JP4434381B2 - 座標入力装置 - Google Patents

座標入力装置 Download PDF

Info

Publication number
JP4434381B2
JP4434381B2 JP29008999A JP29008999A JP4434381B2 JP 4434381 B2 JP4434381 B2 JP 4434381B2 JP 29008999 A JP29008999 A JP 29008999A JP 29008999 A JP29008999 A JP 29008999A JP 4434381 B2 JP4434381 B2 JP 4434381B2
Authority
JP
Japan
Prior art keywords
coordinate
signal
indicated position
light
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29008999A
Other languages
English (en)
Other versions
JP2001109577A5 (ja
JP2001109577A (ja
Inventor
勝英 長谷川
雄一郎 吉村
淳 田中
究 小林
克行 小林
正明 金鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29008999A priority Critical patent/JP4434381B2/ja
Priority to US09/635,353 priority patent/US6847356B1/en
Publication of JP2001109577A publication Critical patent/JP2001109577A/ja
Publication of JP2001109577A5 publication Critical patent/JP2001109577A5/ja
Application granted granted Critical
Publication of JP4434381B2 publication Critical patent/JP4434381B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、指示具からの光を座標入力画面に照射して光スポットを生成し、その光スポットの位置を検出することにより、その座標入力画面を用いて座標情報を入力する座標入力装置に関するものである。
【0002】
【従来の技術】
従来の座標入力装置には、画面上に照射された光スポットをCCDエリアセンサやリニアセンサを用いて撮像し、その重心座標或はパターンマッチングを用いた画像処理を行って、その光スポットの座標値を演算して出力するがある。また、PSDと呼ばれる位置検出素子(光スポットの位置に対応した出力電圧が得られるアナログデバイス)を用いるものなどが知られている。
【0003】
例えば、特公平7−76902号公報には、可視光の平行ビームによる光スポットをビデオカメラで撮像して、その座標を検出し、それと同時に、赤外拡散光で制御信号を送受する装置が開示されている。また特開平6−274266号公報には、リニアCCDセンサと特殊な光学マスクを用いて座標検出を行う装置が開示されている。また特開平5−224636号公報には、投射レンズの光路内にハーフミラーを置いて、画面の像をPSDに結像させて座標を検出する装置が記載されている。
【0004】
【発明が解決しようとする課題】
近年、投射型ディスプレイの画面の明るさが改善され、明るく照明された環境においても十分使用できるようになり、またコンピュータの普及が進んだため、その需要が拡大されつつある。特にコンピュータ画面を用いたプレゼンテーションや会議等では、画面を直接操作できる座標入力装置は非常に便利なものである。特にフロント投射型は可搬性があり、設置場所に応じて画面の大きさを変えて使える利点がある。しかしながら上述した特開号平5−224636号公報に記載の装置では、投射光路内に波長選択性のハーフミラーを挿入しているため、投射画像の画質に悪影響が及ぶ虞があり、これをさけるためには高精度なミラーを用いねばならない。
【0005】
また、投射レンズと液晶パネルの間にミラーを挿入するスペースも余計に必要になるため、光量を確保するには投射レンズの口径が大きくなり、高価になってしまう。更に、通常の液晶パネルに比べてセンサは口径が小さく安価なものが使用できるが、このためには縮小光学系が必要となり、これを含めたセンサ側の光学系の明るさを確保するには縮小光学系の口径も大きく高価なものになってしまう。
【0006】
本発明は上記従来例に鑑みてなされたもので、画角変化や台形歪みの光学的または電気的補正の状態値を検出して補正することにより、高分解能でかつ安価な座標入力装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明の座標入力装置は以下のような構成を備える。即ち、
投射型画像表示手段と、指示具によって発光された光によって指示される指示位置を検出する指示位置検出手段とを具備する座標入力装置であって、
前記投射型画像表示手段の投射光学系の少なくとも画角又は歪み補正状態のいずれか一方を検出して補正情報を出力する補正情報検出手段と、
前記補正情報検出手段により出力される前記補正情報を用いて、前記指示位置検出手段により検出された信号から、前記指示位置に応じた座標出力信号を生成する座標演算手段とを有し、
前記指示位置検出手段は、
直交するXY2軸方向の座標をそれぞれ検出する2つのセンサと、互いに直角に配置され、前記指示具によって発光された光を前記2つのセンサ上に結像する2つの円筒レンズとを有し、前記2つの円筒レンズの軸が前記投射型画像表示手段の投射レンズの光軸と交わるように配置されていることを特徴とする。
【0008】
上記目的を達成するために本発明の座標入力装置は以下のような構成を備える。即ち、
投射型画像表示手段と、指示具によって発光された光によって指示される指示位置を検出する指示位置検出手段とを具備する座標入力装置であって、
少なくとも前記投射型画像表示手段の映写画像の大きさ又は歪みの少なくとも一方である画面補正情報を用いて、前記指示位置検出手段により検出された信号から、前記座標入力領域内における前記指示位置に応じた座標出力信号を生成する座標演算手段とを有し、
前記指示位置検出手段は、
直交するXY2軸方向の座標をそれぞれ検出する2つのセンサと、互いに直角に配置され、前記指示具によって発光された光を前記2つのセンサ上に結像する2つの円筒レンズとを有し、前記2つの円筒レンズの軸が前記投射型画像表示手段の投射レンズの光軸と交わるように配置されていることを特徴とする。
【0011】
【発明の実施の形態】
[実施の形態1]
以下、図面を参照して、本発明の実施の形態を詳細に説明する。
【0012】
まず、本発明の実施の形態に係る光学式座標入力装置の概略構成について説明する。本実施の形態の座標入力装置は大別して、座標入力面であるスクリーン10に光スポットを形成する指示具4と、その形成された光スポット5のスクリーン10上の位置座標等を検出する座標検出器1(図2)とを有し、図2にはそれらの構成と合わせて、出力装置として反射スクリーン10に画像、或いは前述の位置情報等を表示する投射型表示装置8が記載されている。
【0013】
指示具4は、図3に示すように、光ビームを発射する半導体レーザ、或いはLED等の発光素子41と、その発光を駆動制御する発光制御部42、複数の操作用スイッチ43、電池等の電源部44とを内蔵している。発光制御部42は、操作用スイッチ43の状態により、発光のON(オン)/OFF(オフ)と、後述する変調方法とによって、制御信号を重畳した発光制御を行う。
【0014】
図2において、座標検出器1は、座標検出センサ部2と、このセンサ部2の制御及び座標演算などを行うコントローラ3、制御信号検出センサ6、そして信号処理部7を備えており、光スポット5のスクリーン10上の座標位置に対応する制御信号、及び指示具4から出力される、後述する各スイッチの状態に対応する制御信号とを検出して、コントローラ3によって外部接続装置(不図示)にその情報を送るようにしている。
【0015】
投射型表示装置8は、コンピュータ(図示せず)などの外部機器である表示信号源からの画像信号を入力する画像信号処理部81と、これにより制御される液晶パネル82、ランプ83、ミラー84、コンデンサ・レンズ85とを有する照明光学系と、液晶パネル82の像をスクリーン10上に投影する投影レンズ86とを有し、所望の画像情報をスクリーン10上に表示することができる。このスクリーン10は、投射画像の観察範囲を広くするために適度な光拡散性を持たせてあるので、指示具4から発射された光ビームも光スポット5の位置で拡散される。これにより、画面上の位置や光ビームの方向に拠らず、光スポット5の位置で拡散された光の一部が座標検出器1に入射するように構成されている。
【0016】
このように構成することで、指示具4によりスクリーン10上で文字情報や線画情報を描画して入力し、その情報を座標検出器1で読み取って解析し、その結果を投射型表示装置8の画像信号処理部81に伝送してスクリーン10上に表示することにより、あたかも『紙と鉛筆』の様な関係で情報の入出力を可能とする他、ボタン操作やアイコンの選択決定などの入力操作を自由に行うことができる。
【0017】
<指示具4の詳細説明>
図3は、本実施の形態に係る指示具4の概略構造図であり、光ビームを発射する半導体レーザからなる発光素子41と、その発光を駆動制御する発光制御部42、電源部44、更に4個の操作用スイッチ43A〜43Dとを内蔵している。この発光制御部42は、4個の操作用スイッチ43A〜43Dの状態により、発光のON(オン)/OFF(オフ)と、後述する変調方法とによって、制御信号を重畳した発光制御を行う。
【0018】
図4は、本実施の形態の係る指示具4の動作モードを示す図であり、図4におけるスイッチ43A〜43Dのそれぞれは、図3に示す指示具4のスイッチ43A〜43Dのそれぞれに対応している。なお図4において、「発光」とは発光信号(座標信号)に対応し、「ペンダウン」、「ペンボタン」のそれぞれは制御信号に対応している。
【0019】
操作者は、指示具4を握って反射スクリーン10にその先端を向ける。ここでスイッチ43Aは、オペレータの親指が自然に触れる位置に配置されており、このスイッチ43Aを押すことによって発光素子41が駆動されて光ビームが発射される。これにより反射スクリーン10上に光スポット5が生成され、所定の処理によって座標信号が出力され始めるが、この状態では「ペンダウン」或は「ペンボタン」を示す制御信号はOFFの状態である。このため、反射スクリーン10上では、カーソルの動きやボタンのハイライト切換えなどによる、操作者による指示位置の明示のみが行われる。
【0020】
また、人差し指及び中指が自然に触れる位置に配置されたスイッチ43C,43Dが押されることによって、図4に示すように、「ペンダウン」及び「ペンボタン」を示す制御信号が発光信号に重畳されなる。即ち、スイッチ43Cを押すことによって「ペンダウン」の状態となり、これにより文字や線画の入力を開始したり、メニューボタンを指示して選択・決定するなどの画面制御が実行できる。またスイッチ43Dを押すことによって「ペンボタン」の状態となり、メニューの呼び出しなどの別機能に対応させることができる。これにより操作者は、片手で指示具4を操作しながら、反射スクリーン10上の任意の位置で、すばやく正確に文字や図形を描いたり、スクリーン10に表示されたボタンやメニューを選択したりすることによって、軽快に操作することができる。
【0021】
また、指示具4の先端部には、スイッチ43Bが設けられており、このスイッチ43Bは反射スクリーン10に指示具4を押し付けることによってオンされるスイッチである。ここで操作者が指示具4を握り、指示具4の先端部を反射スクリーン10に押し付けることにより「ペンダウン」の状態となり、余分なボタン操作を行うことなく、自然なペン入力操作を行うことができる。また、この場合にはスイッチ43Aに「ペンボタン」を指示する役割を持たせることもできる。もちろん画面に押し付けないでスイッチ43Aを押せば、スクリーン10上でカーソルのみを動かすこともできる。
【0022】
指示具4を実際に使用する際には、文字や図形の入力は画面から離れて行うより、直接画面に触れた方がはるかに操作性、正確性が良い。そこで本実施の形態では、このように4個のスイッチを用いて画面から離れていても、また画面の直前にいても、自然で快適な操作が可能であり、場合によって使い分けることができるように構成されている。更には、直接入力専用(ポインタとして使用しない)ならば、光ビームでなく拡散光源でよいので、半導体レーザよりも安価で長寿命のLEDを用いることも可能である。
【0023】
また、このように近接用、遠隔用の2種類の指示具4を用いたり、同時に2人以上で操作する、或は色や太さなど属性の異なる複数の指示具4を用いる場合のために、発光制御部42は、固有のID番号を制御信号と共に送信するように設定されている。このようにして送信されたID番号に対応して、描かれる線の太さや色などの属性を外部接続機器側のソフトウェアなどで決定するようになっており、反射スクリーン10上のボタンやメニューなどで設定・変更することができる。この操作は、指示具4に別途繰作ボタン等を設けて変更指示信号を送信するようにしてもよく、これらの設定については指示具4の内部、或は座標検出器1内に状態を保持するようにして、ID番号ではなく、属性情報を外部接続機器へ送信するように構成することも可能である。
【0024】
また、このような追加の操作ボタンは、他の機能、例えば表示装置の点滅や信号源の切換、録画装置などの操作などを行えるようにも設定可能である。さらに、スイッチ43A,43Bのいずれか一方、または両方に圧力検出部を設けることによって筆圧検出を行い、この筆圧データを制御信号と共に送信するなど各種の有用な信号を送信することが可能である。
【0025】
このように、指示具4のスイッチ43A又はスイッチ43Bがオンになると発光が開始され、その発光信号は比較的長い連続するパルス列からなるリーダ部と、これに続くコード(メーカIDなど)とからなるヘッダ部をまず出力し、その後、ペンIDや制御信号などからなる送信データ列が、予め定義された順序と形式に従って順次出力される(図8のLSG信号参照)。
【0026】
なお本実施の形態では、各データビットにおいて、“1”ビットは“0”ビットに対して2倍の間隔をもつような変調形式で形成しているが、データの符号化方式については種々のものが使用可能である。しかしながら、後述する様に座標検出のためには平均光量が一定している事、またPLLの同調を行うにはクロック成分が十分大きい事、等が望ましく、送信すべきデータ量から見て冗長度を比較的高くしても支障はない等を勘案して、本実施の形態においては、6ビット(64個)のデータを10ビット長のコードのうち、“1”と“0”が同数で、かつ、“1”或は“0”の連続数が3以下の108個のコードに割り付ける方法で符号化している。このような符号化方式を採ることによって、平均電力が一定になり、また十分なクロック成分が含まれるので、復調時に容易に安定した同期信号を生成することができる。
【0027】
また、前述したように、「ペンダウン」および「ペンボタン」の制御信号は2ビットとしているが、IDなどその他の長いデータも送信しなければならない。そこで、本実施の形態では、24ビットを1ブロックとして、先頭の2ビットは制御信号、次の2ビットは内容識別コード(例えば、筆圧信号は“00”、IDは“11”等)、次の2ビットはこれらのパリティ、その後に、16ビットのデータと2ビットのパリティとを並べて、1ブロックのデータとして構成する。
【0028】
このようなデータを前述したような方式により符号化すると、40ビット長の信号になる。その先頭に10ビット長のシンクコードを付加する。このシンクコードは“0”が4個、“1”が5個連続する、或はその反転パターン(直前のブロックの終わりが“1”か“0”かで切り替える)という特殊なコードを使用して、データワードとの識別が容易で、データ列の途中においても確実にその位置を識別してデータの復元ができるようになっている。従って、1ブロックで50ビット長の伝送信号となり、制御信号と16ビットのIDまたは筆圧等のデータを送信していることになる。
【0029】
本実施の形態では、第1の周波数60kHzの1/8の7.5kHzを第2の周波数としているが、前述のような符号化方式を採用しているため、平均伝送ビットレートは、この2/3の5kHzとなる。さらに、1ブロックが50ビットなので、100Hzでは1ブロック24ビットのデータを送信していることになる。従って、パリティを除いた実効ビットレートは、2000ビット/秒である。このように冗長性は高いが、誤検出を防止し、同期を容易にすることが非常に簡単な構成で実現できる方式となっている。また、後述のセンサ制御のための位相同期信号と、シンクコードの繰り返し周期のチェックとを併用することによって、信号に短いドロップアウトが発生した場合でも追従ができ、逆に実際に、ペンアップやダプルタップのような素早い操作を行った場合との識別は、ヘッダ信号の有無によって確実に行えるようにもなっている。
【0030】
<座標検出器1の詳細説明>
図1は、本実施の形態に係る座標検出器1の内部構成を示すブロック図である。
【0031】
この座標検出器1には、集光光学系によって高感度に光量検出を行う受光素子6と、結像光学系によって光の到来方向を検出する2つのリニアセンサ20X,20Yが設けられており、指示具4に内蔵された発光素子41からの光ビームにより、スクリーン10上に生成された光スポット5からの拡散光をそれぞれ受光している。
【0032】
<集光光学系の動作説明>
この受光素子6には、集光光学系としての集光レンズ6aが装着されており、スクリーン10上の全範囲から高感度で所定波長の光量を検知する。この受光素子6により検知された結果は、周波数検波部71によって検波された後、制御信号検出部72において制御信号(指示具4の発光制御部42によって重畳された信号)などのデータを含むデジタル信号が復調される。
【0033】
図8は、その制御信号の復元動作を説明するタイミングチャートである。
【0034】
前述したビット列からなるデータ信号は、受光素子6で光出力信号LSGとして検出され、周波数検波部71で検波される。この周波数検波部71は、光出力信号LSGの中で最も高い第1の周波数のパルス周期に同調するように構成されており、光学的なフィルタと併用することによって、外乱光の影響を受けることなく、変調信号CMDを復調することができる。この検波方法は広く実用化されている赤外線リモートコントローラと同様であり、信頼性の高い無線通信方式である。本実施の形態では、この第1の周波数としては、一般に使用されている赤外線リモートコントローラより高い帯域である60KHzを用い、同時に使用しても誤動作することのないように構成したが、この第1の周波数を一般に使用されている赤外線リモートコントローラと同じ帯域にすることも可能であり、このような場合にはIDなどで、一般の赤外線リモートコントローラと識別することによって誤動作を防止する。
【0035】
この周波数検波部71により検波された変調信号CMDは、制御信号検出部72によってデジタルデータとして解釈され、前述した「ペンダウン」や「ペンボタン」などの制御信号が復元される。この復元された制御信号は、通信制御部33に送られる。また変調信号CMDに含まれる第2の周波数であるコード変調の周期はセンサ制御部31によって検出され、この検出された信号によってリニアセンサ20X,20Yが制御される。即ち、センサ制御部31は、図8に示したヘッダ部のタイミングでリセットされ、その後、変調信号CMDの立ち下がりに位相同期した信号LCKを生成する。従って、この生成された信号LCKは、指示具4の発光の有無に同期した一定周波数の信号となる。また変調信号CMDからは、光入力の有無を示す信号LONと、この信号LONによって起動されるセンサリセット信号RCLとが生成される。このセンサリセット信号RCLがハイレベルの間に2つのリニアセンサ20X,20Yはリセットされ、信号LCKの立ち上がりに同期したセンサリセット信号RCLの立ち下がりのタイミングによって後述する同期積分動作が開始される。
【0036】
一方、制御信号検出部72はヘッダ部を検出し、他の機器やノイズではなく、指示具4からの入力が開始されたことを確認すると、この確認を示す信号が通信制御部33からセンサ制御部31に伝達され、リニアセンサ20X,20Yの動作有効を示す信号CONがハイレベルにセットされ、座標演算部32の動作が開始される。
【0037】
図9は、光出力信号LSGが無くなり、一連の動作が終了した時におけるタイミングチャートを示す。
【0038】
光出力信号LSGから検波された変調信号CMDがロウレベルを一定時間以上続けると、光入力の有無を示す信号LONがロウレベルになり、更に、センサ20X,20Yの動作有効を示す信号CONもロウレベルとなる。その結果、リニアセンサ20X,20Yによる座標の出力動作を終了する。
【0039】
<結像光学系の動作説明>
図5は、本実施の形態に係る座標検出器1における2つのリニアセンサ20X,20Yの配置関係を示す図である。
【0040】
結像光学系としての円筒レンズ90X,90Yによって光スポット5の像が各センサの感光部21X,21Y上に線状91X,91Yに結像される。ここで、円筒レンズ90X,90Yの軸方向が互いに直角となるように配置することによって、それぞれがX座標、Y座標を反映した画素にピークを持つ出力が得られる。さらに、これらの軸は投射レンズ86の光軸とほぼ交わるように配置されている。
【0041】
このように配置することで、スクリーン10までの距離の変化、投射レンズ86の倍率変化が生じても、投射レンズ86の光軸上の座標はほとんど変化しない。しかし画角は変化するので、この画角に応じた倍率情報を投射レンズ86に設けた検出部88(図1)で検出し、その検出結果を画像信号処理部81から座標演算部32に送り、後述するように倍率補正を行なうようにしている。これにより、例え設置位置が変更されても、常に精度の高い座標が検出できるようになっている。また、画像信号処理部81で電子ズーム機能による拡大や位置シフトを行なう場合でも、この変化量を座標演算部32に送ることで、倍率補正やシフト補正を可能にしている。もちろん投射レンズ86をシフトする場合でも同様である。なお、投射レンズ86の画角やシフト量を検出する検出部88としてはエンコーダ等が通常使われるが、これ以外の周知の構成でも良い。
【0042】
なお、精度よく直角に配置されるのは結像光学系としての円筒レンズ90X,90Yであって、リニアセンサ20X,20Yは多少誤差があっても、検出座標にはほとんど影響しない。なぜなら結像されるのが線状の像であり、リニアセンサ20X,20Yが若干傾いていてもスクリーン上の動きに比例した位置に出力が得られるからである。
【0043】
そして、これら2つのセンサ20X,20Yは、センサ制御部31によって制御され、出力信号はセンサ制御部31に接続されたAD変換部31Aによってデジタル信号として座標演算部32に送られ、出力座標値を計算し、さらに前述のように画像信号処理部81からの画角とシフト量の情報により補正演算を行なう。その結果を制御信号検出部72からの制御信号などのデータと共に通信制御部33を介して、所定の通信方法で外部制御装置(図示せず)に送出する。また、調整時など通常と異なる動作(例えば、ユーザ校正値の設定)を行わせるために、通信制御部33の方からセンサ制御部31、座標演算部32へモード切換え信号が送られる。
【0044】
本実施の形態では、光スポット5の像が各センサの画素の数倍の像幅となるように赤外透過フィルタに光拡散フィルムを貼り付けたものを円筒レンズ90X,90Yの前に挿入し、故意にボケを生じさせている。直径1.5mmのプラスチック製の円筒レンズと画素ピッチ約15μm、有効64画素のリニアCCD、赤外線LEDを用いた実験によれば、最もシャープな結像をさせると、約40度の画角全面にわたって15μm以下の像幅となり、このような状態では画素間分割演算結果が階段状に歪んでしまうことがわかった。そこで、像幅が30から60μm程度となるような光拡散性のフィルムを選んで用いた。あまり拡散性が強いと大きくぼけてしまい、ピークレベルが小さくなってしまうので、数画素程度の像幅が最適である。画素数の少ないCCDと、適度にボケた光学系を用いることで、演算データ量が少なく、小さなセンサと光学系で非常に高分解能、高精度、高速でかつ低コストな座標入力装置を実現している。
【0045】
この光拡散性のフィルムとしては、PET、TAC、PC、ウレタンなど各種材料の拡散性能の異なるものが市販されている。またアクリルやガラスの板材に拡散材を混入したものや、表面を粗面にして拡散性を持たせたものもある。本実施の形態では、アクリル性の板材に赤外光透過特性を持たせた赤外フィルタ板にPET製の拡散フィルムを接着して用いており、市販品の組み合わせで各種の特性を選択可能な利点がある。赤外フィルタ用アクリル材に拡散材を混入して接着工程を省き、適当な特性のものを製作可能なことはいうまでもない。
【0046】
なお、結像レンズ90X,90Yの光源側の直近に前記拡散フィルムを設置する場合、入射瞳の大きさが画素に比べて大きいため、拡散材の微細構造(粗面あるいは拡散混入材)の大きさの影響を受け難くできるため、像に歪みが生じず、座標精度に悪影響の虞がないという効果がある。
【0047】
アレイ状に配置されたX座標検出用リニアセンサ20X、Y座標検出用リニアセンサ20Yは同一の構成であり、その内部構成を図7示す。
【0048】
受光部であるセンサアレイ21は、N個の画素(本実施の形態では64画素)を有し、その受光量に応じた電荷が積分部22に貯えられる。この積分部22はN個分のユニットで構成されており、ゲートICGに電圧を加えることによってリセットできるため電子シャッタ動作が可能である。この積分部22に貯えられたN個の電荷は、電極STにパルス電圧を加えることによって蓄積部23に転送される。この蓄積部23は2N個のユニットで構成されており、指示具4の発光タイミングに同期した信号LCKのハイレベルとロウレベルとにそれぞれ対応して別々に電荷が蓄積される。その後、光の点滅に同期して、各々別々に蓄積された電荷は、転送クロックを簡単にするために設けられた2N個からなるシフト部24を介して、2N個の電荷を蓄積するリニアCCD部25に転送される。
【0049】
これによりリニアCCD部25には、N画素のセンサ出力の光の点滅に各々対応した電荷が隣接して並んで記憶されることになる。これらリニアCCD部25に並べられた電荷は、2N個からなるリングCCD部26に順次転送される。このリングCCD部26は、信号RCLがハイレベル(センサ20X,20Yがリセット)のときにCLR部27で空にされた後、リニアCCD部25からの電荷を順次蓄積していく。
【0050】
このようにして蓄積された電荷は、アンプ29によって読み出される。このアンプ29は、非破壊で蓄積電荷量に比例した電圧を出力している。実際には、隣接した電荷量の差分、即ち、発光素子41の点灯時の電荷量から非点灯時の電荷量を差し引いた分の値を増幅して出力する。
【0051】
10は、この時得られるリニアセンサ20X,20Yの出力波形の一例を示す図である。
【0052】
10において、Bの波形は発光素子41の点灯時の信号のみを読み出したときの波形であり、Aの波形は非点灯時の波形、即ち、外乱光のみの波形である(図7に示したように、リングCCD部26には、これらA,Bの波形に対応する画素の電荷が隣接して並んでいる)。アンプ29は、その隣接する電荷量の差分値(B−A)の波形を非破壊で増幅して出力する。これにより指示具4からの光のみの像の信号を得ることができ、外乱光(ノイズ)の影響を受けることなく安定した座標入力が可能となった。
【0053】
また図10に示した(B−A)の波形の最大値をPEAK値と定義し、光に対してセンサが機能する蓄積時間を増大させることにより、その時間に応じてPEAK値が増大する。言い換えれば、信号LCKの1周期分の時間を単位蓄積時間とし、それを単位として蓄積回数nを定義すれば、この蓄積回数nを増大させることによりPEAK値が増大し、このPEAK値が所定の大きさ「TH1」に達したことを検出することにより、常に一定した精度の出力波形を得ることができる。
【0054】
一方、外乱光が非常に強い場合、差分波形(B−A)のピーク値が十分な大きさになる前に、リングCCD部26の転送電荷が飽和してしまう虞がある。このような場合を考慮して、このセンサにはスキム機能を有するスキム部(SKIM)28が付設されている。このスキム部28は、非点灯信号のレベルを監視し、図11において、n回目のAnで信号レベルが所定の値(S)を超えている場合(図中、一点鎖線)、一定量の電荷をA,Bの各画素から抜き取るようにする。これにより、次の(n+1)回目にはAn+1で示すような波形となり、これを繰り返すことによって、非常に強い外乱光があっても飽和することなく、信号電荷の蓄積を続けることができる。従って、点滅光の光量が微弱であっても、多数回積分動作を実行することにより、十分な大きさの信号波形を得ることが可能になる。特に、指示具4に可視光域の発光源を用いる場合、表示画像の信号が重畳するので、前述したスキム機能と差分出力を用いることによって、非常にノイズの少ないシャープな波形を得ることが可能となる。
【0055】
図12は、本実施の形態に係るセンサ制御部31におけるリニアセンサ20X,20Yのセンサ制御の一連の動作を示すフローチャートである。
【0056】
センサ制御部31は、まずステップS101でセンサ制御動作を開始し、次にステップS102において、信号CONがハイレベルかどうかを監視する。信号CONがハイレベルになる(センサ20X,20Yが動作可能)とステップS103に進み、蓄積回数nを“0”にリセットし、動作フラグponを“1”にセットする。次にステップS104に進み、センサ出力のPEAK値(ピークレベル)が所定の大きさ「TH1」より大きいか否かを判定する。ここで「TH1」より小さい場合はステップS105に進み、蓄積回数nが第1の所定回数「n0」を超えているかを判定する。超えていなければステップS106に進み、蓄積回数nを+1してステップS104に戻る。こうしてPEAK値が「TH1」より大きくなるか、或はnの値が“n0”を超えるとステップS107に進み、積分停止信号RONをハイレベル(Hi)にして積分動作が停止される。そして、座標演算部32による座標値演算の処理が開始される。
【0057】
その後、ステップS108とステップS109のループで、蓄積回数nが第2の所定回数“n1”を超えるとステップS110に進み、積分停止信号RONがロウレベルになる。これと同時に、信号LCKの周期の数倍(図8では2倍)の間、センサリセット信号RCLがハイレベルになってリングCCD部26が空にされた後、ステップS112に進み、信号CONがハイレベルかどうかを調べ、そうであれば、その間はこの動作が繰り返され、前記の所定回数“n1”で定まる周期ごとに座標値演算が行われる。
【0058】
また、ごみなどの影響で信号CONのレベルが低下しても、1サイクルだけは状態を保持するようにステップS111が設けられている。もし連続して2周期の間、信号CONがロウレベルであれば、ステップS102からステップS113に進み、動作フラグponが“0”にリセットされ、シンク信号待ちの状態になってステップS101に戻る。
【0059】
このステップS111におけるドロップアウト対策部分は、1周期でなくもっと長くしてもよく、外乱が少なければ、逆に無くしてしまってもよいことは言うまでもない。なお、ここの1周期を前述のデータブロックの周期の自然数倍として、シンクコードのタイミングと一致させ、信号CONの代りにシンクコード検出信号を用いても同様の動作を行うことができる。
【0060】
また、座標検出器1に到達する指示具4の光は、指示具4に内蔵された電源部(電池)44の消耗により変動する他、指示具4の姿勢によっても変動する。特に、反射スクリーン10の光拡散性が小さい場合、表示画像の正面輝度は向上するが、この指示具4の姿勢によるセンサへの入力光量の変動が大きくなってしまう。
【0061】
しかしながら本実施の形態では、このような場合であっても、積分回数が自動的に追従して常に安定した出力信号を得ることができるので、安定した座標検出が可能となるという優れた効果が得られる。またポインタである光ビームがあまり散乱されずにセンサに入射した場合は、かなり強い光が入る事になるが、このような場合であっても安定した座標検出ができることは明らかである。
【0062】
また、画面に直接接触させて使用するLEDを用いたペンタイプと光を照射するポインタとを併用する場合、LEDはより大きな光量のものが使用可能であるので、図12で説明した積分回数n0,n1を、ID信号によってペンかポインタかを判別して切換え、ペンの場合はサンプリングを高速に、ポインタの場合は低速にすることも可能である。実際、文字入力のように繊細な描画作業はポインタでは不可能であり、むしろ低速サンプリングによって滑らかな線を描けるほうが使い勝手がよく、このような切換えを設けることも有効である。
【0063】
以上述べてきたように、点滅光に高周波数のキャリアを加え、そのキャリアを周波数検波して得た所定周期の復調信号によって積分動作のタイミング制御を行うようにしたので、指示具と搬像部とをコードレスで同期させることができ、使い勝手の良い座標入力装置を実現することができた。また、光ビームを用いることによって、画面から離れた位置で容易に繰作することが可能となるという優れた利点も得られる。また、積分部22からの差分信号中のピークレベルが所定レベルを超えたことを検出して積分動作を停止させる積分制御部を設けたので、光量が変化してもほぼ一定レベルの光スポット像の信号を作成でき、これにより、常に安定した高分解能な座標演算結果を得ることができる。
【0064】
<座標値演算>
以下、座標演算部32における座標演算処理について説明する。
【0065】
上述したようにして得られた2つのリニアセンサ20X,20Yの出力信号(アンプ29からの差分信号)は、センサ制御部31に設けられたA/D変換部31Aでデジタル信号に変換されて座標演算部32に送られ、その座標値が計算される。この座標値の演算では、まずX座標、Y座標の各方向の出力データに対して、センサ上の座標値(X1,Y1)が求められる。なお、この演算処理は、X,Y同様であるので、Xのみについて説明する。
【0066】
13は、本実施の形態に係る座標演算部32における座標演算の処理の流れを示すフローチャートである。
【0067】
まずステップS201で処理を開始し、ステップS202で、任意の座標入力点(後述する基準点設定モードでは座標が既知の所定点)での各画素の差分信号である差分データDx(n)(本実施の形態の場合、画素数n=64)が読み込まれて不図示のバッファメモリに貯えられる。次にステップS203に進み、その差分データと予め設定しておいた閾値Vとを比較し、この閾値V以上のデータ値Ex(n)(=Dx(n)−V)を導出する。このデータ値Ex(n)を用いて、ステップS204で、センサ上の座標X1を算出する。
【0068】
本実施の形態では、重心法により、即ち、
X1=ΣnEx(n)/ΣEx(n)
によりデータの重心を算出しているが、出力データEx(n)のピーク値を求める方法(例えば微分法による)等、計算の方法は複数あることは言うまでもない。
【0069】
次にステップS205に進み、座標演算処理のモード判定を行う。出力データの重心X1から座標を算出するためには、予め所定値を求めておく必要があり、その所定値を導出する方法(基準点設定モード)について説明する。
【0070】
ここでも上述の場合と同様にX方向のみについて説明すると、スクリーン10上のX座標、Y座標が既知の点(α1,β1)、及び(α2,β2)で、指示具4を位置付けて、前述のステップS202〜S204を各々実行し、各々の点で得られるX方向センサ20Xの重心値を、X11、X12として導出し、その値、及び既知の座標値α1、α2を各々ステップ210で記憶する。これら記憶された値を用いて、通常の座標算出時には、ステップS206で導出すべき座標入力点のX座標を算出することができる。この計算式は、
X座標=(X1−X11)(α2−α1)/(X12−X11)+α1
となる。
【0071】
次にステップS207に進み、より高性能な座標入力装置を提供することを目的として、必要に応じて座標値の校正(例えば光学系のレンズ収差を補正するためにソフト的な演算でその歪みを補正する等)をし、座標値を確定する。即ち、この補正演算では、画像信号処理部81から送られてくる倍率とシフトの補正量を用いて校正された座標値を倍率で割り、シフト量を差し引くことで座標値を確定する。
【0072】
こうして確定した座標をそのままリアルタイムで出力することも可能であり、また目的に応じてデータを間引く(例えば確定座標10個毎に1個のデータのみ出力)等も可能であるが、以下の仕様等を想定する場合には重要である。
【0073】
即ち、指示具4をペンのように使う場合と、ポインタとして画面から離れて使う場合では、使用者の手の安定性が異なる。即ち、ポインタとして使用する場合には、画面上のカーソルが細かく震えてしまうので、このような細かい動きを抑制したほうが使いやすい。一方、ペンのように使用する場合には、できるだけ忠実に速く追従することが求められる。特に文字を書く場合などには小さな素早い操作ができないと、正しく入力できなくなってしまう。
【0074】
本実施の形態では、指示具4からの制御信号によりIDを送信しているため、ポインタタイプか否か、先端のスイッチが押されているか否かを判定できる。これにより、その指示具4はポインタとして、或いはペンとして使用されているかどうかを判定できる。もし、ポインタとして使用されていれば、ステップS208からS209に進み、例えば前回、或は前々回(この場合には、ステップS209の判断が「count>3」になる)の出力座標値(X-1,Y-1)、(X-2,Y-2)を用いて移動平均を計算して今回の出力座標値(X,Y)を求める様にすれば、よりぶれの少ない操作性の良い構成となる。
【0075】
尚、本実施の形態では、単純な移動平均を用いているが、このような平滑化処理に用いる関数としては、他にも差分絶対値を大きさにより非線型圧縮したり、移動平均による予測値を用いて、これとの差分を非線型圧縮するなどの各種計算方法が適用能である。要は、指示具4からの制御信号を基に、ポインタとして使用している場合は平滑化を強目にし、そうでない場合は弱めに切り替えることができるため、それぞれ使い勝手のよい状態を実現でき、この点でも本実施の形態による効果は大きい。
【0076】
尚、これらの演算処理は、前述したように座標サンプリング周波数が100Hzの場合には10[m秒]の間に終了すればよく、原データは64画素×2(x及びy)×(A/D変換部)8(ビット)と非常に少ない上、収束演算も必要無いので、低速の8ビットの1チップ・マイクロプロセッサで十分処理が可能である。
【0077】
このため、コスト的に有利なだけでなく、仕様変更が容易で、開発期間の短縮や、様々な派生商品の開発が容易になるという利点もある。特に、エリアセンサを用いる場合のように、高速の画像データ処理を行う専用のLSIの開発などは不要であり、開発費用、開発期間などの優位性は非常に大きなものである。
【0078】
上述したような演算処理によって求めた座標値(X,Y)を示すデータ信号は、座標演算部32から通信制御部33に送られる。この通信制御部33には、そのデータ信号と、制御信号検出部72からの制御信号とが入力されている。そして、これらデータ信号および制御信号は、共に所定の形式の通信信号に変換されて外部の表示制御装置に送出される。これによりスクリーン10上のカーソルやメニュー、文字や線画の入力などの各種操作を行うことができる。前述したように、64画素のセンサを使った場合でも、1000画素を超える分解能と十分な精度とが得られ、センサ、光学系ともに小型、低コストな構成でよく、また、演算回路も非常に小規模な構成とすることが可能な座標入力装置を得ることができる。
【0079】
またセンサを、エリアセンサとして構成する場合は、分解能を2倍にするには、4倍の画素数と演算データとが必要となるのに対して、リニアセンサとして構成する場合には、X座標,Y座標の各々を2倍の画素数にするだけで済む。従って、画素数を増やし、更に高分解能にすることも容易にできる。
【0080】
以上説明したように本実施の形態1によれば、指示具4により座標入力面上の任意の位置に生成される光スポットを撮像する撮像部としてリニアセンサを2個直角にならべ、これらの検出座標軸上の正面方向の位置がほぼ投射レンズの光軸に一致するように取付けることにより、画角を変化させたり、台形歪みがある設置状態でも視差が実質的に発生しないようにしている。こうすることにより、高精度、高分解能の座標値を得ることができ、更には外乱光の影響を抑制し、小型、軽量、低コストな座標入力装置を得ることができるという優れた効果が得られた。
【0081】
[実施の形態2]
図6は、本発明の実施の形態2に係る座標入力装置の構成を示すブロック図で、前述の図1と共通する部分は同じ番号で示し、それらの説明を省略する。
【0082】
図に示すように、倍率とシフトが光学的なもののみである場合は、前述の実施の形態1の場合のように検出部88で画角を検出するのでなく、投射レンズ86で検出した画角等の情報を直接、座標演算部32に出力する構成でもよい。
【0083】
[実施の形態3]
図14及び図15は、本発明の実施の形態3に係る、画像信号処理部81が有する台形ひずみの修正機能を説明する図である。
【0084】
図14は、台形100Aを長方形100に補正するような台形歪みの補正を、電子的に実行する機能を画像信号処理部81が有する場合、この補正情報を画像信号処理部81から座標演算部32に送ることで補正可能である。
【0085】
また、図15に示すように、台形100Bを光学的に補正して長方形100に変換する場合には、図6の投射レンズ86で検出し、これを座標演算部32に出力することにより、同様に補正可能である。
【0086】
なお、上記の例ではいずれも座標演算部32で各種補正を行なっているが、本発明はこれに限定されるものでなく、接続された外部装置において補正するように構成することも可能であることはいうまでもない。
【0087】
また、図5に示すように、XY方向の2つのセンサを共に、投射レンズ86の光軸に近い位置に設置してあるが、いずれか一方でも近い効果が得られることはいうまでもない。
【0088】
なお本発明は、複数の機器(例えばホストコンピュータ、インターフェース機器、リーダ、プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置など)に適用してもよい。
【0089】
また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体(または記録媒体)を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても、達成されることは言うまでもない。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。また、コンピュータが読み出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているオペレーティングシステム(OS)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
【0090】
さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張カードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張カードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。
【0091】
以上説明したように本実施の形態によれば、画角変化や台形歪みの光学的又は電気的補正の状態値を座標演算部が検出できることにより、この歪みが自動的に補正された座標値を出力することができる。これにより、座標検出器や投射型表示装置の設置作業を、より容易にできるという効果がある。
【0092】
特に携帯型フロント投射型プロジェクタのように、その設置状態を頻繁に変える必要のある場合でも、その設置及び調整作業を容易にできるという効果がある。
【0093】
また本実施形態では、指示具により座標入力面上の任意の位置に生成される光スポットを撮像する撮像部としてリニアセンサを2個直角にならべ、これらの検出座標軸上の正面方向位置がほぼ投射レンズの光軸に一致するように取付けられているため、画角を変化させたり台形歪みがある設置状態でも視差が実質的に発生することがなく、設置作業がより容易になるという効果がある。
【0094】
また本実施の形態では、リニアセンサとして、複数の光電変換センサが直線状に配列されたセンサアレイと、各センサからの出力電荷を前記所定の周期に同期して点灯時と非点灯時の信号を別々に積分保持するリング状に結合された電荷転送部からなる積分部を有し、座標演算部は積分部の点灯時と非点灯時の差分信号をnビット以上のデータ幅でデジタル化して座標演算を行ない、そのセンサアレイの画素数の約2のn乗倍の分解能の座標値を出力することにより、外乱光を抑圧しながら、かつ高分解能で座標を検出することができる。これにより、より精度の高い座標検知を実現できるという効果がある。
【0095】
【発明の効果】
以上説明したように本発明によれば、画角変化や台形歪みの光学的または電気的補正の状態値を検出して補正することにより、高分解能でかつ安価な座標入力装置を供できるという効果がある。
【図面の簡単な説明】
【図1】本実施の形態1に係る座標入力装置の座標検出器の機能構成図である。
【図2】本実施の形態に係る光学式座標入力装置の全体構成を説明する図である。
【図3】本発明の実施の形態に係る光学式座標入力装置の指示具の構成を説明する図である。
【図4】本実施の形態の指示具におけるスイッチの状態とその機能との関連を説明する図である。
【図5】本実施の形態に係る光学式座標入力装置におけるリニアセンサの配置関係を示す斜視図である。
【図6】本実施の形態2に係る座標入力装置の座標検出器の機能構成図である。
【図7】本実施の形態に係るリニアセンサの構成を示すブロック図である。
【図8】本実施の形態に係る光学式座標入力装置における、受光素子の出力信号から制御信号を復元する動作を表わす信号波形を示すタイミングチャートである。
【図9】本実施の形態に係る光学式座標入力装置における、受光素子の出力信号から制御信号を復元する一連の動作の終了時を説明するタイミングチャートである。
【図10】本実施の形態に係る光学式座標入力装置におけるリニアセンサの出力波形の一例を示す波形図である。
【図11】本実施の形態に係る光学式座標入力装置におけるリニアセンサのスキム動作を説明する波形図である。
【図12】本実施の形態に係る光学式座標入力装置におけるリニアセンサの動作制御を示すフローチャートである。
【図13】本実施の形態に係る光学式座標入力装置における座標演算処理を示すフローチャートである。
【図14】本発明の実施の形態3に係る電子的台形歪み補正を説明する図である。
【図15】本発明の実施の形態3に係る電子的台形歪み補正を説明する図である。

Claims (3)

  1. 投射型画像表示手段と、指示具によって発光された光によって指示される指示位置を検出する指示位置検出手段とを具備する座標入力装置であって、
    前記投射型画像表示手段の投射光学系の少なくとも画角又は歪み補正状態のいずれか一方を検出して補正情報を出力する補正情報検出手段と、
    前記補正情報検出手段により出力される前記補正情報を用いて、前記指示位置検出手段により検出された信号から、前記指示位置に応じた座標出力信号を生成する座標演算手段とを有し、
    前記指示位置検出手段は、
    直交するXY2軸方向の座標をそれぞれ検出する2つのセンサと、互いに直角に配置され、前記指示具によって発光された光を前記2つのセンサ上に結像する2つの円筒レンズとを有し、前記2つの円筒レンズの軸が前記投射型画像表示手段の投射レンズの光軸と交わるように配置されていることを特徴とする座標入力装置。
  2. 投射型画像表示手段と、指示具によって発光された光によって指示される指示位置を検出する指示位置検出手段とを具備する座標入力装置であって、
    少なくとも前記投射型画像表示手段の映写画像の大きさ又は歪みの少なくとも一方である画面補正情報を用いて、前記指示位置検出手段により検出された信号から、前記座標入力領域内における前記指示位置に応じた座標出力信号を生成する座標演算手段とを有し、
    前記指示位置検出手段は、
    直交するXY2軸方向の座標をそれぞれ検出する2つのセンサと、互いに直角に配置され、前記指示具によって発光された光を前記2つのセンサ上に結像する2つの円筒レンズとを有し、前記2つの円筒レンズの軸が前記投射型画像表示手段の投射レンズの光軸と交わるように配置されていることを特徴とする座標入力装置。
  3. 前記2つのセンサは、複数の光電変換センサが直線上に配列されたセンサアレイと、
    前記センサアレイのそれぞれからの出力電荷を所定の周期に同期して点灯時と非点灯時の信号を別々に積分して保持する電荷転送部を具備する積分手段とを有し、
    前記座標演算手段は、前記積分手段の点灯時と非点灯時の差分信号をnビット以上のデータ幅でデジタル化して座標演算を行ない、前記センサアレイの画素数の約2のn乗倍の分解能の座標値を出力することを特徴とする請求項1又は2に記載の座標入力装置。
JP29008999A 1999-08-13 1999-10-12 座標入力装置 Expired - Fee Related JP4434381B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29008999A JP4434381B2 (ja) 1999-10-12 1999-10-12 座標入力装置
US09/635,353 US6847356B1 (en) 1999-08-13 2000-08-09 Coordinate input device and its control method, and computer readable memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29008999A JP4434381B2 (ja) 1999-10-12 1999-10-12 座標入力装置

Publications (3)

Publication Number Publication Date
JP2001109577A JP2001109577A (ja) 2001-04-20
JP2001109577A5 JP2001109577A5 (ja) 2006-11-24
JP4434381B2 true JP4434381B2 (ja) 2010-03-17

Family

ID=17751668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29008999A Expired - Fee Related JP4434381B2 (ja) 1999-08-13 1999-10-12 座標入力装置

Country Status (1)

Country Link
JP (1) JP4434381B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711973B2 (ja) 2002-10-09 2005-11-02 株式会社日立製作所 投射型表示装置
JP3888465B2 (ja) 2004-05-26 2007-03-07 セイコーエプソン株式会社 画像処理システム、プロジェクタおよび画像処理方法
US7432917B2 (en) * 2004-06-16 2008-10-07 Microsoft Corporation Calibration of an interactive display system
JP2006146048A (ja) * 2004-11-24 2006-06-08 Canon Inc 投射型プロジェクタ
WO2010047339A1 (ja) * 2008-10-24 2010-04-29 日本電気株式会社 検知領域がディスプレイの表示領域よりも小さくても同等時のように動作するタッチパネル装置
US8449122B2 (en) 2009-07-20 2013-05-28 Igrs Engineering Lab Ltd. Image marking method and apparatus
JP6300053B2 (ja) * 2017-05-08 2018-03-28 ソニー株式会社 プロジェクタ装置及びプロジェクタシステム
CN113535056B (zh) * 2021-06-17 2023-12-05 深圳软牛科技有限公司 基于InkCanvas的选框调整方法和相关设备

Also Published As

Publication number Publication date
JP2001109577A (ja) 2001-04-20

Similar Documents

Publication Publication Date Title
JP4422851B2 (ja) 座標入力装置及び方法
JP2001075736A (ja) 座標入力装置
JP3513419B2 (ja) 座標入力装置及びその制御方法、コンピュータ可読メモリ
US6943779B2 (en) Information input/output apparatus, information input/output control method, and computer product
US6847356B1 (en) Coordinate input device and its control method, and computer readable memory
JP3492180B2 (ja) 座標入力装置
JP4697916B2 (ja) 座標入力装置及びその制御方法、プログラム
US20030222849A1 (en) Laser-based user input device for electronic projection displays
JP2001075735A (ja) 座標入力装置及びその方法、コンピュータ可読メモリ
JP2009505305A (ja) 自由空間のポインティング及び手書き手段
US6317266B1 (en) Coordinate input apparatus
JP4434381B2 (ja) 座標入力装置
JP2001075737A (ja) 座標入力装置及びその方法、コンピュータ可読メモリ
JP3513420B2 (ja) 座標入力装置及びその制御方法、コンピュータ可読メモリ
JP4612751B2 (ja) 入出力一体型装置
JP2002229726A (ja) 座標入力装置
JP6569259B2 (ja) 位置検出装置、表示装置、位置検出方法、及び、表示方法
JP2002351612A (ja) 座標入力装置及びその制御方法、プログラム
JP2001051797A (ja) 座標入力装置及びその制御方法、コンピュータ可読メモリ
JP2000181627A (ja) 座標入力用の指示具および座標入力装置
JP2000207118A (ja) 座標入力指示具
JP2000347806A (ja) 座標入力ペン
JP2002132448A (ja) 入力装置及びプロジェクタ
JP2001075734A (ja) 座標入力装置
JP2003216322A (ja) プレゼンテーションシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees