JP4435368B2 - Manufacturing method of liquid crystal display device - Google Patents

Manufacturing method of liquid crystal display device Download PDF

Info

Publication number
JP4435368B2
JP4435368B2 JP2000100968A JP2000100968A JP4435368B2 JP 4435368 B2 JP4435368 B2 JP 4435368B2 JP 2000100968 A JP2000100968 A JP 2000100968A JP 2000100968 A JP2000100968 A JP 2000100968A JP 4435368 B2 JP4435368 B2 JP 4435368B2
Authority
JP
Japan
Prior art keywords
electrode
forming
liquid crystal
tft array
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000100968A
Other languages
Japanese (ja)
Other versions
JP2001281699A (en
Inventor
正樹 中堀
健治郎 筑丸
伸宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000100968A priority Critical patent/JP4435368B2/en
Priority to KR1020010012558A priority patent/KR100741535B1/en
Priority to TW090107948A priority patent/TW515927B/en
Publication of JP2001281699A publication Critical patent/JP2001281699A/en
Application granted granted Critical
Publication of JP4435368B2 publication Critical patent/JP4435368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
この発明は、薄膜トランジスタ(以下TFTと称する)をスイッチング素子として搭載したアクティブマトリクス型液晶表示装置の製造方法に関するものである。
【0002】
【従来の技術】
近年、ガラス等の透明絶縁性基板上にTFTをマトリクス状に配置することにより構成されたTFTアレイ基板と、対向電極を具備したカラーフィルタ基板と、液晶を組み合わせたアクティブマトリクス型液晶表示装置は、画像表示装置の平面化への期待と共に、フラットディスプレイとして商品化も進められ、ノートパソコンやOAモニター用としても大きな市場を開拓すると有望視されている。
【0003】
従来のTFTでは、比較的低温で大面積に堆積が可能な非晶質シリコンを半導体層として用いる場合が多く、その一例として、図4に非晶質シリコンを半導体層として用いたTFTアレイ基板の主要部の断面図を示し、その製造方法を以下に説明する。図4において、1はガラス基板等の透明絶縁性基板、2は絶縁性基板1上に形成されたゲート電極、3はゲート電極2を覆うように形成されたゲート絶縁膜、4はゲート絶縁膜3を介してゲート電極2上に形成されたa−Si:H(水素原子が添加されたアモルファスシリコン)膜からなる半導体層、5は半導体層4上に形成されたn+ a−Si:H膜からなるオーミックコンタクト層、6は画素電極、7、8はオーミックコンタクト層5上に形成された対をなすソース電極とドレイン電極、9はパッシベーション膜である。
【0004】
次に、図4に示すTFTアレイ基板の製造方法を説明する。まず透明絶縁性基板1上に第一の導電性薄膜を成膜した後、第一の写真製版工程により第一の導電性薄膜をパターニングしてゲート電極2、ゲート配線(図示せず)および補助容量電極(図示せず)を形成する。
次にプラズマCVD法によりゲート絶縁膜3、a−Si:H膜、n+ a−Si:H膜を連続して成膜した後、第二の写真製版工程によりパターニングして半導体層4およびオーミックコンタクト層5を形成する。
次に第二の導電性薄膜を成膜した後、第三の写真製版工程により第二の導電性薄膜をパターニングして画素電極6を形成する。次に第四の写真製版工程によりゲート絶縁膜3をパターニングして端子部を構成するためのコンタクトホール(図示せず)を形成する。
【0005】
次にCr等からなる第三の導電性薄膜を成膜した後、第五の写真製版工程により第三の導電性薄膜をパターニングしてソース電極7、ドレイン電極8およびソース配線(図示せず)を形成する。続いてソース電極7およびドレイン電極8をマスクとしてオーミックコンタクト層5をエッチングしてTFTを形成する。
次にプラズマCVD法等によりTFTを保護するためのパッシベーション膜9を形成した後、第六の写真製版工程によりパッシベーション膜9をパターニングしてTCPを接続するためのコンタクトホール(図示せず)を形成する。以上の工程によりTFTがマトリクス状に配列形成されたTFTアレイ基板が形成される。
【0006】
上記例においては、六回の写真製版工程によりTFTアレイ基板を形成する一例を示したが、五回の写真製版工程によりTFTアレイ基板を形成する方法も示されており、図5に五回の写真製版工程により形成されたTFTアレイ基板の主要部の断面図を示し、その製造方法を以下に説明する。図において10は画素電極6とドレイン電極8を電気的に接続するためにパッシベーション膜9に形成されたコンタクトホールである。なお、図4と同一部分には同符号を付し説明を省略する。
まず透明絶縁性基板1上に第一の導電性薄膜を成膜した後、第一の写真製版工程により第一の導電性薄膜をパターニングしてゲート電極2、ゲート配線(図示せず)および補助容量電極(図示せず)を形成する。
次にプラズマCVD法によりゲート絶縁膜3、a−Si:H膜、n+ a−Si:H膜を連続して成膜した後、第二の写真製版工程によりパターニングして半導体層4およびオーミックコンタクト層5を形成する。
【0007】
次にCr等からなる第二の導電性薄膜を成膜した後、第三の写真製版工程により第二の導電性薄膜をパターニングしてソース電極7およびドレイン電極8を形成する。続いてソース電極7、ドレイン電極8およびソース配線(図示せず)をマスクとしてオーミックコンタクト層5をエッチングしてTFTを形成する。
次にプラズマCVD法等によりパッシベーション膜9を成膜した後、第四の写真製版工程によりパッシベーション膜9をパターニングして、ドレイン電極8と後に形成する第三の導電性薄膜からなる画素電極6とを電気的に接続するためのコンタクトホール10、およびTCPを接続するためのコンタクトホール(図示せず)を形成する。
次にITO等からなる第三の導電性薄膜を成膜した後、第五の写真製版工程により第三の導電性薄膜をパターニングして画素電極6を形成する。以上の工程によりTFTがマトリクス状に配列形成されたTFTアレイ基板が五回の写真製版工程により形成される。
【0008】
【発明が解決しようとする課題】
従来のTFTアレイ基板は以上のように構成されており、ゲート絶縁膜3、半導体層4を構成するa−Si:H膜、オーミックコンタクト層5を構成するn+ a−Si:H膜、およびパッシベーション膜9はプラズマCVD法により成膜されるため、TFTアレイ基板製造工程に占めるプラズマCVDプロセスの負荷が大きく、プラズマCVD装置の生産能力がTFTアレイ基板の生産能力を決めていると言っても過言ではなく、液晶表示装置の生産性を低下させるという問題があった。
【0009】
この発明は、上記のような問題点を解決するためになされたもので、TFTアレイ基板製造において、プラズマCVDプロセスの回数を削減することにより、低コストかつ生産性の高い液晶表示装置の製造方法を得ることを目的とする。
【0011】
の発明の第1の観点による液晶表示装置の製造方法は、極が形成されているTFTアレイ基板に、フィルタ基板を対向させて接着すると共に、これらのTFTアレイ基板とフィルタ基板間に液晶材料を挟持してなる液晶表示装置の製造方法であって上記TFTアレイ基板の製造工程が、透明絶縁性基板に走査電極、補助容量電極および走査線を形成する工程と、走査電極、補助容量電極および走査線上に絶縁膜を形成する工程と、絶縁膜を介して走査電極上にアモルファスシリコン膜からなる半導体層およびコンタクト層を形成する工程と、半導体層およびコンタクト層上に第一の電極、第二の電極および第一の電極と接続された信号線を形成する工程と、第1の電極と第二の電極をマスクとしてコンタクト層をバックチャネルエッチングする工程と、バックチャネルエッチング後の基板に水素化処理を施す工程と、第二の電極と電気的に接続された画素電極を形成する工程を含み、走査電極、絶縁膜、半導体層、コンタクト層、第1の電極および第二の電極から構成される半導体素子上には保護膜を形成しないことを特徴とする。
【0012】
また、この発明の第2の観点による液晶表示装置の製造方法は、電極が形成されているTFTアレイ基板に、フィルタ基板を対向させて接着すると共に、これらのTFTアレイ基板とフィルタ基板間に液晶材料を挟持してなる液晶表示装置の製造方法であって上記TFTアレイ基板の製造工程が、透明絶縁性基板に走査電極、補助容量電極および走査線を形成する工程と、走査電極、補助容量電極および走査線上に絶縁膜を形成する工程と、絶縁膜を介して走査電極上にアモルファスシリコン膜からなる半導体層およびコンタクト層を形成する工程と、半導体層およびコンタクト層上に第一の電極、第二の電極および第一の電極と接続された信号線を形成する工程と、第一の電極と第二の電極をマスクとしてコンタクト層をバックチャネルエッチングする工程と、バックチャネルエッチング後に、第二の電極と電気的に接続された画素電極を形成する工程と、画素電極形成後の基板に水素化処理を施す工程を含み、走査電極、絶縁膜、半導体層、コンタクト層、第一の電極および第二の電極から構成される半導体素子上には保護膜を形成しないことを特徴とする。
また、水素化処理は、水素を含有するガスによる電気的放電現象を用いることを特徴とする。
【0013】
【発明の実施の形態】
実施の形態1.
