JP4435125B2 - 液冷装置 - Google Patents

液冷装置 Download PDF

Info

Publication number
JP4435125B2
JP4435125B2 JP2006230944A JP2006230944A JP4435125B2 JP 4435125 B2 JP4435125 B2 JP 4435125B2 JP 2006230944 A JP2006230944 A JP 2006230944A JP 2006230944 A JP2006230944 A JP 2006230944A JP 4435125 B2 JP4435125 B2 JP 4435125B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
liquid cooling
cooling device
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006230944A
Other languages
English (en)
Other versions
JP2007049170A (ja
Inventor
秀夫 岩崎
勝美 久野
伴直 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006230944A priority Critical patent/JP4435125B2/ja
Publication of JP2007049170A publication Critical patent/JP2007049170A/ja
Application granted granted Critical
Publication of JP4435125B2 publication Critical patent/JP4435125B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

半導体素子等の発熱体を冷媒により冷却する液冷装置に関し、特に発熱体から冷媒への熱伝達を促進することで、発熱体を均等に冷却できると同時に冷媒の流量を低減できるものに関する。
IGBT等の高発熱パワー素子(発熱体)を備えた電気装置の水冷構造が従来より知られている(例えば特許文献1参照)。
図37は上述したような水冷構造が組み込まれた液冷システム10の一例を示す構成図、図38はこの液冷システム10に組み込まれた液冷装置30を示す縦断面図である。液冷システム10は、液相の冷媒Lを貯溜する冷媒溜11と、この冷媒溜11に配管12を介して接続され冷媒Lを送り出すポンプ13と、このポンプ13及び冷媒溜11にそれぞれ配管14,15を介して接続された流量調整装置16と、この流量調整装置16に配管17を介して接続された液冷装置30と、この液冷装置30に配管18を介して接続された熱交換器19と、この熱交換器19と冷媒溜11とを接続する配管20とを備えている。なお、冷媒溜11には圧力調整装置21が設けられている。流量調整装置16は、所定の流量の冷媒Lが液冷装置30に供給されるように調整する機能を有している。
液冷装置30は、銅材製の内部に冷却流路32が形成された筐体31を備え、筐体31の外壁面には高発熱パワー素子(発熱体)P等の半導体素子が搭載された基板Sが取付けられている。なお、高発熱パワー素子Pは、基板Sにはんだを用いて取り付けられており、基板Sは高発熱パワー素子Pを基板Sに取り付けるはんだよりも融点の低いはんだを用いて接続される。また、冷却流路32には冷媒Lとして純水等が通流する。
特開2002−314281号公報
上述した液冷システムであると次のような問題があった。すなわち、液冷装置30では冷却流路32の下流にいくにつれて冷媒Lの温度が上昇するとともに、高発熱パワー素子Pで発生した熱を冷媒Lに伝達する流路壁面(伝熱面H)の温度境界層が厚くなって熱伝達率が低下する。このため冷却流路32の下流側に実装された高発熱パワー素子Pほど温度が高くなるという問題がある。
特に大容量のパワーデバイス等の半導体素子ではモジュールサイズが大きいため、冷却流路の上流側に位置する半導体素子と下流側に位置する半導体素子とではその温度差が大きくなるという傾向がある。
パワーデバイスでは電気的な導通抵抗は素子温度に影響を受けるため、複数の素子を用いる、あるいは単一のウエハを使用する形態のように1つの素子の面積が広いとき、温度分布によりデバイスの性能を十分に引き出すことができなくなる虞がある。一般にはモジュール内の複数の素子あるいは単一のウエハ内での温度差は概ね5℃以下に制御することが好ましいとされている。また、温度分布はモジュール内部での熱膨張の差を発生させるためはんだ接合面等の信頼性に対しても悪影響を及ぼす可能性もある。
一方、このような温度分布がもたらす問題を回避するために、冷媒の流量を増やして冷媒Lの温度上昇を小さくするという方法が考えられるが、この方法ではポンプ動カが増大し、冷却のために費やすエネルギが増加するという問題が新たに生ずる。
そこで本発明は、発熱体を均一に冷却することにより、発熱体の電気的特性及び機械的信頼性等を向上させると同時に、少ない冷媒流量で高い冷却特性が得られ、冷却に消費されるエネルギの低減を図ることが可能な液冷装置を提供することを目的とする。
上記課題を解決し目的を達成するために、本発明の液冷装置は次のように構成されている。
発熱体を冷媒により冷却する液冷装置において、上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、この主流路よりも上記発熱体から離間した位置に設けられ、上記冷媒が通流する副流路とを備え、上記主流路と上記副流路との間には上記冷媒を通流させる連通流路が設けられ、上記主流路は、その流路内に上記冷媒を分割・合流させる気泡破砕部材を具備していることを特徴とする。
本発明によれば、発熱体を均一に冷却することができるため、発熱体の電気的特性及び機械的信頼性等を向上させると同時に、少ない冷媒流量で高い冷却特性が得られるため冷却に消費されるエネルギの低減を図ることが可能となる。
パワー素子(発熱体)Pを冷媒Lにより冷却する液冷装置において、冷媒Lが通流するとともにパワー素子Pに熱的に接続された主流路と、この主流路よりもパワー素子Pから離間した位置に設けられ、冷媒Lが通流する副流路とを備え、主流路と副流路との間には冷媒Lを通流させる連通流路が設けられている。
図1は液冷システム100を示す図である。液冷システム100は、液相の冷媒Lを貯溜する冷媒溜101と、この冷媒溜101に配管102を介して接続され冷媒Lを送り出すポンプ103と、このポンプ103及び冷媒溜101にそれぞれ配管104,105を介して接続された流量調整装置106と、この流量調整装置106に配管107を介して接続された分岐装置108と、この分岐装置108と主流路配管109と副流路配管110とを介して接続された参考例に係る液冷装置200と、この液冷装置200に配管111を介して接続された熱交換器112と、この熱交換器112と冷媒溜101とを接続する配管113とを備えている。なお、冷媒溜101には圧力調整装置114が設けられている。
流量調整装置106は、所定の流量の冷媒Lが液冷装置200に供給されるように調整する機能を有しており、流量センサ(不図示)からの検出値に基づいて流路をバルブで絞る、又は、ポンプ103ヘの電カの供給を制御する。なお、ポンプ103の安定した運転に適した領域よりも流量を低くするときには冷媒溜101に一部の冷媒Lを戻すようにしている。分岐装置108は、バルブや絞り機構等により構成されている。
参考例に係る液冷装置200は、図2に示すように、筐体201と、この筐体201に設けられ、冷媒Lが通流する主流路210と、この主流路210に隔壁220により隔てられて設けられた副流路230とを備えている。隔壁220の材質は、副流路230内の液相の冷媒Lが主流路210内の液体冷媒との熱交換により温度上昇しないように、例えばSUS304のように銅よりも熱伝導性の低い金属や耐熱プラスチック等が望ましい。
筐体201の主流路210側の外壁には、パワー素子(発熱体)Pを搭載した基板Sが取付けられている。主流路210は前述した主流路配管109に接続され、副流路230は前述した副流路配管110に接続されている。隔壁220には、主流路210と副流路230とを連通する連通流路221が設けられている。
このように構成された液冷システム100においては、次のようにしてパワー素子Pの冷却が行われる。すなわち、冷媒溜101内の液相の冷媒Lはポンプ103によって汲み上げられ、流量調整装置106内に導入される。流量調整装置106では冷媒Lの流量が調整され、過剰分の冷媒Lが配管105を介して冷媒溜101内に戻される。さらに、所定の流量の冷媒Lは分岐装置108に導入され、分岐装置108では所定の割合で主流路210と副流路230に冷媒Lを分流して液冷装置200に供給する。
液冷装置200に供給された冷媒Lは後述するようにして、パワー素子Pにより加熱され、液冷装置200から排出される。液冷装置200から排出された冷媒Lは熱交換器112にて所定温度まで冷却され、冷媒溜101に戻される。
ここで、液冷装置200における熱移動について説明する。パワー素子Pからの熱は基板Sを経由して主流路210内を流れる冷媒Lに放熱される。一方、副流路230内に供給された冷媒Lは、連通流路221を介して主流路210内に流入する。隔壁220の下流側に連通流路221が配置されていることから、主流路210内の冷媒Lは下流においても温度上昇が抑えられ、さらに伝熱面Hに向かって副流路230冷媒Lが噴出されることにより温度境界層を薄くして熱伝達率を向上させることが可能となる。この結果、複数のパワー素子Pを均一に冷却することができる。
上述したように、液冷システム100によれば、パワー素子P等の発熱体を均一に冷却することができるため、パワー素子Pの電気的特性及び機械的信頼性等を向上させると同時に、少ない冷媒流量で高い冷却特性が得られるため冷却に消費されるエネルギの低減を図ることが可能となる。
したがって、比較的大きな伝熱面Hであっても均一に冷却することが可能であり、特に高発熱のパワーデバイス等の冷却に適している。なお、パーソナルコンピュータ等の小型電子機器にも適用可能なのはもちろんである。
なお、分岐装置108と流量調整装置106とは一体の装置としてポンプ103の下流に配置するようにしてもよい。
図3は液冷装置200において沸騰冷却を行う場合を示す縦断面図である。パワー素子Pの発熱量がより大きい場合、あるいは冷媒Lの流量が少ない場合には、沸騰現象を利用した液冷装置として作動する。すなわち、沸騰は冷媒が液相から気相へ相変化する現象であり、非常に高い熱伝達性能を得ることができる。
例えば、冷媒Lとしてフロロカーボンを使用する場合、強制対流による典型的な熱伝達率が200〜2000W/(mK)であるのに対して、沸騰においては2000〜6000W/(mK)といった高い熱伝達率が得られる(香山晋監訳,マイクロエレクトロニクスパッケージングハンドブック,日経BP社,1991,p.138)。さらに、平滑面による水の沸騰熱伝達において熱伝達率は10万W/(mK)以上に達し、通常の強制対流熱伝達に対して桁違いの熱伝達性能が期待できる。また、熱の輸送は潜熱により行われるため顕熱に比較して非常に高い熱輸送性能が得られ、冷媒流量を小さくすることができる。
したがって、沸騰現象の利用は、省エネルギ及び機器の小型化に極めて有効である。しかるに、冷媒Lとして水を使用する場合には、大気圧での沸点は100℃となるため半導体素子の温度は通常のSiを用いた半導体素子の許容温度よりも高くなることが多く、SiC等、高温動作が可能な半導体素子の冷却に適している。
例えば、SiC素子を用いてモジュールを構成し、水をほぼ大気圧で沸騰させることにより冷却を行なうと、液冷装置の下流において約100℃の高温の水を得られる。環境温度との差が大きい冷媒が排出されるほど排熱利用には適しており、液冷装置という範囲での省エネルギにとどまらず、半導体素子が損失するエネルギの回収ということでもSiC素子と水の沸騰という組合せは優れている。
一方、冷媒の沸騰熱伝達を用いる場合には、主流路210内で冷媒Lの蒸気泡Mが発生する。蒸気泡Mは下流にいくにつれて他の蒸気泡Mと合体し、大きな蒸気泡Mとなる。やがて主流路210内で蒸気充満状態となり、伝熱面Hが液相の冷媒Lで濡れていない状態となる。このような状態においては、放熱が阻害され、バーンアウト現象に陥る危険がある。バーンアウト現象が発生すると伝熱面温度は急激に上昇して1000℃以上に達することもあり、機器の損傷は避け難い。したがって、バーンアウト現象は機器の信頼性と安全の上から回避する必要がある。
液冷装置200によれば、副流路230から主流路210に過冷状態の冷媒Lを合体した蒸気泡Mに注入することにより、蒸気泡Mを凝縮崩壊させることが可能であり、バーンアウト現象を回避することができる。また過冷度の小さくなっている冷媒Lの主流路210の下流側に過冷度の大きい冷媒Lを供給することにより主流路210内の冷媒Lの過冷度をほぼ均一に制御することが可能となり、その結果、複数の素子をほぼ均一に冷却することが可能となる。
図4は上述した液冷装置200の第1変形例を示す縦断面図である。なお、この図において図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。
本変形例においては、連通流路221の分布が図2のものとは異なっている。すなわち、主流路210の上流から下流にいくにしたがい、連通流路221の設置密度が増えている。この構成により主流路210内の冷媒Lの温度をきめ細かく制御することができ、複数のパワー素子Pをより均一な温度に冷却することができる。
なお、設置密度を増やす代わりに、主流路210の上流から下流にいくにしたがい、連通流路221の内径を拡大するようにしてもよい。
図5は上述した液冷装置200の第2変形例を示す縦断面図である。なお、この図において図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、主流路210と副流路230で冷媒Lの流れる向きが対向している。すなわち、隔壁220に熱伝導性の低い材料を用いても熱を完全に遮ることはできないため、主流路210と副流路230の流れが同じ方向であるよりも、本変形例のように逆方向に対向して流れているほうが、主流路210の下流に供給される液相の冷媒Lの過冷度を大きくすることができ、液相の冷媒Lの注入による蒸気泡Mの凝縮崩壊をより効果的に行なうことができる。
図6は上述した液冷装置200の第3変形例を示す縦断面図である。なお、この図において図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、主流路210中に副流路230を挿入し、主流路210の両側にパワー素子Pを配置することにより、一組の主流路210と副流路230で2つの伝熱面Hを冷却することが可能となる。複数のパワー素子Pを搭載したモジュールを2組を冷却する場合において、各モジュールにそれぞれ液冷装置200を取り付けた場合には、冷媒Lの入出力配管の接続箇所が4ケ所となる。一方、本変形例の液冷装置200においては、液冷装置200への冷媒Lの入出力配管の接続箇所が2箇所となる。このため、入出力配管の接続箇所を減らすことができ、構造上の信頼性を高めることができる。
図7は液冷システム100に組み込まれた本発明の第の実施の形態に係る液冷装置300を示す横断面図、図8は縦断面図である。
液冷装置300は、筐体301と、この筐体301に設けられ、冷媒Lが通流する主流路310と、この主流路310に隔壁320により隔てられて設けられた副流路330とを備えている。
筐体301の主流路310側の外壁には、パワー素子(発熱体)Pを搭載した基板Sが取付けられている。なお、図8中302は蓋体を示している。主流路310は前述した主流路配管109に接続され、副流路330は前述した副流路配管110に接続されている。
主流路310内の最上流側に孔部311が配置されるとともに、後述するノズル321の上流側に気泡破砕部材312が設けられている。気泡破砕部材312は後述するように気泡破砕部材を有している。気泡破砕部材312は、主流路310の伝熱面Hから突設された第1の板群313と、隔壁322側の対向面Fから突設された第2の板群314とから構成されている。第1の板群313と第2の板群314は冷媒Lの流れに対して異なる角度を持って取り付けられている。隔壁320には、主流路310と副流路330とを連通するノズル(連通流路)321が設けられている。
このように構成された液冷装置300によれば、上述した液冷装置200と同様にしてパワー素子Pで発生した熱が主流路310内を通流する冷媒Lに伝達され、冷媒Lは伝熱面Hで沸騰し、蒸気泡Mを発生する。過冷状態の冷媒Lは副流路330によりノズル位置321まで供給される。
蒸気泡Mは気泡破砕部材312に導入され、第1の板群313と第2の板群314の隙間よりも寸法が大きくなると分断される。第1の板群313と第2の板群314の隙間の流路は、下流側へ次第に幅が広がる流路315と、下流側へ次第に幅が狭まる流路316とが隣り合っているため、分断された蒸気泡Mが気泡破砕部材312を抜け出したときには隣接する流路間の出口の流速の差により流れ方向の蒸気泡Mの位置がずれる。このため、下流で広がる流路315では蒸気泡Mが第1の板群313と第2の板群314から離れやすくなり、気泡破砕部材312入口で分断された蒸気泡Mが気泡破砕部材312出口で合体しにくくなる。すなわち、大型の蒸気泡Mが形成されてにくい。さらに、気泡破砕部材312の下流側には過冷状態の冷媒Lがノズル321から供給されるため、破砕されて表面積が大きくなった蒸気泡Mと過冷状態の冷媒Lが混合し、蒸気泡Mが消滅あるいは減容する。このため、バーンアウト現象の発生を抑制することが可能となる。
なお、気泡破砕部材312の形成方法としては、伝熱面Hと対向面Fそれぞれに同一の方向を持つ板群を設ければよく、切削等の機械加工や複数の板を並べて蝋付やカシメにより取り付けるときには、片方の面に角度の異なる板を交互に取り付けるよりも製造が容易になる。また、金属材料を用いたダイカストや鋳造あるいは樹脂の射出成型など、金型に材料を流し込む方法で製作してもよいし、伝熱面Hあるいは対向面Fのいずれかに向きの異なる板をすべてまとめて取り付けてもよい。さらに、枠で板群を保持した構造物を主流路310内に挿入する形式でもよい。
切削による加工では、例えばC1100のような熱伝導性の高い銅材料を採用できるものは製造コストが高く、鋳造あるいはダイカストに適した材料は熱伝導性が低くなる。このため、製造方法と板を伝熱面Hに付けるか対向面Fに取り付けるか、あるいは伝熱面Hと対向面Fのどちらに取り付けるかは、要求される放熱性能とコスト、信頼性に依存する。例えば対向面F側を樹脂製とし、気泡破砕部材を対向面Fと一体に樹脂の射出成型で製造すればコストは低いが金属材料よりも信頼性は低下し、対向面Fは主要な放熱経路とはならないものの放熱性能も低下する。
図9は上述した液冷装置300の第1変形例を示す横断面図、図10は縦断面図である。なお、これらの図において図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例における気泡破砕部材312では、第1の板群313と第2の板群314を構成する板が途中で折曲している。直線的な形状では板間隔と気泡破砕部材312の流れ方向の長さは独立した設計パラメータとして扱うことができないが、曲線にすることにより、これらのパラメータを独立して自由に変更することができる。例えば、熱流束が高い場合には蒸気泡Mの寸法が大きくなる傾向にあるが、冷媒Lの流速が大きい場合にも蒸気泡Mが流れ方向に伸びた扁平形状になるため、気泡破砕部材312の主流方向の長さLをある程度長くしなければならない。
図11は液冷装置300に組み込まれた平行フィンの要部を示す模式図である。本変形例における気泡破砕部材312では、第1の板群313と第2の板群314を構成する板が互いに平行に配置され、第1の板群313の図中下側の面は凹凸が形成されており、第2の板群314の図中上側の面は凹凸が形成されている。
このため、板により仕切られた隣り合う流路315,316間の流体抵抗は凹凸により差異が生じ、冷媒Lの流速に差が発生する。このため、蒸気泡Mが気泡破砕部材312により分断された後、気泡破砕部材312の出口側に蒸気泡Mが排出される時間がずれるため、蒸気泡Mが再合体しにくい。
図12は上述した液冷装置300の第2変形例を示す横断面図、図13は図12における12A−12A線で切断して矢印方向に見た縦断面図、図14は図12における12B−12B線で切断して矢印方向に見た縦断面図である。なお、これらの図において図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。
主流路310内には気泡破砕部材340が形成されている。気泡破砕部材340は、主流路310の流路高さの約半分の高さをもつ突起群341と、対向面Fに設けられた同様な突起群342とを備えている。気泡破砕部材340の入口側で破砕された蒸気泡Mの一部は伝熱面Hに近い位置に、残りは対向面Fに近い位置に放出される。
一方、ノズル321から過冷状態の冷媒Lが噴き出すが、気泡破砕部材340の出口で対向面Fの近くに吐き出された蒸気泡Mは対向面Fから同じ高さに吐き出される他の蒸気泡Mとの間の隙間に冷媒Lが噴出されることになるため、他の気泡と合体しにくくなる。このため、バーンアウト現象の発生を抑制することが可能となる。
なお、ノズル321は、突起群342の下流に配置しても良いし、突起群342の伝熱面Hに近い位置や、突起群342の側面に配置しても良い。
図15は上述した液冷装置300の第3変形例の原理を示す説明図、図16は図15における15A−15A線で切断して矢印方向に見た断面図、図17は図15における15B−15B線で切断して矢印方向に見た断面図である。
本変形例では気泡破砕部材350が設けられている。気泡破砕部材350は、複数の管状部材351〜353とを備えている。気泡破砕部材350に導入された蒸気泡Mは、入口で破砕される。これら分離された蒸気泡Mは気泡破砕部材350の出口では、冷媒Lの通流方向に直交する断面において、入口とは異なる位置に排出される。このため、蒸気泡Mが再合体にしにくい。なお、管状部材351〜353の長さを異ならせる、内壁面に凹凸を形成する等してさらに蒸気泡Mの再合体を確実に防止するようにしてもよい。
図18は上述した液冷装置300の第4変形例を示す図であって、図19における19A−19A線で切断して矢印方向に見た断面図、図19は図18における18A−18A線で切断して矢印方向に見た断面図である。なお、これらの図において図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。
気泡破砕部材360は、伝熱面Hに設けられた第1の板群361と対向面Fに設けられた第2の板群362とを備えている。第1の板群361及び第2の板群362はいずれも主流路310の流路高さの約半分の高さを有し、冷媒Lの通流方向に対する傾斜角度が異なって取り付けられている。主流路310は板群の傾斜に沿って、気泡破砕部材360の下流側で主流路310の上半分と下半分で異なる方向に曲げられている。気泡破砕部材360の下流には副流路330から主流路310に冷媒Lを供給するためのノズル321が設けられている。
気泡破砕部材360に到達して分割された蒸気泡Mの上半分と下半分とは異なる方向へ排出されるため、再び合体しにくい。なお、第1の板群361及び第2の板群362はほぼ同じ高さであるが、例えば第1の板群361の高さを高くして第2の板群362の高さを低くしたり、その逆であってもよい。
図20は上述した液冷装置300の第5変形例の要部を示す縦断面図、図21は動作原理を示す説明図である。なお、これらの図において図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例では主流路310内に気泡破砕部材370が突設されている。
気泡破砕部材370は、対向面Fに上流側が細く、下流側が太くなった突起状に形成されている。また、ノズル321が気泡破砕部材370の下流側端面に設けられている。気泡破砕部材370により分断された蒸気泡Mは気泡破砕部材370の出口で互いに過冷状態の冷媒Lにより仕切られるため、蒸気泡Mが再合体しにくくなると同時に、蒸気泡Mと冷媒Lとの熱交換も促進され、蒸気泡Mの消滅あるいは減容を効果的に行なうことができる。
図22は上述した液冷装置300の第6変形例の要部を示す横断面図、図23は要部を示す縦断面図である。これらの図において、図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。
本変形例では、主流路310の一部であって上述した気泡破砕部材312の上流側直前に凹部380を設け、冷媒Lの通流方向に直交する方向の断面積を拡大するようにしている。
一般的に、放熱性能を高めるために主流路310の流速を大きくし、蒸気泡Mが通流方向に伸長し細長形状となった場合には気泡破砕部材312による分割数が少なくなる虞がある。このため、気泡破砕部材312を通過しても蒸気泡Mが比較的大きい状態で残る可能性がある。一方、気泡を小さく分割するためには気泡破砕部材の板間の隙間を小さくしなければならなくなる。これは流体抵抗を上昇させ、また製造も困難となる。
本変形例によれば、気泡破砕部材312の上流で主流路310を流れる冷媒Lの流速が低下し、細長形状の蒸気泡Mが一旦偏平形状となる。このため、蒸気泡Mの分割数を増やすことができるとともに、圧力損失が小さく、かつ、気泡破砕部材312も容易に製造が可能となる。
図24は本発明の第の実施の形態に係る液冷装置400の要部を示す平面図、図25は斜視図である。これらの図において、図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。
液冷装置400は、筐体401と、この筐体401に設けられ、冷媒Lが通流する主流路410と、この主流路410の両側に隔壁420により隔てられて設けられた一対の副流路430とを備えている。
筐体401の主流路410側の外壁には、パワー素子(不図示)を搭載した基板Sが取付けられている。主流路410は前述した主流路配管109に接続され、副流路430は前述した副流路配管110に接続されている。
一対の副流路430間には管状路431が設けられている。管状路431には、冷媒Lが通流する連通流路432が設けられている。
このように構成された液冷装置400によれば、上述した液冷装置200と同様にしてパワー素子Pで発生した熱が主流路410内を通流する冷媒Lに伝達され、冷媒Lは伝熱面Hで沸騰し、蒸気泡Mを発生する。過冷状態の冷媒Lは副流路430により管状路431を介して連通流路432まで供給される。冷媒Lが連通流路432を通して主流路310に噴出する。
液冷装置400によれば、上述した液冷装置200と同様の効果を得ることができる。また、管状路431は図示のとおりほぼ均等に配置されていもよいし、主流路410の下流側ほど本数を増やしたり、下流側のみに配置するようにしてもよい。また、必ずしも管状路431は流れと直交していなくてもよいし、管状路431の断面積や管状路431に設けられた連通流路432の形状は各連通流路432からの噴出量を制御するため場所により変化させてもよい。また、管状路431の材質は噴出される冷媒Lの温度と主流路410内の冷媒Lの温度との差ができる限り大きくなるように、熱伝導率の低い材質を用いることが望ましい。副流路430に流す冷媒Lは伝熱面H前方にて主流路410から分流された冷媒Lではなく、主流路410に冷媒Lを供給するものとは別系統の循環経路による冷媒Lを流してもよい。
図26は上述した液冷装置400の第1変形例の要部を示す平面図である。この図において、図24と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例では、副流路430が主流路410の片側にのみ設けられている。なお、管状路431の主流路410の反対側の壁面付近、すなわち副流路430から最も離れた先端部は閉じられていても良いし、連通流路432と同様の穴が開けられていてもよい。
図27は上述した液冷装置400の第2変形例の要部を示す斜視図である。この図において、図24と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、管状路431の外形が円形となっている。
図28は上述した液冷装置の第3変形例の要部を示す斜視図である。この図において、図24と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、管状路431の外形が楕円形となっている。このため、主流路410内を通流する冷媒Lの流体抵抗を軽減できる。
図29は上述した液冷装置の第4変形例の要部を示す斜視図である。この図において、図24と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、管状路431の外形が楕円形であり、かつ、気泡破砕部材433が取付けられている。
図30は本発明の第の実施の形態に係る液冷装置500の要部を示す縦断面図、図31は横断面図である。これらの図において、図7及び図8と同一機能部分には同一符号を付し、その詳細な説明は省略する。
液冷装置500は、筐体501と、この筐体501に設けられ、冷媒Lが通流する主流路510と、この主流路510の凹部511の近傍に配置された羽根車520を備えている。筐体501の外壁には、パワー素子Pを搭載した基板Sが取付けられている。主流路510は前述した主流路配管109に接続されている。
羽根車520の回転軸521は、主流路510の中心から所定だけずれた位置に配置されており、この回転軸521の周囲に羽根522が取付けられており、羽根522の先端が伝熱面Hに非常に近い場所を通過するようになっている。なお、回転軸521には、モータ等の駆動手段は取付けられていない。
このように構成された液冷装置500においては、主流路510を通流する冷媒Lの流れによって羽根車520が回転する。羽根車520の回転に伴って伝熱面H近傍の冷媒Lが攪拌される。このため、伝熱面H近傍に形成された温度境界層を破壊し熱伝達を促進することができる。また、沸騰により蒸気泡Mが発生している場合には、羽根522により蒸気泡Wが破砕され、伝熱面Hに付着した蒸気泡Mが強制的に引き剥がされ、バーンアウト現象の発生を防止することができる。
なお、回転軸521が主流路510の中心からずれているために羽根車522の円周の一部分は主流路510の側壁を膨らませた凹部511に入る構造となっているが、この凹部511に副流路530からの過冷状態の冷媒Lを連通流路531を介して送ることで、伝熱面Hに効果的に冷媒Lを供給することもできる。また、冷媒Lを供給する連通流路531の向きを調整することにより、冷媒Lが噴出す力を羽根車520を回転させる動力として用いても良い。
なお、羽根車520の羽根522の高さは主流路510の流路高さとほぼ等しいが、主流路510の流れあるいは副流路530から供給される冷媒Lの流れにより羽根車520を回転させる動力に不足がなければ羽根高さを低くすることができる。この場合、回転する羽根522は伝熱面H近くのみに存在するため、主流路510を流れる冷媒Lの流体抵抗が羽根高さが高い場合に比較して小さくなる。
図32は上述した液冷装置500の第1変形例の要部を示す断面図、図33は羽根車の一例を示す正面図、図34は羽根車の別の例を示す正面図。これらの図において、図30及び図31と同一機能部分には同一符号を付し、その詳細な説明は省略する。
本変形例では、主流路510内に軸流の羽根車540が配置されている。この羽根車540の回転軸541は冷媒Lの通流方向に平行である。羽根車540は主流路510内に1つ配置されていてもよいし、複数配置されていてもよい。羽根車540の回転軸541には複数の羽根542が設けられており、羽根542の先端部と伝熱面Hとの間隙は狭くなるように設定されている。
図35は上述した液冷装置500の第2変形例の要部を示す縦断面図である。この図において、図30及び図31と同一機能部分には同一符号を付し、その詳細な説明は省略する。本変形例においては、冷媒Lの通流方向に複数の羽根車540が配置されている。主流路510内の冷媒流速が大きいとき、沸騰により発生した蒸気泡Mは通流方向に伸びた形状となるが、このような羽根車540の配置とすることにより、通流方向に長い蒸気泡Mを分断することもできる。
図36は本発明の第の実施の形態に係る液冷システム600の構成を示す図である。なお、図36において図1と同一機能部分には同一符号を付し、その詳細な説明は省略する。
液冷システム600においては、1つのポンプと1つの分岐装置の組み合わせではなく、2組のポンプを設けるようにしたものである。液冷システム600は、液相の冷媒Lを貯溜する冷媒溜601と、液冷装置200の主流路210に冷媒Lを供給する冷媒主供給部610と、液冷装置200の副流路230に冷媒Lを供給する冷媒副供給部620と、液冷装置200と、この液冷装置200に配管630を介して接続された熱交換器631と、この熱交換器631と冷媒溜601とを接続する配管632とを備えている。なお、冷媒溜601には圧力調整装置602が設けられている。
冷媒主供給部610は、冷媒溜601に配管611を介して接続され冷媒Lを送り出すポンプ612と、このポンプ612及び冷媒溜601にそれぞれ配管613,614を介して接続された流量調整装置615とを備えている。なお、流量調整装置615は配管616を介して主流路210に接続されている。
流量調整装置615は、所定の流量の冷媒Lが主流路210に供給されるように調整する機能を有しており、流量センサ(不図示)からの検出値に基づいて流路をバルブで絞る、又は、ポンプ612ヘの電カの供給を制御する。なお、ポンプ621の安定した運転に適した領域よりも流量を低くするときには冷媒溜601に一部の冷媒Lを戻すようにしている。
冷媒副供給部620は、冷媒溜601に配管621を介して接続され冷媒Lを送り出すポンプ622と、このポンプ622及び冷媒溜601にそれぞれ配管623,624を介して接続された流量調整装置625とを備えている。なお、流量調整装置625は配管626を介して主流路230に接続されている。
流量調整装置625は、所定の流量の冷媒Lが副流路230に供給されるように調整する機能を有しており、流量センサ(不図示)からの検出値に基づいて流路をバルブで絞る、又は、ポンプ622ヘの電カの供給を制御する。なお、ポンプ622の安定した運転に適した領域よりも流量を低くするときには冷媒溜601に一部の冷媒Lを戻すようにしている。
このように主流路210に導入される冷媒Lと副流路230主流路に導入される冷媒Lとが別系統によるもの場合、それぞれの冷媒Lのモジュール入口での温度を別個に制御可能であり、副流路230に供給する冷媒Lの温度を主流路210に供給する冷媒Lの温度よりも低くできる。このとき、主流路210と副流路230に供給する冷媒温度は同一の場合よりも副流路230に供給する冷媒流量は小さくても同じ効果を期待できる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
冷システムの構成を示す図。 冷システムに組み込まれた参考例に係る液冷装置の要部を示す縦断面図。 同液冷装置の作用を示す縦断面図。 同液冷装置の第1変形例を示す縦断面図。 同液冷装置の第2変形例を示す縦断面図。 同液冷装置の第3変形例を示す縦断面図。 液冷システムに組み込まれた本発明の第の実施の形態に係る液冷装置を示す横断面図。 同液冷装置の縦断面図。 同液冷装置の第1変形例を示す横断面図。 同液冷装置の縦断面図。 同液冷装置に組み込まれた平行フィンの要部を示す模式図。 同液冷装置の第2変形例を示す横断面図。 同液冷装置を図12における12A−12A線で切断して矢印方向に見た縦断面図。 同液冷装置を図12における12B−12B線で切断して矢印方向に見た縦断面図。 同液冷装置の第3変形例の原理を示す説明図。 同液冷装置の要部を図15における15A−15A線で切断して矢印方向に見た断面図。 同液冷装置の要部を図15における15B−15B線で切断して矢印方向に見た断面図。 同液冷装置の第4変形例を示す図であって、図19における19A−19A線で切断して矢印方向に見た断面図。 同液冷装置を図18における18A−18A線で切断して矢印方向に見た断面図。 同液冷装置の第5変形例の要部を示す縦断面図。 同液冷装置の動作原理を示す説明図。 同液冷装置の第6変形例の要部を示す横断面図。 同液冷装置の要部を示す縦断面図。 本発明の第の実施の形態に係る液冷装置の要部を示す平面図。 同液冷装置を示す斜視図。 同液冷装置の第1変形例の要部を示す平面図。 同液冷装置の第2変形例の要部を示す斜視図。 同液冷装置の第3変形例の要部を示す斜視図。 同液冷装置の第4変形例の要部を示す斜視図。 本発明の第の実施の形態に係る液冷装置の要部を示す縦断面図。 同液冷装置の要部を示す横断面図。 同液冷装置の第1変形例の要部を示す断面図。 同液冷装置に組み込まれた羽根車の一例を示す正面図。 同液冷装置に組み込まれた羽根車の別の例を示す正面図。 同液冷装置の第2変形例の要部を示す縦断面図。 本発明の第の実施の形態に係る液冷システムの構成を示す図。 液冷システムの一例を示す図。 同液冷システムに組み込まれた液冷装置を示す縦断面図。
符号の説明
100,600…液冷システム、200,300,400,500…液冷装置、P…パワー素子(発熱体)、L…冷媒。

Claims (6)

  1. 発熱体を冷媒により冷却する液冷装置において、
    上記冷媒が通流するとともに上記発熱体に熱的に接続された主流路と、
    この主流路よりも上記発熱体から離間した位置に設けられ、上記冷媒が通流する副流路とを備え、
    上記主流路と上記副流路との間には上記冷媒を通流させる連通流路が設けられ、
    上記主流路は、その流路内に上記冷媒を分割・合流させる気泡破砕部材を具備していることを特徴とする液冷装置。
  2. 上記気泡破砕部材は、上記冷媒の分割位置と合流位置とで上記冷媒の通流方向に交差する断面内での流路位置を異ならせるものであることを特徴とする請求項1に記載の液冷装置。
  3. 上記気泡破砕部材は、上記冷媒の分割位置と合流位置とで分割された冷媒の一方の流速と他方の流速とを異ならせるものであることを特徴とする請求項1に記載の液冷装置。
  4. 上記主流路には、上記気泡破砕部材の下流側により分割された流路に冷媒の通流を阻害する凹凸部材が設けられていることを特徴とする請求項1に記載の液冷装置。
  5. 上記主流路は、上記気泡破砕部材の上流側において上記通流方向に直交する断面の面積が拡大されていることを特徴とする請求項1に記載の液冷装置。
  6. 上記主流路は、上記気泡破砕部材の下流側に上記連通流路が設けられていることを特徴とする請求項1に記載の液冷装置。
JP2006230944A 2006-08-28 2006-08-28 液冷装置 Expired - Fee Related JP4435125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230944A JP4435125B2 (ja) 2006-08-28 2006-08-28 液冷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230944A JP4435125B2 (ja) 2006-08-28 2006-08-28 液冷装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003307688A Division JP3908705B2 (ja) 2003-08-29 2003-08-29 液冷装置及び液冷システム

Publications (2)

Publication Number Publication Date
JP2007049170A JP2007049170A (ja) 2007-02-22
JP4435125B2 true JP4435125B2 (ja) 2010-03-17

Family

ID=37851676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230944A Expired - Fee Related JP4435125B2 (ja) 2006-08-28 2006-08-28 液冷装置

Country Status (1)

Country Link
JP (1) JP4435125B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152966A (zh) * 2016-07-11 2019-01-04 惠普发展公司,有限责任合伙企业 泡沫合并

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086732B2 (ja) * 2007-08-09 2012-11-28 株式会社日本自動車部品総合研究所 冷却装置
KR101238370B1 (ko) 2008-06-20 2013-03-08 삼성전자주식회사 최적 방열을 위한 회로기판의 부품배치 방법 및 그 부품배치 방법에 의해 부품이 배치된 회로 장치
KR101209686B1 (ko) 2010-12-03 2012-12-10 기아자동차주식회사 하이브리드 및 전기 자동차용 전기장치의 냉각장치
JP2013128051A (ja) * 2011-12-19 2013-06-27 Mahle Filter Systems Japan Corp インバータ回路の冷却装置
JP6152755B2 (ja) * 2013-09-02 2017-06-28 富士通株式会社 ループヒートパイプ
JP7307010B2 (ja) * 2020-02-28 2023-07-11 トヨタ自動車株式会社 冷却器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152966A (zh) * 2016-07-11 2019-01-04 惠普发展公司,有限责任合伙企业 泡沫合并
CN109152966B (zh) * 2016-07-11 2021-10-29 惠普发展公司,有限责任合伙企业 泡沫合并

Also Published As

Publication number Publication date
JP2007049170A (ja) 2007-02-22

Similar Documents

Publication Publication Date Title
JP3908705B2 (ja) 液冷装置及び液冷システム
JP4435125B2 (ja) 液冷装置
Iradukunda et al. A review of advanced thermal management solutions and the implications for integration in high-voltage packages
CN102832185B (zh) 沸腾冷却系统
Jung et al. Microchannel cooling strategies for high heat flux (1 kW/cm 2) power electronic applications
CN101019230B (zh) 散热管式散热器
Dang et al. Comparative study of flow boiling heat transfer and pressure drop of HFE-7000 in continuous and segmented microchannels
WO2015137009A1 (ja) 冷却器および該冷却器を有する半導体装置
JP5454586B2 (ja) 冷却器
CN101663751B (zh) 半导体装置
US10006720B2 (en) System for using active and passive cooling for high power thermal management
CN101005745A (zh) 用于电子器件的微喷射流冷却系统
JP2010056130A (ja) 液冷式冷却装置
WO2007145352A1 (ja) ヒートシンクおよび冷却器
WO2005122661A2 (en) Apparatus and method of efficient fluid delivery for cooling a heat producing device
JP7018147B2 (ja) 相変化冷却モジュール及びこれを用いるバッテリーパック
JP2010161184A (ja) 半導体装置
CN100461995C (zh) 阵列射流式微型换热器
JP4464914B2 (ja) 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品
JP2008244495A (ja) 沸騰冷却方法、沸騰冷却装置および流路構造体並びにその応用製品
JP2007010211A (ja) 電子機器の冷却装置
JP4899997B2 (ja) サーマルサイフォン式沸騰冷却器
CN114521093B (zh) 一种单元流路、换热器、液冷板
JP3780953B2 (ja) 冷却装置付き電子回路装置
Tan et al. Enhancement of flow boiling in the microchannel with a bionic gradient wetting surface

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R151 Written notification of patent or utility model registration

Ref document number: 4435125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees