JP4436091B2 - 光反応制御装置 - Google Patents

光反応制御装置 Download PDF

Info

Publication number
JP4436091B2
JP4436091B2 JP2003299237A JP2003299237A JP4436091B2 JP 4436091 B2 JP4436091 B2 JP 4436091B2 JP 2003299237 A JP2003299237 A JP 2003299237A JP 2003299237 A JP2003299237 A JP 2003299237A JP 4436091 B2 JP4436091 B2 JP 4436091B2
Authority
JP
Japan
Prior art keywords
light
optical system
unit
spatial light
light modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003299237A
Other languages
English (en)
Other versions
JP2005069832A (ja
Inventor
恒幸 浦上
紳一郎 青島
Original Assignee
財団法人光科学技術研究振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人光科学技術研究振興財団 filed Critical 財団法人光科学技術研究振興財団
Priority to JP2003299237A priority Critical patent/JP4436091B2/ja
Publication of JP2005069832A publication Critical patent/JP2005069832A/ja
Application granted granted Critical
Publication of JP4436091B2 publication Critical patent/JP4436091B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、試験対象物への光の照射に伴う該試験対象物における反応を制御する光反応制御装置に関するものである。
位相変調型の空間光変調器は、各々入力した光を位相変調して出力する複数の画素部が配列されたものであり、例えば非特許文献1に記載されているように、時間軸上の光波形を整形する際に用いられ得る。また、位相変調型の空間光変調器は、その空間光変調器から出力される光を結像した際の当該結像面上の光振幅分布を調整する際にも用いられ得る。しかし、光電場の独立パラメータである電場振幅と位相とを同時に制御するものではない。
J. C. Vaughan, et al., "Automated two-dimensional femtosecond pulse shaping", J.Opt.Soc.Am.B, Vol.19, No.10, pp.2489-2495 (2002)
ところで、試験対象物への光の照射に伴う該試験対象物における反応を制御する光反応制御装置においては、その試験対象物に照射されるべき光は、光電場の振幅および位相の双方が適切に設定される必要がある場合がある。このような場合、2つの空間光変調器を用いれば、一方の空間光変調器により光電場の振幅を制御し、他方の空間光変調器により位相を制御することが可能である。しかし、この場合の光反応制御装置は、2つの空間光変調器を用いる必要があることから、小型化が困難であり、また、光損失が大きい。
本発明は、上記問題点を解消する為になされたものであり、小型化が容易で光損失低減が可能な光反応制御装置を提供することを目的とする。
本発明に係る光反応制御装置は、(1) パルス光を発生し出力する光源部と、(2) 光源部から出力される光を第1方位に空間的に分光して出力する光分波部と、(3) 各々入力した光を位相変調して出力する複数の画素部が第1方位およびこれに直交する第2方位に2次元配列されており、光分波部から出力されて複数の画素部それぞれに入力する光を、各画素部の位置に応じて位相変調して出力する空間光変調器と、(4) 空間光変調器から出力された光を合波して出力する光合波部と、(5) 光合波部から出力された光を後焦点位置にある第1結像面上に結像する第1結像光学系と、(6) 第1結像面の近傍に設けられ開口を有するマスクと、(7) 第1結像光学系からマスクの開口を通過した光が試験対象物に照射されたことに伴う試験対象物における反応を計測する計測部と、(8) 計測部による計測結果に基づいて空間光変調器の複数の画素部それぞれにおける位相変調を制御する制御部と、を備えることを特徴とする。