以下、この発明の一実施の形態である液晶表示装置を図について説明する。図1はこの発明の実施の形態1による液晶表示装置におけるTFTアレイ基板の製造工程途中の状態を示す断面図、図2は実施の形態1による液晶表示装置におけるTFTアレイ基板の主要部を示す断面図である。
図において、1はガラス基板等の透明絶縁性基板、2は絶縁性基板1上に形成された走査電極(本実施の形態ではゲート電極)、3はゲート電極2を覆うように形成された絶縁膜(本実施の形態ではゲート絶縁膜)、4はゲート絶縁膜3を介してゲート電極2上に形成されたa−Si:H(水素原子が添加されたアモルファスシリコン)膜からなる半導体層、5は半導体層4上に形成されたn+ a−Si:H膜からなるオーミックコンタクト層、6は画素電極、7、8はオーミックコンタクト層5上に形成された対をなす第1の電極と第二の電極(本実施の形態ではソース電極とドレイン電極)をそれぞれ示している。
【0014】
次に、本実施の形態による液晶表示装置のTFTアレイ基板の製造方法を説明する。本実施の形態では五回の写真製版工程によりTFTアレイ基板を形成する方法を用いる。
まず、透明絶縁性基板1上に第一の導電性薄膜を成膜した後、第一の写真製版工程により第一の導電性薄膜をパターニングしてゲート電極2、ゲート配線(走査線)および補助容量電極(図示せず)を形成する。
次に、プラズマCVD法によりゲート絶縁膜3、a−Si:H膜、n+ a−Si:H膜を連続して成膜した後、第二の写真製版工程によりパターニングして半導体層4およびオーミックコンタクト層5を形成する。
【0015】
次に、Cr等からなる第二の導電性薄膜を成膜した後、第三の写真製版工程により第二の導電性薄膜をパターニングしてソース電極7およびドレイン電極8とソース配線(信号線)を形成する。続いてソース電極7およびドレイン電極8をマスクとしてオーミックコンタクト層5をバックチャネルエッチングしてTFTを形成する(図1)。
オーミックコンタクト層5をバックチャネルエッチングした後、ドライエッチング装置によりH2 ガスを流量400sccm、圧力1.5mbar、RFパワー50Wの条件下で30秒〜2分間水素化処理を施す。
【0016】
次に、第四の写真製版工程によりゲート絶縁膜3をパターニングして、ゲート電極2と後に形成する第三の導電性薄膜からなるITO電極(図示せず)とを電気的に接続してゲート電極2側端子部(図示せず)を構成するためのコンタクトホールを形成する。
最後に、ITO等からなる第三の導電性薄膜を成膜した後、第五の写真製版工程により第三の導電性薄膜をパターニングして画素電極6およびITO電極(図示せず)を形成し、TFTがマトリクス状に配列形成されたTFTアレイ基板を形成する(図2)。
以上の工程により形成されたTFTアレイ基板(第1の基板)と、対向電極を具備したカラーフィルタ基板(第二の基板)とを対向させ、この間に液晶を挟持することにより液晶表示素子を構成する。
【0017】
次に、本実施の形態によるTFT上に保護膜(従来例ではパッシベーション膜)を有しないTFTの電気特性を測定し、その結果を図3に示す。なお、比較のため水素化処理(H2 プラズマ処理)の代わりにO2 プラズマ処理もしくはN2 プラズマ処理を施した場合、およびH2 プラズマ処理を施さない場合の結果も同時に示す。
電気特性は、ソース電極7とドレイン電極8間の電圧を20Vとして、ゲート電極2に印加する電圧を−20V〜20Vまで変化させたときのソース電極7からドレイン電極8に流れる電流値を測定した。
【0018】
図3に示す測定結果より、O2 プラズマ処理もしくはN2 プラズマ処理を施したTFTおよびプラズマ処理を施さないTFTでは、ゲート電圧2が−5Vのときのソース電極7からドレイン電極8に流れる電流値が1.00E−09A以上であるのに対し、H2 プラズマ処理を施したTFTではソース電極7からドレイン電極8に流れる電流値は1.00E−11Aに低減されており、H2 プラズマ処理を施すことによりTFTのオフ電流が低減されていることが示されている。
【0019】
本実施の形態によれば、TFTを形成後にH2 プラズマ処理を施すことにより、TFT上の保護膜を形成しない場合においても、TFTの電気特性の低下(オフ電流の上昇)を生じさせない。
【0020】
実施の形態2.
実施の形態1では、TFTを形成後にH2 プラズマ処理を施したが、画素電極を形成しTFTアレイ基板を形成した後にH2 プラズマ処理を施してもよく、実施の形態1と同様の効果が得られる。
【0021】
【発明の効果】
以上のように、この発明によれば、TFTをスイッチング素子として搭載した液晶表示装置において、TFT形成後にH2 プラズマ処理を施すことにより、従来必要であったTFTを保護するためのパッシベーション膜が不要となってTFTアレイ基板製造工程におけるプラズマCVDプロセスを一回削減することができ、TFTの電気特性を低下させずに製造コストの低減および生産性の向上が図れ、表示品位の高い液晶表示装置を低コストで得ることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による液晶表示装置のTFTアレイ基板製造工程途中の状態を示す断面図である。
【図2】 この発明の実施の形態1による液晶表示装置のTFTアレイ基板の主要部を示す断面図である。
【図3】 この発明の実施の形態1によるTFTの電気特性を示す図である。
【図4】 従来のこの種液晶表示装置のTFTアレイ基板の主要部を示す断面図である。
【図5】 従来の他の液晶表示装置のTFTアレイ基板の主要部を示す断面図である。
【符号の説明】
1 透明絶縁性基板、2 ゲート電極、3 ゲート絶縁膜、4 半導体層、
5 オーミックコンタクト層、6 画素電極、7 ソース電極、
8 ドレイン電極。
[0001]
The present invention (hereinafter referred to as TFT) thin film transistor to a method for manufacturing an active matrix type liquid crystal display equipment mounted as a switching element.
[0002]
[Prior art]
In recent years, an active matrix liquid crystal display device in which a TFT array substrate configured by arranging TFTs in a matrix on a transparent insulating substrate such as glass, a color filter substrate having a counter electrode, and liquid crystal is combined. With the expectation for flattening of image display devices, commercialization as a flat display has been promoted, and it is considered promising to develop a large market for notebook computers and OA monitors.
[0003]
In conventional TFTs, amorphous silicon that can be deposited over a large area at a relatively low temperature is often used as a semiconductor layer. As an example, FIG. 4 shows a TFT array substrate using amorphous silicon as a semiconductor layer. A sectional view of the main part is shown, and the manufacturing method thereof will be described below. In FIG. 4, 1 is a transparent insulating substrate such as a glass substrate, 2 is a gate electrode formed on the insulating substrate 1, 3 is a gate insulating film formed to cover the gate electrode 2, and 4 is a gate insulating film. 3 is a semiconductor layer made of an a-Si: H (amorphous silicon to which hydrogen atoms are added) film formed on the gate electrode 2 via 3, and n + a-Si: H formed on the semiconductor layer 4. An ohmic contact layer made of a film, 6 is a pixel electrode, 7 and 8 are a pair of source and drain electrodes formed on the ohmic contact layer 5, and 9 is a passivation film.
[0004]
Next, a manufacturing method of the TFT array substrate shown in FIG. 4 will be described. First, after forming a first conductive thin film on the transparent insulating substrate 1, the first conductive thin film is patterned by a first photoengraving process to form a gate electrode 2, a gate wiring (not shown) and an auxiliary. Capacitance electrodes (not shown) are formed.
Next, after the gate insulating film 3, the a-Si: H film, and the n + a-Si: H film are continuously formed by plasma CVD, the semiconductor layer 4 and the ohmic layer are patterned by a second photolithography process. Contact layer 5 is formed.
Next, after forming a second conductive thin film, the pixel electrode 6 is formed by patterning the second conductive thin film by a third photolithography process. Next, the gate insulating film 3 is patterned by a fourth photoengraving process to form contact holes (not shown) for constituting the terminal portions.
[0005]
Next, after forming a third conductive thin film made of Cr or the like, the third conductive thin film is patterned by a fifth photoengraving process to form a source electrode 7, a drain electrode 8, and a source wiring (not shown). Form. Subsequently, the ohmic contact layer 5 is etched using the source electrode 7 and the drain electrode 8 as a mask to form a TFT.
Next, after forming a passivation film 9 for protecting the TFT by plasma CVD or the like, the passivation film 9 is patterned by a sixth photolithography process to form a contact hole (not shown) for connecting the TCP. To do. Through the above steps, a TFT array substrate in which TFTs are arranged in a matrix is formed.
[0006]
In the above example, an example in which a TFT array substrate is formed by six photolithography processes is shown, but a method of forming a TFT array substrate by five photolithography processes is also shown, and FIG. A cross-sectional view of the main part of the TFT array substrate formed by the photolithography process is shown, and the manufacturing method thereof will be described below. In the figure, reference numeral 10 denotes a contact hole formed in the passivation film 9 for electrically connecting the pixel electrode 6 and the drain electrode 8. Note that the same parts as those in FIG.
First, after forming a first conductive thin film on the transparent insulating substrate 1, the first conductive thin film is patterned by a first photoengraving process to form a gate electrode 2, a gate wiring (not shown) and an auxiliary. Capacitance electrodes (not shown) are formed.
Next, after the gate insulating film 3, the a-Si: H film, and the n + a-Si: H film are continuously formed by plasma CVD, the semiconductor layer 4 and the ohmic layer are patterned by a second photolithography process. Contact layer 5 is formed.
[0007]
Next, after forming a second conductive thin film made of Cr or the like, the source electrode 7 and the drain electrode 8 are formed by patterning the second conductive thin film by a third photolithography process. Subsequently, the ohmic contact layer 5 is etched using the source electrode 7, the drain electrode 8, and the source wiring (not shown) as a mask to form a TFT.
Next, after forming a passivation film 9 by plasma CVD or the like, the passivation film 9 is patterned by a fourth photoengraving process, and the drain electrode 8 and a pixel electrode 6 made of a third conductive thin film to be formed later, A contact hole 10 for electrically connecting the two and a contact hole (not shown) for connecting the TCP are formed.
Next, after forming a third conductive thin film made of ITO or the like, a pixel electrode 6 is formed by patterning the third conductive thin film by a fifth photolithography process. Through the above steps, a TFT array substrate on which TFTs are arranged in a matrix is formed by five photolithography processes.
[0008]
[Problems to be solved by the invention]
The conventional TFT array substrate is configured as described above. The gate insulating film 3, the a-Si: H film constituting the semiconductor layer 4, the n + a-Si: H film constituting the ohmic contact layer 5, and Since the passivation film 9 is formed by the plasma CVD method, the load of the plasma CVD process in the TFT array substrate manufacturing process is large, and the production capability of the plasma CVD apparatus determines the production capability of the TFT array substrate. Not an exaggeration, there was a problem that the productivity of the liquid crystal display device was lowered.
[0009]
The present invention has been made to solve the above problems, in the production of the TFT array substrate, by reducing the number of plasma CVD process, the low cost and high productivity liquid crystal display equipment It aims at obtaining a manufacturing method.
[0011]
Manufacturing method of the first aspect a liquid crystal display device according to this aspect of the present invention, the TFT array substrate electrodes are formed, thereby bonding the filter substrate so as to face the liquid crystal between these TFT array substrate and the filter substrate a method of manufacturing a liquid crystal display device which is formed by sandwiching the material, manufacturing process of the TFT array substrate, forming a transparency insulating base plate to the scan electrodes, the auxiliary capacitance electrodes and the scanning lines, the scanning electrodes, A step of forming an insulating film on the storage capacitor electrode and the scanning line; a step of forming a semiconductor layer and a contact layer made of an amorphous silicon film on the scanning electrode via the insulating film; and a first step on the semiconductor layer and the contact layer. Forming a signal line connected to the electrode, the second electrode, and the first electrode; and back channel etching the contact layer using the first electrode and the second electrode as a mask A step of performing a hydrogenation treatment on the substrate after back channel etching, and a step of forming a pixel electrode electrically connected to the second electrode, including a scanning electrode, an insulating film, a semiconductor layer, and a contact A protective film is not formed over the semiconductor element including the layer, the first electrode, and the second electrode.
[0012]
A method of manufacturing a liquid crystal display device according to the second aspect of the invention, the TFT array substrate electrodes are formed, thereby bonding the filter substrate are opposed, between these TFT array substrate and the filter substrate a method of manufacturing a liquid crystal display device formed by sandwiching a liquid crystal material, the manufacturing process of the TFT array substrate, a step of forming a scan electrode, the auxiliary capacitance electrodes and the scanning lines in transparency insulating base plate, the scanning electrodes A step of forming an insulating film on the storage capacitor electrode and the scanning line, a step of forming a semiconductor layer and a contact layer made of an amorphous silicon film on the scanning electrode via the insulating film, and a first step on the semiconductor layer and the contact layer. Forming a signal line connected to the first electrode, the second electrode, and the first electrode, and using the first electrode and the second electrode as a mask as a back channel Including a step of etching, a step of forming a pixel electrode electrically connected to the second electrode after back channel etching, and a step of performing a hydrogenation process on the substrate after the pixel electrode is formed. A protective film is not formed on the semiconductor element including the semiconductor layer, the contact layer, the first electrode, and the second electrode.
In addition, the hydrogenation treatment is characterized by using an electrical discharge phenomenon caused by a gas containing hydrogen.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A liquid crystal display device according to an embodiment of the present invention will be described below with reference to the drawings. 1 is a cross-sectional view showing a state during the manufacturing process of a TFT array substrate in a liquid crystal display device according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view showing the main part of the TFT array substrate in the liquid crystal display device according to Embodiment 1. FIG.
In the figure, 1 is a transparent insulating substrate such as a glass substrate, 2 is a scanning electrode (a gate electrode in the present embodiment) formed on the insulating substrate 1, and 3 is an insulating formed so as to cover the gate electrode 2. A film (a gate insulating film in the present embodiment), 4 is a semiconductor layer made of an a-Si: H (amorphous silicon to which hydrogen atoms are added) film formed on the gate electrode 2 through the gate insulating film 3, 5 is an ohmic contact layer made of an n + a-Si: H film formed on the semiconductor layer 4, 6 is a pixel electrode, and 7 and 8 are a pair of first electrodes formed on the ohmic contact layer 5. Second electrodes (in this embodiment, a source electrode and a drain electrode) are shown.
[0014]
Next, a manufacturing method of the TFT array substrate of the liquid crystal display device according to the present embodiment will be described. In this embodiment, a method of forming a TFT array substrate by five photolithography processes is used.
First, after forming a first conductive thin film on the transparent insulating substrate 1, the first conductive thin film is patterned by the first photoengraving process to form the gate electrode 2, the gate wiring (scanning line), and the auxiliary Capacitance electrodes (not shown) are formed.
Next, after the gate insulating film 3, the a-Si: H film, and the n + a-Si: H film are continuously formed by plasma CVD, the semiconductor layer 4 and the semiconductor layer 4 are patterned by a second photolithography process. An ohmic contact layer 5 is formed.
[0015]
Next, after forming a second conductive thin film made of Cr or the like, the second conductive thin film is patterned by a third photoengraving process to form the source electrode 7 and the drain electrode 8 and the source wiring (signal line). Form. Subsequently, the ohmic contact layer 5 is back-channel etched using the source electrode 7 and the drain electrode 8 as a mask to form a TFT (FIG. 1).
After the ohmic contact layer 5 is back-channel etched, a hydrogenation process is performed for 30 seconds to 2 minutes using a dry etching apparatus with H 2 gas at a flow rate of 400 sccm, a pressure of 1.5 mbar, and an RF power of 50 W.
[0016]
Next, the gate insulating film 3 is patterned by a fourth photoengraving process, and the gate electrode 2 and an ITO electrode (not shown) made of a third conductive thin film to be formed later are electrically connected to form a gate. A contact hole for forming an electrode 2 side terminal portion (not shown) is formed.
Finally, after forming a third conductive thin film made of ITO or the like, the third conductive thin film is patterned by a fifth photoengraving process to form a pixel electrode 6 and an ITO electrode (not shown). A TFT array substrate in which TFTs are arranged in a matrix is formed (FIG. 2).
A TFT array substrate (first substrate) formed by the above steps is opposed to a color filter substrate (second substrate) provided with a counter electrode, and a liquid crystal is sandwiched between them to constitute a liquid crystal display element To do.
[0017]
Next, electrical characteristics of a TFT having no protective film (passivation film in the conventional example) on the TFT according to this embodiment were measured, and the result is shown in FIG. For comparison, the results obtained when the O 2 plasma process or the N 2 plasma process is performed instead of the hydrogenation process (H 2 plasma process) and when the H 2 plasma process is not performed are also shown.
The electrical characteristics were determined by measuring the value of current flowing from the source electrode 7 to the drain electrode 8 when the voltage applied to the gate electrode 2 was changed from −20 V to 20 V with the voltage between the source electrode 7 and the drain electrode 8 being 20 V. .
[0018]
From the measurement results shown in FIG. 3, O 2 plasma treatment or N 2 plasma processing is not subjected to TFT and plasma treatment was subjected to TFT, current gate voltage 2 flows from the source electrode 7 when the -5V to the drain electrode 8 Is 1.00E-09A or more, whereas in the TFT subjected to the H 2 plasma treatment, the current value flowing from the source electrode 7 to the drain electrode 8 is reduced to 1.00E-11A, and the H 2 plasma treatment is performed. It is shown that the off-current of the TFT is reduced by the application.
[0019]
According to the present embodiment, the H 2 plasma treatment is performed after the TFT is formed, so that even if the protective film on the TFT is not formed, the electrical characteristics of the TFT are not lowered (off current is increased).
[0020]
Embodiment 2. FIG.
In the first embodiment, the subjecting of H 2 plasma treatment after forming the TFT, may be subjected with H 2 plasma treatment after forming the TFT array substrate to form the pixel electrode, the same effect as in the first embodiment can get.
[0021]
【The invention's effect】
As described above, according to the present invention, in the liquid crystal display device in which the TFT is mounted as a switching element, the passivation film for protecting the TFT, which has been conventionally required, is unnecessary by performing the H 2 plasma treatment after the TFT is formed. As a result, the plasma CVD process in the TFT array substrate manufacturing process can be reduced once, the manufacturing cost can be reduced and the productivity can be improved without degrading the electrical characteristics of the TFT, and a liquid crystal display device with high display quality can be obtained. It can be obtained at low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state during the manufacturing process of a TFT array substrate of a liquid crystal display device according to Embodiment 1 of the present invention;
FIG. 2 is a cross-sectional view showing a main part of a TFT array substrate of a liquid crystal display device according to Embodiment 1 of the present invention.
FIG. 3 is a diagram showing electrical characteristics of the TFT according to the first embodiment of the present invention.
FIG. 4 is a cross-sectional view showing the main part of a TFT array substrate of this type of conventional liquid crystal display device.
FIG. 5 is a cross-sectional view showing a main part of a TFT array substrate of another conventional liquid crystal display device.
[Explanation of symbols]
1 transparent insulating substrate, 2 gate electrode, 3 gate insulating film, 4 semiconductor layer,
5 ohmic contact layer, 6 pixel electrode, 7 source electrode,
8 Drain electrode.

Claims (3)

極が形成されているTFTアレイ基板に、フィルタ基板を対向させて接着すると共に、これらのTFTアレイ基板とフィルタ基板間に液晶材料を挟持してなる液晶表示装置の製造方法であって上記TFTアレイ基板の製造工程が、
明絶縁性基板に走査電極、補助容量電極および走査線を形成する工程と、
上記走査電極、補助容量電極および走査線上に絶縁膜を形成する工程と、
上記絶縁膜を介して上記走査電極上にアモルファスシリコン膜からなる半導体層およびコンタクト層を形成する工程と、
上記半導体層およびコンタクト層上に第一の電極、第二の電極および第一の電極と接続された信号線を形成する工程と、
上記第一の電極と第二の電極をマスクとして上記コンタクト層をバックチャネルエッチングする工程と、
上記バックチャネルエッチング後の基板に水素化処理を施す工程と、
上記第二の電極と電気的に接続された画素電極を形成する工程を含み、
上記走査電極、絶縁膜、半導体層、コンタクト層、第一の電極および第二の電極から構成される半導体素子上には保護膜を形成しないことを特徴とする液晶表示装置の製造方法。
Electrostatic the TFT array substrate electrode is formed, thereby bonding the filter substrate in opposition to a process for the preparation of these liquid crystal display device formed by sandwiching a liquid crystal material between the TFT array substrate and the filter substrate, the The manufacturing process of the TFT array substrate
Forming a scan electrode, the auxiliary capacitance electrodes and the scanning lines in transparency insulating base plate,
Forming an insulating film on the scan electrode, auxiliary capacitance electrode and scan line;
Forming a semiconductor layer and a contact layer made of an amorphous silicon film on the scan electrode via the insulating film;
Forming a signal line connected to the first electrode, the second electrode and the first electrode on the semiconductor layer and the contact layer;
Back channel etching the contact layer using the first electrode and the second electrode as a mask;
Applying a hydrogenation treatment to the substrate after the back channel etching;
Forming a pixel electrode electrically connected to the second electrode;
A method of manufacturing a liquid crystal display device, wherein a protective film is not formed on a semiconductor element including the scan electrode, insulating film, semiconductor layer, contact layer, first electrode, and second electrode.
極が形成されているTFTアレイ基板に、フィルタ基板を対向させて接着すると共に、これらのTFTアレイ基板とフィルタ基板間に液晶材料を挟持してなる液晶表示装置の製造方法であって上記TFTアレイ基板の製造工程が、
明絶縁性基板に走査電極、補助容量電極および走査線を形成する工程と、
上記走査電極、補助容量電極および走査線上に絶縁膜を形成する工程と、
上記絶縁膜を介して上記走査電極上にアモルファスシリコン膜からなる半導体層およびコンタクト層を形成する工程と、
上記半導体層およびコンタクト層上に第一の電極、第二の電極および第1の電極と接続された信号線を形成する工程と、
上記第一の電極と第二の電極をマスクとして上記コンタクト層をバックチャネルエッチングする工程と、
上記バックチャネルエッチング後に、上記第二の電極と電気的に接続された画素電極を形成する工程と、
上記画素電極形成後の基板に水素化処理を施す工程を含み、
上記走査電極、絶縁膜、半導体層、コンタクト層、第一の電極および第二の電極から構成される半導体素子上には保護膜を形成しないことを特徴とする液晶表示装置の製造方法。
Electrostatic the TFT array substrate electrode is formed, thereby bonding the filter substrate in opposition to a process for the preparation of these liquid crystal display device formed by sandwiching a liquid crystal material between the TFT array substrate and the filter substrate, the The manufacturing process of the TFT array substrate
Forming a scan electrode, the auxiliary capacitance electrodes and the scanning lines in transparency insulating base plate,
Forming an insulating film on the scan electrode, auxiliary capacitance electrode and scan line;
Forming a semiconductor layer and a contact layer made of an amorphous silicon film on the scan electrode via the insulating film;
Forming a signal line connected to the first electrode, the second electrode, and the first electrode on the semiconductor layer and the contact layer;
Back channel etching the contact layer using the first electrode and the second electrode as a mask;
Forming a pixel electrode electrically connected to the second electrode after the back channel etching;
Including a step of performing a hydrogenation process on the substrate after the pixel electrode is formed,
A method of manufacturing a liquid crystal display device, wherein a protective film is not formed on a semiconductor element including the scan electrode, insulating film, semiconductor layer, contact layer, first electrode, and second electrode.
水素化処理は、水素を含有するガスによる電気的放電現象を用いることを特徴とする請求項1または請求項2記載の液晶表示装置の製造方法。  3. The method of manufacturing a liquid crystal display device according to claim 1, wherein the hydrogenation treatment uses an electrical discharge phenomenon caused by a gas containing hydrogen.
JP2000100968A 2000-04-03 2000-04-03 Manufacturing method of liquid crystal display device Expired - Fee Related JP4435368B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000100968A JP4435368B2 (en) 2000-04-03 2000-04-03 Manufacturing method of liquid crystal display device
KR1020010012558A KR100741535B1 (en) 2000-04-03 2001-03-12 Liquid crystal display device and manufacturing method thereof
TW090107948A TW515927B (en) 2000-04-03 2001-04-03 Liquid crystal display device and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100968A JP4435368B2 (en) 2000-04-03 2000-04-03 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2001281699A JP2001281699A (en) 2001-10-10
JP4435368B2 true JP4435368B2 (en) 2010-03-17

Family

ID=18615099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100968A Expired - Fee Related JP4435368B2 (en) 2000-04-03 2000-04-03 Manufacturing method of liquid crystal display device

Country Status (3)

Country Link
JP (1) JP4435368B2 (en)
KR (1) KR100741535B1 (en)
TW (1) TW515927B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025611A (en) * 2005-06-17 2007-02-01 Seiko Epson Corp Electro-optical device, method of manufacturing the same, and electronic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970048847A (en) * 1995-12-29 1997-07-29 김광호 Reflective TFT-LCD using CrOx Black Matrix and Manufacturing Method
JP2671898B2 (en) * 1996-11-13 1997-11-05 三菱電機株式会社 Method for manufacturing thin film transistor
JP2001217426A (en) * 2000-02-04 2001-08-10 Matsushita Electric Ind Co Ltd Liquid crystal image display and method of manufacturing semiconductor device for image displays

Also Published As

Publication number Publication date
TW515927B (en) 2003-01-01
JP2001281699A (en) 2001-10-10
KR100741535B1 (en) 2007-07-20
KR20010094968A (en) 2001-11-03

Similar Documents

Publication Publication Date Title
US7863120B2 (en) Liquid crystal display device with double metal layer source and drain electrodes and fabricating method thereof
JP4238956B2 (en) Copper wiring board, manufacturing method thereof, and liquid crystal display device
KR20010015187A (en) Thin film transistor array and its manufacturing method
JPH01217325A (en) Liquid crystal display device
JP3258768B2 (en) Matrix display device
US5828428A (en) Resistive circuit for a thin film transistor liquid crystal display and a method for manufacturing the same
US6236062B1 (en) Liquid crystal display and thin film transistor with capacitive electrode structure
US20020135709A1 (en) Liquid crystal display device and fabricating method thereof
JPH06208137A (en) Manufacture of thin film transistor matrix
JP4435368B2 (en) Manufacturing method of liquid crystal display device
JP2659976B2 (en) Thin film transistor and method of manufacturing the same
JP2004013003A (en) Liquid crystal display
US7049163B1 (en) Manufacture method of pixel structure
US20020085139A1 (en) Liquid crystal display device and fabricating method thereof
JPH0982976A (en) Thin-film transistor, manufacture thereof and liquid-crystal display
KR100897720B1 (en) Fabrication method of Liquid Crystal Display
JPH1065177A (en) Thin-film transistor device, manufacturing method thereof, and liquid crystal display device
JP2776336B2 (en) Thin film transistor and method of manufacturing thin film transistor
JP3536518B2 (en) Polycrystalline semiconductor TFT, manufacturing method thereof, and TFT substrate
JPH08288519A (en) Thin film transistor, manufacturing method thereof and liquid crystal display system
JP3151209B2 (en) Manufacturing method of matrix type display device
JPH01227127A (en) Thin-film transistor array
JP2842429B2 (en) Thin film transistor, active matrix circuit substrate using the same, and image display device
KR950003942B1 (en) Method of manufacturing thin film transistor for lcd
JPS6247621A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees