JP4437764B2 - Round plate type solid oxide fuel cell - Google Patents

Round plate type solid oxide fuel cell Download PDF

Info

Publication number
JP4437764B2
JP4437764B2 JP2005132255A JP2005132255A JP4437764B2 JP 4437764 B2 JP4437764 B2 JP 4437764B2 JP 2005132255 A JP2005132255 A JP 2005132255A JP 2005132255 A JP2005132255 A JP 2005132255A JP 4437764 B2 JP4437764 B2 JP 4437764B2
Authority
JP
Japan
Prior art keywords
electrode
divided
electrolyte layer
solid oxide
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005132255A
Other languages
Japanese (ja)
Other versions
JP2006310132A (en
Inventor
武志 小松
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005132255A priority Critical patent/JP4437764B2/en
Publication of JP2006310132A publication Critical patent/JP2006310132A/en
Application granted granted Critical
Publication of JP4437764B2 publication Critical patent/JP4437764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、平板型の固体酸化物からなる電解質層を備えた円形平板型固体酸化物形燃料電池(SOFC)に関し、特に電解質層とその両面にそれぞれ積層形成される2つの電極に特長を有する円形平板型固体酸化物形燃料電池セルに関するものである。 The present invention relates to a circular flat plate type solid oxide fuel cell (SOFC) having an electrolyte layer made of a flat plate type solid oxide, and particularly has a feature in an electrolyte layer and two electrodes formed on both sides thereof. The present invention relates to a round plate type solid oxide fuel cell.

平板型固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)は、平板型の固体酸化物からなる電解質層を用いて発電する電池であり、他の燃料電池に比べて発電効率が高く、また作動温度が高い(700°〜1000℃)ため高温の熱を利用することができるという利点を有している。   A flat solid oxide fuel cell (SOFC) is a battery that generates electricity using an electrolyte layer made of a flat solid oxide, and has higher power generation efficiency than other fuel cells. Since the operating temperature is high (700 ° to 1000 ° C.), there is an advantage that high-temperature heat can be used.

図5(a)〜(c)は従来の平板型固体酸化物形燃料電池セルの側面図、平面図および底面図である。同図において、1は円板状に形成された電解質(以下、電解質層ともいう)、2,3は電解質層1の両面にそれぞれ形成された空気極および燃料極で、これらによって電解質支持型の単セル4を構成している。   5A to 5C are a side view, a plan view, and a bottom view of a conventional flat plate type solid oxide fuel cell. In the figure, 1 is an electrolyte formed in a disc shape (hereinafter also referred to as an electrolyte layer), 2 and 3 are an air electrode and a fuel electrode formed on both surfaces of the electrolyte layer 1, respectively. A single cell 4 is configured.

電解質層1の材質としては、電子を通さず、酸素イオンの導伝特性が高いセラミックス材料、例えばアルミナ(Al23)添加スカンジア(Sc23)安定化ZrO2 (SASZ)やイットリア安定化ジルコニア(YSZ)などのジルコニア材料が用いられる。 The material of the electrolyte layer 1 is a ceramic material that does not transmit electrons and has high oxygen ion conductivity, such as alumina (Al 2 O 3 ) -added scandia (Sc 2 O 3 ) stabilized ZrO 2 (SASZ) or yttria stable. A zirconia material such as zirconia bromide (YSZ) is used.

空気極2の材料としては、電子導電性を有する酸化物あるいは金属、例えば銀(Ag)や白金(Pt)や、ランタンストロンチウムマンガナイト(LSM)などの一般的な空気極材料が用いられる。   As the material of the air electrode 2, a general air electrode material such as oxide or metal having electronic conductivity, such as silver (Ag), platinum (Pt), lanthanum strontium manganite (LSM), or the like is used.

燃料極3としては、同じく電子導電性を有する貴金属、例えばニッケル(Ni)−YSZサーメット、Pt等の材料が用いられる。   As the fuel electrode 3, a noble metal having the same electronic conductivity, for example, a material such as nickel (Ni) -YSZ cermet or Pt is used.

このような平板型固体酸化物形燃料電池の単セル4において、空気極2と燃料極3は、電解質層1を介して隔離されており、空気極2には酸化剤が供給され、燃料極3には燃料である水素と一酸化炭素がそれぞれ供給されている。電解質層1と空気極2の界面では、電極反応に寄与する三層界面が形成されており、下記(1)式に示す空気極反応により酸化剤中の酸素と電子が反応して酸素イオンに変わる。   In the single cell 4 of such a flat type solid oxide fuel cell, the air electrode 2 and the fuel electrode 3 are isolated via the electrolyte layer 1, and an oxidant is supplied to the air electrode 2, so that the fuel electrode The fuel 3 is supplied with hydrogen and carbon monoxide, respectively. At the interface between the electrolyte layer 1 and the air electrode 2, a three-layer interface that contributes to the electrode reaction is formed, and oxygen and electrons in the oxidizer react with oxygen ions by the air electrode reaction shown in the following formula (1). change.

