number of protrusions. The projection areas of all the projections were totaled, and a value obtained by subtracting the measurement area 283 μm × 213 μm = (0.0603 mm 2 ) as a percentage of the measurement area was determined as the background index in the present invention.

(8)ベアリング落差
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて、上述(6)の条件にてRaを測定後、該粗さデータを解析ソフト(Image Metrology社製:SPIP)にて、ベアリングカーブを作成し、このベアリングカーブにおけるベアリング面積が0.4%に見られるベアリングカーブの急峻な落ち込みの最大値をベアリング落差として定量化した。
(8) Bearing drop After measuring Ra under the condition (6) above using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022), the roughness data is analyzed with software for analysis (Image Metrology). (Made by SPIP), a bearing curve was created, and the maximum value of the steep drop of the bearing curve where the bearing area in this bearing curve is 0.4% was quantified as the bearing drop.

(9)フィルムの静摩擦係数
ポリエステルA層側の表面とポリエステルB層側の表面とを重ね合せた2枚のフィルム(それぞれ縦方向20cm×横方向10cm)の下側に固定したアクリル板を置き、重ね合せた2枚のフィルムの上側の中央部にスレッドを配置し、重ね合せたフィルムの表面粗さが大きい側を下にしてアクリル板に固定し、アクリル板を低速ロールにて引取り(10cm/min)、上側のフィルムの一端(下側フィルムの引取り方向と逆端)に検出器を固定してフィルム/フィルム間のスタート時の引張力を検出する。なお、そのときに用いるスレッドは重さ200g、下側面積50cm(縦方向10cm×横方向5cmの長方形)のものを使用する。
なお、静摩擦係数(μs)は次式より求めた。
μs=(スタート時の引張力g)/(荷重200g)
フィルムの静摩擦係数が大きくなると、滑り性が低下し、フィルムをロール状に巻き取る際、シワや欠陥が出やすくなる。
(9) Coefficient of static friction of the film An acrylic plate fixed on the lower side of two films (each 20 cm in the vertical direction × 10 cm in the horizontal direction) on which the surface on the polyester A layer side and the surface on the polyester B layer side were placed, A thread is placed at the center of the upper side of the two overlapped films, fixed to the acrylic plate with the surface with the larger surface roughness facing down, and the acrylic plate is taken up with a low speed roll (10 cm). / Min), a detector is fixed to one end of the upper film (opposite to the take-off direction of the lower film), and the tensile force at the start of the film / film is detected. The thread used at that time has a weight of 200 g and a lower area of 50 cm 2 (rectangle of 10 cm in the vertical direction × 5 cm in the horizontal direction).
The static friction coefficient (μs) was obtained from the following equation.
μs = (Tensile force at start g) / (Load 200 g)
When the static friction coefficient of the film increases, slipperiness decreases, and wrinkles and defects are likely to occur when the film is wound into a roll.

(10)巻取り良品率
親ロールから1m幅の製品ロールを95m/分でスリットしながら、5000mの長さで100本巻取った際の、ブロッキングやシワのない良品の割合に従って次の通りとする。
◎ ;ブロッキングやシワなどの欠陥のないものの割合 85−100%
○ ; 同上 70−84%
× ; 同上 70%未満
(10) Rate of non-defective product taken as follows according to the ratio of non-blocking and wrinkle-free good products when 100 rolls are taken at a length of 5000 m while slitting a 1 m wide product roll from the parent roll at 95 m / min. To do.
◎; Percentage without defects such as blocking and wrinkles 85-100%
○: Same as above 70-84%
×: Same as above Less than 70%

(11)熱処理シワ試験
幅10cm、長さ25cmのフィルムを試験片として準備し、荷重1kg/mをかけた状態で、130℃で熱処理を1分施した。熱処理したフィルムの長手方向の伸び率と、長手方向に発生するシワの数を幅方向に計測した。
(11) Heat treatment wrinkle test A film having a width of 10 cm and a length of 25 cm was prepared as a test piece, and heat treatment was performed at 130 ° C for 1 minute in a state where a load of 1 kg / m was applied. The elongation in the longitudinal direction of the heat-treated film and the number of wrinkles generated in the longitudinal direction were measured in the width direction.

(12)磁気テープの作成
各実施例及び比較例で得られた幅1000mm、長さ1000mの積層二軸配向ポリエステルフィルムの粗面層(A層)側表面に、下記組成のバックコート層塗料をダイコータ(加工時の張力:20MPa、温度:130℃、速度:200m/分)で、塗布し、乾燥させた後、フィルムの平坦層(B層)側表面に下記組成の非磁性塗料、磁性塗料をダイコータで同時に膜厚を変えて塗布し、磁気配向させて乾燥させる。さらに、小型テストカレンダ−装置(スチ−ルロール/ナイロンロール、5段)で、温度:70℃、線圧:200kg/cmでカレンダ−処理した後、70℃、48時間キュアリングする。上記テ−プを12.65mmにスリットし、カセットに組み込み磁気記録テープとした。なお、乾燥後のバックコート層、非磁性層および磁性層の厚みは、それぞれ0.5μm、1.2μmおよび0.1μmとなるように塗布量を調整した。
<非磁性塗料の組成>
・二酸化チタン微粒子 :100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体 :10重量部
・ニッポラン2304(日本ポリウレタン 製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート) : 5重量部
・レシチン : 1重量部
・メチルエチルケトン :75重量部
・メチルイソブチルケトン :75重量部
・トルエン :75重量部
・カーボンブラック : 2重量部
・ラウリン酸 :1.5重量部
<磁性塗料の組成>
・鉄(長軸:0.025μm、針状比:3.5、2350エルステッド):100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体 :10重量部
・ニッポラン2304(日本ポリウレタン 製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート) : 5重量部
・レシチン : 1重量部
・メチルエチルケトン :75重量部
・メチルイソブチルケトン :75重量部
・トルエン :75重量部
・カーボンブラック : 2重量部
・ラウリン酸 :1.5重量部
<バックコート層塗料の組成:>
カーボンブラック :100重量部
熱可塑性ポリウレタン樹脂 :60重量部
イソシアネート化合物 :18重量部
(日本ポリウレタン工業社製コロネートL)
シリコーンオイル :0.5重量部
メチルエチルケトン :250重量部
トルエン :50重量部
(12) Preparation of magnetic tape A back coat layer paint having the following composition was applied to the surface of the rough surface layer (A layer) of the laminated biaxially oriented polyester film having a width of 1000 mm and a length of 1000 m obtained in each Example and Comparative Example. After coating and drying with a die coater (tension during processing: 20 MPa, temperature: 130 ° C., speed: 200 m / min), a non-magnetic paint or magnetic paint having the following composition on the surface of the flat layer (B layer) side of the film Is applied at the same time with a die coater while changing the film thickness, magnetically oriented and dried. Further, after calendering with a small test calender (steel roll / nylon roll, 5 stages) at a temperature of 70 ° C. and a linear pressure of 200 kg / cm, curing is performed at 70 ° C. for 48 hours. The tape was slit to 12.65 mm and incorporated into a cassette to obtain a magnetic recording tape. The coating amount was adjusted so that the thicknesses of the dried backcoat layer, nonmagnetic layer and magnetic layer were 0.5 μm, 1.2 μm and 0.1 μm, respectively.
<Composition of non-magnetic paint>
-Titanium dioxide fine particles: 100 parts by weight-ESREC A (vinyl chloride / vinyl acetate copolymer made by Sekisui Chemical: 10 parts by weight)-Nipporan 2304 (polyurethane elastomer made by Nippon Polyurethane): 10 parts by weight-Coronate L (polyisocyanate made by Nippon Polyurethane ): 5 parts by weight-lecithin: 1 part by weight-methyl ethyl ketone: 75 parts by weight-methyl isobutyl ketone: 75 parts by weight-toluene: 75 parts by weight-carbon black: 2 parts by weight-lauric acid: 1.5 parts by weight <magnetic paint Composition>
Iron (major axis: 0.025 μm, needle ratio: 3.5, 2350 oersted): 100 parts by weight Eslek A (vinyl chloride / vinyl acetate copolymer made by Sekisui Chemical: 10 parts by weight) Nipponan 2304 (Nippon Polyurethane Polyurethane elastomer): 10 parts by weight, Coronate L (polyisocyanate made by Nippon Polyurethane): 5 parts by weight, lecithin: 1 part by weight, methyl ethyl ketone: 75 parts by weight, methyl isobutyl ketone: 75 parts by weight, toluene: 75 parts by weight, carbon Black: 2 parts by weight ・ Lauric acid: 1.5 parts by weight <Composition of back coat layer paint:>
Carbon black: 100 parts by weight Thermoplastic polyurethane resin: 60 parts by weight Isocyanate compound: 18 parts by weight (Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd.)
Silicone oil: 0.5 parts by weight Methyl ethyl ketone: 250 parts by weight Toluene: 50 parts by weight