さらに、制御部が、空間光変調器における第1方位の位相変調分布を制御することにより、第1結像面上における光のスペクトルの位相波形を調整するとともに、空間光変調器における第2方位の位相変調分布を制御することにより、第1結像面上における各波長の光の振幅分布を調整する、ことを特徴とする。また、マスクが、第1結像面上において光のスペクトルの位相波形および各波長の光の振幅分布が調整された光のうち開口に到達したものを選択的に通過させる、ことを特徴とする。
この光反応制御装置は以下のように作用する。空間光変調器には、各々入力した光を位相変調して出力する複数の画素部が互いに直交する第1方位および第2方位に2次元配列されている。光源部から出力されたパルス光は、光分波部により第1方位に空間的に分光されて空間光変調器に入力する。空間光変調器に入力した各波長の光は、その空間光変調器への入射位置に応じて位相変調を受けた後、光合波部により合波され、第1結像光学系により第1結像面上に結像される。
この第1結像面の近傍に開口を有するマスクが設けられており、第1結像光学系からマスクの開口を通過した光が試験対象物に照射される。この試験対象物への光の照射に伴って試験対象物において反応が生じ、その反応は計測部により計測される。この計測部による計測結果に基づいて、空間光変調器の複数の画素部それぞれにおける位相変調は、制御部により制御される。この制御に際しては、制御部により、空間光変調器における第1方位の位相変調分布が制御されることにより、第1結像面上における光のスペクトルの位相波形が調整されるとともに、また、空間光変調器における第2方位の位相変調分布が制御されることにより、第1結像面上における各波長の光の振幅分布が調整される。
本発明に係る光反応制御装置は、空間光変調器に入力する光の第2方位についての光束幅を調整する光束幅調整光学系を更に備えるのが好適である。この場合には、空間光変調器に入力する光の第2方位についての光束幅は光束幅調整光学系により調整(拡大または縮小)され、空間光変調器において第2方位の多くの画素部に各波長の光が入力するようになる。これは、第1結像面上における各波長の光の振幅分布を所望のものとする上で好都合である。
本発明に係る光反応制御装置は、(1) 光分波部と空間光変調器との間に設けられ、光分波部から出力された光を第1方位についてコリメートする入力伝達光学系と、(2) 空間光変調器と光合波部との間に設けられ、空間光変調器から出力された光を第1方向について収斂させる出力伝達光学系と、を更に備えるのが好適である。ここで、入力伝達光学系および出力伝達光学系それぞれは、シリンドリカルレンズまたはシリンドリカルミラーを含むのが好適である。この場合には、光分波部により第1方位に空間的に分光された光は、入力伝達光学系により第1方位についてコリメートされて空間光変調器に入力する。また、空間光変調器から出力された光は、出力伝達光学系により第1方向について収斂されて光合波部に入力する。
本発明に係る光反応制御装置は、光分波部および光合波部それぞれが回折格子またはプリズムを含むのが好適である。この場合には、光を分光または合波する上で好都合である。
本発明に係る光反応制御装置は、マスクの開口を通過した光を第2結像面上に再結像する第2結像光学系を更に備えるのが好適であり、この場合には、マスクの直後に試験対象物を配置すると反応を計測することができないようなときであって、試験対象物における反応を容易に計測することができ、更に、反応を容易に制御することができる。
本発明に係る光反応制御装置は、空間光変調器を1つのみ用いればよいので、小型化が容易で、光損失の低減が可能である。
以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、説明の便宜のために、空間光変調器40の複数の画素部はXY平面に平行に2次元配列されているとし、互いに直交するX軸およびY軸を想定する。
(第1実施形態)
先ず、本発明に係る光反応制御装置の第1実施形態について説明する。図1は、第1実施形態に係る光反応制御装置1の構成図である。この図に示される光反応制御装置1は、試験対象物9への光の照射に伴う該試験対象物9における反応を制御するものであって、光源部10、光束幅調整光学系21,22、回折格子31,32、空間光変調器40、シリンドリカルレンズ41,42、第1結像光学系51、計測部60および制御部70を備えている。
光源部10は、超短パルス幅(例えば5ps以下のパルス幅、好適にはフェムト秒パルス)のパルス光を発生し出力する。この光源部10として例えばチタンサファイアレーザ光源が好適に用いられ得る。
光束幅調整光学系21は、光源部10から出力された光を入力し、空間光変調器40に入力する光の少なくともY軸方向(第2方位)についての光束幅を調整するものである。この光束幅調整光学系21は、1枚または複数枚のレンズからなる。
回折格子31は、光源部10から出力されて光束幅調整光学系21を経て到達した光を入力し、この光をX軸方向(第1方位)に空間的に分光して出力する光分波部として用いられる。この回折格子31は、反射型のものであって、一定間隔に並列配置された各格子がY軸方向に延びている。したがって、回折格子31は、光のY軸方向の光束幅についてはそのままとして出力する一方、光をX軸方向に空間的に分光し、その分光した各波長の光を該波長に応じた回折角で出力する。
シリンドリカルレンズ41は、回折格子31と空間光変調器40との間に設けられ、回折格子31から出力された光をX軸方向についてコリメートする入力伝達光学系として用いられる。すなわち、シリンドリカルレンズ41から空間光変調器40へ入射する光は、X軸方向およびY軸方向の双方についてコリメートされたものであり、X軸方向に分光されたものである。
空間光変調器40は、各々入力した光を位相変調して出力する複数の画素部がX軸方向およびY軸方向に2次元配列されたものである。この空間光変調器40は、シリンドリカルレンズ41によりコリメートされて出力されて複数の画素部それぞれに入力する光を、各画素部の位置に応じて位相変調して出力する。複数の画素部それぞれにおける位相変調は、外部から制御することが可能である。
なお、空間光変調器は、光を位相変調する光変調素子と、この光変調素子を制御する周辺機器とを含み、光変調素子が画素構造を有していない場合もある。このような場合には、光変調素子における位相変調の制御の最小単位が画素に相当する。
シリンドリカルレンズ42は、空間光変調器40と回折格子32との間に設けられ、空間光変調器40から出力された光をX軸方向について収斂させる出力伝達光学系として用いられる。シリンドリカルレンズ42による光の集光点は回折格子32の回折面上にある。
回折格子32は、空間光変調器40から出力されてシリンドリカルレンズ32により集光されて到達した光を入力し、各波長の光を合波して同軸上に出力する光合波部として用いられる。この回折格子32は、反射型のものであって、一定間隔に並列配置された各格子がY軸方向に延びている。
シリンドリカルレンズ41,42それぞれの焦点距離をfとすると、回折格子31とシリンドリカルレンズ41との間の距離はfであり、シリンドリカルレンズ41と空間光変調器40との間の距離はfであり、空間光変調器40とシリンドリカルレンズ42との間の距離はfであり、シリンドリカルレンズ42と回折格子32との間の距離はfである。この光学系は、いわゆる4f光学系と呼ばれる構成である。
光束幅調整光学系22は、回折格子32により合波された光を入力して、その光の光束幅を調整するものである。この光束幅調整光学系22も、1枚または複数枚のレンズからなる。
第1結像光学系51は、回折格子32から出力されて光束幅調整光学系22を経て到達した光を入力して、この光を後焦点位置にある第1結像面上に結像する。試験対象物9の光照射部位がこの第1結像面上に位置するよう試験対象物9は配置される。この第1結像光学系51も、1枚または複数枚のレンズからなる。
計測部60は、第1結像光学系51からの光が試験対象物9に照射されたことに伴う試験対象物9における反応を計測する。例えば、計測部60は、試験対象物9において光照射により生じた反応生成物の生成量を計測する。
制御部70は、計測部60による計測結果に基づいて空間光変調器40の複数の画素部それぞれにおける位相変調を制御する。より具体的には、制御部70は、空間光変調器40におけるX軸方向の位相変調分布を制御することにより、第1結像面上における光のスペクトルの位相波形を調整する。また、制御部70は、空間光変調器40におけるY軸方向の位相変調分布を制御することにより、第1結像面上における各波長の光の振幅分布を調整する。この制御に際しては、例えば、試験対象物9における反応生成物の生成量の計測部60による計測値が所望の方向に変化するよう制御され、このときの最適化アルゴリズムとしてシミュレーティド・アニーリング(Simulated Annealing)法や遺伝的アルゴリズム(Genetic Algorithm)などが好適に用いられる。
図2は、空間光変調器40における光パターンを示す図である。この図は光の進行方向に空間光変調器40を見たときの図であり、図中の楕円は空間光変調器40に入射する光ビームのパターンを示す。空間光変調器40に入射する光ビームのパターンは、X軸方向については波長分解されているが、Y軸方向については波長分解されておらず、Y座標値Yが異なっていても、X座標値Xが一定であれば、波長λは一定である。以下では、波長λ〜λ10について考慮するものとし、波長λの光が入射し得る各画素部の位置を表す座標値を(X,Y)〜(X,Y10)とする。m,nは1以上10以下の各整数である。