(空気極反応)
1/2O2 +2e- →O2-
(Air electrode reaction)
1 / 2O 2 + 2e → O 2−

空気極2で生成した酸素イオンは、イットリア安定化ジルコニア(YSZ)などの電解質層1の内部を移動して燃料極3に到達する。燃料極3では、Ni−YSZサーメット、Pt等から形成された燃料極3の働きで、空気極2から電解質層1の内部を通って移動してきた酸素イオンが下記(2)式および(3)式に示す反応により燃料極3に供給された水素および一酸化炭素と反応し、水蒸気または二酸化炭素と電子が生成する。   Oxygen ions generated at the air electrode 2 move inside the electrolyte layer 1 such as yttria-stabilized zirconia (YSZ) and reach the fuel electrode 3. In the fuel electrode 3, oxygen ions that have moved from the air electrode 2 through the inside of the electrolyte layer 1 by the action of the fuel electrode 3 formed of Ni—YSZ cermet, Pt, and the like are expressed by the following equations (2) and (3): It reacts with hydrogen and carbon monoxide supplied to the fuel electrode 3 by the reaction shown in the formula, and steam or carbon dioxide and electrons are generated.

(燃料極反応)
2 +O2- →H2O+2e-
CO+O2- →CO2+2e-
(Fuel electrode reaction)
H 2 + O 2− → H 2 O + 2e
CO + O 2− → CO 2 + 2e

燃料極3で生成した電子は、外部回路を移動し空気極2に到達する。空気極2に到達した電子は、前記(1)式で示した空気極反応により酸素と反応する。この電子が外部回路を移動する過程で電気エネルギーを出力として取り出すことができる。   Electrons generated at the fuel electrode 3 travel through an external circuit and reach the air electrode 2. The electrons that have reached the air electrode 2 react with oxygen by the air electrode reaction shown in the above formula (1). Electric energy can be taken out as an output in the process in which the electrons move through the external circuit.

しかしながら、上記したような電解質層1の両面に空気極2と燃料極3とからなる電極をそれぞれ形成してなる平板型固体酸化物形燃料電池セル4においては、作動温度が700〜1000℃程度の高温で発電を行うために、室温から作動温度へ温度上昇あるいは作動温度から大気温度へ下降する際に、電解質層1、空気極2、燃料極3の各材料の熱膨張係数の違いに起因して電解質層1と空気極2あるいは電解質層1と燃料極3との間で伸び縮みによる熱応力が発生し、電解質層1と空気極2または燃料極3が剥離するという問題があった。例えば、電解質層1、空気極2および燃料極3に用いられるランランマンガナイト酸化物、イットリア添加安定化ジルコニア酸化物、ニッケル酸化物の熱膨張係数は、それぞれ10.5ppmK-1、10.7ppmK-1、18.5ppmK-1であるため、熱膨張係数差により層間剥離が発生すると、電極反応に寄与する三層界面が減少しセルの発電性能や寿命を低下させる。 However, in the flat solid oxide fuel cell 4 in which the electrodes composed of the air electrode 2 and the fuel electrode 3 are formed on both surfaces of the electrolyte layer 1 as described above, the operating temperature is about 700 to 1000 ° C. In order to generate power at a high temperature, when the temperature rises from room temperature to the operating temperature or falls from the operating temperature to the atmospheric temperature, it is caused by the difference in the thermal expansion coefficients of the materials of the electrolyte layer 1, the air electrode 2, and the fuel electrode 3 As a result, thermal stress due to expansion / contraction occurs between the electrolyte layer 1 and the air electrode 2 or between the electrolyte layer 1 and the fuel electrode 3, causing a problem that the electrolyte layer 1 and the air electrode 2 or the fuel electrode 3 are separated. For example, the thermal expansion coefficients of lanlan manganite oxide, yttria-added stabilized zirconia oxide, and nickel oxide used for the electrolyte layer 1, the air electrode 2, and the fuel electrode 3 are 10.5 ppmK −1 and 10.7 ppmK , respectively. 1 and 18.5 ppm K −1 , so when delamination occurs due to a difference in thermal expansion coefficient, the three-layer interface contributing to the electrode reaction is reduced, and the power generation performance and life of the cell are reduced.

本発明は上記したような従来の問題を解決するためになされたもので、その目的とするところは、電解質層と電極との材料の違いによる熱応力による影響を低減し、電解質と電極との層間剥離を確実に防止し、安定した発電と長寿命化を可能にした円形平板型固体酸化物形燃料電池セルを提供することにある。 The present invention has been made in order to solve the above-described conventional problems. The object of the present invention is to reduce the influence of thermal stress due to the difference in material between the electrolyte layer and the electrode, and An object of the present invention is to provide a circular flat plate solid oxide fuel cell that reliably prevents delamination and enables stable power generation and long life.

上記目的を達成するために本発明は、固体酸化物からなる電解質層と、この電解質層の両面にそれぞれ形成された空気極および燃料極とからなる円形平板型固体酸化物形燃料電池セルにおいて、前記空気極と前記燃料極の少なくともいずれか一方を複数の分割極片で構成し、前記複数の分割極片は、前記電解質層と同心円となるように配置された円形分割極片と、前記電解質の半径方向および同心円周方向に形成された隙間によって分離された円弧状分割極片とで構成され、前記円弧状分割極片は、前記電解質から見た円周方向の長さが、該電解質からみた半径方向の長さより長く形成されているものである。 In order to achieve the above object, the present invention provides a circular flat plate solid oxide fuel cell comprising an electrolyte layer made of a solid oxide, and an air electrode and a fuel electrode respectively formed on both surfaces of the electrolyte layer. At least one of the air electrode and the fuel electrode is constituted by a plurality of divided electrode pieces, and the divided electrode pieces are arranged so as to be concentric with the electrolyte layer, and the electrolyte The arc-shaped divided pole pieces are separated by gaps formed in a radial direction and a concentric circumferential direction, and the arc-shaped divided pole pieces have a circumferential length as viewed from the electrolyte. It is formed longer than the length in the radial direction .

また、本発明は、前記複数の分割極片を電解質層の中央部より径方向外側に向かうにしたがって表面積が小さくなるように大きさを異ならせて形成したものである。   Further, in the present invention, the plurality of divided pole pieces are formed with different sizes so that the surface area becomes smaller from the central portion of the electrolyte layer toward the radially outer side.

本発明においては、空気極と燃料極の少なくともいずれか一方を分割して形成された複数の分割極片で構成したので、材料の違いによる昇温、降温時の熱膨張係数の差に起因する分割極片の伸縮の変位量が単一の電極に比べて小さく、熱応力による影響を低減することができる。このため、電解質と分割極片との間の層間剥離を確実に防止でき、セルの耐久性を向上させることができる。   In the present invention, since it is constituted by a plurality of divided pole pieces formed by dividing at least one of the air electrode and the fuel electrode, it is caused by a difference in thermal expansion coefficient during temperature rise and fall due to a difference in material. The amount of expansion / contraction displacement of the divided pole piece is smaller than that of a single electrode, and the influence of thermal stress can be reduced. For this reason, delamination between the electrolyte and the divided electrode piece can be reliably prevented, and the durability of the cell can be improved.

また、セルの発電効率を向上させることも可能である。すなわち、電極自体の外形の大きさは変えないで複数の分割極片にすると、分割極片全体の面積は単一の電極を形成した場合に比べて分割極片間の隙間分だけ減少するため、発電性能は低下する。
一方、複数の分割極片にすると、各分割極片は長さが短く、昇温、降温時の伸縮による変位量は小さい。このため、分割極片全体の変位量の総和は、単一の電極における変位量よりも小さくなるので、表面積の減少を少なく抑えるために分割極片間の隙間を小さくしておけば、単一の電極を形成した場合に比べて層間剥離による電極反応に寄与する三層界面の減少が少なく、結果としてセルの発電性能は向上する。
It is also possible to improve the power generation efficiency of the cell. That is, if the divided electrode pieces are formed without changing the size of the outer shape of the electrode itself, the total area of the divided electrode pieces is reduced by the gap between the divided electrode pieces compared to the case where a single electrode is formed. The power generation performance is reduced.
On the other hand, when a plurality of divided pole pieces are used, each divided pole piece has a short length, and the amount of displacement due to expansion and contraction during temperature rise and fall is small. For this reason, the total displacement amount of the entire divided pole pieces is smaller than the displacement amount of a single electrode. Therefore, if the gap between the divided pole pieces is made small in order to suppress the decrease in surface area, Compared with the case where the electrode is formed, the decrease in the three-layer interface contributing to the electrode reaction due to delamination is small, and as a result, the power generation performance of the cell is improved.

また、本発明においては、複数の分割極片を電解質層の中央部より外側に向かうにしたがって表面積が小さくなるように大きさを異ならせて形成しているので、電解質層と分割極片との層間剥離をより一層確実に防止することができる。すなわち、電解質は温度変化によって厚み方向に変形し、その変位量は中央において最も小さく、外周に向かうにしたがって大きくなる。そこで、分割極片を電解質層の中央より外側に向かうほど小さくなるように形成しておくと、分割極片を全て同一の大きさに形成した場合に比べて電解質層の外周部における層間剥離をより少なくすることができる。したがって、セルの発電性能および耐久性はより一層向上する。   Further, in the present invention, the plurality of divided electrode pieces are formed with different sizes so that the surface area becomes smaller toward the outside from the center of the electrolyte layer. Delamination can be prevented more reliably. That is, the electrolyte is deformed in the thickness direction due to temperature changes, and the amount of displacement is the smallest at the center and increases toward the outer periphery. Therefore, if the divided electrode pieces are formed so as to become smaller toward the outside than the center of the electrolyte layer, delamination at the outer peripheral portion of the electrolyte layer can be performed as compared with the case where all of the divided electrode pieces are formed in the same size. Can be less. Therefore, the power generation performance and durability of the cell are further improved.

以下、本発明を図面に示す実施の形態に基づいて詳細に説明する。
図1(a)〜(c)は本発明に係る円形平板型固体酸化物形燃料電池セルの一実施の形態を示す側面図、平面図および底面図である。なお、図5に示した従来の電池セルと同一構成部材のものについては同一符号をもって示し、その説明を省略する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1A to FIG. 1C are a side view, a plan view, and a bottom view showing an embodiment of a circular flat plate type solid oxide fuel cell according to the present invention. In addition, about the same structural member as the conventional battery cell shown in FIG. 5, it shows with the same code | symbol, and abbreviate | omits the description.

図1において、本実施の形態における円形平板型固体酸化物形燃料電池セル10は、電解質層1と、この電解質層1の両面にそれぞれ形成された空気極20および燃料極3とからなり、空気極20を電解質層1の半径方向および周方向に分割された複数の分割空気極片(以下、分割極片という)20a〜20nで構成し、燃料極3を単一の薄膜で円板状に形成したものである。また、複数の分割極片20a〜20nは、同心円状で、かつ電解質層1の中央より外側に向かうにしたがって表面積が小さくなるように形成されている。なお、その他の構成は図5に示した従来のセル4と同一である。 In FIG. 1, a circular flat solid oxide fuel cell 10 according to the present embodiment includes an electrolyte layer 1, an air electrode 20 and a fuel electrode 3 formed on both surfaces of the electrolyte layer 1, respectively. The electrode 20 is composed of a plurality of divided air electrode pieces (hereinafter referred to as divided electrode pieces) 20a to 20n divided in the radial direction and the circumferential direction of the electrolyte layer 1, and the fuel electrode 3 is formed in a disk shape with a single thin film. Formed. Further, the plurality of divided pole pieces 20 a to 20 n are concentric and formed so that the surface area becomes smaller toward the outside from the center of the electrolyte layer 1. Other configurations are the same as those of the conventional cell 4 shown in FIG.

空気極20は、従来の空気極3と同様に電子導電性を有する酸化物あるいは金属、例えば銀(Ag)や白金(Pt)や、ランタンストロンチウムマンガナイト(LSM)などの一般的な空気極材料を電解質層1の一方の面にスクリーン印刷等によって塗布して焼成することにより形成される。分割極片20a〜20nの形成に際しては、単一の空気極2に比べて表面積の減少を少なくするために、隣り合う分割極片20a〜20n間の隙間を可及的小とすることが望ましい。   The air electrode 20 is a common air electrode material such as an oxide or metal having electronic conductivity, such as silver (Ag), platinum (Pt), and lanthanum strontium manganite (LSM), as in the conventional air electrode 3. Is applied to one surface of the electrolyte layer 1 by screen printing or the like and fired. In forming the divided pole pieces 20a to 20n, it is desirable to make the gap between the adjacent divided pole pieces 20a to 20n as small as possible in order to reduce the reduction of the surface area as compared with the single air electrode 2. .

分割極片20a〜20nの形状としては、本実施の形態においては、電解質層1の中央部に位置する分割極片20aを円形に形成し、それ以外を長い円弧状に形成したが、これに限らず種々の形状とすることが可能である。その場合、分割極片20b〜20nの長さ(電解質層1の円周方向の長さ)が幅(電解質層の半径方向の長さ)より長くなるように各分割極片を形成することが好ましい。   As the shape of the divided pole pieces 20a to 20n, in this embodiment, the divided pole piece 20a located at the center of the electrolyte layer 1 is formed in a circular shape, and the other is formed in a long arc shape. It is possible to use various shapes without being limited thereto. In that case, each divided pole piece may be formed such that the length of the divided pole pieces 20b to 20n (the circumferential length of the electrolyte layer 1) is longer than the width (the radial length of the electrolyte layer). preferable.

このような構造からなる円形平板型固体酸化物形燃料電池セル10において、複数の分割極片20a〜20nからなる空気極20側では、それぞれの分割極片20a〜20nと電解質層1との界面において上記(1)式に示す空気極反応により酸化剤中の酸素と電子が反応して酸素イオンに変わる。このため、図5に示した従来の電池セルと同様に発電することができる。 In the circular flat plate solid oxide fuel cell 10 having such a structure, on the air electrode 20 side composed of a plurality of divided electrode pieces 20a to 20n, the interface between the divided electrode pieces 20a to 20n and the electrolyte layer 1 is provided. In the above, oxygen and electrons in the oxidizing agent react with each other by the air electrode reaction shown in the above formula (1) to change into oxygen ions. For this reason, it can generate electric power similarly to the conventional battery cell shown in FIG.

また、空気極20を複数の分割極片20a〜20nで構成しておくと、昇温、降温時の電解質層1との材料の違いによる熱膨張係数の差に起因する各分割極片20a〜20nの伸縮の変位量が小さいので、分割極片全体の変位量も単一に形成した従来の空気極2における変位量に比べて小さくすることができ、熱応力による影響を低減することができる。このため、電解質層1と分割極片20a〜20n間の層間剥離を防止でき、電池セル10の耐久性を向上させることができる。   Moreover, if the air electrode 20 is comprised by several division | segmentation pole pieces 20a-20n, each division | segmentation pole piece 20a-resulting from the difference in a thermal expansion coefficient by the difference in material with the electrolyte layer 1 at the time of temperature rise and temperature fall will be demonstrated. Since the displacement amount of the expansion and contraction of 20n is small, the displacement amount of the entire divided pole piece can be made smaller than the displacement amount in the conventional air electrode 2 formed in a single manner, and the influence of thermal stress can be reduced. . For this reason, delamination between the electrolyte layer 1 and the division | segmentation pole pieces 20a-20n can be prevented, and durability of the battery cell 10 can be improved.

また、電池セル10の発電性能も向上させることが可能である。すなわち、空気極20自体の外形の大きさは図5に示す従来の単一の空気極2と同じであっても複数の分割極片20a〜20nにすると、分割極片全体の表面積は単一の空気極2に比べて隣り合う分割極片間の隙間分だけ減少する。そして、この隙間による表面積の減少は発電性能の低下となる。一方、複数の分割極片20a〜20nにすると、各分割極片20a〜20nの昇温、降温時の伸縮による変位量の総和は、単一の空気極2の変位量よりも小さくなるので、隣り合う分割極片間の隙間を可及的小さくして表面積の減少を少なく抑えると、単一の空気極2を形成した場合に比べて層間剥離による電極反応に寄与する三層界面の減少が少なく、これにより電池セル10の発電性能は従来の電池セルに比べて向上する。   In addition, the power generation performance of the battery cell 10 can be improved. That is, even if the size of the outer shape of the air electrode 20 itself is the same as that of the conventional single air electrode 2 shown in FIG. 5, if the divided electrode pieces 20a to 20n are used, the entire surface area of the divided electrode pieces is single. Compared to the air electrode 2, the gap is reduced by the gap between the adjacent divided pole pieces. And the reduction of the surface area due to this gap results in a decrease in power generation performance. On the other hand, when the plurality of divided pole pieces 20a to 20n are used, the total amount of displacement due to expansion / contraction at the time of temperature rise and drop of each divided pole piece 20a to 20n is smaller than the displacement amount of the single air electrode 2. If the gap between adjacent divided pole pieces is made as small as possible to suppress the reduction in surface area, the reduction of the three-layer interface that contributes to the electrode reaction due to delamination compared to the case where a single air electrode 2 is formed. Therefore, the power generation performance of the battery cell 10 is improved as compared with the conventional battery cell.

また、複数の分割極片20a〜20nを電解質層1の中央部より径方向外側に向かうにしたがって表面積が小さくなるように大きさを異ならせて形成しているので、電解質層1と分割極片20a〜20nとの層間剥離をより一層確実に防止することができる。すなわち、電解質層1と分割極片20a〜20nは温度変化によって厚み方向に変位し、その変位量は中央の分割極片において最も小さく、外側の分割極片ほど大きくなる。そこで、分割極片20a〜20nを電解質層1の中央より外側ほど小さくなるように形成しておくと、分割極片20a〜20nを全て同一の大きさに形成した場合に比べて電解質層1の外周部における層間剥離を少なくすることができる。したがって、電池セル10の発電性能および耐久性は従来の電池セルに比べて向上する。   In addition, since the plurality of divided electrode pieces 20a to 20n are formed with different sizes so as to decrease in surface area from the central portion of the electrolyte layer 1 toward the radially outer side, the electrolyte layer 1 and the divided electrode pieces Delamination with 20a to 20n can be more reliably prevented. That is, the electrolyte layer 1 and the divided pole pieces 20a to 20n are displaced in the thickness direction by a temperature change, and the amount of displacement is the smallest in the central divided pole piece, and the outer divided pole pieces are larger. Therefore, if the divided electrode pieces 20a to 20n are formed so as to be smaller from the center of the electrolyte layer 1, the divided electrode pieces 20a to 20n are all formed in the same size as compared to the case where the divided electrode pieces 20a to 20n are formed to have the same size. Delamination at the outer periphery can be reduced. Therefore, the power generation performance and durability of the battery cell 10 are improved as compared with the conventional battery cell.

図2は電池セルの出力密度と電流密度の関係を示す図である。図中、曲線Iは図5に示した従来の電池セル4の出力密度と電流密度の関係を示す曲線、曲線IIは図1に示した本発明に係る電池セル10の出力密度と電流密度の関係を示す曲線である。この図から明らかなように、本発明による電池セル10によれば、図5に示した従来の電池セル4に比べて電流密度を増大させることができる。これは、上記した通り空気極20を複数の分割極片20a〜20nで構成したことによる効果であるといえる。   FIG. 2 is a diagram showing the relationship between the output density of the battery cell and the current density. In the figure, curve I is a curve showing the relationship between the output density and current density of the conventional battery cell 4 shown in FIG. 5, and curve II is the output density and current density of the battery cell 10 according to the present invention shown in FIG. It is a curve which shows a relationship. As is apparent from this figure, according to the battery cell 10 of the present invention, the current density can be increased as compared with the conventional battery cell 4 shown in FIG. This can be said to be an effect obtained by configuring the air electrode 20 with a plurality of divided electrode pieces 20a to 20n as described above.

図3(a)〜(c)は本発明に係る円形平板型固体酸化物形燃料電池セルの他の実施の形態を示す側面図、平面図および底面図である。 FIGS. 3A to 3C are a side view, a plan view, and a bottom view showing another embodiment of a circular flat plate type solid oxide fuel cell according to the present invention.

図3において、本実施の形態における円形平板型固体酸化物形燃料電池セル11は、電解質層1と、この電解質層1の両面にそれぞれ形成された空気極2および燃料極30とからなり、燃料極30を電解質層1の径方向および周方向に分割された複数の分割燃料極片(以下、分割極片という)30a〜30nで構成したものである。また、複数の分割極片30a〜30nは、同心円状で、かつ電解質層1の中央より外側に向かうにしたがって表面積が小さくなるように形成されている。なお、その他の構成は図5に示した従来の電池セル4と同一である。 In FIG. 3, a circular flat plate type solid oxide fuel cell 11 in the present embodiment includes an electrolyte layer 1, an air electrode 2 and a fuel electrode 30 formed on both surfaces of the electrolyte layer 1, respectively. The electrode 30 includes a plurality of divided fuel electrode pieces (hereinafter referred to as divided electrode pieces) 30 a to 30 n that are divided in the radial direction and the circumferential direction of the electrolyte layer 1. Further, the plurality of divided pole pieces 30 a to 30 n are concentric and formed so that the surface area becomes smaller toward the outside from the center of the electrolyte layer 1. Other configurations are the same as those of the conventional battery cell 4 shown in FIG.

燃料極30は、従来の燃料極3と同様に電子導電性を有する貴金属、例えばニッケル(Ni)−YSZサーメット、Pt等の材料をスクリーン印刷等により電解質層1に塗布し、焼成することにより形成される。分割極片30a〜30nの形成に際しては、燃料極30の表面積の減少を少なくするために、隣り合う分割極片30a〜30n間の隙間を可及的小さくすることが望ましい。   The fuel electrode 30 is formed by applying a material such as nickel (Ni) -YSZ cermet, Pt or the like to the electrolyte layer 1 by screen printing or the like and firing it, as in the conventional fuel electrode 3. Is done. In forming the divided pole pieces 30a to 30n, it is desirable to make the gap between the adjacent divided pole pieces 30a to 30n as small as possible in order to reduce the decrease in the surface area of the fuel electrode 30.

分割極片30a〜30nの形状としては、本実施の形態においては、図1に示した空気極20の分割空気極片20a〜20nと同様に、中央部に位置する分割極片30aを円形に形成し、それ以外の分割極片30b〜30nを円弧状に形成したが、これに限らず種々の形状とすることが可能である。その場合、各分割極片30b〜30nの長さ(電解質層1の円周方向の長さ)が幅(電解質層の半径方向の長さ)より長くなるように分割極片を形成することが好ましい。   As the shape of the divided pole pieces 30a to 30n, in the present embodiment, the divided pole piece 30a located at the center is made circular in the same manner as the divided air pole pieces 20a to 20n of the air electrode 20 shown in FIG. The other divided pole pieces 30b to 30n are formed in an arc shape, but the present invention is not limited to this, and various shapes are possible. In this case, the divided pole pieces may be formed so that the length of each divided pole piece 30b to 30n (the circumferential length of the electrolyte layer 1) is longer than the width (the radial length of the electrolyte layer). preferable.

このような構造からなる円形平板型固体酸化物形燃料電池セル11において、複数の分割極片30a〜30nからなる燃料極30側では、空気極2から電解質層1の内部を通って燃料極30に移動してきた酸素イオンが、それぞれの分割極片30a〜30nと電解質層1との界面において上記(2)式および(3)式に示す燃料極反応により水素および一酸化炭素と反応し、水蒸気または二酸化炭素と電子が生成される。このため、図5に示した従来の電池セル4や図1に示した電池セル10と同様に発電することができる。 In the circular flat plate type solid oxide fuel cell 11 having such a structure, the fuel electrode 30 passes from the air electrode 2 through the inside of the electrolyte layer 1 on the fuel electrode 30 side including the plurality of divided electrode pieces 30a to 30n. Oxygen ions that have migrated to the hydrogen gas react with hydrogen and carbon monoxide at the interfaces between the divided electrode pieces 30a to 30n and the electrolyte layer 1 by the fuel electrode reaction shown in the above equations (2) and (3), Or carbon dioxide and electrons are generated. Therefore, power can be generated in the same manner as the conventional battery cell 4 shown in FIG. 5 and the battery cell 10 shown in FIG.

また、燃料極30を複数の分割極片30a〜30nで構成しているので、図1に示した実施の形態と同様に、昇温、降温時の電解質層1との材料の違いによる熱膨張係数の差に起因する各分割極片30a〜30nの伸縮の変位量を小さくすることができる。このため、分割極片全体の変位量も単一に形成した燃料極3における変位量に比べて小さくすることができ、熱応力を低減することができる。したがって、電解質層1と分割極片30a〜30n間の層間剥離やクラックの発生を防止でき、電池セル11の耐久性および発電性能を向上させることができる。   Further, since the fuel electrode 30 is composed of a plurality of divided electrode pieces 30a to 30n, similarly to the embodiment shown in FIG. 1, the thermal expansion due to the material difference from the electrolyte layer 1 at the time of temperature increase and decrease The displacement amount of expansion / contraction of each divided pole piece 30a-30n resulting from the difference in a coefficient can be made small. For this reason, the amount of displacement of the entire divided pole piece can also be made smaller than the amount of displacement in the single fuel electrode 3 formed, and thermal stress can be reduced. Therefore, generation of delamination and cracks between the electrolyte layer 1 and the divided electrode pieces 30a to 30n can be prevented, and the durability and power generation performance of the battery cell 11 can be improved.

図4(a)〜(c)は本発明に係る円形平板型固体酸化物形燃料電池セルのさらに他の実施の形態を示す側面図、平面図および底面図である。 4 (a) to 4 (c) are a side view, a plan view, and a bottom view showing still another embodiment of a circular plate type solid oxide fuel cell according to the present invention.

図4において、本実施の形態における円形平板型固体酸化物形燃料電池セル12は、図1および図3に示した電池セル10,11を組合わせることにより電解質層1と、この電解質層1の両面にそれぞれ形成された空気極20および燃料極30とで構成したものである。 In FIG. 4, the circular flat plate solid oxide fuel cell 12 according to the present embodiment includes an electrolyte layer 1 and a combination of the battery cells 10 and 11 shown in FIGS. 1 and 3. The air electrode 20 and the fuel electrode 30 are formed on both surfaces, respectively.

このような構成からなる円形平板型固体酸化物形燃料電池セル12においても、空気極20と燃料極30をそれぞれ複数の分割極片20a〜20n、30a〜30nで構成しているので、電解質層1と分割極片20a〜20n、30a〜30nとの層間剥離を防止することができ、電池セル12の発電性能および耐久性を一層向上させることができる。 Also in the circular flat plate type solid oxide fuel cell 12 having such a configuration, the air electrode 20 and the fuel electrode 30 are each composed of a plurality of divided electrode pieces 20a to 20n and 30a to 30n. 1 and the division | segmentation pole pieces 20a-20n and 30a-30n can be prevented from peeling, and the electric power generation performance and durability of the battery cell 12 can be improved further.

なお、上記した実施の形態では、いずれも電解質支持型のセル10,11,12を示したが、本発明はこれに何ら特定されるものではなく、燃料極支持型のセルにも適用することができる。   In the above-described embodiment, the electrolyte supporting cells 10, 11, and 12 are shown. However, the present invention is not limited to this, and is applicable to the fuel electrode supporting cell. Can do.

(a)〜(c)は本発明に係る円形平板型固体酸化物形燃料電池セルの一実施の形態を示す側面図、平面図および底面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a)-(c) is the side view, top view, and bottom view which show one Embodiment of the circular flat plate type solid oxide fuel cell concerning this invention. 電圧密度と電流密度の関係を示す図である。It is a figure which shows the relationship between a voltage density and a current density. (a)〜(c)は本発明に係る円形平板型固体酸化物形燃料電池セルの他の実施の形態を示す側面図、平面図および底面図である。(A)-(c) is the side view, top view, and bottom view which show other embodiment of the circular flat plate type solid oxide fuel cell concerning this invention. (a)〜(c)は本発明に係る円形平板型固体酸化物形燃料電池セルのさらに他の実施の形態を示す側面図、平面図および底面図である。(A)-(c) is the side view, top view, and bottom view which show other embodiment of the circular flat plate type solid oxide fuel cell concerning this invention. (a)〜(c)は従来の平板型固体酸化物形燃料電池セルの側面図、平面図および底面図である。(A)-(c) is a side view, a top view, and a bottom view of the conventional flat plate type solid oxide fuel cell.

符号の説明Explanation of symbols

1…電解質、2…空気極、3…燃料極、4,10,11,12…円形平板型固体酸化物形燃料電池セル、20…空気極、20a〜20n…分割空気極片(分割極片)、30…燃料極、30a〜30n…分割燃料極片(分割極片)。 DESCRIPTION OF SYMBOLS 1 ... Electrolyte, 2 ... Air electrode, 3 ... Fuel electrode, 4, 10, 11, 12 ... Circular plate type solid oxide fuel cell, 20 ... Air electrode, 20a-20n ... Divided air electrode piece (divided electrode piece) ), 30... Fuel electrode, 30a to 30n... Divided fuel electrode piece (divided electrode piece).

Claims (2)

固体酸化物からなる電解質層と、この電解質層の両面にそれぞれ形成された空気極および燃料極とからなる円形平板型固体酸化物形燃料電池セルにおいて、
前記空気極と前記燃料極の少なくともいずれか一方を複数の分割極片で構成し、
前記複数の分割極片は、前記電解質層と同心円となるように配置された円形分割極片と、前記電解質の半径方向および同心円周方向に形成された隙間によって分離された円弧状分割極片とで構成され、
前記円弧状分割極片は、前記電解質から見た円周方向の長さが、該電解質からみた半径方向の長さより長く形成されていることを特徴とする円形平板型固体酸化物形燃料電池セル。
In a circular plate type solid oxide fuel cell comprising an electrolyte layer made of a solid oxide, and an air electrode and a fuel electrode formed on both surfaces of the electrolyte layer,
At least one of the air electrode and the fuel electrode is composed of a plurality of divided electrode pieces,
The plurality of divided pole pieces include a circular divided pole piece disposed so as to be concentric with the electrolyte layer, and an arc-shaped divided pole piece separated by a gap formed in a radial direction and a concentric circumferential direction of the electrolyte. Consists of
The circular plate-shaped solid oxide fuel cell, wherein the arc-shaped segmented pole piece is formed such that a circumferential length viewed from the electrolyte is longer than a radial length viewed from the electrolyte. .
前記複数の分割極片は、電解質層の中央部より径方向外側に向かうにしたがって表面積が小さくなるように大きさを異ならせて形成されていることを特徴とする請求項1記載の円形平板型固体酸化物形燃料電池セル。 2. The circular flat plate type according to claim 1, wherein the plurality of divided pole pieces are formed in different sizes so that the surface area becomes smaller toward a radially outer side than a central portion of the electrolyte layer. Solid oxide fuel cell.
JP2005132255A 2005-04-28 2005-04-28 Round plate type solid oxide fuel cell Expired - Fee Related JP4437764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132255A JP4437764B2 (en) 2005-04-28 2005-04-28 Round plate type solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132255A JP4437764B2 (en) 2005-04-28 2005-04-28 Round plate type solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2006310132A JP2006310132A (en) 2006-11-09
JP4437764B2 true JP4437764B2 (en) 2010-03-24

Family

ID=37476790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132255A Expired - Fee Related JP4437764B2 (en) 2005-04-28 2005-04-28 Round plate type solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4437764B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178056B2 (en) * 2007-06-08 2013-04-10 関西電力株式会社 Fuel cell structure, fuel cell, and electrode layer precursor green sheet
JP5422414B2 (en) * 2010-01-25 2014-02-19 日本碍子株式会社 Solid oxide fuel cell
JP5662612B1 (en) * 2013-08-27 2015-02-04 日本碍子株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2006310132A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
CA2987226C (en) Solid oxide fuel cell
JP3914990B2 (en) Cylindrical fuel cell
JP2008047545A (en) Solid oxide fuel cell having gas channel
US20140017597A1 (en) Fuel cell
JP4462050B2 (en) Solid oxide fuel cell
JP2007273471A (en) Tempered electrode carrying ceramic fuel cell, and manufacturing method
JP2014123544A (en) Solid oxide fuel cell and method of manufacturing interconnector
JP4761104B2 (en) Cylindrical fuel cell
JP4437764B2 (en) Round plate type solid oxide fuel cell
JP2001196077A (en) Separator for solid electrolyte fuel cell
JP4815815B2 (en) Single-chamber solid oxide fuel cell
JPH0567473A (en) Solid electrolyte fuel cell
JP2009245633A (en) Fuel cell stack, and flat-plate solid oxide fuel cell using the same
JP5284876B2 (en) Method for producing flat solid oxide fuel cell
JP2004172062A (en) Fuel cell system and multilayer cell for the same
JP2007026925A (en) Stack structure of flat solid oxide fuel cell
JP5588888B2 (en) Fuel cell stack and fuel cell
JP2014123543A (en) Solid oxide fuel cell and method of manufacturing solid oxide fuel cell
JP2013257973A (en) Solid oxide fuel cell stack
JP5387821B2 (en) Flat type solid oxide fuel cell
JP2009135113A (en) Stack structure of flat plate solid oxide fuel cell
JP2009245625A (en) Solid electrolyte, power generation cell and flat-type solid-oxide fuel cell
JP2008277236A (en) Solid oxide fuel cell, and its stack structure
JP2003263997A (en) Solid oxide fuel cell
KR20140126035A (en) Preliminary shaped body for unit cell and manufacturing method of solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees