JP5662612B1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5662612B1
JP5662612B1 JP2014110178A JP2014110178A JP5662612B1 JP 5662612 B1 JP5662612 B1 JP 5662612B1 JP 2014110178 A JP2014110178 A JP 2014110178A JP 2014110178 A JP2014110178 A JP 2014110178A JP 5662612 B1 JP5662612 B1 JP 5662612B1
Authority
JP
Japan
Prior art keywords
air electrode
solid electrolyte
electrolyte membrane
current collecting
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014110178A
Other languages
Japanese (ja)
Other versions
JP2015065151A (en
Inventor
遥平 三浦
遥平 三浦
崇 龍
崇 龍
誠 大森
誠 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2014110178A priority Critical patent/JP5662612B1/en
Application granted granted Critical
Publication of JP5662612B1 publication Critical patent/JP5662612B1/en
Publication of JP2015065151A publication Critical patent/JP2015065151A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】固体電解質膜と燃料極と空気極とを備えた燃料電池であって、空気極の縁部にて剥離が発生し難いものを提供すること。【解決手段】この固体酸化物形燃料電池は、燃料極10、固体電解質膜20、及び空気極30を備える。空気極30は、固体電解質膜20の上面に形成された薄板状の空気極活性層31と、空気極活性層31の上面に形成された薄板状の空気極集電層32と、から構成される。空気極集電層32の側面の一部又は全周において、前記側面の周方向に沿って、凹凸が形成されている。各凸部の頂部、及び、各凹部の底部がそれぞれ円弧状を呈する。「凹部の底部の円弧半径」に対する「凸部の頂部の円弧半径」の割合が0.4〜2.5であり、凸部の最頂部と凹部の最底部との間の高低差が0.05〜1mmである。【選択図】図1To provide a fuel cell including a solid electrolyte membrane, a fuel electrode, and an air electrode, in which separation is unlikely to occur at the edge of the air electrode. The solid oxide fuel cell includes a fuel electrode, a solid electrolyte membrane, and an air electrode. The air electrode 30 includes a thin plate-shaped air electrode active layer 31 formed on the upper surface of the solid electrolyte membrane 20 and a thin plate-shaped air electrode current collecting layer 32 formed on the upper surface of the air electrode active layer 31. The Concavities and convexities are formed along the circumferential direction of the side surface of a part or the entire periphery of the side surface of the air electrode current collecting layer 32. The top part of each convex part and the bottom part of each concave part each have an arc shape. The ratio of the “arc radius at the top of the projection” to the “arc radius at the bottom of the recess” is 0.4 to 2.5, and the difference in height between the top of the projection and the bottom of the recess is 0. It is 05-1 mm. [Selection] Figure 1

Description

本発明は、燃料電池に関する。   The present invention relates to a fuel cell.

従来より、「固体電解質膜」と、「前記固体電解質膜の一方の面側に設けられた、燃料ガスの反応に係る燃料極」と、「前記固体電解質膜の他方の面側に設けられた、空気の反応に係る空気極」と、を備えた固体酸化物形燃料電池(以下、「SOFC」と呼ぶ)が知られている(例えば、特許文献1を参照)。係るSOFCでは、通常、燃料極及び空気極は、膜状に形成される。   Conventionally, “solid electrolyte membrane”, “a fuel electrode related to the reaction of fuel gas provided on one surface side of the solid electrolyte membrane”, and “provided on the other surface side of the solid electrolyte membrane” In addition, a solid oxide fuel cell (hereinafter referred to as “SOFC”) including an “air electrode relating to a reaction of air” is known (see, for example, Patent Document 1). In such an SOFC, the fuel electrode and the air electrode are usually formed in a film shape.

特許4824135号公報Japanese Patent No. 4824135

ところで、上述したSOFCでは、空気極膜の縁部にて剥離が発生し易いという問題があった。これは、空気極膜と固体電解質膜との間の熱膨張係数差に起因する応力が空気極膜の縁部に残留し易いことに基づく、と考えられる。   By the way, the SOFC described above has a problem that peeling easily occurs at the edge of the air electrode membrane. This is considered to be based on the fact that the stress due to the difference in thermal expansion coefficient between the air electrode membrane and the solid electrolyte membrane tends to remain at the edge of the air electrode membrane.

本発明の目的は、固体電解質膜と燃料極と空気極とを備えた燃料電池であって、空気極の縁部にて剥離が発生し難いものを提供することにある。   An object of the present invention is to provide a fuel cell including a solid electrolyte membrane, a fuel electrode, and an air electrode, which is unlikely to peel off at the edge of the air electrode.

本発明に係る燃料電池は、上述と同様、固体電解質膜と、燃料極と、空気極とを備える。前記空気極は膜状を呈している。前記燃料極も膜状を呈していることが好適である。   The fuel cell according to the present invention includes a solid electrolyte membrane, a fuel electrode, and an air electrode as described above. The air electrode has a film shape. It is preferable that the fuel electrode also has a film shape.

本発明に係る燃料電池の特徴は、前記空気極の側面の一部又は全周において、前記側面の周方向に沿って、凹部と凸部とが交互に繰り返す凹凸が形成されていることにある。ここで、前記空気極が、「空気極活性層」と、「前記空気極活性層に対して前記固体電解質膜と反対側にて前記空気極活性層と接触するとともに、前記空気極活性層より電気伝導率が大きい材質で構成された空気極集電層」と、を含んでいる場合、前記空気極集電層の側面の一部又は全周において、前記側面の周方向に沿って、前記凹凸が形成されることが好適である。   A feature of the fuel cell according to the present invention resides in that unevenness in which a concave portion and a convex portion are alternately repeated is formed along a circumferential direction of the side surface in a part or the entire periphery of the side surface of the air electrode. . Here, the air electrode is in contact with the air electrode active layer on the side opposite to the solid electrolyte membrane with respect to the air electrode active layer and from the air electrode active layer. Air cathode current collector layer made of a material having a high electrical conductivity '', and a part or the entire circumference of the side surface of the air electrode current collector layer, along the circumferential direction of the side surface, It is preferable that unevenness is formed.

これによれば、空気極の側面に、その周方向に沿って凹凸が形成されることによって、上述した「空気極の縁部に残留する応力」が分散されて、応力の集中が抑制され易くなる。この結果、空気極の縁部にて剥離が発生し難くなる。   According to this, the unevenness is formed on the side surface of the air electrode along the circumferential direction, whereby the above-mentioned “stress remaining on the edge of the air electrode” is dispersed, and the stress concentration is easily suppressed. Become. As a result, peeling hardly occurs at the edge of the air electrode.

上記本発明に係る燃料電池においては、前記各凸部の頂部、及び、前記各凹部の底部がそれぞれ円弧状を呈する場合、前記凹部の底部の円弧半径(R2)に対する、前記凸部の頂部の円弧半径(R1)の割合(R1/R2)が0.4〜2.5であることが好適である。また、前記凸部の最頂部と前記凹部の最底部との間の高低差(H)が0.05〜1mmであることが好適である。これらの点については後述する。   In the fuel cell according to the present invention, when the top part of each convex part and the bottom part of each concave part have an arc shape, the top part of the convex part with respect to the arc radius (R2) of the bottom part of the concave part. The ratio (R1 / R2) of the arc radius (R1) is preferably 0.4 to 2.5. Moreover, it is suitable that the height difference (H) between the topmost part of the said convex part and the bottommost part of the said recessed part is 0.05-1 mm. These points will be described later.

本発明の実施形態に係るSOFCを示した模式図である。It is the schematic diagram which showed SOFC which concerns on embodiment of this invention. 図1に示した空気極の側面の一部の形状を詳細に示した拡大図である。It is the enlarged view which showed in detail the shape of a part of side surface of the air electrode shown in FIG. 本発明の実施形態の変形例に係るSOFCの図1に対応する図である。It is a figure corresponding to FIG. 1 of SOFC which concerns on the modification of embodiment of this invention. 本発明の実施形態の他の変形例に係るSOFCの図1に対応する図である。It is a figure corresponding to FIG. 1 of SOFC which concerns on the other modification of embodiment of this invention. 本発明の実施形態の他の変形例に係るSOFCの図1に対応する図である。It is a figure corresponding to FIG. 1 of SOFC which concerns on the other modification of embodiment of this invention. 本発明の実施形態の他の変形例に係るSOFCの図1に対応する図である。It is a figure corresponding to FIG. 1 of SOFC which concerns on the other modification of embodiment of this invention. 本発明の実施形態の他の変形例に係るSOFCの図1に対応する図である。It is a figure corresponding to FIG. 1 of SOFC which concerns on the other modification of embodiment of this invention.

(構成)
図1は、本発明の実施形態に係る固体酸化物形燃料電池(SOFC)の一例を示す。図1に示すSOFCは、膜状の燃料極10と、燃料極10の上面に形成(積層)された固体電解質膜20と、固体電解質膜20の上面に形成(積層)された膜状の空気極30と、を含む積層焼成体である。
(Constitution)
FIG. 1 shows an example of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention. The SOFC shown in FIG. 1 includes a membrane fuel electrode 10, a solid electrolyte membrane 20 formed (laminated) on the upper surface of the fuel electrode 10, and a membrane air formed (laminated) on the upper surface of the solid electrolyte membrane 20. A laminated fired body including the electrode 30.

このSOFCを上方からみた形状は、例えば、1辺が1〜10cmの正方形、又は、長辺が5〜30cmで短辺が3〜15cmの長方形である。本明細書では、特に説明がない限りにおいて形状等の寸法の値は、後述する「還元処理」が施された後の常温での値である。   The shape of the SOFC viewed from above is, for example, a square having a side of 1 to 10 cm, or a rectangle having a long side of 5 to 30 cm and a short side of 3 to 15 cm. In the present specification, unless otherwise specified, the value of the dimension such as the shape is a value at room temperature after the “reduction treatment” described later is performed.

燃料極10(アノード電極)は、例えば、酸化ニッケルNiOとイットリア安定化ジルコニアYSZとで構成される多孔質の板状の焼成体である。燃料極10の気孔率は、25〜50%である。燃料極10の厚さは0.1〜3mmである。このSOFCの各構成部材の厚さのうち燃料極10の厚さが最も大きく、燃料極10は、このSOFCの支持基板として機能している。燃料極10が、「燃料極集電層」と、「燃料極集電層と固体電解質膜との間に挟まれるとともに、燃料極集電層より酸素イオン伝導性を有する物質の体積割合が大きい燃料極活性層」と、によって構成されてもよい。「酸素イオン伝導性を有する物質」とは、例えば、イットリア安定化ジルコニアYSZである。   The fuel electrode 10 (anode electrode) is, for example, a porous plate-like fired body composed of nickel oxide NiO and yttria-stabilized zirconia YSZ. The porosity of the fuel electrode 10 is 25 to 50%. The thickness of the fuel electrode 10 is 0.1 to 3 mm. The thickness of the fuel electrode 10 is the largest among the thicknesses of the constituent members of the SOFC, and the fuel electrode 10 functions as a support substrate for the SOFC. The anode 10 is sandwiched between the anode current collecting layer and the anode current collecting layer and the solid electrolyte membrane, and the volume ratio of the substance having oxygen ion conductivity is larger than that of the anode current collecting layer. The fuel electrode active layer ”may be used. The “substance having oxygen ion conductivity” is, for example, yttria-stabilized zirconia YSZ.

固体電解質膜20は、例えば、YSZで構成される緻密な薄板状の焼成体である。電解質膜20の気孔率は、0〜10%である。電解質膜20の厚さは0.5〜30μmである。   The solid electrolyte membrane 20 is a dense thin plate-like fired body made of, for example, YSZ. The porosity of the electrolyte membrane 20 is 0 to 10%. The thickness of the electrolyte membrane 20 is 0.5 to 30 μm.

空気極30(カソード電極)は、固体電解質膜20の上面に形成(積層)された膜状の空気極活性層31と、空気極活性層31の上面に形成(積層)された膜状の空気極集電層32と、を含んでいる。空気極活性層31及び空気極集電層32は共に、多孔質の薄板状の焼成体である。空気極活性層31は、空気に係る反応を促進する機能を主として発揮し、空気極集電層32は、外部から供給される電子を集める機能を主として発揮する。   The air electrode 30 (cathode electrode) includes a film-shaped air electrode active layer 31 formed (laminated) on the upper surface of the solid electrolyte membrane 20 and a film-shaped air formed (laminated) on the upper surface of the air electrode active layer 31. And an electrode current collecting layer 32. Both the air electrode active layer 31 and the air electrode current collecting layer 32 are porous thin plate-like fired bodies. The air electrode active layer 31 mainly exhibits a function of promoting a reaction related to air, and the air electrode current collecting layer 32 mainly exhibits a function of collecting electrons supplied from the outside.