(13)電磁変換特性
電磁変換特性測定には、ヘッドを固定した1/2インチリニアシステムを用いた。記録は、電磁誘導型ヘッド(トラック幅25μm、ギャップ0.1μm)を用い、再生はMRヘッド(8μm)を用いた。ヘッド/テープの相対速度は10m/秒とし、記録波長0.2μmの信号を記録し、再生信号をスペクトラムアナライザーで周波数分析し、キャリア信号(波長0.2μm)の出力Cと、スペクトル全域の積分ノイズNの比をC/N比とし、実施例2を0dBとした相対値を求め、以下の基準で、評価した。
◎ : +1dB以上
○ : −1dB以上、+1dB未満
× : −1dB未満
(13) Electromagnetic conversion characteristics For measuring the electromagnetic conversion characteristics, a 1/2 inch linear system with a fixed head was used. Recording was performed using an electromagnetic induction head (track width 25 μm, gap 0.1 μm), and reproduction was performed using an MR head (8 μm). The relative speed of the head / tape is 10 m / sec, a signal with a recording wavelength of 0.2 μm is recorded, the reproduced signal is analyzed with a spectrum analyzer, the output C of the carrier signal (wavelength 0.2 μm), and the integration over the entire spectrum. A relative value with the noise N ratio as C / N ratio and Example 2 as 0 dB was determined and evaluated according to the following criteria.
◎: +1 dB or more ○: −1 dB or more, less than +1 dB ×: less than −1 dB

(14)エラーレート
上記(11)で作製したテープ原反を12.65mm(1/2インチ)幅にスリットし、それをLTO用のケースに組み込み、磁気記録テープの長さが850mのデータストレージカートリッジを作成した。このデータストレージを、IBM社製LTO5ドライブを用いて23℃50%RHの環境で記録し(記録波長0.55μm)、次に、カートリッジを50℃、80%RH環境下に7日間保存した。カートリッジを1日常温に保存した後、全長の再生を行い、再生時の信号のエラーレートを測定した。エラーレートはドライブから出力されるエラー情報(エラービット数)から次式にて算出する。次の基準で寸法安定性を評価する。
エラーレート=(エラービット数)/(書き込みビット数)
◎:エラーレートが1.0×10−6未満
○:エラーレートが1.0×10−6以上、1.0×10−4未満
×:エラーレートが1.0×10−4以上
(14) Error rate Data storage with a length of 850 m of magnetic recording tape by slitting the original tape produced in (11) above to a width of 12.65 mm (1/2 inch) and incorporating it into an LTO case. A cartridge was created. This data storage was recorded using an IBM LTO5 drive in an environment of 23 ° C. and 50% RH (recording wavelength 0.55 μm), and then the cartridge was stored in an environment of 50 ° C. and 80% RH for 7 days. After the cartridge was stored at room temperature for one day, the full length was reproduced, and the error rate of the signal at the time of reproduction was measured. The error rate is calculated from the error information (number of error bits) output from the drive by the following formula. The dimensional stability is evaluated according to the following criteria.
Error rate = (number of error bits) / (number of write bits)
A: Error rate is less than 1.0 × 10 −6 ○: Error rate is 1.0 × 10 −6 or more, less than 1.0 × 10 −4 ×: Error rate is 1.0 × 10 −4 or more

(15)ドロップアウト(DO)
上記(14)でエラーレートを測定したデータストレージカートリッジを、IBM社製LTO5ドライブに装填してデータ信号を14GB記録し、それを再生した。平均信号振幅に対して50%以下の振幅(P−P値)の信号をミッシングパルスとし、4個以上連続したミッシングパルスをドロップアウトとして検出した。なお、ドロップアウトは850m長1巻を評価し、1m当たりの個数に換算して、下記の基準で判定する。
◎:ドロップアウト 3個/m未満
○:ドロップアウト 3個/m以上、9個/m未満
×:ドロップアウト 9個/m以上
(15) Dropout (DO)
The data storage cartridge whose error rate was measured in the above (14) was loaded into an IBM LTO5 drive, a data signal was recorded at 14 GB, and it was reproduced. A signal having an amplitude (PP value) of 50% or less with respect to the average signal amplitude was detected as a missing pulse, and four or more consecutive missing pulses were detected as dropouts. In addition, dropout evaluates 1 volume of 850m, converts into the number per 1m, and determines by the following references | standards.
◎: Dropout less than 3 pieces / m ○: Dropout of 3 pieces / m or more, less than 9 pieces / m ×: Dropout of 9 pieces / m or more

[実施例1]
平坦層側に添加する粒子として、平均粒子径0.08μm(粒径の相対標準偏差:10%)の真球状シリカ粒子(粒子A)を0.01重量%含有した固有粘度が0.62のポリエステルA層用ポリエチレン―2,6―ナフタレートペレット(ガラス転移温度:121℃、融点:265℃)と粗面層側に添加する粒子として、平均粒子径0.08μm(粒径の相対標準偏差:10%)の真球状シリカ粒子(粒子B1)を0.35重量%と平均粒子径0.2μm(粒径の相対標準偏差:10%)の真球状シリカ(粒子B2)を0.03重量%含有した、固有粘度が0.62のポリエステルB層用ポリエチレン―2,6―ナフタレートペレット(ガラス転移温度:121℃、融点:265℃)を用意した。そして、それぞれペレットを170℃で6時間乾燥した後、2台の押出機ホッパーにそれぞれ供給し、溶融温度310℃で、A層:B層=75:25の厚み比率でダイから冷却ドラム上にシート状に共押出し、積層未延伸ポリエステルフィルムを得た。
このようにして得られた積層未延伸ポリエステルフィルムを、120℃に予熱し、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱し、延伸倍率5.0倍で縦方向(製膜方向)の延伸を行った。続いて、155℃に加熱されたステンター内に供給し、165℃、170℃に段階的に温度を上げながら、横方向に5.3倍に延伸(第1段)後、更に180℃に加熱されたステンター内に供給して再度横方向に1.2倍に延伸した後、215℃の熱風で4秒間熱固定し、その後、190℃、弛緩率0.27%で幅方向に弛緩をして、厚み4.0μmの積層二軸配向ポリエステルフィルムを得た。得られた積層二軸配向ポリエステルフィルムのヤング率は縦方向6.5GPa、横方向8.9GPaであった。ポリエステルA層の地肌指数は98.38%であった。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 1]
As particles to be added to the flat layer side, the intrinsic viscosity containing 0.01% by weight of true spherical silica particles (particles A) having an average particle size of 0.08 μm (relative standard deviation of particle size: 10%) is 0.62. Polyethylene-2,6-naphthalate pellets for polyester A layer (glass transition temperature: 121 ° C., melting point: 265 ° C.) and particles to be added to the rough surface layer side, an average particle size of 0.08 μm (relative standard deviation of particle size) : 10%) of true spherical silica particles (particle B1) of 0.35% by weight and 0.03% of true spherical silica (particles B2) having an average particle size of 0.2 μm (relative standard deviation of particle size: 10%). %, Polyethylene-2,6-naphthalate pellets (glass transition temperature: 121 ° C., melting point: 265 ° C.) for polyester B layer having an intrinsic viscosity of 0.62. Each pellet was dried at 170 ° C. for 6 hours and then supplied to two extruder hoppers, respectively, at a melting temperature of 310 ° C., and a thickness ratio of A layer: B layer = 75: 25 from the die onto the cooling drum. The sheet was coextruded to obtain a laminated unstretched polyester film.
The laminated unstretched polyester film thus obtained was preheated to 120 ° C. and heated from above with an IR heater so that the film surface temperature was 140 ° C. Stretching in the film direction) was performed. Subsequently, it is supplied into a stenter heated to 155 ° C., and is stretched 5.3 times in the lateral direction (first stage) while being gradually increased to 165 ° C. and 170 ° C., and further heated to 180 ° C. After being fed into the stenter and stretched 1.2 times in the transverse direction, it was heat-fixed with hot air at 215 ° C for 4 seconds, and then relaxed in the width direction at 190 ° C and a relaxation rate of 0.27%. Thus, a laminated biaxially oriented polyester film having a thickness of 4.0 μm was obtained. The Young's modulus of the obtained laminated biaxially oriented polyester film was 6.5 GPa in the vertical direction and 8.9 GPa in the horizontal direction. The background index of the polyester A layer was 98.38%.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

比較例9
横方向の延伸温度を124、128、158℃に段階的に温度を変えるように変更した他は、実施例1と同様にして、積層二軸配向ポリエステルフィルムを得た。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[ Comparative Example 9 ]
A laminated biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the transverse stretching temperature was changed to 124, 128, and 158 ° C. so as to change the temperature stepwise.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例3〜4]
含有させる、粒子A、粒子B1、粒子B2、各層の厚みを表1に示すように変更した他は、実施例1と同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Examples 3 to 4]
The same operation as in Example 1 was repeated except that the thicknesses of the particles A, particles B1, and particles B2 and the respective layers to be contained were changed as shown in Table 1. Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例5]
平坦層側に添加する粒子として、平均粒子径0.08μmの真球状シリカ粒子(粒子A)を0.01重量%含有した、固有粘度が0.62のポリエステルA層用ポリエチレン―テレフタレートペレット(ガラス転移温度:76℃、融点:255℃)とポリエーテルイミドペレット(商標名:ULTEM1040)とを重量比90:10でブレンドした樹脂組成物と、粗面層側に添加する粒子として、平均粒子径0.08μmの真球状シリカ粒子(粒子B1)を0.35重量%と平均粒子径0.20μmの真球状シリカ(粒子B2)を0.03質量%含有した、固有粘度が0.62のポリエステルB層用ポリエチレン―テレフタレートペレット(ガラス転移温度:76℃、融点:255℃)とポリエーテルイミドペレット(商標名:ULTEM1040)とを重量比90:10でブレンドした樹脂組成物を、それぞれペレットの状態で170℃で3時間乾燥した後、2台の押出機ホッパーにそれぞれ供給し、溶融温度280℃で、A層:B層=77:23の厚み比率でダイから冷却ドラム上にシート状に共押出し、積層未延伸ポリエステルフィルムを得た。
このようにして得られた積層未延伸ポリエステルフィルムを、75℃に予熱し、上方よりIRヒーターにてフィルム表面温度が90℃になるように加熱し、延伸倍率4.8倍で縦方向(製膜方向)の延伸を行った。続いて、90℃に加熱されたステンター内に供給し、125℃、130℃に段階的に温度を上げながら、横方向に5倍に延伸(第1段)後、更に180℃に加熱されたステンター内に供給して再度横方向に1.2倍に延伸した後、230℃の熱風で4秒間熱固定し、その後、210℃、弛緩率1%で弛緩した後、厚み4.5μmの積層二軸配向ポリエステルフィルムを得た。得られた積層二軸配向ポリエステルフィルムのヤング率は縦方向4.9GPa、横方向7.6GPaであった。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 5]
Polyethylene terephthalate pellets for polyester A layer containing 0.01% by weight of true spherical silica particles (particle A) having an average particle size of 0.08 μm as particles to be added to the flat layer side (glass) Transition temperature: 76 ° C., melting point: 255 ° C.) and polyetherimide pellets (trade name: ULTEM 1040) blended at a weight ratio of 90:10, and the average particle size as particles added to the rough surface layer side Polyester having an intrinsic viscosity of 0.62 containing 0.35% by weight of true spherical silica particles (particle B1) of 0.08 μm and 0.03% by mass of true spherical silica (particles B2) having an average particle diameter of 0.20 μm B layer polyethylene-terephthalate pellets (glass transition temperature: 76 ° C, melting point: 255 ° C) and polyetherimide pellets (trade name: ULTEM1) 40) and a resin composition blended at a weight ratio of 90:10, respectively, dried in a pellet state at 170 ° C. for 3 hours, and then supplied to two extruder hoppers, respectively. : B layer = 77: 23 The thickness ratio was coextruded from the die onto the cooling drum in the form of a sheet to obtain a laminated unstretched polyester film.
The laminated unstretched polyester film thus obtained was preheated to 75 ° C. and heated from above with an IR heater so that the film surface temperature was 90 ° C., and stretched in the machine direction (manufactured at a stretch ratio of 4.8 times). Stretching in the film direction) was performed. Subsequently, it was supplied into a stenter heated to 90 ° C., and while being stepwise raised to 125 ° C. and 130 ° C., it was stretched 5 times in the lateral direction (first stage) and further heated to 180 ° C. After being supplied into the stenter and stretched 1.2 times in the transverse direction again, it was heat-fixed with hot air at 230 ° C for 4 seconds, and then relaxed at 210 ° C with a relaxation rate of 1%, and then laminated with a thickness of 4.5 µm A biaxially oriented polyester film was obtained. The Young's modulus of the obtained laminated biaxially oriented polyester film was 4.9 GPa in the vertical direction and 7.6 GPa in the horizontal direction.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例1〜7]
含有させる、粒子A、粒子B1、粒子B2、各層の厚み、熱固定温度、弛緩率を表1に示すように変更した他は、実施例1と同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Examples 1 to 7]
The same operation as in Example 1 was repeated except that the particle A, particle B1, particle B2, the thickness of each layer, the heat setting temperature, and the relaxation rate were changed as shown in Table 1. Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例8]
平坦層側に添加する粒子として、平均粒子径0.08μmの真球状シリカ粒子(粒子A)を0.01重量%含有した固有粘度が0.62のポリエステルA層用ポリエチレン―テレフタレートペレット(ガラス転移温度:76℃、融点:255℃)と粗面層側に添加する粒子として、平均粒子径0.08μmの真球状シリカ粒子(粒子B1)を0.35重量%と平均粒子径0.20μmの真球状シリカ(粒子B2)を0.03質量%含有した、固有粘度が0.62のポリエステルB層用ポリエチレン―テレフタレートペレット(ガラス転移温度:76℃、融点:255℃)を用意した。そして、それぞれペレットを170℃で3時間乾燥した後、2台の押出機ホッパーにそれぞれ供給し、溶融温度280℃で、A層:B層=77:23の厚み比率でダイから冷却ドラム上にシート状に共押出し、積層未延伸ポリエステルフィルムを得た。
このようにして得られた積層未延伸ポリエステルフィルムを、75℃に予熱し、上方よりIRヒーターにてフィルム表面温度が90℃になるように加熱し、延伸倍率4.8倍で縦方向(製膜方向)の延伸を行った。続いて、90℃に加熱されたステンター内に供給し、125℃、130℃に段階的に温度を上げながら、横方向に5倍に延伸(第1段)後、更に180℃に加熱されたステンター内に供給して再度横方向に1.2倍に延伸した後、230℃の熱風で4秒間熱固定し、その後、210℃、弛緩率1%で弛緩した後、厚み4.5μmの積層二軸配向ポリエステルフィルムを得た。得られた積層二軸配向ポリエステルフィルムのヤング率は縦方向4.9GPa、横方向7.6GPaであった。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Comparative Example 8]
Polyethylene-terephthalate pellets for polyester A layer having an intrinsic viscosity of 0.62 containing 0.01% by weight of true spherical silica particles (particle A) having an average particle size of 0.08 μm as the particles added to the flat layer side (glass transition (Temperature: 76 ° C., melting point: 255 ° C.) As particles to be added to the rough surface layer side, 0.35% by weight of true spherical silica particles (particle B1) having an average particle size of 0.08 μm and an average particle size of 0.20 μm Polyethylene-terephthalate pellets (glass transition temperature: 76 ° C., melting point: 255 ° C.) for polyester B layer having an intrinsic viscosity of 0.62 and containing 0.03% by mass of true spherical silica (particle B2) were prepared. Each pellet was dried at 170 ° C. for 3 hours, and then supplied to two extruder hoppers. At a melting temperature of 280 ° C., a thickness ratio of A layer: B layer = 77: 23 from the die onto the cooling drum. The sheet was coextruded to obtain a laminated unstretched polyester film.
The laminated unstretched polyester film thus obtained was preheated to 75 ° C. and heated from above with an IR heater so that the film surface temperature was 90 ° C., and stretched in the machine direction (manufactured at a stretch ratio of 4.8 times). Stretching in the film direction) was performed. Subsequently, it was supplied into a stenter heated to 90 ° C., and while being stepwise raised to 125 ° C. and 130 ° C., it was stretched 5 times in the lateral direction (first stage) and further heated to 180 ° C. After being supplied into the stenter and stretched 1.2 times in the transverse direction again, it was heat-fixed with hot air at 230 ° C for 4 seconds, and then relaxed at 210 ° C with a relaxation rate of 1%, and then laminated with a thickness of 4.5 µm A biaxially oriented polyester film was obtained. The Young's modulus of the obtained laminated biaxially oriented polyester film was 4.9 GPa in the vertical direction and 7.6 GPa in the horizontal direction.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

Figure 0006049337
Figure 0006049337

表1中の、シリカは真球状シリカ粒子、PENはポリエチレン−2,6−ナフタレンジカルボキシレート、PETはポリエチレンテレフタレート、PEIはポリエーテルイミドを意味する。   In Table 1, silica means true spherical silica particles, PEN means polyethylene-2,6-naphthalene dicarboxylate, PET means polyethylene terephthalate, and PEI means polyetherimide.

本発明の二軸配向積層ポリエステルフィルムは、生産性に優れ、その後の搬送性などの加工性も有し、優れた電磁変換特性と、エラーレートやドロップアウトを低減した塗布型磁気記録テープ、特にデータストレージのベースフィルムに好適に用いることができる。   The biaxially oriented laminated polyester film of the present invention is excellent in productivity and also has workability such as subsequent transportability, excellent electromagnetic conversion characteristics, and a coating type magnetic recording tape with reduced error rate and dropout, particularly It can be suitably used as a base film for data storage.

Claims (8)

少なくとも一方の表面が、平均粒子径0.05−0.2μmの不活性粒子を50ppm(質量基準)以上含有し、その表面粗さ(RaA)が1.5nm以下で、地肌指数が96〜99.99%の範囲で、ベアリングカーブの落差が10−30nmの範囲である二軸配向ポリエステルフィルムと、その磁性層を形成する側の表面に塗布形成された磁性層とからなる塗布型磁気記録テープであって、
該二軸配向ポリエステルフィルムはその厚みが2.0μm以上4.5μm以下で、そのフィルム幅方向における130℃30分での熱収縮率が3%以下であることを特徴とする塗布型磁気記録テープ。
At least one surface contains 50 ppm (mass basis) or more of inert particles having an average particle diameter of 0.05 to 0.2 μm, the surface roughness (RaA) is 1.5 nm or less, and the background index is 96 to 99. A coated magnetic recording tape comprising a biaxially oriented polyester film having a bearing curve drop of 10-30 nm in a range of .99% and a magnetic layer coated on the surface on which the magnetic layer is formed. Because
The biaxially oriented polyester film in the thickness of 2.0μm or more 4.5μm or less, a coating type magnetic recording, wherein the thermal shrinkage rate at 130 ° C. 30 minutes in the film width direction of that is 3% or less tape.
二軸配向ポリエステルフィルムはポリエステルがエチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とする請求項1記載の塗布型磁気記録テープ。 2. The coated magnetic recording tape according to claim 1, wherein the biaxially oriented polyester film has a polyester mainly composed of ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate . 二軸配向ポリエステルフィルムは少なくとも2つの層を有する積層ポリエステルフィルムであって、他方の表面の表面粗さ(RaB)が2.0nm以上6.0nm以下である請求項1記載の塗布型磁気記録テープ。 2. The coated magnetic recording tape according to claim 1, wherein the biaxially oriented polyester film is a laminated polyester film having at least two layers, and the surface roughness (RaB) of the other surface is 2.0 nm or more and 6.0 nm or less. . 二軸配向ポリエステルフィルムはより表面粗さの小さい平坦な面を有する層の厚みtA(μm)と、より表面粗さの大きい粗面を有する層の厚みtB(μm)の比(tA/tB)が、0.5以上9以下である請求項記載の塗布型磁気記録テープ。 The biaxially oriented polyester film has a ratio (tA / tB) of the thickness tA (μm) of the layer having a flat surface with a smaller surface roughness to the thickness tB (μm) of the layer having a rough surface with a larger surface roughness. The coating type magnetic recording tape according to claim 3 , wherein is 0.5 or more and 9 or less . 二軸配向ポリエステルフィルムはより表面粗さの大きい粗面を有する層が、より表面粗さの小さい平坦な面を有する層が含有する不活性粒子の平均粒子径に対して、0.05μm以上平均粒子径の大きな不活性粒子を含有し、より表面粗さの小さい平坦な面を有する層の厚みtA(μm)と、より表面粗さの大きい粗面を有する層に添加している不活性粒子のうち、最も平均粒子径が大きい不活性粒子の平均粒子径DpB(μm)の比(tA/DpB)が、15以上である請求項記載の塗布型磁気記録テープ。 In the biaxially oriented polyester film, the layer having a rough surface having a larger surface roughness has an average particle size of 0.05 μm or more with respect to the average particle diameter of the inert particles contained in the layer having a flat surface having a smaller surface roughness. Thickness tA (μm) of a layer having an inert particle having a large particle diameter and having a flat surface with a smaller surface roughness, and an inert particle added to a layer having a rough surface with a larger surface roughness The coated magnetic recording tape according to claim 3 , wherein the ratio (tA / DpB) of the average particle diameter DpB (μm) of the inert particles having the largest average particle diameter is 15 or more . 二軸配向ポリエステルフィルムはフィルム製膜方向における130℃での熱収縮率が3%以下である請求項1記載の塗布型磁気記録テープ。 The coated magnetic recording tape according to claim 1, wherein the biaxially oriented polyester film has a thermal shrinkage rate of 130% or less at 130 ° C in the film forming direction . 二軸配向ポリエステルフィルムはフィルム製膜方向のヤング率が5GPa以上である請求項1記載の塗布型磁気記録テープ。 The coating type magnetic recording tape according to claim 1, wherein the biaxially oriented polyester film has a Young's modulus in the film forming direction of 5 GPa or more . 二軸配向ポリエステルフィルムは含有する不活性粒子が球状シリカ粒子、架橋ポリスチレン粒子、シリコーン粒子、シリカーアクリル複合粒子のいずれかである請求項1記載の塗布型磁気記録テープ。 The coated magnetic recording tape according to claim 1, wherein the inert particles contained in the biaxially oriented polyester film are spherical silica particles, crosslinked polystyrene particles, silicone particles, or silica-acrylic composite particles .
JP2012162812A 2012-07-23 2012-07-23 Biaxially oriented polyester film and coated magnetic recording tape using the same Active JP6049337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162812A JP6049337B2 (en) 2012-07-23 2012-07-23 Biaxially oriented polyester film and coated magnetic recording tape using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162812A JP6049337B2 (en) 2012-07-23 2012-07-23 Biaxially oriented polyester film and coated magnetic recording tape using the same

Publications (2)

Publication Number Publication Date
JP2014019137A JP2014019137A (en) 2014-02-03
JP6049337B2 true JP6049337B2 (en) 2016-12-21

Family

ID=50194563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162812A Active JP6049337B2 (en) 2012-07-23 2012-07-23 Biaxially oriented polyester film and coated magnetic recording tape using the same

Country Status (1)

Country Link
JP (1) JP6049337B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301711B2 (en) * 2014-04-11 2018-03-28 帝人フィルムソリューション株式会社 Oriented laminated polyester film
JP6582858B2 (en) * 2015-10-16 2019-10-02 東洋紡株式会社 Biaxially stretched polyethylene terephthalate film and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569853B2 (en) * 1990-01-11 1997-01-08 東レ株式会社 Biaxially oriented thermoplastic resin film and film roll
JP2884953B2 (en) * 1991-11-25 1999-04-19 東レ株式会社 Biaxially oriented thermoplastic resin laminated film
JP3920008B2 (en) * 2000-06-06 2007-05-30 帝人株式会社 Laminated biaxially oriented polyester film
JP4287229B2 (en) * 2003-09-29 2009-07-01 帝人デュポンフィルム株式会社 Biaxially oriented polyester film
JP2006305870A (en) * 2005-04-28 2006-11-09 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film
JPWO2007091381A1 (en) * 2006-02-09 2009-07-02 帝人デュポンフィルム株式会社 Biaxially oriented polyester film and magnetic recording tape
JP5596445B2 (en) * 2010-07-08 2014-09-24 帝人デュポンフィルム株式会社 Laminated biaxially oriented polyester film for coated magnetic recording tape
JP6087529B2 (en) * 2012-07-23 2017-03-01 帝人フィルムソリューション株式会社 Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same

Also Published As

Publication number Publication date
JP2014019137A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP6158640B2 (en) Laminated polyester film and coated magnetic recording tape using the same
WO2002045959A1 (en) Biaxially oriented layered polyester film and magnetic recording medium
JP7303999B2 (en) LAMINATED POLYESTER FILM AND MAGNETIC RECORDING TAPE USING THE SAME
JP6072623B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP2014022027A (en) Biaxially-oriented polyester film and coating type magnetic recording tape using the same
JP6819082B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP3920008B2 (en) Laminated biaxially oriented polyester film
JP6049337B2 (en) Biaxially oriented polyester film and coated magnetic recording tape using the same
JP6087529B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP5981185B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP3923176B2 (en) Laminated biaxially oriented polyester film
US20050147795A1 (en) Biaxially oriented polyster film and flexible disk
JP5749504B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP2014004788A (en) Laminated polyester film and coating type magnetic recording tape using the same
JP5596445B2 (en) Laminated biaxially oriented polyester film for coated magnetic recording tape
JP5749505B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP5981186B2 (en) LAMINATED POLYESTER FILM AND METHOD FOR PRODUCING COATING MAGNETIC RECORDING TAPE USING SAME
JP2010274472A (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP5865749B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP3923187B2 (en) Laminated biaxially oriented polyester film
JP6158672B2 (en) Laminated polyester film and ferromagnetic metal thin film magnetic recording tape
JP2019130777A (en) Laminate polyester film and magnetic recording medium
JP5964655B2 (en) Laminated polyester film
JP2018150463A (en) Biaxially oriented polyester film and magnetic recording medium
JP6301711B2 (en) Oriented laminated polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161122

R150 Certificate of patent or registration of utility model

Ref document number: 6049337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250