JP5749505B2 - Laminated polyester film and coated magnetic recording tape using the same - Google Patents

Laminated polyester film and coated magnetic recording tape using the same Download PDF

Info

Publication number
JP5749505B2
JP5749505B2 JP2011016506A JP2011016506A JP5749505B2 JP 5749505 B2 JP5749505 B2 JP 5749505B2 JP 2011016506 A JP2011016506 A JP 2011016506A JP 2011016506 A JP2011016506 A JP 2011016506A JP 5749505 B2 JP5749505 B2 JP 5749505B2
Authority
JP
Japan
Prior art keywords
polyester film
particles
layer
polyester
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011016506A
Other languages
Japanese (ja)
Other versions
JP2012153100A (en
Inventor
小菅 雅彦
雅彦 小菅
飯田 真
真 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2011016506A priority Critical patent/JP5749505B2/en
Publication of JP2012153100A publication Critical patent/JP2012153100A/en
Application granted granted Critical
Publication of JP5749505B2 publication Critical patent/JP5749505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は、データストレージなどの塗布型磁気記録テープのベースフィルムに用いる積層ポリエステルフィルムに関する。   The present invention relates to a laminated polyester film used for a base film of a coating type magnetic recording tape such as data storage.

ポリエステルフィルムは、比較的安価で、優れた機械的特性を有することから磁気記録テープのベースフィルムに用いられてきた。そして、磁気記録テープのベースフィルムに用いる場合、ポリエステルフィルムには粗大な突起や欠点がない平坦な表面を有することが求められる。一方、磁性層をポリエステルフィルムに塗布して形成する塗布型磁気記録テープでは、ベースフィルムの巻取性や走行性が不安定であると、均一な磁性層を効率的に製造することができず、ポリエステルフィルムに不活性粒子などの滑剤を含有させて、表面に突起などを形成することが求められる。この2つの要求は相反するものであり、これらの要求を満たすために、特許文献1〜6には、表面欠点を低減するために触媒種を特定のものにしたり、フィルム中に含有させる粒子として粗大粒子の少ないものを用いること、およびそのような処理を行った表面欠点の少ないフィルムが提案されている。   Polyester films have been used as base films for magnetic recording tapes because they are relatively inexpensive and have excellent mechanical properties. And when using for the base film of a magnetic-recording tape, it is calculated | required that a polyester film has a flat surface without a rough protrusion and a fault. On the other hand, in a coating type magnetic recording tape formed by applying a magnetic layer to a polyester film, a uniform magnetic layer cannot be efficiently produced if the winding property and running property of the base film are unstable. It is required that the polyester film contains a lubricant such as inert particles to form protrusions on the surface. These two requirements are contradictory, and in order to satisfy these requirements, Patent Documents 1 to 6 include specific types of catalysts for reducing surface defects and particles included in the film. The use of a film having few coarse particles and a film with few surface defects subjected to such treatment have been proposed.

また特許文献7には、磁気記録媒体の加工時の搬送性と磁気記録媒体とした時にエラーが少なく電磁変換特性の良好なベースフィルムを粗面層の3種類粒子の適切な選択によって両立できることが提案されている。   In Patent Document 7, it is possible to achieve both the transportability at the time of processing a magnetic recording medium and a base film which has few errors when used as a magnetic recording medium and has good electromagnetic conversion characteristics by appropriate selection of three kinds of particles of the rough surface layer. Proposed.

しかしながら、近年の高密度記録の要求はすさまじく、特に記録容量が1巻あたり1.5TBを超えるようなデータストレージでは、前述の特許文献1〜6で表面欠点がないとされたフィルムや特許文献7でエラーが少ないとされたフィルムでも十分に応えられなくなってきた。   However, the demand for high-density recording in recent years is tremendous. In particular, in data storage in which the recording capacity exceeds 1.5 TB per volume, the film described in Patent Documents 1 to 6 described above having no surface defects or Patent Document 7 However, even films with few errors are no longer able to respond.

特開2004−114492号公報JP 2004-114492 A 特開2003−291288号公報JP 2003-291288 A 特開2002−363311号公報JP 2002-36311 A 特開2002−363310号公報JP 2002-363310 A 特開2002−059520号公報JP 2002-059520 A 特開2010−250910号公報JP 2010-250910 A 特開2010−274472号公報JP 2010-274472 A

本発明の目的は、塗布型磁気記録テープのベースフィルムに用いたとき、優れた電磁変換特性および少ないドロップアウト性能を発現できるポリエステルフィルムを提供することにある。   An object of the present invention is to provide a polyester film that can exhibit excellent electromagnetic conversion characteristics and low dropout performance when used as a base film of a coating type magnetic recording tape.

本発明者らは上記課題を解決しようと鋭意研究したところ、前述の特許文献1〜6では平坦層側の微小な表面欠点しか着目しておらず、また特許文献7では粗面層側の突起に着目しているものの、上記のような近年の高密度記録化が進んだ状況では、該ベースフィルムをロール状態に保管後、加工すると粗面層側の転写により発現するような極めて微小な表面欠陥による問題が未解決のため、より高記録容量データストレージ用記録媒体としては十分な性能を有していないことを見出した。   As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention focus on only a minute surface defect on the flat layer side in the above-mentioned Patent Documents 1 to 6, and in Patent Document 7 a protrusion on the rough surface layer side. However, in the situation where high-density recording has progressed in recent years as described above, an extremely minute surface that is manifested by transfer on the rough surface layer side when the base film is stored in a roll state and then processed. Since the problem due to the defect has not been solved, the present inventors have found that the recording medium for higher storage capacity data storage does not have sufficient performance.

そこで、本研究者らは高密度記録化が進んだ状況下でのドロップアウト性能と粗面層側の突起形状に着目したところ、高さが60nm以上で且つ面積が150nm以上の突起が非常に密接な関係を有することを見出し、含有させる不活性粒子を適正な設計とすることで、例えば記憶容量が1.5TB以上である塗布型磁気記録テープのベースフィルムに用いても優れた電磁変換特性を発現できることを見出し、本発明に到達した。 Therefore, the present researchers focused on the dropout performance and the shape of the protrusion on the rough surface layer under the circumstances where high-density recording has advanced, and protrusions with a height of 60 nm or more and an area of 150 nm 2 or more are extremely Electromagnetic conversion excellent even when used for, for example, a base film of a coating-type magnetic recording tape having a storage capacity of 1.5 TB or more The inventors have found that the characteristics can be expressed, and have reached the present invention.

かくして本発明によれば、塗布型磁気記録テープに用いるベースフィルムであって、非接触式三次元表面粗さ計を用いて測定倍率25倍で測定した表面粗さと突起数が、磁性層を形成する側の表面は表面粗さ(RaA)が4nm未満であり、他方磁性層を形成しない側の表面は、表面粗さ(RaB)が4〜10nmの範囲であり、高さが60nm以上で且つ面積が150nm以上の突起が、20個/0.06mm以下である積層ポリエステルフィルムが提供される。 Thus, according to the present invention, it is a base film used for a coating type magnetic recording tape, and the surface roughness and the number of protrusions measured at a measurement magnification of 25 times using a non-contact type three-dimensional surface roughness meter form a magnetic layer. The surface on the side to be processed has a surface roughness (RaA) of less than 4 nm, while the surface on the side not forming the magnetic layer has a surface roughness (RaB) in the range of 4 to 10 nm, a height of 60 nm or more, and A laminated polyester film having an area of 150 nm 2 or more and 20 pieces / 0.06 mm 2 or less is provided.

また、本発明の好ましい態様として、さらにポリエステルがエチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートであること、磁性層を形成しない側の表面が高さ30nm以上の突起が700個/0.06mm未満であること、磁性層を形成しない側の表面を形成するポリエステルは、粒径0.4μmを超える不活性粒子の含有量が0.02重量%未満であること、磁性層を形成しない側の表面を形成するポリエステルは、粒径0.05μmの不活性粒子の含有量が0.6重量%未満であること、磁性層を形成する側の表面を形成するポリエステルは、粒径0.15μmを超える不活性粒子の含有量が0.01重量%未満であること、磁性層を形成する側の表面を形成するポリエステルは、粒径0.05〜0.15μmの不活性粒子の含有量が、0.005〜0.4重量%の範囲であること、幅方向の温度膨張係数が−5〜1ppmの範囲にあることの少なくともいずれかを具備する積層ポリエステルフィルム、ならびに上記いずれかに記載の積層ポリエステルフィルムと、その磁性層を形成する側の表面に塗設により形成された磁性層とからなる塗布型磁気記録テープも提供される。 As a preferred embodiment of the present invention, the polyester is ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate, and the surface on the side where the magnetic layer is not formed has 700 protrusions having a height of 30 nm or more. The polyester forming the surface on which the magnetic layer is not formed is less than 06 mm 2 , the content of inert particles having a particle size of more than 0.4 μm is less than 0.02% by weight, and the magnetic layer is not formed. The polyester forming the surface on the side has a content of inert particles having a particle size of 0.05 μm of less than 0.6% by weight, and the polyester forming the surface on the side forming the magnetic layer has a particle size of 0.00. The polyester forming the surface on the side on which the magnetic layer is formed has a content of inert particles exceeding 15 μm of less than 0.01% by weight and a particle size of 0.05 to 0.15. The laminated polyester having at least one of the content of the inert particles of m being in the range of 0.005 to 0.4% by weight and the temperature expansion coefficient in the width direction being in the range of -5 to 1 ppm. There is also provided a coating type magnetic recording tape comprising a film, and the laminated polyester film described above, and a magnetic layer formed by coating on the surface on which the magnetic layer is formed.

本発明のポリエステルフィルムを用いれば、例えば記憶容量が1.5TB以上であるデータストレージなどの塗布型磁気記録テープのベースフィルムに用いたときにエラーとなる微小な表面欠点までも低減されていることから、電磁変換特性に優れたデータストレージを提供することができる。
また、本発明の積層ポリエステルフィルムを用いれば、電磁変換特性に優れ、しかも寸法安定性にも優れたデータストレージを提供することができる。
When the polyester film of the present invention is used, even a minute surface defect that causes an error when used for a base film of a coating type magnetic recording tape such as a data storage having a storage capacity of 1.5 TB or more is reduced. Therefore, it is possible to provide data storage excellent in electromagnetic conversion characteristics.
Further, if the laminated polyester film of the present invention is used, it is possible to provide a data storage that is excellent in electromagnetic conversion characteristics and excellent in dimensional stability.

以下、本発明について、詳述する。
本発明におけるポリエステルは、フィルムへの製膜が可能なものであれば、それ自体公知のものを採用できる。例えば、ジオール成分と芳香族ジカルボン酸成分との重縮合によって得られる芳香族ポリエステルが好ましい。かかる芳香族ジカルボン酸成分としては、例えばテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸などの6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸が挙げられる。また、かかるジオール成分としては、例えばエチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオールが挙げられる。
Hereinafter, the present invention will be described in detail.
As the polyester in the present invention, a known polyester can be adopted as long as it can be formed into a film. For example, an aromatic polyester obtained by polycondensation of a diol component and an aromatic dicarboxylic acid component is preferable. Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid, and the like. 6,6 ′-(alkylenedioxy) di-2-naphthoic acid. Examples of the diol component include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol.

これらの中でも、高温での加工時の寸法安定性の点からは、エチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするものが好ましく、特にエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするものが好ましいここでいう主たるとは、好ましくは80モル%以上、さらに90モル%以上を意味する。   Among these, ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate is the main repeating unit from the viewpoint of dimensional stability during processing at high temperature, and ethylene-2,6-naphthalene is particularly preferable. Those having carboxylate as the main repeating unit are preferred. The term “main” as used herein means preferably 80 mol% or more, and more preferably 90 mol% or more.

また、より環境変化に対する寸法安定性を向上させる観点から、国際公開2008/096612号パンフレットに記載された6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸成分および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸成分などの6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合したものも挙げられる。好ましい(アルキレンジオキシ)ジ−2−ナフトエ酸成分の共重合量は、全ジカルボン酸成分のモル数を基準として、5〜40モル%の範囲である。   Further, from the viewpoint of further improving the dimensional stability against environmental changes, the 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component described in International Publication No. 2008/096612 pamphlet, 6,6 ′-( 6,6 ′-(alkylenedioxy) di-2-naphthoic acid components such as trimethylenedioxy) di-2-naphthoic acid component and 6,6 ′-(butylenedioxy) di-2-naphthoic acid component The thing copolymerized is also mentioned. The copolymerization amount of the preferred (alkylenedioxy) di-2-naphthoic acid component is in the range of 5 to 40 mol% based on the number of moles of all dicarboxylic acid components.

本発明におけるポリエステルは、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を含有しない場合はο−クロロフェノール中、35℃において、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を含有する場合はP−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒中、35℃において、測定したときの固有粘度が0.40dl/g以上であることが好ましく、0.40〜1.0dl/gであることがさらに好ましい。固有粘度が0.4dl/g未満ではフィルム製膜時に切断が多発したり、成形加工後の製品の強度が不足することがある。一方固有粘度が1.0dl/gを超える場合は重合時の生産性が低下する。   When the polyester in the present invention does not contain a 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, it is 6,6 ′-(alkylenedioxy) di- in o-chlorophenol at 35 ° C. When the 2-naphthoic acid component is contained, the intrinsic viscosity when measured in a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio) at 35 ° C. is 0. It is preferably 40 dl / g or more, more preferably 0.40 to 1.0 dl / g. If the intrinsic viscosity is less than 0.4 dl / g, cutting may occur frequently during film formation, or the strength of the product after forming may be insufficient. On the other hand, when the intrinsic viscosity exceeds 1.0 dl / g, productivity during polymerization is lowered.

本発明におけるポリエステルの融点は、200〜300℃であることが好ましく、更に好ましくは210〜290℃、特に好ましくは220〜280℃である。融点が下限に満たないと二軸配向フィルムの耐熱性が不十分な場合があり、融点が上限を超える場合は後述は溶融混練する際の温度が非常に高温になり、熱劣化などを引き起こしやすくなる。   The melting point of the polyester in the present invention is preferably 200 to 300 ° C, more preferably 210 to 290 ° C, and particularly preferably 220 to 280 ° C. If the melting point is less than the lower limit, the heat resistance of the biaxially oriented film may be insufficient, and if the melting point exceeds the upper limit, the temperature at the time of melting and kneading will be very high, which is likely to cause thermal deterioration, etc. Become.

なお、本発明におけるポリエステルは、本発明の効果を損なわない範囲で、それ自体公知の他の共重合成分をさらに共重合、例えば繰り返し単位のモル数に対して10モル%以下、さらに5モル%以下の範囲で共重合していてもよいし、他の熱可塑性樹脂などを、例えば20重量%以下、さらに10重量%以下の範囲でブレンドしても良い。   The polyester in the present invention is further copolymerized with other copolymer components known per se within a range not impairing the effects of the present invention, for example, 10 mol% or less, further 5 mol% with respect to the number of moles of repeating units. Copolymerization may be carried out in the following range, and other thermoplastic resins and the like may be blended in a range of, for example, 20% by weight or less, and further 10% by weight or less.

ところで、本発明の積層ポリエステルフィルムは、上述のポリエステルから製造できるが、搬送や巻取りなどの特性を実用上問題ない範囲で維持しつつ、データストレージにしたときの電磁変換特性を高度に維持させる観点から、磁性層を形成する側の表面は、表面粗さ(RaA)が4nm未満にあることが必要である。更に巻取性と電磁変換特性とをより高度に両立しやすいことから、好ましいRaAは、1〜3.7nm、さらに2〜3.5nmの範囲である。   By the way, although the laminated polyester film of the present invention can be produced from the above-mentioned polyester, it maintains a high level of electromagnetic conversion characteristics when data storage is performed while maintaining characteristics such as conveyance and winding within a practically acceptable range. From the viewpoint, the surface on the side on which the magnetic layer is formed needs to have a surface roughness (RaA) of less than 4 nm. Furthermore, since it is easy to make winding property and electromagnetic conversion characteristics compatible with each other to a higher degree, preferable RaA is in the range of 1 to 3.7 nm, and more preferably in the range of 2 to 3.5 nm.

また、本発明の積層ポリエステルフィルムは、上述の表面粗さ(RaA)を具備させる観点から、磁性層を形成する側の表面を形成するポリエステルは、不活性粒子を含有しないか、含有するとしても、粒径0.15μmを超える不活性粒子の含有量が0.01重量%未満であることが好ましく、また粒径0.05〜0.15μm、さらに0.07〜0.14μmの不活性粒子を、該表面を形成するポリエステルの重量を基準として、0.005〜0.4重量%、さらに0.007〜0.3重量%、特に0.01〜0.2重量%の範囲で含有することが好ましい。なお、ここでいう不活性粒子を含有しないとは、平均粒径0.05μm以上の不活性粒子の含有量が0.005重量%未満であることを意味する。   Further, from the viewpoint of providing the above-mentioned surface roughness (RaA), the polyester forming the surface on which the magnetic layer is formed does not contain or contains inert particles in the laminated polyester film of the present invention. The content of inert particles having a particle size of more than 0.15 μm is preferably less than 0.01% by weight, and the inert particles having a particle size of 0.05 to 0.15 μm, more preferably 0.07 to 0.14 μm. In the range of 0.005 to 0.4% by weight, more preferably 0.007 to 0.3% by weight, particularly 0.01 to 0.2% by weight, based on the weight of the polyester forming the surface. It is preferable. The term “not containing inert particles” as used herein means that the content of inert particles having an average particle size of 0.05 μm or more is less than 0.005% by weight.

不活性粒子を含有させる場合については、含有させる不活性粒子はもともと粗大粒子を含まないか含有するとしても極めて少ない不活性粒子が好ましい。
このような粒度分布がシャープなものにしやすく、一次粒子の状態で存在しやすい不活性粒子としては、シリコーン樹脂、架橋アクリル樹脂、架橋ポリエステル、架橋ポリスチレンなどの有機高分子粒子および球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましく、特にシリコーン樹脂、架橋ポリスチレンおよび球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましい。もちろん、これらの不活性粒子を含有させる場合は、さらに粗大粒子をなくすため、フィルターでのろ過を行ったり、分散剤で不活性粒子の表面を処理したり、押出機での混練を強化することが好ましい。
In the case where the inert particles are contained, the inert particles to be contained are preferably very few inert particles even if they do not originally contain coarse particles or contain them.
Inert particles that tend to have a sharp particle size distribution and are likely to exist in the form of primary particles include organic polymer particles such as silicone resin, crosslinked acrylic resin, crosslinked polyester, crosslinked polystyrene, and spherical silica. It is preferably at least one kind of particles selected from the group consisting of at least one kind selected from the group consisting of silicone resin, crosslinked polystyrene and spherical silica. Of course, when these inert particles are contained, in order to further eliminate coarse particles, filtration with a filter, treatment of the surface of the inert particles with a dispersant, and strengthening of kneading with an extruder are performed. Is preferred.

本発明の積層ポリエステルフィルムは、磁性層を形成しない側の表面は、表面粗さ(RaB)が4〜10nmの範囲にある必要があり、4〜7nmの範囲にあることが更に好ましい。上述のRaBおよび後述の高さが60nm以上で且つ面積が150nm以上の突起の低減を達成するため、粒径が0.4μm以上の不活性粒子を、該磁性層を形成しない側の表面を形成するポリエステルの重量を基準として、0.1重量%未満にすることが好ましい。さらに粒径が0.3μm以上の不活性粒子を0.08重量%以下とすることが好ましい。さらに、磁性層を形成しない側の表面は、粒径0.4μmを超えるの不活性粒子の含有量が0.02重量%未満であることが好ましく、また粒径0.05μmの不活性粒子の含有量が0.6重量%未満であることが好ましく、特に粒径が0.05μm以上0.14μm未満の不活性粒子と、粒径0.14μm以上0.40μm未満、さらに好ましくは0.14μm以上0.30μm未満の不活性粒子をそれぞれ0.1〜0.4重量%未満と0.01〜0.3重量%の範囲で含有することが好ましい。このような2種類以上の不活性粒子を併用することで、より搬送性と巻取性を高めつつ、磁性層側の表面を平坦に維持しやすい。 In the laminated polyester film of the present invention, the surface on which the magnetic layer is not formed needs to have a surface roughness (RaB) in the range of 4 to 10 nm, and more preferably in the range of 4 to 7 nm. In order to achieve the reduction of the above-described RaB and protrusions having a height of 60 nm or more and an area of 150 nm 2 or more, an inert particle having a particle diameter of 0.4 μm or more is formed on the surface on which the magnetic layer is not formed. It is preferable to make it less than 0.1% by weight based on the weight of the polyester to be formed. Furthermore, it is preferable that the inactive particles having a particle diameter of 0.3 μm or more be 0.08% by weight or less. Further, the surface on the side where the magnetic layer is not formed preferably has a content of inert particles having a particle size of more than 0.4 μm and less than 0.02% by weight. The content is preferably less than 0.6% by weight, in particular, inert particles having a particle size of 0.05 μm or more and less than 0.14 μm, and particle sizes of 0.14 μm or more and less than 0.40 μm, more preferably 0.14 μm. It is preferable to contain inert particles of less than 0.30 μm in the range of less than 0.1 to 0.4% by weight and 0.01 to 0.3% by weight, respectively. By using such two or more kinds of inert particles in combination, it is easy to keep the surface on the magnetic layer side flat while further improving the transportability and the winding property.

上述の磁性層を形成しない側の表面に含有させる不活性粒子としては、ポリマー中で安定的に存在できるものであれば特に制限されず、それ自体公知のものを採用でき、好ましくは前述の磁性層を形成する側の表面で説明したのと同様な不活性粒子であり、粒度分布がシャープなものにしやすく、一次粒子の状態で存在しやすい不活性粒子として、シリコーン樹脂、架橋アクリル樹脂、架橋ポリエステル、架橋ポリスチレンなどの有機高分子粒子および球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましく、特にシリコーン樹脂、架橋ポリスチレンおよび球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましい。含有させる不活性粒子はもともと粗大粒子を含まないか含有するとしても極めて少ない不活性粒子が好ましく、さらに粗大粒子をなくすため、フィルターでのろ過を行ったり、分散剤で不活性粒子の表面を処理したり、押出機での混練を強化することが好ましい。   The inert particles to be contained on the surface on the side where the magnetic layer is not formed are not particularly limited as long as they can be stably present in the polymer, and those known per se can be adopted, and preferably the above-mentioned magnetic particles are used. Inactive particles similar to those explained on the surface on the layer-forming side, with a sharp particle size distribution, and as inert particles that tend to exist in the form of primary particles, silicone resin, cross-linked acrylic resin, cross-linked It is preferably at least one particle selected from the group consisting of organic polymer particles such as polyester and crosslinked polystyrene and spherical silica, and particularly at least one particle selected from the group consisting of silicone resin, crosslinked polystyrene and spherical silica. It is preferable that The inert particles to be included are preferably those containing no coarse particles or very few inert particles even if they are contained. In order to eliminate coarse particles, filtration with a filter or treatment of the surface of the inert particles with a dispersant is performed. It is preferable to strengthen the kneading in the extruder.

つぎに、ポリエステルフィルムの製造方法について説明する。まず、本発明におけるポリエステルの製造方法は、例えば芳香族ジカルボン酸もしくはそのエステル形成性誘導体とアルキレングリコールとをエステル化反応もしくはエステル交換反応させてポリエステルの前駆体を合成する第一反応と、該前駆体を重縮合反応させる第二反応とからなり、それ自体公知の方法を採用できる。   Below, the manufacturing method of a polyester film is demonstrated. First, the polyester production method of the present invention includes, for example, a first reaction in which an aromatic dicarboxylic acid or an ester-forming derivative thereof and an alkylene glycol are esterified or transesterified to synthesize a polyester precursor, and the precursor It consists of a second reaction in which the product is polycondensed, and a method known per se can be adopted.

好ましい第一反応の条件については、常圧下で行ってもよいが、0.05MPa〜0.5MPaの加圧下で行うことが反応速度をより速めやすいことから好ましい。また、第一反応の温度は、210℃〜270℃の範囲で行うことが好ましい。反応圧力を上記範囲内とすることで反応の進行を進みやすくしつつ、ジアルキレングリコールに代表される副生物の発生を抑制できる。このとき、アルキレングリコール成分は、第一反応を行う反応系に存在する酸成分に対し1.1〜6モル倍用いることが、反応速度及び樹脂の物性維持の点から好ましい。より好ましくは2〜5モル倍、さらに好ましくは3〜5モル倍である。   The preferable first reaction condition may be performed under normal pressure, but it is preferable to perform the reaction under a pressure of 0.05 MPa to 0.5 MPa because the reaction rate can be easily increased. Moreover, it is preferable to perform the temperature of 1st reaction in the range of 210 to 270 degreeC. By making the reaction pressure within the above range, it is possible to suppress the generation of by-products typified by dialkylene glycol while facilitating the progress of the reaction. At this time, the alkylene glycol component is preferably used in an amount of 1.1 to 6 moles relative to the acid component present in the reaction system in which the first reaction is carried out from the viewpoint of maintaining the reaction rate and the physical properties of the resin. More preferably, it is 2-5 mol times, More preferably, it is 3-5 mol times.

また、第一反応の反応速度をより早くするには、それ自体公知の触媒を用いることが好ましく、たとえばLi,Na,K,Mg,Ca,Mn、Co、Tiなどの金属成分を有する金属化合物が好ましく挙げられ、これらの中でも加圧下で行う場合は、反応の進みやすさの点からMnやTi化合物が好ましい。特にTi化合物は、さらに重縮合反応触媒としても使用でき、かつ触媒残渣の析出も少ないことから好ましい。本発明で用いるチタン化合物としては、触媒残渣の析出による不溶性粗大異物の発生を抑制する観点からポリエステル中に可溶な有機チタン化合物が好ましい。特に好ましいチタン化合物としては、チタンテトライソプロポキシド、チタンテトラプロポキシド、チタンテトラブトキシド、チタンテトラエトキシド、チタンテトラフェノキシド、トリメリット酸チタンなどを好ましく例示できる。   Further, in order to increase the reaction rate of the first reaction, it is preferable to use a catalyst known per se, for example, a metal compound having a metal component such as Li, Na, K, Mg, Ca, Mn, Co, and Ti. Among these, when performing under pressure, Mn and Ti compounds are preferable from the viewpoint of easy progress of the reaction. In particular, a Ti compound is preferable because it can be used as a polycondensation reaction catalyst, and the catalyst residue is less precipitated. The titanium compound used in the present invention is preferably an organic titanium compound that is soluble in polyester from the viewpoint of suppressing the generation of insoluble coarse particles due to precipitation of catalyst residues. Particularly preferable examples of the titanium compound include titanium tetraisopropoxide, titanium tetrapropoxide, titanium tetrabutoxide, titanium tetraethoxide, titanium tetraphenoxide, and trimellitic acid titanium.

添加する触媒量は、第一反応中に存在する全酸成分のモル数を基準として、金属元素換算で、10〜150ミリモル%の範囲にあることが好ましく、さらに20〜100ミリモル%、特に30〜70ミリモル%の範囲にあることが反応速度を促進しつつ、触媒起因の粗大不溶性異物の生成を抑制でき、さらに得られる共重合芳香族ポリエステルの耐熱性を高度に維持できることから好ましい。なお、チタン化合物を添加する場合の添加時期は、第一反応のエステル化反応開始時から存在するように添加し、前述のとおり、引き続き重縮合反応触媒として使用することが好ましい。もちろん、重縮合反応速度をコントロールする目的で2回以上に分けて添加してもよい。   The amount of catalyst to be added is preferably in the range of 10 to 150 mmol%, more preferably 20 to 100 mmol%, especially 30, in terms of metal elements, based on the number of moles of all acid components present in the first reaction. It is preferable to be in the range of ˜70 mmol% because the reaction rate can be promoted, the formation of coarse insoluble foreign matters due to the catalyst can be suppressed, and the heat resistance of the resulting copolymerized aromatic polyester can be maintained at a high level. In addition, when adding a titanium compound, it is preferable to add so that it may exist from the time of the esterification reaction start of a 1st reaction, and as above-mentioned, it uses continuously as a polycondensation reaction catalyst. Of course, it may be added in two or more times for the purpose of controlling the polycondensation reaction rate.

つぎに、第一反応で得られた前駆体を重縮合反応させる第二反応について説明する。
本発明では、得られるポリエステルに、高度の熱安定性を付与させる目的で、第二反応における重縮合反応の開始以前に、反応系にリン化合物からなる熱安定剤を添加することが好ましい。具体的なリン化合物としては、化合物中にリン元素を有するものであれば特に限定されず、例えば、リン酸、亜リン酸、リン酸トリメチルエステル、リン酸トリブチルエステル、リン酸トリフェニルエステル、リン酸モノメチルエステル、リン酸ジメチルエステル、フェニルホスホン酸、フェニルホスホン酸ジメチルエステル、フェニルホスホン酸ジエチルエステル、リン酸アンモニウム、トリエチルホスホノアセテート、メチルジエチルホスホノアセテートなどを挙げることができ、これらのリン化合物は二種以上を併用してもよい。なお、リン化合物の添加時期は、第一反応が実質的に終了してから第二反応である重縮合反応初期の間に行うことが好ましく、添加は一度に行ってもよいし、2回以上に分割して行ってもよい。
Next, the second reaction in which the precursor obtained in the first reaction is polycondensed will be described.
In the present invention, for the purpose of imparting a high degree of thermal stability to the obtained polyester, it is preferable to add a thermal stabilizer composed of a phosphorus compound to the reaction system before the start of the polycondensation reaction in the second reaction. The specific phosphorus compound is not particularly limited as long as it has a phosphorus element in the compound. For example, phosphoric acid, phosphorous acid, phosphoric acid trimethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, phosphorus Acid monomethyl ester, phosphoric acid dimethyl ester, phenylphosphonic acid, phenylphosphonic acid dimethyl ester, phenylphosphonic acid diethyl ester, ammonium phosphate, triethylphosphonoacetate, methyldiethylphosphonoacetate, etc., and these phosphorus compounds May use 2 or more types together. The addition timing of the phosphorus compound is preferably performed during the initial stage of the polycondensation reaction, which is the second reaction after the first reaction is substantially completed, and the addition may be performed at one time or two or more times. You may divide into.

ところで、重縮合反応の温度は270℃〜300℃の範囲で行い、重縮合反応中の圧力は50Pa以下の減圧下で行うのが好ましい。重縮合反応中の圧力が上限より高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合芳香族ポリエステルを得ることが困難になる。重縮合触媒としては、それ自体公知のTi,Al,Sb,Geなどの金属化合物を好適に使用でき、それらの中でもエステル化反応やエステル交換反応時に添加されたチタン化合物を引き続き使用することが触媒残渣による不溶性粗大異物の発生を抑制できることから好ましい。   By the way, the polycondensation reaction is preferably performed at a temperature in the range of 270 ° C. to 300 ° C., and the pressure during the polycondensation reaction is preferably performed under a reduced pressure of 50 Pa or less. If the pressure during the polycondensation reaction is higher than the upper limit, the time required for the polycondensation reaction becomes long and it becomes difficult to obtain a copolymerized aromatic polyester having a high degree of polymerization. As the polycondensation catalyst, known metal compounds such as Ti, Al, Sb, and Ge can be suitably used, and among them, it is a catalyst that the titanium compound added at the time of esterification reaction or transesterification reaction is used continuously. This is preferable because generation of insoluble coarse foreign matters due to the residue can be suppressed.

また、不活性粒子を含有させる方法については、アルキレングリコールのスラリー状態として、さらにフィルターなどによって粗大粒子を低減し、それを重合工程で添加して粒子含有量が0.02〜1.0重量%の粒子含有マスターポリエステルを作成し、該マスターポリエステルを、粒子を含有しないポリエステルで希釈するのが、不活性粒子の凝集による粗大突起を低減する上で好ましい。   In addition, for the method of containing inert particles, as an alkylene glycol slurry state, coarse particles are further reduced by a filter or the like, and added in a polymerization step, whereby the particle content is 0.02 to 1.0% by weight. In order to reduce coarse protrusions due to aggregation of inert particles, it is preferable to prepare a particle-containing master polyester and dilute the master polyester with a polyester not containing particles.

このようにして得られるポリエステルは、本発明の効果を阻害しない範囲で、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、ワックスなどの滑剤、難燃剤、離型剤、核剤、を必要に応じて配合しても良い。なお、磁性層を形成しない側の表面にある高さが60nm以上で且つ面積が150nm以上の突起を低減する観点から、表面欠点を形成しやすいポリエステルと非相溶な他の熱可塑性ポリマー、顔料、充填剤、ガラス繊維、炭素繊維、層状ケイ酸塩などは含有させないことが好ましい。 The polyester thus obtained contains a stabilizer such as an ultraviolet absorber, a lubricant such as an antioxidant, a plasticizer, and a wax, a flame retardant, a release agent, and a nucleating agent as long as the effects of the present invention are not impaired. You may mix | blend as needed. In addition, from the viewpoint of reducing protrusions having a height of 60 nm or more and an area of 150 nm 2 or more on the surface on the side where the magnetic layer is not formed, other thermoplastic polymer incompatible with polyester that easily forms surface defects, It is preferable not to contain pigments, fillers, glass fibers, carbon fibers, layered silicates, and the like.

ところで、本発明の積層ポリエステルフィルムは、その磁性層を形成しない側の表面に、高さが60nm以上で且つ面積150nm以上の突起が、20個/0.06mm以下であることが必要である。更には10個/0.06mm以下であることが好ましい。また、本発明の積層ポリエステルフィルムは、その磁性層を形成しない側の表面に、高さが30nm以上の突起が700個/0.06mm未満、更には400個/0.06mm未満の範囲にあることが好ましい。 By the way, the laminated polyester film of the present invention requires that the number of protrusions having a height of 60 nm or more and an area of 150 nm 2 or more be 20 / 0.06 mm 2 or less on the surface on which the magnetic layer is not formed. is there. Further, it is preferably 10 pieces / 0.06 mm 2 or less. Further, the laminated polyester film of the present invention has a protrusion having a height of 30 nm or more on the surface on which the magnetic layer is not formed, less than 700 / 0.06 mm 2 , and more preferably less than 400 / 0.06 mm 2. It is preferable that it exists in.

上述したポリエステルフィルムの粗面層側に特定範囲以上の高さを有する突起は、ベースフィルムの搬送性には有利であり、ベースフィルムの製造時および、または塗布型磁気記録テープへの加工時には生産性を良好にする点で好ましい。ただ、あまりにも小さくこれまで問題ないと考えられていたが、このような突起でもロール状態で保管して使用した場合、粗面側の突起形状が平坦面側に転写し、軽微な凹み状欠点を発生させ、これが近年の磁気記憶容量の増大に伴い、磁性層を塗布した後でも、特にドロップアウトやエラーレートの点で悪影響を及ぼすことを見出したのである。そして、このような警備な凹み状欠点は、粗面層側に配する不活性微粒子の種類、大きさ、含有量を最適化するだけでは不十分であった。   The above-mentioned protrusion having a height exceeding a specific range on the rough surface layer side of the polyester film is advantageous for the transportability of the base film, and is produced at the time of manufacturing the base film and / or processing to the coating type magnetic recording tape. From the viewpoint of improving the properties. However, it was thought that there was no problem so far, but when these protrusions were stored and used in roll form, the protrusion shape on the rough surface side was transferred to the flat surface side, resulting in slight dent-like defects. As a result of the recent increase in magnetic storage capacity, it has been found that even after the magnetic layer is applied, it has an adverse effect particularly in terms of dropout and error rate. Further, such a guard-like dent-like defect is not sufficient only by optimizing the kind, size and content of the inert fine particles disposed on the rough surface layer side.

そこで、本発明者らは、特に転写後に問題となる高さ60nm以上で且つ面積150nm以上の突起、さらに好ましくは高さが30nm以上の突起にも着目し、その低減を鋭意検討した結果、前述した粗面側のポリエステルに含有される不活性粒子を所望の範囲に選択し、前述の第2フイルターの濾過を製膜する際の溶融押出工程で適用することにより再凝集などによって生成することを低減させることに加え、後述のフィルム製造時の横方向の延伸温度を通常よりもマイルドな条件として且つ、延伸倍率も通常よりも高倍率とすることで達成できることを見出したのである。 Therefore, the present inventors have paid particular attention to protrusions having a height of 60 nm or more and an area of 150 nm 2 or more, more preferably protrusions having a height of 30 nm or more, which are problematic after transfer. The inert particles contained in the rough side polyester described above are selected within a desired range, and the second filter is applied by the melt extrusion process when forming the film by re-aggregation or the like. In addition to reducing the above, it has been found that it can be achieved by setting the stretching temperature in the transverse direction at the time of film production described below to a milder condition than usual and by setting the stretching ratio to a higher ratio than usual.

本発明の二軸配向積層ポリエステルフィルムは、例えば、ポリエステルA層用のポリマーと、反対面を形成するポリエステルB層用のポリマーとを用意し、これらを溶融状態で積層してダイからシート状に共押出する工程、得られたシート状物を冷却固化することで、積層未延伸ポリエステルフィルムとする工程、そして得られた積層未延伸ポリエステルフィルムを製膜方向と幅方向に延伸することで製造できる。溶融状態で押し出す工程での温度は、未溶融物がなく、過度にポリエステルの熱劣化が進まない温度であれば特に制限されず、例えば、ポリエステルの融点(Tm:℃)ないし(Tm+70)℃の温度で行うことが好ましい。つぎに、冷却については、得られる積層未延伸ポリエステルフィルムの平坦性を維持しつつ、厚み斑も少なくするために、フィルム製膜方向に沿って回転するダイの下方に設置された冷却ドラムを用い、それにシート状物を密着させて冷却するのが好ましい。つづいて、延伸については、積層未延伸ポリエステルフィルムを、一軸方向(縦方向または横方向)に(ポリエステルのガラス転移温度(Tg)−10)℃〜(Tg+70)℃の温度で2.5倍以上、好ましくは3倍以上の倍率で延伸し、次いで上記延伸方向と直交する方向にTg〜(Tg+70)℃の温度で2.5倍以上、好ましくは3倍以上の倍率で延伸するのが好ましい。この際、前述した粗面側の高くて大きな突起を低減させる為に、横延伸温度は、(Tg+10)〜(Tg+50℃)の範囲で延伸させることが望ましい。また、同時に横方向に5倍以上の倍率で延伸することが望ましい。横延伸温度がTgに対して高すぎたり、若しくは低すぎたりすると過度な延伸時応力が不活性粒子に集中し、その結果、粒子周辺のボイドが大きくなることで突起が高く且つ、大きなものとなり、本発明を達成できなくなる。一方、上述した温度領域でマイルドに横延伸させた場合、同時に横延伸倍率を通常よりも高くすることで粗面層側を平坦化させることができ、その結果、所望の高さと大きさを有する突起を形成することが可能になる。   The biaxially oriented laminated polyester film of the present invention is prepared, for example, by preparing a polymer for the polyester A layer and a polymer for the polyester B layer forming the opposite surface, and laminating these in a molten state to form a sheet from a die. The step of co-extrusion, the step of forming a laminated unstretched polyester film by cooling and solidifying the obtained sheet-like material, and the resulting laminated unstretched polyester film can be produced by stretching in the film forming direction and the width direction. . The temperature in the process of extruding in a molten state is not particularly limited as long as there is no unmelted material and the temperature of the polyester does not excessively deteriorate. For example, the melting point of the polyester (Tm: ° C.) to (Tm + 70) ° C. It is preferable to carry out at temperature. Next, for cooling, in order to reduce the thickness unevenness while maintaining the flatness of the obtained laminated unstretched polyester film, a cooling drum installed under the die rotating along the film forming direction is used. It is preferable to cool the sheet-like material in close contact with it. Next, for stretching, the laminated unstretched polyester film is uniaxially (longitudinal or transverse) (polyester glass transition temperature (Tg) −10) ° C. to (Tg + 70) ° C. at a temperature of 2.5 times or more. It is preferable that the film is stretched at a magnification of 3 times or more, and then stretched at a temperature of Tg to (Tg + 70) ° C. at a temperature of 2.5 times or more, preferably at a magnification of 3 times or more in the direction orthogonal to the stretching direction. At this time, in order to reduce the above-described high and large protrusions on the rough surface side, it is desirable that the transverse stretching temperature is stretched in the range of (Tg + 10) to (Tg + 50 ° C.). At the same time, it is desirable to stretch in the transverse direction at a magnification of 5 times or more. If the transverse stretching temperature is too high or too low with respect to Tg, excessive stretching stress concentrates on the inert particles, and as a result, the voids around the particles become large and the protrusions are high and large. The present invention cannot be achieved. On the other hand, when mildly stretched in the temperature range described above, the rough surface layer side can be flattened by simultaneously increasing the transverse stretch ratio higher than usual, and as a result, it has a desired height and size. Protrusions can be formed.

さらに必要に応じて縦方向および/または横方向に再度延伸してもよい。このように延伸したときの全延伸倍率は、面積延伸倍率(縦方向の延伸倍率×横方向の延伸倍率)として9倍以上が好ましく、12〜35倍がさらに好ましく、15〜30倍が特に好ましい。さらにまた、二軸配向フィルムは、(Tg+70)〜(Tg−10)℃の温度で熱固定することができ、例えば180〜250℃で熱固定するのが好ましい。熱固定時間は1〜60秒が好ましい。また、前述の延伸は逐次二軸延伸で説明したが、縦方向と横方向に同時に延伸する同時二軸延伸を用いても良い。   Further, if necessary, the film may be stretched again in the machine direction and / or the transverse direction. The total draw ratio when stretched in this way is preferably 9 times or more, more preferably 12 to 35 times, and particularly preferably 15 to 30 times as an area draw ratio (longitudinal draw ratio x transverse draw ratio). . Furthermore, the biaxially oriented film can be heat-set at a temperature of (Tg + 70) to (Tg-10) ° C., for example, preferably heat-set at 180 to 250 ° C. The heat setting time is preferably 1 to 60 seconds. Moreover, although the above-mentioned extending | stretching was demonstrated by sequential biaxial stretching, you may use simultaneous biaxial stretching which extends | stretches simultaneously in the vertical direction and a horizontal direction.

本発明の積層ポリエステルフィルムは、高密度磁気記録テープのベースフィルムとして用いた際に優れた寸法安定性を発現するために、長手方向のヤング率が3〜10GPa、さらに3.5〜9GPa、特に4〜8GPaであることが好ましい。一方、幅方向のヤング率は、ベースフィルムでの温度膨張係数を後述の範囲とさせやすい観点から、4〜15GPa、さらに5〜14GPa、特に6〜13GPa、もっとも好ましくは7〜11GPaの範囲であることが好ましい。幅方向のヤング率が下限未満では、磁気記録テープとしたときの温度膨張係数を小さくすることが困難となり、他方上限を超えると、磁気記録テープとしたときの温度膨張係数が過度に小さくなってしまう。   The laminated polyester film of the present invention has a Young's modulus in the longitudinal direction of 3 to 10 GPa, more preferably 3.5 to 9 GPa, particularly in order to develop excellent dimensional stability when used as a base film of a high-density magnetic recording tape. It is preferably 4 to 8 GPa. On the other hand, the Young's modulus in the width direction is 4 to 15 GPa, more preferably 5 to 14 GPa, particularly 6 to 13 GPa, most preferably 7 to 11 GPa, from the viewpoint of easily setting the temperature expansion coefficient of the base film to the range described later. It is preferable. If the Young's modulus in the width direction is less than the lower limit, it is difficult to reduce the temperature expansion coefficient when the magnetic recording tape is used. On the other hand, if the upper limit is exceeded, the temperature expansion coefficient when the magnetic recording tape is used becomes excessively small. End up.

本発明の積層ポリエステルフィルムは、その幅方向の温度膨張係数が、1ppm/℃以下〜−5ppm/℃以上の範囲にあることが好ましい。より好ましい磁気記録媒体用支持体の幅方向の温度膨張係数は、上限が0.5pm/℃以下であり、下限が−4ppm/℃以上、さらに−3ppm/℃以上である。一般的に磁気記録装置に用いられている磁気ヘッドの温度膨張係数は7ppm/℃前後である。積層ポリエステルフィルムの幅方向の温度膨張係数が上限を超える場合には、磁気テープとしたときの幅方向の温度膨張が磁気ヘッドの温度膨張よりも大きくなりすぎるため、磁気データを記録・再生する環境が低温から高温に変化した際に、テープの幅方向に磁気ヘッドに対して相対的に膨張し、再生不良を起こしやすい。また、積層ポリエステルフィルムの幅方向の温度膨張係数が下限より小さい場合には、フィルムの温度膨張が磁気ヘッドの温度膨張よりも小さすぎるため、低温から高温に変化した際に、テープの幅方向に磁気ヘッドに対して相対的に収縮し、再生不良を起こしやすくなる。   The laminated polyester film of the present invention preferably has a temperature expansion coefficient in the width direction of 1 ppm / ° C. or less to −5 ppm / ° C. or more. A more preferable temperature expansion coefficient in the width direction of the support for magnetic recording media has an upper limit of 0.5 pm / ° C. or lower, a lower limit of −4 ppm / ° C. or higher, and further −3 ppm / ° C. or higher. Generally, the temperature expansion coefficient of a magnetic head used in a magnetic recording apparatus is around 7 ppm / ° C. When the temperature expansion coefficient in the width direction of the laminated polyester film exceeds the upper limit, the temperature expansion in the width direction when used as a magnetic tape is too much larger than the temperature expansion of the magnetic head. When the temperature changes from a low temperature to a high temperature, the tape expands relative to the magnetic head in the width direction of the tape and easily causes a reproduction failure. Also, if the temperature expansion coefficient in the width direction of the laminated polyester film is smaller than the lower limit, the temperature expansion of the film is too small than the temperature expansion of the magnetic head, so when the temperature changes from low to high, It contracts relative to the magnetic head and tends to cause reproduction failure.

本発明の積層ポリエステルフィルムの全厚みは、2.0〜8μmが好ましい。より好ましくは2.5〜7μm、さらに好ましくは3〜6μm、特に好ましくは3.5〜5.5μmである。厚みが下限より小さい場合は、テープに腰がなくなるため、電磁変換特性が低下する。厚みが上限を超える場合は、テープ1巻あたりのテープ長さが短くなるため、磁気テープの小型化、高容量化が困難になりやすい。   The total thickness of the laminated polyester film of the present invention is preferably 2.0 to 8 μm. More preferably, it is 2.5-7 micrometers, More preferably, it is 3-6 micrometers, Most preferably, it is 3.5-5.5 micrometers. When the thickness is smaller than the lower limit, the tape becomes dull and electromagnetic conversion characteristics deteriorate. When the thickness exceeds the upper limit, the tape length per one tape is shortened, so that it is difficult to reduce the size and increase the capacity of the magnetic tape.

また、本発明の積層ポリエステルフィルムは、磁性層を形成する平坦層側の表面を形成するポリエステル層をA層としたとき、その厚みが積層ポリエステルフィルムの厚みに対して、10〜90%、さらに20〜80%、特に30〜70%の範囲にあることが好ましい。A層が全厚に対して下限未満の場合、磁性層を形成しない粗面層側の表面を形成するポリエステル層(B層)に含まれる粒子の突上げによりウネリなどが発生し、電磁変換特性が悪化しやすくなる。他方、上限以下にすることで、積層ポリエステルフィルムを製膜する際に生じる、製品とならない部分を回収してB層に用いることができ、製造コストなどの低減も図ることができる。   The laminated polyester film of the present invention has a thickness of 10 to 90% with respect to the thickness of the laminated polyester film, when the polyester layer forming the surface on the flat layer side forming the magnetic layer is an A layer. It is preferable to be in the range of 20 to 80%, particularly 30 to 70%. When the A layer is less than the lower limit with respect to the total thickness, undulation or the like occurs due to the pushing up of particles contained in the polyester layer (B layer) that forms the surface of the rough surface layer that does not form the magnetic layer, and electromagnetic conversion characteristics Is likely to get worse. On the other hand, by setting it to the upper limit or less, it is possible to collect a portion that does not become a product, which is generated when the laminated polyester film is formed, and use it for the B layer, and it is possible to reduce the manufacturing cost and the like.

本発明の積層ポリエステルフィルムは、高密度磁気記録テープ、特にディジタル記録型磁気記録テープのベースフィルムとして好ましく用いられる。そこで、本発明の積層ポリエステルフィルムを用いた磁気記録媒体について、さらに説明する。   The laminated polyester film of the present invention is preferably used as a base film of a high-density magnetic recording tape, particularly a digital recording magnetic recording tape. Therefore, the magnetic recording medium using the laminated polyester film of the present invention will be further described.

本発明の磁気記録媒体は、上述の積層ポリエステルフィルムに磁性層を形成することで製造できる。なお、本発明の積層ポリエステルフィルムの表面には、磁性層などとの接着性を向上させるために、本発明の効果を損なわない範囲で、それ自体公知の易接着機能を有する塗膜層などを形成しても良い。   The magnetic recording medium of the present invention can be produced by forming a magnetic layer on the above-described laminated polyester film. In addition, on the surface of the laminated polyester film of the present invention, in order to improve the adhesiveness with a magnetic layer or the like, a coating layer having a well-known easy-adhesion function, etc., as long as the effect of the present invention is not impaired. It may be formed.

本発明の磁気記録テープにおける磁性層は、鉄または鉄を主成分とする針状微細磁性粉やバリウムフェライトをポリ塩化ビニル、塩化ビニル・酢酸ビニル共重合体等のバインダーに均一分散し、その塗液を塗布して形成したものであり、磁性層の塗布工程およびカレンダー工程での取り扱い性に優れる。   The magnetic layer in the magnetic recording tape of the present invention is prepared by uniformly dispersing iron or acicular fine magnetic powder or barium ferrite in a binder such as polyvinyl chloride or a vinyl chloride / vinyl acetate copolymer. It is formed by applying a liquid, and is excellent in handleability in the magnetic layer coating process and calendar process.

なお、磁性層は、その厚みが1μm以下、さらに0.1〜1μmとなるように塗布するのが、特に短波長領域での出力、S/N、C/N等の電磁変換特性に優れ、ドロップアウト、エラーレートの少ない高密度記録用塗布型磁気記録テープとする観点から好ましい。また、必要に応じて、塗布型磁性層の下地層として、微細な酸化チタン粒子等を含有する非磁性層を磁性層と同様の有機バインダー中に分散し、塗設することも好ましい。   In addition, it is excellent in electromagnetic conversion characteristics such as output in a short wavelength region, S / N, C / N, etc., particularly when the magnetic layer is applied so that the thickness is 1 μm or less, and further 0.1 to 1 μm. This is preferable from the viewpoint of a coating type magnetic recording tape for high density recording with low dropout and error rate. If necessary, it is also preferable to disperse and coat a nonmagnetic layer containing fine titanium oxide particles or the like in the same organic binder as that of the magnetic layer as the underlayer of the coating type magnetic layer.

また、磁性層の表面には、目的、用途、必要に応じてダイアモンドライクカーボン(DLC)等の保護層、含フッ素カルボン酸系潤滑層を順次設け、さらに他方の表面に、公知のバックコート層を設けてもよい。
このようにして得られる塗布型磁気記録テープは、データ8ミリ、DDSIV、DLT、S−DLT、LTO等のデータ用途の磁気テープとして極めて有用である。
Further, a protective layer such as diamond-like carbon (DLC) and a fluorine-containing carboxylic acid-based lubricating layer are sequentially provided on the surface of the magnetic layer as required, and a known backcoat layer is provided on the other surface. May be provided.
The coating type magnetic recording tape thus obtained is extremely useful as a magnetic tape for data use such as data 8 mm, DDSIV, DLT, S-DLT, LTO and the like.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明におけるポリエステル、ポリエステルフィルムおよびデータストレージの特性は、下記の方法で測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the characteristic of the polyester in this invention, the polyester film, and data storage was measured and evaluated by the following method.

(1)固有粘度
得られたポリエステルの固有粘度は、前述のとおり、o−クロロフェノール、35℃で測定し、o−クロロフェノールでは均一に溶解するのが困難な場合は、p−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いて35℃で測定して求めた。
(1) Intrinsic viscosity As described above, the intrinsic viscosity of the obtained polyester is measured at o-chlorophenol at 35 ° C. When it is difficult to dissolve uniformly with o-chlorophenol, p-chlorophenol / It was determined by measurement at 35 ° C. using a mixed solvent of 1,1,2,2-tetrachloroethane (40/60 weight ratio).

(2)フィルム中の粒子の粒径
フィルム表面層のポリエステルをプラズマ低温灰化処理法(例えばヤマト科学製、PR−503型)で除去し、粒子を露出させる。処理条件はポリエステルは灰化されるが粒子はダメージを受けない条件を選択する。これをSEM(走査型電子顕微鏡)にて1万倍程度の倍率で粒子を観察し、粒子の画像(粒子によってできる光の濃淡)をイメージアナライザー(例えば、ケンブリッジインストルメント製、QTM900)に結びつけ、観察箇所を変えて少なくとも5,000個の粒子の面積円相当径(Di)を求める。この結果から粒子の粒径分布曲線を作成した。なお、粒子種の同定はSEM−XMA、ICPによる金属元素の定量分析などを使用して行うことができる。また、添加する不活性粒子の平均粒径は、同様な測定を行って各粒子の粒径を求め、数平均を平均粒径とした。
(2) Particle size of particles in the film
The polyester on the film surface layer is removed by a plasma low temperature ashing method (for example, PR-503, manufactured by Yamato Kagaku) to expose the particles. The treatment conditions are such that the polyester is ashed but the particles are not damaged. This is observed with a SEM (scanning electron microscope) at a magnification of about 10,000 times, and an image of the particle (light density produced by the particle) is connected to an image analyzer (for example, QTM900, manufactured by Cambridge Instrument) The observation area is changed, and the area equivalent circle diameter (Di) of at least 5,000 particles is obtained. From this result, a particle size distribution curve of the particles was prepared. The identification of the particle type can be performed using SEM-XMA, quantitative analysis of metal elements by ICP, or the like. Moreover, the average particle diameter of the inert particle to add was measured similarly, the particle diameter of each particle | grain was calculated | required, and the number average was made into the average particle diameter.

(3)粒子の含有量
(3−1)各層中の粒子の総含有量
積層二軸配向ポリエステルフィルムからポリエステルA層、ポリエステルB層を各々100g程度削り採ってサンプリングし、ポリエステルは溶解し粒子は溶解させない溶媒を選択して、サンプルを溶解した後、粒子をポリエステルから遠心分離し、サンプル重量に対する粒子の比率(重量%)をもって各層中の粒子総含有量とする。
(3) Particle content
(3-1) Total content of particles in each layer
100g of each polyester A layer and polyester B layer are sampled from the laminated biaxially oriented polyester film and sampled. Select a solvent that dissolves the polyester and does not dissolve the particles. Dissolve the sample, and then centrifuge the particles from the polyester. The ratio of particles to the sample weight (% by weight) is defined as the total content of particles in each layer.

(3−2)各層中の無機粒子の総含有量
積層ポリエステルフィルムの無機粒子が存在する場合は、ポリエステルA層、ポリエステルB層を各々削り採って100g程度サンプリングし、これを白金ルツボ中にて1,000℃程度の炉の中で3時間以上燃焼させ、次いでルツボ中の燃焼物をテレフタル酸(粉体)と混合し50グラムの錠型のプレートを作成する。このプレートを波長分散型蛍光X線を用いて各元素のカウント値をあらかじめ作成してある元素毎の検量線より換算し各層中の無機粒子の総含有量を決定する。蛍光X線を測定する際のX線管はCr管が好ましくRh管で測定してもよい。X線出力は4KWと設定し分光結晶は測定する元素毎に変更する。材質の異なる無機粒子が複数種類存在する場合は、この測定により各材質の無機粒子の含有量を決定する。
(3-2) Total content of inorganic particles in each layer
If inorganic particles are present in the laminated polyester film, the polyester A layer and the polyester B layer are each scraped and sampled for about 100 g, and this is burned in a platinum crucible for about 3 hours in a furnace at about 1,000 ° C. Then, the combustion product in the crucible is mixed with terephthalic acid (powder) to make a 50 gram tablet plate. This plate is converted using a wavelength-dispersed fluorescent X-ray to calculate the count value of each element from a calibration curve for each element that has been prepared in advance, and the total content of inorganic particles in each layer is determined. The X-ray tube for measuring fluorescent X-rays is preferably a Cr tube and may be measured with an Rh tube. The X-ray output is set to 4 kW, and the spectral crystal is changed for each element to be measured. When there are a plurality of types of inorganic particles of different materials, the content of the inorganic particles of each material is determined by this measurement.

(3−3)各層中の各種粒子の含有量(無機粒子が存在しない場合)
層中に無機粒子が存在しない場合は、前記(2)により求めたピークを構成する各粒子の個数割合と平均粒径と粒子の密度から各ピーク領域に存在する粒子の重量割合を算出し、これと前記(3−1)で求めた各層中の粒子の総含有量とから、各ピーク領域に存在する粒子の含有量(重量%)を求める。
なお、代表的な微粒子の密度は下記のとおりである。
架橋シリコーン樹脂の密度 : 1.35g/cm
架橋ポリスチレン樹脂の密度: 1.05g/cm
架橋アクリル樹脂の密度 : 1.20g/cm
なお、樹脂の密度は(3−1)の方法でポリエステルから遠心分離した粒子をさらに分別し、例えば、ピクノメーターにより『微粒子ハンドブック:朝倉書店、1991年版、150頁』に記載の方法で測定することができる。
(3-3) Content of various particles in each layer (when no inorganic particles are present)
When inorganic particles are not present in the layer, the weight ratio of the particles present in each peak region is calculated from the number ratio of each particle constituting the peak determined by the above (2), the average particle diameter, and the density of the particles, From this and the total content of particles in each layer determined in (3-1) above, the content (% by weight) of particles present in each peak region is determined.
The typical fine particle density is as follows.
Density of crosslinked silicone resin: 1.35 g / cm 3
Cross-linked polystyrene resin density: 1.05 g / cm 3
Cross-linked acrylic resin density: 1.20 g / cm 3
The resin density is further determined by separating the particles centrifuged from the polyester by the method (3-1), and measured by a method described in “Fine Particles Handbook: Asakura Shoten, 1991, p. 150” using, for example, a pycnometer. be able to.

(3−4)各層中の各種粒子の含有量(無機粒子が存在する場合)
層中に無機粒子が存在する場合は、前記(3−1)で求めた各層中の粒子の総含有量と前記(3−2)で求めた各層中の無機粒子の総含有量とから層中の有機粒子と無機粒子の含有量をそれぞれ算出し、有機粒子の含有量は上記(3−3)の方法で、無機粒子の含有量は上記(3−2)の方法で、それぞれ含有量(重量%)を求める。
(3-4) Content of various particles in each layer (when inorganic particles are present)
When inorganic particles are present in the layer, the layer is determined from the total content of particles in each layer determined in (3-1) and the total content of inorganic particles in each layer determined in (3-2). The content of the organic particles and the inorganic particles in each is calculated, the content of the organic particles is the method (3-3), and the content of the inorganic particles is the method (3-2). (Wt%) is determined.

(4)フィルムおよび各ポリエステル層の厚み
(4−1)フィルムの厚み
ゴミが入らないようにフィルムを10枚重ね、打点式電子マイクロメータにて厚みを測定し、1枚当たりのフィルム厚みを計算する。
(4) Thickness of film and each polyester layer (4-1) Thickness of film 10 films are stacked so that dust does not enter, the thickness is measured with a dot-type electronic micrometer, and the film thickness per sheet is calculated. To do.

(4−2)各ポリエステル層の厚み
2次イオン質量分析装置(SIMS)を用いて、表層から深さ3,000nm迄の範囲のフィルム中の粒子の内もっとも高濃度の粒子に起因する元素とポリエステルの炭素元素の濃度比(M+/C+)を粒子濃度とし、表面から深さ3,000nmまで厚さ方向の分析を行う。表層では表面という界面のために粒子濃度は低く表面から遠ざかるにつれて粒子濃度は高くなる。そして一旦極大値となった粒子濃度がまた減少し始める。この濃度分布曲線をもとに表層粒子濃度が極大値の1/2となる深さ(この深さは極大値となる深さよりも深い)を求め、これを表層厚さとする。そして、先ほどのフィルムの厚みと表層厚みとから、各層の厚みを算出する。
条件は次のとおりである。
(a)測定装置:2次イオン質量分析装置(SIMS)
(b)測定条件
1次イオン種 :O
1次イオン加速電圧:12KV
1次イオン電流:200nA
ラスター領域 :400μm□
分析領域 :ゲート30%
測定真空度 :0.8Pa(6.0×10−3Torr)
E−GUN :0.5KV−3.0A
なお、表層から深さ3000nm迄の範囲にもっとも多く含有する粒子が有機高分子粒子の場合はSIMSでは測定が難しいので、表面からエッチングしながらXPS(X線光電子分光法)、IR(赤外分光法)などで上記同様のデプスプロファイルを測定し、表層厚さを求めてもよい。
(4-2) Thickness of each polyester layer Using a secondary ion mass spectrometer (SIMS), an element caused by the highest concentration of particles in the film ranging from the surface layer to a depth of 3,000 nm The concentration ratio (M + / C +) of the carbon element in the polyester is defined as the particle concentration, and analysis in the thickness direction is performed from the surface to a depth of 3,000 nm. In the surface layer, the particle concentration is low due to the interface of the surface, and the particle concentration increases as the distance from the surface increases. And the particle concentration once reached the maximum value starts to decrease again. Based on this concentration distribution curve, a depth at which the surface layer particle concentration is ½ of the maximum value (this depth is deeper than the depth at which the maximum value is reached) is determined, and this is defined as the surface layer thickness. Then, the thickness of each layer is calculated from the thickness of the film and the thickness of the surface layer.
The conditions are as follows.
(A) Measuring device: secondary ion mass spectrometer (SIMS)
(B) Measurement conditions
Primary ion species: O 2 +
Primary ion acceleration voltage: 12KV
Primary ion current: 200 nA
Raster area: 400 μm
Analysis area: 30% gate
Measurement degree of vacuum: 0.8 Pa (6.0 × 10 −3 Torr)
E-GUN: 0.5KV-3.0A
In addition, when the most contained particles in the range from the surface layer to a depth of 3000 nm are organic polymer particles, it is difficult to measure by SIMS, so XPS (X-ray photoelectron spectroscopy), IR (infrared spectroscopy) while etching from the surface. The depth profile similar to the above may be measured by the method) to obtain the surface layer thickness.

(5)ヤング率
フィルムを試料幅10mm、長さ15cmに切り、チャック間100mmにして、引張速度10mm/min、チャート速度500mm/minの条件でインストロンタイプの万能引張試験装置にて引っ張る。得られる荷重−伸び曲線の立上り部の接線よりヤング率を計算する。
(5) Young's modulus
The film is cut into a sample width of 10 mm and a length of 15 cm, and the distance between chucks is set to 100 mm, and the film is pulled with an Instron type universal tensile tester under the conditions of a tensile speed of 10 mm / min and a chart speed of 500 mm / min. The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(6)表面粗さ(Ra)
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて測定倍率25倍、測定面積283μm×213μm(=0.0603mm)の条件にて測定し、該粗さ計に内蔵された表面解析ソフトMetroProにより中心面平均粗さ(Ra)を求め、これを表面粗さ(Ra)とした。なお、測定は測定箇所を変えて10回行い、それらの平均値を中心面平均粗さ(Ra)とした。また積層ポリエステルフィルムの平坦な側(A層側)の表面の表面粗さをRaA、粗い側(B層側)の表面の粗さをRaBとした。
(6) Surface roughness (Ra)
Measured using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022) at a measurement magnification of 25 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ), and incorporated in the roughness meter The center surface average roughness (Ra) was determined by the surface analysis software MetroPro, which was defined as the surface roughness (Ra). The measurement was performed 10 times while changing the measurement location, and the average value thereof was defined as the center plane average roughness (Ra). The surface roughness of the flat side (A layer side) of the laminated polyester film was RaA, and the surface roughness of the rough side (B layer side) was RaB.

(7)突起頻度
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて測定倍率25倍、測定面積283μm×213μm(=0.0603mm)の条件にて測定し、該粗さ計に内蔵された表面解析ソフトMetroProにより、リファレンスバンド10nmを基準として、所定の突起高さでスライスして得られた各突起に対して突起面積を夫々求め、この測定を10回繰返し、その平均値を求め、突起高さおよび突起面積による突起分布を作成し、求めた。総突起数については、上述の測定で得られたデータを用い、所定の突起高さでスライスして得られた突起数を総突起数として求めた。
(7) Protrusion frequency Measured using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022) at a measurement magnification of 25 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ), Using the surface analysis software MetroPro built in the roughness meter, the protrusion area was determined for each protrusion obtained by slicing at a predetermined protrusion height with reference to the reference band of 10 nm, and this measurement was repeated 10 times. The average value was calculated | required, the protrusion distribution by protrusion height and protrusion area was created, and it calculated | required. As for the total number of protrusions, the number of protrusions obtained by slicing at a predetermined protrusion height was obtained as the total protrusion number using the data obtained by the above measurement.

(8)フィルムの静摩擦係数
ポリエステルA層側の表面とポリエステルB層側の表面とを重ね合せた2枚のフィルム
の下側に固定したガラス板を置き、重ね合せたフィルムの下側(ガラス板と接しているフ
ィルム)のフィルムを低速ロールにて引取り(約10cm/min)、上側のフィルムの
一端(下側フィルムの引取り方向と逆端)に検出器を固定してフィルム/フィルム間のス
タート時の引張力を検出する。なお、そのときに用いるスレッドは重さ1kg、下側面積
100cmのものを使用する。
なお、静摩擦係数(μs)は次式より求めた。
μs=(スタート時の引張力kg)/(荷重1kg)
フィルムの静摩擦係数が、1.0を超える場合は、極端に滑り性が低下し、フィルムをロール状に巻き取る際、シワや欠陥が出やすくなり好ましくない。
(8) Coefficient of static friction of the film A glass plate fixed on the lower side of two films obtained by superimposing the surface on the polyester A layer side and the surface on the polyester B layer side is placed, and the lower side of the laminated film (glass plate The film in contact with the film) with a low-speed roll (about 10 cm / min), and the detector is fixed to one end of the upper film (the opposite end to the direction of the lower film). Detect the tensile force at the start of. The thread used at that time has a weight of 1 kg and a lower area of 100 cm 2 .
The static friction coefficient (μs) was obtained from the following equation.
μs = (Tensile force kg at start) / (Load 1kg)
When the static friction coefficient of the film exceeds 1.0, the slipperiness is extremely lowered, and when the film is rolled up, wrinkles and defects are likely to occur, which is not preferable.

(9)磁気テープの作成
各実施例及び比較例得られた幅1000mm、長さ1000mの積層二軸配向ポリエステルフィルムのA層側表面に、下記組成のバックコート層塗料をダイコータ(加工時の張力:20MPa、温度:120℃、速度:200m/分)で、塗布し、乾燥させた後、フィルムのB層側表面に下記組成の非磁性塗料、磁性塗料をダイコータで同時に膜厚を変えて塗布し、磁気配向させて乾燥させる。さらに、小型テストカレンダ−装置(スチ−ルロール/ナイロンロール、5段)で、温度:70℃、線圧:200kg/cmでカレンダ−処理した後、70℃、48時間キュアリングする。上記テ−プを12.65mmにスリットし、カセットに組み込み磁気記録テープとした。なお、乾燥後のバックコート層、非磁性層および磁性層の厚みは、それぞれ0.5μm、1.2μmおよび0.1μmとなるように塗布量を調整した。
(9) Preparation of magnetic tape A back coat layer paint having the following composition was applied to the surface of layer A of the laminated biaxially oriented polyester film having a width of 1000 mm and a length of 1000 m obtained in each example and comparative example. : 20 MPa, temperature: 120 ° C., speed: 200 m / min), dried, and then applied to the surface of the B layer side of the film by changing the film thickness simultaneously with a die coater using a die coater. And magnetically oriented and dried. Further, after calendering with a small test calender (steel roll / nylon roll, 5 stages) at a temperature of 70 ° C. and a linear pressure of 200 kg / cm, curing is performed at 70 ° C. for 48 hours. The tape was slit to 12.65 mm and incorporated into a cassette to obtain a magnetic recording tape. The coating amount was adjusted so that the thicknesses of the dried backcoat layer, nonmagnetic layer and magnetic layer were 0.5 μm, 1.2 μm and 0.1 μm, respectively.

<非磁性塗料の組成>
・二酸化チタン微粒子 :100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体 :10重量部
・ニッポラン2304(日本ポリウレタン 製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート) : 5重量部
・レシチン : 1重量部
・メチルエチルケトン :75重量部
・メチルイソブチルケトン :75重量部
・トルエン :75重量部
・カーボンブラック : 2重量部
・ラウリン酸 :1.5重量部
<磁性塗料の組成>
・鉄(長さ:0.3μm、針状比:10/1、1800エルステッド):100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体 :10重量部
・ニッポラン2304(日本ポリウレタン 製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート) : 5重量部
・レシチン : 1重量部
・メチルエチルケトン :75重量部
・メチルイソブチルケトン :75重量部
・トルエン :75重量部
・カーボンブラック : 2重量部
・ラウリン酸 :1.5重量部
<バックコート層塗料の組成:>
カーボンブラック :100重量部
熱可塑性ポリウレタン樹脂 :60重量部
イソシアネート化合物 :18重量部
(日本ポリウレタン工業社製コロネートL)
シリコーンオイル :0.5重量部
メチルエチルケトン :250重量部
トルエン :50重量部
<Composition of non-magnetic paint>
-Titanium dioxide fine particles: 100 parts by weight-Esreck A (Sekisui Chemical's vinyl chloride / vinyl acetate copolymer: 10 parts by weight-Nipponran 2304 (polyurethane elastomer made by Nippon Polyurethane): 10 parts by weight-Coronate L (polyisocyanate made by Nippon Polyurethane) ): 5 parts by weight-lecithin: 1 part by weight-methyl ethyl ketone: 75 parts by weight-methyl isobutyl ketone: 75 parts by weight-toluene: 75 parts by weight-carbon black: 2 parts by weight-lauric acid: 1.5 parts by weight <magnetic paint Composition>
Iron (length: 0.3 μm, needle ratio: 10/1, 1800 oersted): 100 parts by weight Eslek A (vinyl chloride / vinyl acetate copolymer made by Sekisui Chemical: 10 parts by weight) Nipponan 2304 (Nippon Polyurethane Polyurethane elastomer): 10 parts by weight, Coronate L (polyisocyanate made by Nippon Polyurethane): 5 parts by weight, lecithin: 1 part by weight, methyl ethyl ketone: 75 parts by weight, methyl isobutyl ketone: 75 parts by weight, toluene: 75 parts by weight, carbon Black: 2 parts by weight ・ Lauric acid: 1.5 parts by weight <Composition of back coat layer paint:>
Carbon black: 100 parts by weight Thermoplastic polyurethane resin: 60 parts by weight Isocyanate compound: 18 parts by weight (Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd.)
Silicone oil: 0.5 parts by weight Methyl ethyl ketone: 250 parts by weight Toluene: 50 parts by weight

(10)電磁変換特性
電磁変換特性測定には、ヘッドを固定した1/2インチリニアシステムを用いた。記録は、電磁誘導型ヘッド(トラック幅25μm、ギャップ0.1μm)を用い、再生はMRヘッド(8μm)を用いた。ヘッド/テープの相対速度は10m/秒とし、記録波長0.2μmの信号を記録し、再生信号をスペクトラムアナライザーで周波数分析し、キャリア信号(波長0.2μm)の出力Cと、スペクトル全域の積分ノイズNの比をC/N比とし、実施例1を0dBとした相対値を求め、以下の基準で、評価した。
◎ : +1dB以上
○ : −1dB以上、+1dB未満
× : −1dB未満
(10) Electromagnetic conversion characteristics For measuring the electromagnetic conversion characteristics, a 1/2 inch linear system with a fixed head was used. Recording was performed using an electromagnetic induction head (track width 25 μm, gap 0.1 μm), and reproduction was performed using an MR head (8 μm). The relative speed of the head / tape is 10 m / sec, a signal with a recording wavelength of 0.2 μm is recorded, the reproduced signal is analyzed with a spectrum analyzer, the output C of the carrier signal (wavelength 0.2 μm), and the integration over the entire spectrum. The relative value with the noise N ratio as C / N ratio and Example 1 as 0 dB was determined and evaluated according to the following criteria.
◎: +1 dB or more ○: −1 dB or more, less than +1 dB ×: less than −1 dB

(11)エラーレート
上記(10)で作製したテープ原反を12.65mm(1/2インチ)幅にスリットし、それをLTO用のケースに組み込み、磁気記録テープの長さが850mのデータストレージカートリッジを作製したデータストレージを、IBM社製LTO4ドライブを用いて23℃50%RHの環境で記録・再生(記録波長0.55μm)することで評価する。エラーレートはドライブから出力されるエラー情報(エラービット数)から次式にて算出する。次の基準で寸法安定性を評価する。
エラーレート=(エラービット数)/(書き込みビット数)
◎:エラーレートが1.0×10−6未満
○:エラーレートが1.0×10−6以上、1.0×10−4未満
×:エラーレートが1.0×10−4以上
(11) Error rate
Data obtained by slitting the original tape produced in (10) above to a width of 12.65 mm (1/2 inch), incorporating it into a case for LTO, and producing a data storage cartridge having a magnetic recording tape length of 850 m The storage is evaluated by recording and reproducing (recording wavelength 0.55 μm) in an environment of 23 ° C. and 50% RH using an IBM LTO4 drive. The error rate is calculated from the error information (number of error bits) output from the drive by the following formula. The dimensional stability is evaluated according to the following criteria.
Error rate = (number of error bits) / (number of write bits)
A: Error rate is less than 1.0 × 10 −6 ○: Error rate is 1.0 × 10 −6 or more, less than 1.0 × 10 −4 ×: Error rate is 1.0 × 10 −4 or more

(12)ドロップアウト(DO)
上記(11)でエラーレートを測定したデータストレージカートリッジを、IBM社製LTO4ドライブに装填してデータ信号を14GB記録し、それを再生した。平均信号振幅に対して50%以下の振幅(P−P値)の信号をミッシングパルスとし、4個以上連続したミッシングパルスをドロップアウトとして検出した。なお、ドロップアウトは850m長1巻を評価し、1m当たりの個数に換算して、下記の基準で判定する。
◎:ドロップアウト 3個/m未満
○:ドロップアウト 3個/m以上、9個/m未満
×:ドロップアウト 9個/m以上
(12) Dropout (DO)
The data storage cartridge whose error rate was measured in the above (11) was loaded into an IBM LTO4 drive, a data signal was recorded at 14 GB, and it was reproduced. A signal having an amplitude (PP value) of 50% or less with respect to the average signal amplitude was detected as a missing pulse, and four or more consecutive missing pulses were detected as dropouts. In addition, dropout evaluates 1 volume of 850m, converts into the number per 1m, and determines by the following references | standards.
◎: Dropout less than 3 pieces / m ○: Dropout of 3 pieces / m or more, less than 9 pieces / m ×: Dropout of 9 pieces / m or more

(13)温度膨張係数(αt)
得られたフィルムを、フィルムの幅方向が測定方向となるように長さ20mm、幅4mmに切り出し、SII製EXSTAR6000にセットし、窒素雰囲気下(0%RH)、80℃で30分前処理し、その後室温まで降温させる。その後30℃から70℃まで2℃/minで昇温して、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値を用いた。
αt={(L60−L40)}/(L40×△T)}+0.5
ここで、上記式中のL40は40℃のときのサンプル長(mm)、L60は60℃のときのサンプル長(mm)、△Tは20(=60−40)℃、0.5は石英ガラスの温度膨張係数(ppm/℃)である。
(13) Temperature expansion coefficient (αt)
The obtained film was cut into a length of 20 mm and a width of 4 mm so that the width direction of the film would be the measurement direction, set in EXSTAR6000 manufactured by SII, and pretreated at 80 ° C. for 30 minutes in a nitrogen atmosphere (0% RH). Then, the temperature is lowered to room temperature. Thereafter, the temperature is raised from 30 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature is measured, and the temperature expansion coefficient (αt) is calculated from the following equation. In addition, the measurement direction is the longitudinal direction of the sample cut out, the measurement was performed 5 times, and the average value was used.
αt = {(L60−L40)} / (L40 × ΔT)} + 0.5
Here, L40 in the above formula is a sample length (mm) at 40 ° C., L60 is a sample length (mm) at 60 ° C., ΔT is 20 (= 60-40) ° C., and 0.5 is quartz. It is a temperature expansion coefficient (ppm / ° C.) of glass.

[実施例1]
平坦層側に添加する不活性粒子として、平均粒径0.12μmの真球状シリカ粒子(粒子A)を0.10重量%含有した固有粘度が0.62のポリエステルA層用ポリエチレン―2,6―ナフタレートペレットと粗面層側に添加する不活性粒子として、平均粒径0.3μmの真球状シリカ粒子(粒子B1)を0.07重量%と平均粒径0.12μmの真球状シリカ粒子(粒子B2)を0.20重量%含有した、固有粘度が0.62のポリエステルB層用ポリエチレン―2,6―ナフタレートペレットを用意した。そして、それぞれペレットを170℃で6時間乾燥した後、2台の押出機ホッパーにそれぞれ供給し、溶融温度310℃で、マルチマニホールド型共押出ダイを用いてA層の片側にB層を積層させて積層未延伸フィルムを得た。なお、A層用のポリマーとB層用のポリマーは、溶融状態にした後、ダイに供給する前に、それぞれ95%ろ過精度が1μmの金属繊維製のフィルター(第2フィルター)でろ過した。A層:B層=1:2の厚み比率でダイから冷却ドラム上にシート状に共押出し、積層未延伸ポリエステルフィルムを得た。尚、上述の濾過精度とは、試験粉体のガラスビーズ(JIS−Z8901:2006記載)を蒸留水中に分散させ、フィルター濾過前後の粒度分布の変化を測定し、95%カット値を持って濾過精度とする。
[Example 1]
Polyethylene 2, 6 for polyester A layer having an intrinsic viscosity of 0.62, containing 0.10% by weight of true spherical silica particles (particle A) having an average particle size of 0.12 μm as inert particles added to the flat layer side -As the inert particles added to the naphthalate pellet and the rough surface layer side, 0.07% by weight of true spherical silica particles (particle B1) having an average particle size of 0.3 μm and true spherical silica particles having an average particle size of 0.12 μm Polyethylene-2,6-naphthalate pellets for polyester B layer containing 0.20% by weight of (Particle B2) and having an intrinsic viscosity of 0.62 were prepared. Each pellet was dried at 170 ° C. for 6 hours, and then supplied to two extruder hoppers, and the B layer was laminated on one side of the A layer using a multi-manifold coextrusion die at a melting temperature of 310 ° C. Thus, a laminated unstretched film was obtained. The polymer for the A layer and the polymer for the B layer were each filtered through a metal fiber filter (second filter) having a 95% filtration accuracy of 1 μm before being supplied to the die. Co-extruded in a sheet form from a die onto a cooling drum at a thickness ratio of A layer: B layer = 1: 2 to obtain a laminated unstretched polyester film. The filtration accuracy mentioned above refers to the dispersion of test powder glass beads (described in JIS-Z8901: 2006) in distilled water, the change in particle size distribution before and after filtration, and filtration with a 95% cut value. Let accuracy.

このようにして得られた積層未延伸ポリエステルフィルムを、120℃に予熱し、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱し、延伸倍率5.0倍で縦方向(製膜方向)の延伸を行った。続いて、135℃に加熱されたステンター内に供給し、横方向に5.3倍に延伸後、更に160℃に加熱されたステンター内に供給して再度横方向に1.2倍に延伸した後、210℃の熱風で4秒間熱固定し、厚み5.0μmの積層二軸配向ポリエステルフィルムを得た。得られた積層二軸配向ポリエステルフィルムのヤング率は縦方向6.0GPa、横方向9.1GPaであった。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
The laminated unstretched polyester film thus obtained was preheated to 120 ° C. and heated from above with an IR heater so that the film surface temperature was 140 ° C. Stretching in the film direction) was performed. Subsequently, the sheet was supplied into a stenter heated to 135 ° C., stretched 5.3 times in the transverse direction, and further fed into a stenter heated to 160 ° C. and stretched 1.2 times in the transverse direction again. Thereafter, the film was heat-fixed with hot air of 210 ° C. for 4 seconds to obtain a laminated biaxially oriented polyester film having a thickness of 5.0 μm. The Young's modulus of the obtained laminated biaxially oriented polyester film was 6.0 GPa in the vertical direction and 9.1 GPa in the horizontal direction.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例2〜10および比較例1〜5]
含有させる粒子A、粒子B1、粒子B2および横延伸条件を、表1に示すように変更した他は、実施例1と同様な操作を繰り返した。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Examples 2 to 10 and Comparative Examples 1 to 5]
The same operation as in Example 1 was repeated except that the particles A, particles B1, B2 and the transverse stretching conditions to be contained were changed as shown in Table 1.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

Figure 0005749505
Figure 0005749505

表1中の、NDは不活性粒子の含有量が0.001重量%以下を意味する。   ND in Table 1 means that the content of inert particles is 0.001% by weight or less.

本発明の二軸配向積層ポリエステルフィルムは、磁気記録媒体としたときにエラーやドロップアウトが少なく、かつ優れた電磁変換特性を発現できることから、高密度磁気記録媒体、特にディジタル記録型磁気記録テープのベースフィルムとして好適に用いることができる。   The biaxially oriented laminated polyester film of the present invention has few errors and dropouts when used as a magnetic recording medium, and can exhibit excellent electromagnetic conversion characteristics, so that it can be used for high-density magnetic recording media, particularly digital recording magnetic recording tapes. It can be suitably used as a base film.

Claims (9)

塗布型磁気記録テープに用いるベースフィルムであって、非接触式三次元表面粗さ計を用いて測定倍率25倍で測定した表面粗さと突起数が、
磁性層を形成する側の表面は表面粗さ(RaA)が4nm未満であり、
他方磁性層を形成しない側の表面は、表面粗さ(RaB)が4〜10nmの範囲であり、高さが60nm以上で且つ面積が150nm以上の突起が、20個/0.06mm以下であることを特徴とする積層ポリエステルフィルム。
A base film used for a coating-type magnetic recording tape, which has a surface roughness and the number of protrusions measured at a measurement magnification of 25 times using a non-contact type three-dimensional surface roughness meter.
The surface on the side on which the magnetic layer is formed has a surface roughness (RaA) of less than 4 nm,
On the other hand, the surface on which the magnetic layer is not formed has a surface roughness (RaB) in the range of 4 to 10 nm, 20 protrusions having a height of 60 nm or more and an area of 150 nm 2 or more, 20 / 0.06 mm 2 or less. A laminated polyester film characterized by being:
ポリエステルが、エチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートである請求項1記載の積層ポリエステルフィルム。   The laminated polyester film according to claim 1, wherein the polyester is ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate. 磁性層を形成しない側の表面は、高さが30nm以上の突起が700個/0.06mm未満である請求項1記載の積層ポリエステルフィルム。 2. The laminated polyester film according to claim 1, wherein the surface on which the magnetic layer is not formed has less than 700 protrusions having a height of 30 nm or more / 0.06 mm 2 . 磁性層を形成しない側の表面を形成するポリエステルは、粒径0.4μmを超える不活性粒子の含有量が0.02重量%未満である請求項1記載の積層ポリエステルフィルム。   The laminated polyester film according to claim 1, wherein the polyester forming the surface on which the magnetic layer is not formed has a content of inert particles having a particle diameter of more than 0.4 µm of less than 0.02% by weight. 磁性層を形成しない側の表面を形成するポリエステルは、粒径0.05μmの不活性粒子の含有量が0.6重量%未満である請求項4記載の積層ポリエステルフィルム。   The laminated polyester film according to claim 4, wherein the polyester forming the surface on which the magnetic layer is not formed has a content of inert particles having a particle diameter of 0.05 μm of less than 0.6% by weight. 磁性層を形成する側の表面を形成するポリエステルは、粒径0.15μmを超える不活性粒子の含有量が0.01重量%未満である請求項1記載の積層ポリエステルフィルム。   2. The laminated polyester film according to claim 1, wherein the polyester forming the surface on which the magnetic layer is formed has a content of inert particles having a particle size of more than 0.15 μm of less than 0.01% by weight. 磁性層を形成する側の表面を形成するポリエステルは、粒径0.05〜0.15μmの不活性粒子の含有量が、0.005〜0.4重量%の範囲である請求項6記載の積層ポリエステルフィルム。   The polyester forming the surface on the side on which the magnetic layer is formed has a content of inert particles having a particle size of 0.05 to 0.15 µm in the range of 0.005 to 0.4 wt%. Laminated polyester film. 幅方向の温度膨張係数が−5〜1ppmの範囲にある請求項1記載の積層ポリエステルフィルム。   The laminated polyester film according to claim 1, wherein the temperature expansion coefficient in the width direction is in the range of -5 to 1 ppm. 請求項1〜8のいずれかに記載の積層ポリエステルフィルムと、その磁性層を形成する側の表面に塗設により形成された磁性層とからなる塗布型磁気記録テープ。   A coated magnetic recording tape comprising the laminated polyester film according to any one of claims 1 to 8, and a magnetic layer formed by coating on the surface on the side on which the magnetic layer is formed.
JP2011016506A 2011-01-28 2011-01-28 Laminated polyester film and coated magnetic recording tape using the same Active JP5749505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016506A JP5749505B2 (en) 2011-01-28 2011-01-28 Laminated polyester film and coated magnetic recording tape using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016506A JP5749505B2 (en) 2011-01-28 2011-01-28 Laminated polyester film and coated magnetic recording tape using the same

Publications (2)

Publication Number Publication Date
JP2012153100A JP2012153100A (en) 2012-08-16
JP5749505B2 true JP5749505B2 (en) 2015-07-15

Family

ID=46835334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016506A Active JP5749505B2 (en) 2011-01-28 2011-01-28 Laminated polyester film and coated magnetic recording tape using the same

Country Status (1)

Country Link
JP (1) JP5749505B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063840A1 (en) 2014-10-20 2016-04-28 東レ株式会社 Biaxially oriented polyester film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359813B2 (en) * 1996-04-16 2002-12-24 帝人株式会社 Laminated biaxially oriented polyester film
JP2002363311A (en) * 2001-06-01 2002-12-18 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film
JP2003191414A (en) * 2001-12-27 2003-07-08 Toray Ind Inc Biaxially-oriented laminated polyester film
JP2003317228A (en) * 2002-04-23 2003-11-07 Sony Corp Magnetic recording medium
JP4664825B2 (en) * 2006-01-26 2011-04-06 帝人デュポンフィルム株式会社 Laminated biaxially oriented polyester film and magnetic recording tape
JP5074108B2 (en) * 2007-06-13 2012-11-14 帝人株式会社 Biaxially oriented laminated polyester film
JP2009087468A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Magnetic recording medium, magnetic signal reproduction method and magnetic signal reproduction system
JP2010205321A (en) * 2009-03-02 2010-09-16 Teijin Dupont Films Japan Ltd Polyester film and data storage using the same

Also Published As

Publication number Publication date
JP2012153100A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP6158640B2 (en) Laminated polyester film and coated magnetic recording tape using the same
WO2002045959A1 (en) Biaxially oriented layered polyester film and magnetic recording medium
JP2014022027A (en) Biaxially-oriented polyester film and coating type magnetic recording tape using the same
JP7303999B2 (en) LAMINATED POLYESTER FILM AND MAGNETIC RECORDING TAPE USING THE SAME
JP3920008B2 (en) Laminated biaxially oriented polyester film
JP6072623B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP5749504B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP5981185B2 (en) Laminated polyester film and coated magnetic recording tape using the same
US7048994B2 (en) Laminated polyester film and magnetic recording medium
JP6049337B2 (en) Biaxially oriented polyester film and coated magnetic recording tape using the same
JPH09277475A (en) Laminated biaxially oriented polyester film
JP3905314B2 (en) Biaxially oriented laminated polyester film
JP3923176B2 (en) Laminated biaxially oriented polyester film
JP6087529B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP5749505B2 (en) Laminated polyester film and coated magnetic recording tape using the same
EP1369229A1 (en) Laminated polyester film and magnetic recording medium
JP2010250910A (en) Support for magnetic recording medium and data storage using the same
JP2014004788A (en) Laminated polyester film and coating type magnetic recording tape using the same
JP2010274472A (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP5596445B2 (en) Laminated biaxially oriented polyester film for coated magnetic recording tape
JP5865749B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP5981186B2 (en) LAMINATED POLYESTER FILM AND METHOD FOR PRODUCING COATING MAGNETIC RECORDING TAPE USING SAME
JP5676127B2 (en) Polyester film and data storage using it
JP3923187B2 (en) Laminated biaxially oriented polyester film
JP6158672B2 (en) Laminated polyester film and ferromagnetic metal thin film magnetic recording tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250