空気極活性層31は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)で構成され得る。或いは、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等で構成されてもよい。空気極活性層31の厚さは20〜30μmである。空気極活性層31の気孔率は、35〜45%である。 The air electrode active layer 31 can be made of, for example, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite). Alternatively, LSF = (La, Sr) FeO 3 (lanthanum strontium ferrite), LNF = La (Ni, Fe) O 3 (lanthanum nickel ferrite), LSC = (La, Sr) CoO 3 (lanthanum strontium cobaltite), etc. It may be configured. The thickness of the air electrode active layer 31 is 20 to 30 μm. The porosity of the air electrode active layer 31 is 35 to 45%.

空気極集電層32は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)で構成され得る。或いは、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)で構成されてもよい。或いは、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。或いは、La(Ni、Fe、Cu)O(銅が添加されたランタンニッケルフェライト)で構成され得る。空気極集電層32の厚さは、80〜120μmである。空気極集電層32の気孔率は、35〜45%である。 The air electrode current collecting layer 32 can be made of, for example, LSCF = (La, Sr) (Co, Fe) O 3 (lanthanum strontium cobalt ferrite). Alternatively, LSC = (La, Sr) CoO 3 (lanthanum strontium cobaltite) may be used. Or you may comprise from Ag (silver) and Ag-Pd (silver palladium alloy). Alternatively, it may be composed of La (Ni, Fe, Cu) O 3 (lanthanum nickel ferrite to which copper is added). The thickness of the air electrode current collecting layer 32 is 80 to 120 μm. The porosity of the air electrode current collecting layer 32 is 35 to 45%.

空気極集電層32を構成する材質の電気伝導率は、空気極活性層31を構成する材質の電気伝導率より大きい。空気極集電層32の厚さは、空気極活性層31の厚さより大きい。空気極集電層32の側面の形状の詳細については後述する。   The electrical conductivity of the material constituting the air electrode current collecting layer 32 is larger than the electrical conductivity of the material constituting the air electrode active layer 31. The thickness of the air electrode current collecting layer 32 is larger than the thickness of the air electrode active layer 31. Details of the shape of the side surface of the air electrode current collecting layer 32 will be described later.

固体電解質膜20と空気極30(より具体的には、空気極活性層31)との間に反応防止膜が介装されてもよい。この反応防止膜は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)で構成される緻密な薄板状の焼成体である。反応防止膜の厚さは、3〜50μmである。 A reaction preventing film may be interposed between the solid electrolyte membrane 20 and the air electrode 30 (more specifically, the air electrode active layer 31). This reaction preventing film is a dense thin plate-like fired body made of, for example, GDC = (Ce, Gd) O 2 (gadolinium-doped ceria). The thickness of the reaction preventing film is 3 to 50 μm.

なお、反応防止膜50が介装されるのは、SOFC作製時又は作動中のSOFC内において固体電解質膜内のYSZと空気極内のSrとが反応して固体電解質膜と空気極との界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するためである。   The reaction preventing film 50 is interposed because the YSZ in the solid electrolyte film reacts with the Sr in the air electrode in the SOFC during or during the production of the SOFC and the interface between the solid electrolyte film and the air electrode. This is to suppress the occurrence of a phenomenon in which a reaction layer having a large electric resistance is formed.

(製造方法)
次に、上述したSOFCの製造方法の一例について説明する。
(Production method)
Next, an example of the above-described SOFC manufacturing method will be described.

先ず、板状の燃料極の成形体が形成される。燃料極の成形体は、例えば、燃料極の材料(例えば、NiとYSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成される。   First, a molded body of a plate-like fuel electrode is formed. The molded body of the fuel electrode is embedded and formed using a slurry obtained by adding a binder or the like to powder of the fuel electrode material (for example, Ni and YSZ), for example, using a printing method or the like.

次いで、燃料極の成形体の上面に、固体電解質膜の成形体が形成される。固体電解質膜の成形体は、例えば、固体電解質膜の材料(例えば、YSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法、ディッピング法等を利用して形成される。   Next, a solid electrolyte membrane molded body is formed on the upper surface of the fuel electrode molded body. The molded body of the solid electrolyte membrane is formed, for example, using a slurry obtained by adding a binder or the like to a powder of the material of the solid electrolyte membrane (for example, YSZ), using a printing method, a dipping method, or the like.

続いて、この積層成形体(燃料極の成形体+固体電解質膜の成形体)が、空気中にて1500℃で3時間焼成される。これにより、図1に示したSOFCにおいて空気極30(空気極活性層31、及び、空気極集電層32)が形成されていない状態のものが得られる。   Subsequently, this laminated molded body (fuel electrode molded body + solid electrolyte membrane molded body) is fired in air at 1500 ° C. for 3 hours. As a result, the SOFC shown in FIG. 1 in which the air electrode 30 (the air electrode active layer 31 and the air electrode current collecting layer 32) is not formed is obtained.

次に、固体電解質膜20(焼成体)の上面に、空気極活性層の成形体が形成される。空気極活性層の成形体は、例えば、空気極活性層の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。   Next, a molded body of the air electrode active layer is formed on the upper surface of the solid electrolyte membrane 20 (fired body). The molded body of the air electrode active layer is formed using a slurry obtained by adding a binder or the like to the powder of the material of the air electrode active layer (for example, LSCF), using a printing method or the like.

次いで、空気極活性層の成形体の上面に、空気極集電層の成形体が形成される。空気極集電層の成形体は、例えば、空気極集電層の材料(例えば、La(Ni、Fe、Cu)O)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。 Subsequently, the air electrode current collecting layer formed body is formed on the upper surface of the air electrode active layer formed body. The molded article of the air electrode current collecting layer is printed using, for example, a slurry obtained by adding a binder or the like to the powder of the material of the air electrode current collecting layer (for example, La (Ni, Fe, Cu) O 3 ). It is formed using the law.

そして、この積層成形体(空気極活性層の成形体+空気極集電層の成形体)が、空気中にて1050℃で3時間焼成される。これにより、図1に示したSOFC(焼成体)が得られる。以上、図1に示したSOFCの製造方法の一例について説明した。   And this laminated molded object (The molded object of an air electrode active layer + the molded object of an air electrode current collection layer) is baked at 1050 degreeC in the air for 3 hours. Thereby, the SOFC (sintered body) shown in FIG. 1 is obtained. In the above, an example of the manufacturing method of SOFC shown in FIG. 1 was demonstrated.

なお、この時点では、酸素含有雰囲気での焼成により、燃料極10中のNi成分が、NiOとなっている。従って、燃料極10の導電性を獲得するため、その後、燃料極10に還元性の燃料ガスが流され、NiOが800〜1000℃で1〜10時間に亘って還元処理される。なお、この還元処理は発電時に行われてもよい。   At this time, the Ni component in the fuel electrode 10 is NiO by firing in an oxygen-containing atmosphere. Therefore, in order to acquire the conductivity of the fuel electrode 10, thereafter, a reducing fuel gas is caused to flow through the fuel electrode 10 and NiO is reduced at 800 to 1000 ° C. for 1 to 10 hours. This reduction process may be performed during power generation.

(空気極集電層の側面の凹凸)
次に、上記実施形態に係るSOFCの空気極集電層32の側面の特徴について説明する。図1、及び、「図1に示す空気極集電層32の側面の一部を拡大して示す図2」に示すように、空気極集電層32の側面の全周において、前記側面の周方向に沿って、凹部と凸部とが交互に繰り返す凹凸が形成されている。この凹凸は、上述した空気極集電層の成形体(焼成前)の形成の段階にて、印刷法等を利用して既に形成されている。
(Roughness on the side of the air current collector layer)
Next, the characteristics of the side surface of the SOFC air electrode current collecting layer 32 according to the above embodiment will be described. As shown in FIG. 1 and “FIG. 2 showing an enlarged part of the side surface of the air electrode current collecting layer 32 shown in FIG. 1”, the side surface Concavities and convexities in which concave and convex portions are alternately repeated are formed along the circumferential direction. The irregularities are already formed using a printing method or the like at the stage of forming the air electrode current collecting layer formed body (before firing).

各凸部の頂部、及び、各凹部の底部はそれぞれ、円弧状を呈している。各凸部の頂部の円弧半径R1、各凹部の底部の円弧半径R2、隣接する凸部(又は凹部)間のピッチP、並びに、凹凸の高低差(空気極集電層32の側面の周方向に沿う方向に垂直な方向における、凸部の最頂部と凹部の最底部との距離)Hについては後述する。   The top of each projection and the bottom of each recess each have an arc shape. Arc radius R1 at the top of each projection, arc radius R2 at the bottom of each recess, pitch P between adjacent projections (or recesses), and uneven height difference (circumferential direction of the side surface of the air electrode current collecting layer 32) The distance H between the topmost portion of the convex portion and the bottommost portion of the concave portion in a direction perpendicular to the direction along the direction will be described later.

(作用・効果)
上記実施形態では、空気極集電層32の側面の全周において、前記側面の周方向に沿って凹凸が形成されている。これにより、空気極集電層32の側面に、その周方向に沿って凹凸が形成されることによって、背景技術の欄で記載した「空気極の縁部に残留する応力」が分散されて、応力の集中が抑制され易くなる。この結果、空気極集電層32の縁部にて剥離が発生し難くなる。なお、上記実施形態にて空気極集電層32の側面に凹凸が形成される一方で空気極活性層31の側面には凹凸が形成されていないのは、空気極集電層32が空気極活性層31より厚いので、空気極集電層32の剥離が特に問題になり易いことに基づく。
(Action / Effect)
In the above embodiment, unevenness is formed along the circumferential direction of the side surface of the entire circumference of the side surface of the air electrode current collecting layer 32. Thereby, the unevenness is formed along the circumferential direction on the side surface of the air electrode current collecting layer 32, whereby the "stress remaining on the edge of the air electrode" described in the background art section is dispersed, Stress concentration is easily suppressed. As a result, peeling hardly occurs at the edge of the air electrode current collecting layer 32. In the above embodiment, unevenness is formed on the side surface of the air electrode current collecting layer 32, while no unevenness is formed on the side surface of the air electrode active layer 31. Since it is thicker than the active layer 31, peeling of the air electrode current collecting layer 32 is particularly likely to be a problem.

(凹部及び凸部の円弧半径の割合)
上述の還元処理後における図1に示したSOFCでは、通常の環境下で稼働される場合には、空気極集電層32の側面(凹凸が形成された面)にクラックが発生しない。しかしながら、SOFCが熱応力的に過酷な環境下で稼働されると、上記側面にクラックが発生する場合があった。本発明者は、係るクラックの発生が、「凹部の底部の円弧半径R2」に対する「凸部の頂部の円弧半径R1」の割合(R1/R2)(以下、「円弧半径割合R1/R2」と呼ぶ)と強い相関があることを見出した。以下、このことを確認した試験Aについて説明する。
(Ratio of arc radius of concave and convex parts)
In the SOFC shown in FIG. 1 after the above-described reduction treatment, cracks do not occur on the side surface (surface on which irregularities are formed) of the air electrode current collecting layer 32 when operated in a normal environment. However, when the SOFC is operated in a severe environment due to thermal stress, cracks may occur on the side surfaces. The present inventor has found that the occurrence of such cracks is the ratio (R1 / R2) of the “arc radius R1 at the top of the convex portion to the arc radius R2 at the bottom of the recess” (hereinafter referred to as “arc radius ratio R1 / R2”). And found a strong correlation. Hereinafter, test A in which this has been confirmed will be described.

(試験A)
試験Aでは、図1に示したSOFCについて、空気極集電層の材質、及び、空気極集電層の側面に形成された凹凸のピッチP、高低差H、凸部の頂部の円弧半径R1、凹部の底部の円弧半径R2、円弧半径割合R1/R2の組み合わせが異なる複数のサンプルが作製された。具体的には、表1に示すように、10種類の水準(組み合わせ)が準備された。各水準に対して10個のサンプル(N=10)が作製された。表1に記載された各値は、上述の還元処理後の値(N=10の平均値)である。
(Test A)
In the test A, for the SOFC shown in FIG. 1, the material of the air electrode current collecting layer, the pitch P of the unevenness formed on the side surface of the air electrode current collecting layer, the height difference H, and the arc radius R1 of the top of the convex part A plurality of samples having different combinations of the arc radius R2 and the arc radius ratio R1 / R2 at the bottom of the recess were produced. Specifically, as shown in Table 1, 10 types (combinations) were prepared. Ten samples (N = 10) were made for each level. Each value described in Table 1 is a value after the reduction treatment described above (an average value of N = 10).

Figure 0005662612
Figure 0005662612

各サンプル(図1に示すSOFC)にて、上述の還元処理後にて、空気極活性層31の厚さは20〜30μmとされ、空気極集電層32の厚さは80〜120μmとされた。凹凸のピッチPは0.2〜2mmとされ、高低差Hは0.05〜1mmとされた。空気極活性層31の気孔率は35〜45%とされ、空気極集電層32の気孔率は35〜45%とされた。各層の気孔率の調整は、スラリー内の粉末の粒径、造孔材の添加量等を調整することによってなされた。空気極30(活性層31+集電層32の2層)の共焼成温度は、900〜1100℃の範囲内で調整された。共焼成時間は、1〜10時間の範囲内で調整された。還元処理温度は、800〜1000℃の範囲内で調整された。還元処理時間は、1〜10時間の範囲内で調整された。   In each sample (SOFC shown in FIG. 1), after the above-described reduction treatment, the thickness of the air electrode active layer 31 was set to 20 to 30 μm, and the thickness of the air electrode current collecting layer 32 was set to 80 to 120 μm. . The unevenness pitch P was set to 0.2 to 2 mm, and the height difference H was set to 0.05 to 1 mm. The porosity of the air electrode active layer 31 was 35 to 45%, and the porosity of the air electrode current collecting layer 32 was 35 to 45%. The porosity of each layer was adjusted by adjusting the particle size of the powder in the slurry, the added amount of the pore former, and the like. The co-firing temperature of the air electrode 30 (two layers of the active layer 31 and the current collecting layer 32) was adjusted within a range of 900 to 1100 ° C. The co-firing time was adjusted within a range of 1 to 10 hours. The reduction treatment temperature was adjusted within the range of 800 to 1000 ° C. The reduction treatment time was adjusted within a range of 1 to 10 hours.

そして、上記還元処理後の各サンプルについて、「燃料極10に還元性の燃料ガスを流通させながら、雰囲気温度を常温から750℃まで2時間で上げた後に750℃から常温まで4時間で下げるパターン」を10回繰り返す熱サイクル試験を行った。そして、各サンプルについて、空気極集電層32の側面(凹凸が形成された面)におけるクラックの発生の有無が確認された。この確認は、目視、並びに、顕微鏡を使用した観察によってなされた。この結果は表1に示すとおりである。   For each sample after the reduction treatment, “a pattern in which the ambient temperature is raised from room temperature to 750 ° C. in 2 hours and then lowered from 750 ° C. to room temperature in 4 hours while reducing fuel gas is circulated through the fuel electrode 10. The heat cycle test was repeated 10 times. And about each sample, the presence or absence of the generation | occurrence | production of the crack in the side surface (surface in which the unevenness | corrugation was formed) of the air electrode current collection layer 32 was confirmed. This confirmation was made by visual observation as well as observation using a microscope. The results are as shown in Table 1.

表1から理解できるように、熱応力的に過酷な上記熱サイクル試験を行った後では、円弧半径割合R1/R2が0.4未満、又は、2.5より大きいと、理由は不明であるが、空気極集電層32の側面(凹凸が形成された面)にクラックが発生し易い。一方、円弧半径割合R1/R2が0.4〜2.5の範囲内であると、前記クラックが発生し難い、ということができる。   As can be understood from Table 1, after the thermal cycle test that is severe in terms of thermal stress, if the arc radius ratio R1 / R2 is less than 0.4 or greater than 2.5, the reason is unknown. However, cracks are likely to occur on the side surface (surface on which irregularities are formed) of the air electrode current collecting layer 32. On the other hand, when the arc radius ratio R1 / R2 is within the range of 0.4 to 2.5, it can be said that the crack is hardly generated.

なお、本発明者は、通常の条件・環境下(例えば、常温から750℃まで4時間で上げた後に750℃から常温まで12時間で下げるパターン)にて上記実施形態が使用される場合、円弧半径割合R1/R2が0.4〜2.5の範囲外であっても、空気極集電層32の側面(凹凸が形成された面)にクラックが発生しないことを別途確認している。   In addition, the present inventor, when the above-described embodiment is used under normal conditions and environment (for example, a pattern in which the temperature is raised from room temperature to 750 ° C. in 4 hours and then lowered from 750 ° C. to room temperature in 12 hours) Even if the radius ratio R1 / R2 is outside the range of 0.4 to 2.5, it has been separately confirmed that no cracks are generated on the side surface (surface on which the unevenness is formed) of the air electrode current collecting layer 32.

(凹凸の高低差)
本発明者は、図1に示したSOFCが熱応力的に過酷な環境下で稼働される場合に発生する上記クラックの発生が、「凹凸の高低差H」(図2を参照)とも強い相関があることを見出した。以下、このことを確認した試験Bについて説明する。
(Difference in unevenness)
The inventor of the present invention has a strong correlation between the occurrence of the cracks generated when the SOFC shown in FIG. 1 is operated under a severe environment in terms of thermal stress and “difference level difference H” (see FIG. 2). Found that there is. Hereinafter, test B in which this has been confirmed will be described.

(試験B)
試験Bでは、図1に示したSOFCについて、空気極集電層の材質、及び、空気極集電層の側面に形成された凹凸のピッチP、凸部の頂部の円弧半径R1、凹部の底部の円弧半径R2、高低差Hの組み合わせが異なる複数のサンプルが作製された。具体的には、表2に示すように、10種類の水準(組み合わせ)が準備された。各水準に対して10個のサンプル(N=10)が作製された。表2に記載された各値は、上述の還元処理後の値(N=10の平均値)である。
(Test B)
In the test B, for the SOFC shown in FIG. 1, the material of the air electrode current collecting layer, the pitch P of the unevenness formed on the side surface of the air electrode current collecting layer, the arc radius R1 at the top of the convex part, the bottom of the concave part A plurality of samples having different combinations of the arc radius R2 and the height difference H were prepared. Specifically, as shown in Table 2, ten kinds of levels (combinations) were prepared. Ten samples (N = 10) were made for each level. Each value described in Table 2 is a value after the reduction treatment described above (an average value of N = 10).

Figure 0005662612
Figure 0005662612

各サンプル(図1に示すSOFC)にて、上述の還元処理後にて、空気極活性層31の厚さは20〜30μmとされ、空気極集電層32の厚さは80〜120μmとされた。凹凸のピッチPは0.2〜2mmとされ、円弧半径割合R1/R2は0.4〜2.5とされた。空気極活性層31の気孔率は35〜45%とされ、空気極集電層32の気孔率は35〜45%とされた。空気極30(活性層31+集電層32の2層)の共焼成温度、共焼成時間、還元処理温度、及び、還元処理時間は、上記試験Aのときと同じとされた。   In each sample (SOFC shown in FIG. 1), after the above-described reduction treatment, the thickness of the air electrode active layer 31 was set to 20 to 30 μm, and the thickness of the air electrode current collecting layer 32 was set to 80 to 120 μm. . The unevenness pitch P was set to 0.2 to 2 mm, and the arc radius ratio R1 / R2 was set to 0.4 to 2.5. The porosity of the air electrode active layer 31 was 35 to 45%, and the porosity of the air electrode current collecting layer 32 was 35 to 45%. The co-firing temperature, co-firing time, reduction treatment temperature, and reduction treatment time of the air electrode 30 (two layers of the active layer 31 and the current collecting layer 32) were the same as those in Test A above.

そして、上記還元処理後の各サンプルについて、上記試験Aのときと同様、「燃料極10に還元性の燃料ガスを流通させながら、雰囲気温度を常温から750℃まで2時間で上げた後に750℃から常温まで4時間で下げるパターン」を20回繰り返す熱サイクル試験を行った。そして、各サンプルについて、空気極集電層32の側面(凹凸が形成された面)におけるクラックの発生の有無が確認された。この確認は、目視、並びに、顕微鏡を使用した観察によってなされた。この結果は表2に示すとおりである。   And, for each sample after the reduction treatment, as in the case of the test A, “750 ° C. after raising the ambient temperature from room temperature to 750 ° C. in 2 hours while circulating the reducing fuel gas to the fuel electrode 10. The thermal cycle test was repeated 20 times for the “pattern from 4 to room temperature in 4 hours”. And about each sample, the presence or absence of the generation | occurrence | production of the crack in the side surface (surface in which the unevenness | corrugation was formed) of the air electrode current collection layer 32 was confirmed. This confirmation was made by visual observation as well as observation using a microscope. The results are as shown in Table 2.

表2から理解できるように、熱応力的に過酷な上記熱サイクル試験を行った後では、凹凸の高低差Hが0.05mm未満、又は、1mmより大きいと、理由は不明であるが、空気極集電層32の側面(凹凸が形成された面)にクラックが発生し易い。一方、高低差Hが0.05〜1mmの範囲内であると、前記クラックが発生し難い、ということができる。   As can be understood from Table 2, after the thermal cycle test, which is severe in terms of thermal stress, if the height difference H of the unevenness is less than 0.05 mm or greater than 1 mm, the reason is unknown. Cracks are likely to occur on the side surface (surface on which irregularities are formed) of the pole current collecting layer 32. On the other hand, when the height difference H is in the range of 0.05 to 1 mm, it can be said that the crack is hardly generated.

なお、本発明者は、通常の条件・環境下(例えば、常温から750℃まで4時間で上げた後に750℃から常温まで12時間で下げるパターン)にて上記実施形態が使用される場合、凹凸の高低差Hが0.05〜1mmの範囲外であっても、空気極集電層32の側面(凹凸が形成された面)にクラックが発生しないことを別途確認している。   In addition, when the above-described embodiment is used under normal conditions and environment (for example, a pattern in which the temperature is raised from room temperature to 750 ° C. in 4 hours and then lowered from 750 ° C. to room temperature in 12 hours), the inventor Even if the height difference H is outside the range of 0.05 to 1 mm, it has been separately confirmed that no cracks are generated on the side surface (surface on which irregularities are formed) of the air electrode current collecting layer 32.

なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、図1に示すように、空気極集電層32の側面の全周に凹凸が形成されているが、図3に示すように、空気極集電層32の側面の一部にのみ凹凸が形成されていてもよい。また、図1、及び図3に示す例では、空気極活性層31の側面には空気極集電層32の側面に形成された凹凸と同じ又は類似の形状の凹凸が形成されていないが、形成されていてもよい。   In addition, this invention is not limited to the said embodiment, A various modification can be employ | adopted within the scope of the present invention. For example, in the above embodiment, as shown in FIG. 1, irregularities are formed on the entire circumference of the side surface of the air electrode current collecting layer 32, but as shown in FIG. Concavities and convexities may be formed only in part. In the example shown in FIGS. 1 and 3, the side surface of the air electrode active layer 31 is not formed with unevenness having the same or similar shape as the unevenness formed on the side surface of the air electrode current collecting layer 32. It may be formed.

また、上記実施形態では、図1に示すように、空気極30が空気極活性層31と空気極集電層32の2層からなり、空気極集電層32の側面の全周に凹凸が形成されているが、図4に示すように、空気極30が1層のみからなり、空気極30(=1層)そのものの側面の全周に凹凸が形成されていてもよい。同様に、図5に示すように、空気極30(=1層)そのものの側面の一部にのみ凹凸が形成されていてもよい。   Moreover, in the said embodiment, as shown in FIG. 1, the air electrode 30 consists of two layers, the air electrode active layer 31 and the air electrode current collection layer 32, and an unevenness | corrugation is formed in the perimeter of the side surface of the air electrode current collection layer 32. Although formed, as shown in FIG. 4, the air electrode 30 may be composed of only one layer, and irregularities may be formed on the entire circumference of the side surface of the air electrode 30 (= 1 layer) itself. Similarly, as shown in FIG. 5, unevenness may be formed only on a part of the side surface of the air electrode 30 (= 1 layer) itself.

また、上記実施形態では、図1に示すように、空気極集電層32の全体が空気極活性層31の上面に載っており(即ち、空気極集電層32が空気極活性層31の側面を覆っておらず)、且つ、空気極集電層32の側面の全周に凹凸が形成されているが、図6に示すように、空気極集電層32が空気極活性層31の全体(上面及び側面の全て)を覆っており、且つ、空気極集電層32の側面の全周に凹凸が形成されていてもよい。空気極集電層32の周縁部の全周は、固体電解質膜20の上面と接触している。この場合も同様、図7に示すように、空気極集電層32の側面の一部にのみ凹凸が形成されていてもよい。また、図6、及び図7に示す例では、空気極活性層31の側面には空気極集電層32の側面に形成された凹凸と同じ又は類似の形状の凹凸が形成されていないが、形成されていてもよい。   In the above embodiment, as shown in FIG. 1, the entire air electrode current collecting layer 32 is placed on the upper surface of the air electrode active layer 31 (that is, the air electrode current collecting layer 32 is the air electrode active layer 31. The side surface of the air electrode current collecting layer 32 is uneven, and irregularities are formed on the entire circumference of the side surface of the air electrode current collecting layer 32. As shown in FIG. The entire surface (all of the upper surface and the side surface) may be covered, and unevenness may be formed on the entire circumference of the side surface of the air electrode current collecting layer 32. The entire periphery of the peripheral edge of the air electrode current collecting layer 32 is in contact with the upper surface of the solid electrolyte membrane 20. Also in this case, as shown in FIG. 7, irregularities may be formed only on a part of the side surface of the air electrode current collecting layer 32. In the example shown in FIGS. 6 and 7, the side surface of the air electrode active layer 31 is not formed with unevenness having the same or similar shape as the unevenness formed on the side surface of the air electrode current collecting layer 32. It may be formed.

なお、上述した試験A、Bが上述した図3〜図7に示すそれぞれの態様について行われた場合においても、上述した表1、2に示した結果と同じ結果が得られることを別途確認している。   In addition, when tests A and B described above are performed for each of the modes shown in FIGS. 3 to 7 described above, it is separately confirmed that the same results as those shown in Tables 1 and 2 are obtained. ing.

10…燃料極、20…固体電解質膜、30…空気極、31…空気極活性層、32…空気極集電層   DESCRIPTION OF SYMBOLS 10 ... Fuel electrode, 20 ... Solid electrolyte membrane, 30 ... Air electrode, 31 ... Air electrode active layer, 32 ... Air electrode current collection layer

Claims (4)

固体電解質膜と、
前記固体電解質膜の一方の面側に設けられた、燃料ガスの反応に係る燃料極と、
前記固体電解質膜の他方の面側に設けられた、酸素を含むガスの反応に係る空気極と、
を備えた燃料電池であって、
前記空気極は膜状を呈しており、
前記空気極の側面の一部又は全周において、前記側面の周方向に沿って、凹部と凸部とが交互に繰り返す凹凸が形成され
前記各凸部の頂部、及び、前記各凹部の底部がそれぞれ円弧状を呈し、
前記凹部の底部の円弧半径(R2)に対する、前記凸部の頂部の円弧半径(R1)の割合(R1/R2)は、0.4〜2.5である、燃料電池。
A solid electrolyte membrane;
A fuel electrode that is provided on one surface of the solid electrolyte membrane and is associated with a reaction of fuel gas;
An air electrode provided on the other surface side of the solid electrolyte membrane and relating to a reaction of a gas containing oxygen;
A fuel cell comprising:
The air electrode has a film shape,
In a part or the entire circumference of the side surface of the air electrode, along the circumferential direction of the side surface, concave and convex portions that are alternately repeated with concave portions and convex portions are formed ,
The top of each convex portion and the bottom of each concave portion each have an arc shape,
The ratio (R1 / R2) of the arc radius (R1) of the top of the convex portion to the arc radius (R2) of the bottom of the concave portion is 0.4 to 2.5 .
固体電解質膜と、
前記固体電解質膜の一方の面側に設けられた、燃料ガスの反応に係る燃料極と、
前記固体電解質膜の他方の面側に設けられた、酸素を含むガスの反応に係る空気極と、
を備えた燃料電池であって、
前記空気極は膜状を呈しており、
前記空気極の側面の一部又は全周において、前記側面の周方向に沿って、凹部と凸部とが交互に繰り返す凹凸が形成され、
前記空気極は、
空気極活性層と、
前記空気極活性層に対して前記固体電解質膜と反対側にて前記空気極活性層と接触するとともに、前記空気極活性層より電気伝導率が大きい材質で構成された空気極集電層と、
を含み、
前記空気極集電層の側面の一部又は全周において、前記側面の周方向に沿って、前記凹凸が形成された、燃料電池。
A solid electrolyte membrane;
A fuel electrode that is provided on one surface of the solid electrolyte membrane and is associated with a reaction of fuel gas;
An air electrode provided on the other surface side of the solid electrolyte membrane and relating to a reaction of a gas containing oxygen;
A fuel cell comprising:
The air electrode has a film shape,
In a part or the entire circumference of the side surface of the air electrode, along the circumferential direction of the side surface, concave and convex portions that are alternately repeated with concave portions and convex portions are formed,
The air electrode is
An air cathode active layer;
An air electrode current collecting layer made of a material having electrical conductivity larger than that of the air electrode active layer, in contact with the air electrode active layer on the side opposite to the solid electrolyte membrane with respect to the air electrode active layer,
Including
The fuel cell , wherein the unevenness is formed along a circumferential direction of the side surface in a part or the entire periphery of the side surface of the air electrode current collecting layer .
請求項2に記載の燃料電池において、
前記各凸部の頂部、及び、前記各凹部の底部がそれぞれ円弧状を呈し、
前記凹部の底部の円弧半径(R2)に対する、前記凸部の頂部の円弧半径(R1)の割合(R1/R2)は、0.4〜2.5である、燃料電池。
The fuel cell according to claim 2 , wherein
The top of each convex portion and the bottom of each concave portion each have an arc shape,
The ratio (R1 / R2) of the arc radius (R1) of the top of the convex portion to the arc radius (R2) of the bottom of the concave portion is 0.4 to 2.5.
請求項1乃至請求項3の何れか一項に記載の燃料電池において、
前記凸部の最頂部と前記凹部の最底部との間の高低差(H)は、0.05〜1mmである、燃料電池。
The fuel cell according to any one of claims 1 to 3 , wherein
The height difference (H) between the topmost part of the convex part and the bottommost part of the concave part is 0.05 to 1 mm.
JP2014110178A 2013-08-27 2014-05-28 Fuel cell Active JP5662612B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014110178A JP5662612B1 (en) 2013-08-27 2014-05-28 Fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013175129 2013-08-27
JP2013175129 2013-08-27
JP2014110178A JP5662612B1 (en) 2013-08-27 2014-05-28 Fuel cell

Publications (2)

Publication Number Publication Date
JP5662612B1 true JP5662612B1 (en) 2015-02-04
JP2015065151A JP2015065151A (en) 2015-04-09

Family

ID=52569371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014110178A Active JP5662612B1 (en) 2013-08-27 2014-05-28 Fuel cell

Country Status (1)

Country Link
JP (1) JP5662612B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752297B1 (en) * 2014-06-05 2015-07-22 日本碍子株式会社 Fuel cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981000B1 (en) * 2015-07-24 2016-08-31 日本碍子株式会社 Fuel cell
JP5981001B1 (en) * 2015-07-24 2016-08-31 日本碍子株式会社 Fuel cell
JP6694724B2 (en) * 2016-02-15 2020-05-20 森村Sofcテクノロジー株式会社 Solid oxide fuel cell
JP6839022B2 (en) * 2017-02-22 2021-03-03 森村Sofcテクノロジー株式会社 Electrochemical reaction unit and electrochemical reaction cell stack
JP6839021B2 (en) * 2017-02-22 2021-03-03 森村Sofcテクノロジー株式会社 Electrochemical reaction unit and electrochemical reaction cell stack
JP6965041B2 (en) * 2017-06-28 2021-11-10 森村Sofcテクノロジー株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack
JP7006038B2 (en) * 2017-09-05 2022-02-10 株式会社デンソー Fuel cell cell stack
JPWO2021192412A1 (en) * 2020-03-26 2021-09-30
JP7402193B2 (en) * 2021-03-31 2023-12-20 森村Sofcテクノロジー株式会社 Fuel cell single cell and fuel cell stack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582135A (en) * 1991-09-24 1993-04-02 Fine Ceramics Center Solid electrolyte type fuel cell electrode
JP2001009819A (en) * 1999-06-30 2001-01-16 Nippon Shokubai Co Ltd Ceramic sheet and manufacture thereof
JP2005166510A (en) * 2003-12-03 2005-06-23 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell and method for producing solid electrolyte fuel cell
JP2005327507A (en) * 2004-05-12 2005-11-24 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2006310132A (en) * 2005-04-28 2006-11-09 Nippon Telegr & Teleph Corp <Ntt> Flat-plate solid oxide fuel battery cell
JP2010027349A (en) * 2008-07-17 2010-02-04 Honda Motor Co Ltd Electrolyte-electrode assembly and its manufacturing method
JP2011150813A (en) * 2010-01-19 2011-08-04 Honda Motor Co Ltd Electrolyte-electrode assembly and method for manufacturing the same
WO2012144119A1 (en) * 2011-04-20 2012-10-26 日本特殊陶業株式会社 Fuel battery cell and fuel battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582135A (en) * 1991-09-24 1993-04-02 Fine Ceramics Center Solid electrolyte type fuel cell electrode
JP2001009819A (en) * 1999-06-30 2001-01-16 Nippon Shokubai Co Ltd Ceramic sheet and manufacture thereof
JP2005166510A (en) * 2003-12-03 2005-06-23 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell and method for producing solid electrolyte fuel cell
JP2005327507A (en) * 2004-05-12 2005-11-24 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method
JP2006310132A (en) * 2005-04-28 2006-11-09 Nippon Telegr & Teleph Corp <Ntt> Flat-plate solid oxide fuel battery cell
JP2010027349A (en) * 2008-07-17 2010-02-04 Honda Motor Co Ltd Electrolyte-electrode assembly and its manufacturing method
JP2011150813A (en) * 2010-01-19 2011-08-04 Honda Motor Co Ltd Electrolyte-electrode assembly and method for manufacturing the same
WO2012144119A1 (en) * 2011-04-20 2012-10-26 日本特殊陶業株式会社 Fuel battery cell and fuel battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752297B1 (en) * 2014-06-05 2015-07-22 日本碍子株式会社 Fuel cell
JP2015230845A (en) * 2014-06-05 2015-12-21 日本碍子株式会社 Fuel battery

Also Published As

Publication number Publication date
JP2015065151A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP5662612B1 (en) Fuel cell
JP5560381B1 (en) Fuel cell
JP6393711B2 (en) Solid oxide fuel cell
JP5417516B1 (en) Fuel cell
JP4913260B1 (en) Solid oxide fuel cell
US9954232B2 (en) Fuel cell
JP5642855B1 (en) Fuel cell
JP5108988B1 (en) Solid oxide fuel cell
JP2017017007A (en) Fuel battery
JP4988072B1 (en) Solid oxide fuel cell
JP5701444B1 (en) Fuel cell
JP5667315B1 (en) Fuel cell
JP6518755B1 (en) Fuel electrode of solid oxide fuel cell, laminate, and fuel cell
JP2016085921A (en) Cell support and solid oxide fuel cell
JP5752297B1 (en) Fuel cell
JP5727062B1 (en) Fuel cell
JP2014067692A (en) Fuel cell unit cell
JP2012099497A (en) Solid oxide fuel cell and solid oxide fuel cell stack
JP6134086B1 (en) Electrochemical cell
WO2015037727A1 (en) Single cell of fuel cell
JP5732180B1 (en) Fuel cell
JP5824499B2 (en) Fuel cell
JP2012074304A (en) Power generation cell for solid oxide fuel cell
JP2015156279A (en) fuel cell
JP2014110193A (en) Solid oxide type fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R150 Certificate of patent or registration of utility model

Ref document number: 5662612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150