図3は、第1結像光学系51による各波長の光の結像の様子を説明する図である。ここでは、空間光変調器40の複数の画素部のうち、波長λの光が入射する位置(X,Y)にある各画素部における位相変調のY方向分布が1次関数で表されるものとし、他の各波長λ(i≠5)の光が入射する位置(X,Y)にある各画素部における位相変調のY方向分布が均一であるものとする。この場合、第1集光光学系51の後焦点位置にある第1結像面上では、波長λを除く他の各波長λ(i≠5)の光は共通の集光位置に集光されるものの、波長λの光は、この共通集光位置に対してY方向にずれた集光位置に集光される。また、共通集光位置に到達する光の時間軸上の波形は、各波長λ(i≠5)の光が入射する位置(X,Y)にある各画素部における位相変調のX方向分布に応じたものを合成したものとなる。
第1結像面上における波長λの光の振幅分布は、空間光変調器40の該波長λに対応する各画素部におけるY軸方向の位相変調分布により定まる。上述したように、波長λに対応する各画素部における位相変調のY方向分布が均一または1次関数であれば、第1結像面上における波長λの光は或る集光位置に集光される。また、第1結像面上における波長λの光を、或る集光位置に集光するのではなく、Y軸方向の或る範囲に亘って分布するようにすることもできる。
なお、第1結像面上における波長λの光の振幅分布を所望のものとするには、空間光変調器40における該波長λに対応する位置(X,Y)にある各画素部の個数が多いことが望ましい。そこで、光束幅調整光学系21は、光源部10から出力された光の光束幅をY軸方向に拡大して、空間光変調器40においてY軸方向の多くの画素部に各波長λの光が入力するようにする。
一方、回折格子31に入力する光のX軸方向の光束幅は、回折格子31により分光されシリンドリカルレンズ41を経て空間光変調器40に入射する光の波長分解能を決定する。そこで、光束幅調整光学系21は、光源部10から出力された光の光束幅をX軸方向について調整して、空間光変調器40における波長分解能が所望値となるようにする。
この光反応制御装置1は以下のように動作する。光源部10から出力されたパルス光は、少なくともY軸方向の光束幅が光束幅調整光学系21により調整された後、回折格子31によりX軸方向に分光され、シリンドリカルレンズ41によりコリメートされて、空間光変調器40に入力する。空間光変調器40に入力した各波長の光は、その空間光変調器40への入射位置に応じて位相変調を受けた後、シリンドリカルレンズ42により収斂され、回折格子32により合波される。回折格子32により合波された光は、光束幅調整光学系22を経て、第1結像光学系51により第1結像面上に結像され、その第1結像面上にある試験対象物9に照射される。
第1結像光学系51からの光が試験対象物9に照射されると、この照射に伴って試験対象物9において反応が生じ、その反応は計測部60により計測される。この計測部60による計測結果に基づいて、空間光変調器40の複数の画素部それぞれにおける位相変調は、制御部70により制御される。この制御に際しては、制御部70により、空間光変調器40におけるX軸方向の位相変調分布が制御されることにより、第1結像面上における光のスペクトルの位相波形が調整されるとともに、また、空間光変調器40におけるY軸方向の位相変調分布が制御されることにより、第1結像面上における各波長の光の振幅分布が調整される。また、試験対象物9における反応が所望の方向に変化するように、最適化アルゴリズムによるフィードバック制御が制御部70により行われる。
なお、図1において、光源部10から試験対象物9へ至るまでの光路において、Y軸方向の光束幅は各光学系により拡大または縮小されることがあるものの、Y軸方向の光振幅分布は変調されることはない。また、図1では、光路の一部が直線で表されているが、実際には光は有限の幅を有している。
以上のように、本実施形態に係る光反応制御装置1は、1つの空間光変調器40を用いるだけで、スペクトルの位相および振幅の双方を適切に設定することができる。したがって、この光反応制御装置1は、小型化が容易で、光損失低減が可能である。
(第2実施形態)
次に、本発明に係る光反応制御装置の第2実施形態について説明する。図4は、第2実施形態に係る光反応制御装置2の構成図である。図1に示された第1実施形態に係る光反応制御装置1と比較すると、この図4に示される第2実施形態に係る光反応制御装置2は、マスク80を更に備える点で相違する。
マスク80は、第1結像光学系51の後焦点位置にある第1結像面の近傍に設けられていて、開口81を有している。そして、マスク80は、第1結像光学系51から到達した光のうち開口81に到達した光のみを、その開口81を通過させて試験対象物9に照射させる。
図5は、マスク80の作用例を説明する図である。この図に示された作用例では、図3と同様に、第1結像光学系51により各波長の光が或る集光位置に集光されるよう、空間光変調器40はY軸方向の位相変調分布が制御される。マスク80は、第1結像光学系51により集光された波長λの光を遮断する一方、他の各波長λ(i≠5)の光については開口81を通過させる。開口81を通過した各波長λ(i≠5)の光は試験対象物9に照射されて、この照射に伴って試験対象物9において反応が生じ、その反応は計測部60により計測される。
図6は、マスク80の他の作用例を説明する図である。この図に示された作用例では、第1結像光学系51により波長λの光がY軸方向の或る範囲に亘って分布するとともに、第1結像光学系51により他の各波長λ(i≠5)の光が共通の集光位置に集光されるよう、空間光変調器40はY軸方向の位相変調分布が制御される。マスク80は、第1結像光学系51によりY軸方向の或る範囲に亘って分布するように結像された波長λの光のうち開口81に到達した部分、および、開口81の位置に集光された他の各波長λ(i≠5)の光について、開口81を通過させる。開口81を通過した波長λの一部の光および他の各波長λ(i≠5)の光は試験対象物9に照射されて、この照射に伴って試験対象物9において反応が生じ、その反応は計測部60により計測される。
そして、図5および図6の何れの場合にも、計測部60による計測結果に基づいて、空間光変調器40の複数の画素部それぞれにおける位相変調は、制御部70により制御される。この制御に際しては、制御部70により、空間光変調器40におけるX軸方向の位相変調分布が制御されることにより、第1結像面上における光のスペクトルの位相波形が調整されるとともに、また、空間光変調器40におけるY軸方向の位相変調分布が制御されることにより、第1結像面上における各波長の光の振幅分布(すなわち、マスク80の開口81を通過して試験対象物9に照射される各波長の光の割合)が調整される。また、試験対象物9における反応が所望の方向に変化するように、最適化アルゴリズムによるフィードバック制御が制御部70により行われる。
以上のように、本実施形態に係る光反応制御装置2も、1つの空間光変調器40を用いるだけで、スペクトルの位相および振幅の双方を適切に設定することができる。したがって、この光反応制御装置2は、小型化が容易で、光損失低減が可能である。
また、この光反応制御装置2は、マスク80を備えていることで、試験対象物9に所望の波長の光(例えば、試験対象物9における反応を促進する波長の光)のみを照射することができ、或いは、試験対象物9に照射される不所望の波長の光(例えば、試験対象物9における反応を阻害する波長の光)のパワーを低減することができる。
(第3実施形態)
次に、本発明に係る光反応制御装置の第3実施形態について説明する。図7は、第3実施形態に係る光反応制御装置3の構成図である。図4に示された第2実施形態に係る光反応制御装置2と比較すると、この図7に示される第3実施形態に係る光反応制御装置3は、第2結像光学系52を更に備える点で相違する。
第2結像光学系52は、マスク80の開口81を通過した光を第2結像面上に再結像する。試験対象物9の光照射部位がこの第2結像面上に位置するよう試験対象物9は配置される。この第2結像光学系52も、1枚または複数枚のレンズからなる。
図8は、マスク80および第2結像光学系52の作用例を説明する図である。この図に示された作用例では、図3と同様に、第1結像光学系51により各波長の光が或る集光位置に集光されるよう、空間光変調器40はY軸方向の位相変調分布が制御される。マスク80は、第1結像光学系51により集光された波長λの光を遮断する一方、他の各波長λ(i≠5)の光については開口81を通過させる。レンズ52aおよびレンズ52bを含む第2結像光学系52は、開口81を通過した各波長λ(i≠5)の光を試験対象物9に集光照射させる。この照射に伴って試験対象物9において反応が生じ、その反応は計測部60により計測される。
図9は、マスク80および第2結像光学系52の他の作用例を説明する図である。この図に示された作用例では、第1結像光学系51により波長λの光がY軸方向の或る範囲に亘って分布するとともに、第1結像光学系51により他の各波長λ(i≠5)の光が共通の集光位置に集光されるよう、空間光変調器40はY軸方向の位相変調分布が制御される。マスク80は、第1結像光学系51によりY軸方向の或る範囲に亘って分布するように結像された波長λの光のうち開口81に到達した部分、および、開口81の位置に集光された他の各波長λ(i≠5)の光について、開口81を通過させる。レンズ52aおよびレンズ52bを含む第2結像光学系52は、開口81を通過した波長λの一部の光および他の各波長λ(i≠5)の光を試験対象物9に集光照射される。この照射に伴って試験対象物9において反応が生じ、その反応は計測部60により計測される。
そして、図8および図9の何れの場合にも、計測部60による計測結果に基づいて、空間光変調器40の複数の画素部それぞれにおける位相変調は、制御部70により制御される。この制御に際しては、制御部70により、空間光変調器40におけるX軸方向の位相変調分布が制御されることにより、第1結像面上における光のスペクトルの位相波形が調整されるとともに、また、空間光変調器40におけるY軸方向の位相変調分布が制御されることにより、第1結像面上における各波長の光の振幅分布(すなわち、マスク80の開口81を通過して試験対象物9に照射される各波長の光の割合)が調整される。また、試験対象物9における反応が所望の方向に変化するように、最適化アルゴリズムによるフィードバック制御が制御部70により行われる。
以上のように、本実施形態に係る光反応制御装置3も、1つの空間光変調器40を用いるだけで、スペクトルの位相および振幅の双方を適切に設定することができる。したがって、この光反応制御装置3は、小型化が容易で、光損失低減が可能である。
また、この光反応制御装置3は、マスク80を備えていることで、試験対象物9に所望の波長の光(例えば、試験対象物9における反応を促進する波長の光)のみを照射することができ、或いは、試験対象物9に照射される不所望の波長の光(例えば、試験対象物9における反応を阻害する波長の光)のパワーを低減することができる。
さらに、マスク80の直後に試験対象物9を配置すると反応を計測することができないような場合であっても、この光反応制御装置3は、マスク80に加えて第2結像光学系52を備えていることで、試験対象物9における反応を容易に計測することができ、更に、反応を容易に制御することができる。
(変形例)
本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。回折格子31と空間光変調器40との間に設けられ光をコリメートする入力伝達光学系として、上記の各実施形態ではシリンドリカルレンズ41が用いられたが、例えばシリンドリカルミラーであってもよい。空間光変調器40と回折格子32との間に設けられ光を収斂させる出力伝達光学系として、上記の各実施形態ではシリンドリカルレンズ42が用いられたが、例えばシリンドリカルミラーであってもよい。
光源部10から出力される光をX軸方向に空間的に分光して出力する光分波部として、上記の各実施形態では回折格子31が用いられたが、他の素子であってもよく、例えばプリズムであってもよい。また、空間光変調器40から出力された光を合波して出力する光合波部として、上記の各実施形態では回折格子32が用いられたが、他の素子であってもよく、例えばプリズムであってもよい。
上記実施形態においては、4f光学系にて分光・変調・合波を実現しているが、必ずしもこの構成に限定されない。
また、実施形態の図においては、空間光変調器は素子を透過する光に対して変調がかかるように記述されているが、反射型の構成により本発明を実現することができる。この場合は、空間光変調器内に変調層と光反射部(ミラー)とを構成し、入射した光が変調層によって変調され、光反射部によって反射され、再度変調層によって変調を受けるという作用を受ける。
開口は1つでなくてもよい。複数の開口に対して、同時に振幅および位相の制御が可能である。
計測部60にて計測するパラメータは、反応生成物の量そのものを測定する必要はない。例えば、所望の反応が生じる際に2次的に発生する光、熱などの測定可能な現象が所望の反応と相関があるものであれば、それらの測定を反応評価の代用とすることができる。
第1実施形態に係る光反応制御装置1の構成図である。 空間光変調器40における光パターンを示す図である。 第1結像光学系51による各波長の光の結像の様子を説明する図である。 第2実施形態に係る光反応制御装置2の構成図である。 マスク80の作用例を説明する図である。 マスク80の作用例を説明する図である。 第3実施形態に係る光反応制御装置3の構成図である。 マスク80および第2結像光学系52の作用例を説明する図である。 マスク80および第2結像光学系52の作用例を説明する図である。
符号の説明
1〜3…光反応制御装置、10…光源部、21…光束幅調整光学系、22…光束幅調整光学系、31…回折格子(光分波部)、32…回折格子(光合波部)、40…空間光変調器、41…シリンドリカルレンズ(入力伝達光学系)、42…シリンドリカルレンズ(出力伝達光学系)、51…第1結像光学系、52…第2結像光学系、60…計測部、70…制御部、80…マスク、81…開口。

Claims (6)

  1. パルス光を発生し出力する光源部と、
    前記光源部から出力される光を第1方位に空間的に分光して出力する光分波部と、
    各々入力した光を位相変調して出力する複数の画素部が前記第1方位およびこれに直交する第2方位に2次元配列されており、前記光分波部から出力されて前記複数の画素部それぞれに入力する光を、各画素部の位置に応じて位相変調して出力する空間光変調器と、
    前記空間光変調器から出力された光を合波して出力する光合波部と、
    前記光合波部から出力された光を後焦点位置にある第1結像面上に結像する第1結像光学系と、
    前記第1結像面の近傍に設けられ開口を有するマスクと、
    前記第1結像光学系から前記マスクの開口を通過した光が試験対象物に照射されたことに伴う前記試験対象物における反応を計測する計測部と、
    前記計測部による計測結果に基づいて前記空間光変調器の前記複数の画素部それぞれにおける位相変調を制御する制御部と、
    を備え、
    前記制御部が、
    前記空間光変調器における前記第1方位の位相変調分布を制御することにより、前記第1結像面上における光のスペクトルの位相波形を調整するとともに、
    前記空間光変調器における前記第2方位の位相変調分布を制御することにより、前記第1結像面上における各波長の光の振幅分布を調整し、
    前記マスクが、前記第1結像面上において光のスペクトルの位相波形および各波長の光の振幅分布が調整された光のうち前記開口に到達したものを選択的に通過させる、
    ことを特徴とする光反応制御装置。
  2. 前記空間光変調器に入力する光の前記第2方位についての光束幅を調整する光束幅調整光学系を更に備えることを特徴とする請求項1記載の光反応制御装置。
  3. 前記光分波部と前記空間光変調器との間に設けられ、前記光分波部から出力された光を前記第1方位についてコリメートする入力伝達光学系と、
    前記空間光変調器と前記光合波部との間に設けられ、前記空間光変調器から出力された光を前記第1方向について収斂させる出力伝達光学系と、
    を更に備えることを特徴とする請求項1記載の光反応制御装置。
  4. 前記入力伝達光学系または前記出力伝達光学系がシリンドリカルレンズまたはシリンドリカルミラーを含むことを特徴とする請求項3記載の光反応制御装置。
  5. 前記光分波部または前記光合波部が回折格子またはプリズムを含むことを特徴とする請求項1記載の光反応制御装置。
  6. 前記マスクの開口を通過した光を第2結像面上に再結像する第2結像光学系を更に備えることを特徴とする請求項記載の光反応制御装置。
JP2003299237A 2003-08-22 2003-08-22 光反応制御装置 Expired - Fee Related JP4436091B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299237A JP4436091B2 (ja) 2003-08-22 2003-08-22 光反応制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299237A JP4436091B2 (ja) 2003-08-22 2003-08-22 光反応制御装置

Publications (2)

Publication Number Publication Date
JP2005069832A JP2005069832A (ja) 2005-03-17
JP4436091B2 true JP4436091B2 (ja) 2010-03-24

Family

ID=34404513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299237A Expired - Fee Related JP4436091B2 (ja) 2003-08-22 2003-08-22 光反応制御装置

Country Status (1)

Country Link
JP (1) JP4436091B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120127557A1 (en) * 2010-11-19 2012-05-24 Canon Kabushiki Kaisha Apparatus and method for irradiating a medium
JP6781987B2 (ja) * 2017-02-17 2020-11-11 国立大学法人大阪大学 電磁波検出装置、フローサイトメーター、電磁波検出方法及び電磁波検出プログラム
CN112186475B (zh) 2020-09-16 2022-04-19 飞秒激光研究中心(广州)有限公司 激光脉冲整形装置及方法、脉冲整形器、光学系统

Also Published As

Publication number Publication date
JP2005069832A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
DE112007002368B9 (de) Verfahren und System zur diffraktiven Hybrid-Kombination von kohärenten und inkohärenten Strahlen durch einen Strahlformer
JP6782834B2 (ja) 広帯域光源を基にマルチチャネル可調照明を生成するシステム及び方法
US11609414B2 (en) Method for calibrating a phase mask and microscope
KR20210062711A (ko) 산란계 오버레이를 위한 효율적인 조명 성형
JP2003524175A (ja) 波面検出装置
JP3633904B2 (ja) X線発生方法およびx線発生装置
KR20110065450A (ko) 레이저 처리 시스템에서 적응형 광학기 빔성형
JP2009269089A (ja) レーザ駆動方法及びその装置
KR101618392B1 (ko) 레이저 장치, 광치료 장치, 노광 장치, 디바이스 제조 방법, 및 물체 검사 장치
JP2009265101A (ja) 光ビームの波面を解析するための方法、位相格子および装置
CN108885360B (zh) 脉冲光生成装置、光照射装置、光加工装置、光响应测定装置、显微镜装置及脉冲光生成方法
WO2011162186A1 (ja) 画像生成装置
JP2009175441A (ja) 観察装置
CN111551351A (zh) 一种相邻拼接镜间piston误差检测系统
JP4959590B2 (ja) 観察装置
JP4436091B2 (ja) 光反応制御装置
CN105765437A (zh) 具有声光设备的显微镜
JP2019139142A (ja) 露光装置及び露光方法
US20220360036A1 (en) Apparatus, laser system and method for combining coherent laser beams
US11150484B2 (en) System and method for curved light sheet projection during two-photon polymerization
CN210895004U (zh) 一种基于多狭缝扩展记录频域全息成像的装置
JP4763979B2 (ja) パルス光照射装置
JP5548505B2 (ja) コヒーレント放射を一様化するための装置
KR102281319B1 (ko) 연속 파장 레이저 파장 변조를 이용한 현미경 시스템
JPS59170815A (ja) 回折格子型光分波器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

R150 Certificate of patent or registration of utility model

Ref document number: 4436091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees