JP4433709B2 - インクジェットヘッドの駆動回路 - Google Patents

インクジェットヘッドの駆動回路 Download PDF

Info

Publication number
JP4433709B2
JP4433709B2 JP2003197031A JP2003197031A JP4433709B2 JP 4433709 B2 JP4433709 B2 JP 4433709B2 JP 2003197031 A JP2003197031 A JP 2003197031A JP 2003197031 A JP2003197031 A JP 2003197031A JP 4433709 B2 JP4433709 B2 JP 4433709B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
amplifier circuit
piezoelectric actuator
amplifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003197031A
Other languages
English (en)
Other versions
JP2005035001A (ja
Inventor
悟志 谷嶋
直 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2003197031A priority Critical patent/JP4433709B2/ja
Publication of JP2005035001A publication Critical patent/JP2005035001A/ja
Application granted granted Critical
Publication of JP4433709B2 publication Critical patent/JP4433709B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はインクジェットヘッドの駆動回路に係り、特に、圧電アクチュエータを用いて微小インク滴を吐出することにより高品質なカラー画像記録を行うインクジェットヘッドの駆動回路に関する。
【0002】
【従来の技術】
近年、インクジェットプリンタの駆動回路においては、高速・多ノズル・微小滴が要求されている。その微小滴を、ノズルから吐出する制御方式として、圧電アクチュエータの印加電圧波形を制御し、滴径をコントロールする滴径変調方式が用いられている。
【0003】
しかしながら、圧電アクチュエータは容量性の素子(ピエゾ)で構成されるため、インクジェットヘッドの駆動回路からアクチュエータまでの配線抵抗との間でローパスフィルタが構成され、駆動波形がなまる(高周波特性が阻害される)、という問題があった。
【0004】
上記問題を解決するものとして、特許文献1には、1つの圧電アクチュエータを1個の電力増幅回路で駆動し、ヘッドキャリッジ上に電力増幅回路を設ける技術が開示されている。この技術によれば、インクジェットヘッドの駆動回路からアクチュエータまでの配線抵抗を減らすことができるため、駆動波形がなまるのを改善することができる。
【0005】
また、特許文献2には、圧電アクチュエータの端子電圧をフィードバックし、波形なまりを補償する技術が提案されている。
【0006】
【特許文献1】
特開平9−174883号公報
【特許文献2】
特開2002−210958号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載された技術では、電力増幅回路をヘッドキャリッジ上に構成するため、ノズル数の増加と共に回路数も増加し、ヘッドキャリッジの重量が増大し、高速動作が困難になる、という問題があった。
【0008】
また、上記特許文献2に記載された技術では、ノズル数が増加した場合、容量性負荷も増加するため、上記のように圧電アクチュエータの端子電圧をフィードバックして波形なまりを補償するだけでは限界があり、効果的に波形なまりを改善できない場合がある、という問題があった。
【0009】
本発明は、上記問題点を解決すべく成されたものであり、ノズル数が増加しても波形なまりを効果的に改善することができ、広帯域、高スリューレイトなインクジェットヘッドの駆動回路を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、ノズルから吐出するインクを充填する圧力発生室に対応して設けられた圧電アクチュエータに供給すべき駆動波形信号を増幅して前記圧電アクチュエータに出力する電力増幅回路を備えたインクジェットヘッドの駆動回路において、前記電力増幅回路は、入力された前記駆動波形信号の電圧と、前記圧電アクチュエータに出力する信号の電圧と、の差に比例した電圧を発生する差動増幅回路と、前記差動増幅回路から出力された信号の電圧を増幅する電圧増幅回路と、バッファ回路を介して前記電圧増幅回路に接続され、前記電圧増幅回路から出力された信号の電流を増幅して、前記圧電アクチュエータに出力する電流増幅回路と、前記電流増幅回路と前記バッファ回路との間に接続され、入力された電源電圧を昇圧して前記差動増幅回路及び前記電圧増幅回路に供給する電源昇圧回路と、ミラー効果を有する前記差動増幅回路及び前記電圧増幅回路の少なくとも一方に、カスコード接続された前記ミラー効果を補償するための補償回路と、を備えたことを特徴とする。
【0011】
この発明によれば、圧電アクチュエータに供給すべき駆動波形信号を増幅して圧電アクチュエータに出力する電力増幅回路を備えている。この電力増幅回路は、例えば差動増幅回路や電圧増幅回路、電流増幅回路等を含んで構成される。そして、差動増幅回路や電圧増幅回路では、エミッタ接地増幅回路が用いられる場合があるが、このようなエミッタ接地増幅回路はミラー効果、すなわち高周波特性が劣化する効果を有する。そこで、本発明では、ミラー効果を補償するための補償回路、すなわちミラー効果をなくすための補償回路を、ミラー効果を有する増幅回路にカスコード接続した構成としている。
【0012】
このように、ミラー効果を有する増幅回路に、ミラー効果を補償する補償回路をカスコード接続することにより、増幅回路の入力容量を少なくすることができ、高周波特性が劣化するのを防ぐことができる。従って、圧電アクチュエータの駆動波形のなまりを防ぐことができる。
【0013】
ところで、入力された駆動波形信号が増幅され、出力電圧が電源電圧付近まで上昇すると、ミラー効果を有するエミッタ接地増幅回路のエミッタ−コレクタ間の電圧が小さくなり、コレクタ容量が増加して高周波特性が劣化する場合がある。
【0014】
そこで前記電力増幅回路は、入力された電源電圧を昇圧する電源昇圧回路備え
【0015】
この発明によれば、入力された電源電圧が電源昇圧回路によって昇圧されるため、ミラー効果を有するエミッタ接地増幅回路のエミッタ−コレクタ間の電圧が小さくなるのを防ぐことができる。このため、コレクタ容量が増加せず、高周波特性が劣化するのを防ぐことができる。
【0016】
また、電力増幅回路の増幅率(ゲイン)が大きいほど、周波数特性は劣化する。そこで、請求項にも記載したように、前記電力増幅回路は、入力された前記駆動波形信号を増幅するための前段増幅回路をさらに設けた構成としてもよい。
【0017】
この発明によれば、入力された駆動波形信号を増幅するための前段増幅回路をさらに設けた構成としたため、後段の増幅回路の増幅率を小さくすることができる。すなわち、前段増幅回路の増幅率と後段の増幅回路の増幅率との積が、電力増幅回路全体で必要な増幅率となるようにする。このように、必要な増幅率を複数の増幅回路で分割することにより、周波数特性を改善することができる。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について詳細に説明する。
【0019】
(第1実施形態)
図1には、本実施形態に係るインクジェットヘッド駆動回路10の概略構成図を示した。
【0020】
画像メモリ14は、シリアルプリンタで印刷する1行分のカラー画像データが記憶されている。画像メモリ14に記憶されるカラー画像データは、データ送信回路15で直列データ変換され、キャリッジ上に配置された中継基板12に実装されたデータ受信回路16に送られ並列データに戻された後、レベルシフト回路17でn個のトランスファゲート1221〜122n(以下、総称する場合はトランスファゲート122という)動作可能な電圧に変換される。
【0021】
ここで、制御基板11と中継基板12が物理的に離れており両者を接続するケーブルが必要となるが、制御基板11と中継基板12間のデータ転送で直列データを用いているのは、このケーブルを通過させる信号の数を削減するためである。
【0022】
波形発生回路116は、所定の理想波形を発生する回路である。波形発生回路116の出力電圧Vi1は電力増幅回路111の非反転入力端子に入力される。ケーブル13は、抵抗値R0の抵抗を有し、通常、この抵抗値は、0.5〜1[Ω]程度の値である。配線114は、中継基板12に実装されたトランスファゲート122の入力から制御基板11への帰還線である。抵抗112、113は、電力増幅回路111の入力電圧Vi1と出力電圧Voの増幅率を決定するものであり、低周波域での増幅率Gは、次の(1)式で与えられる。
【0023】
【数1】
Figure 0004433709
【0024】
このように、制御基板11と中継基板12の間では、トランスファゲート122の入力から制御基板11への負帰還を掛ける構成で接続されているため、電力増幅回路111の出力インピーダンスは、トランスファゲート1221〜122nに対応して設けられた圧電アクチュエータ1211〜121n(以下、総称する場合は圧電アクチュエータ121という)の負荷インピーダンスに比べて十分小さい値である。また、トランスファゲート122のオン時の抵抗は十分小さいので、圧電アクチュエータ121の端子電圧はトランスファゲート122の入力電圧Vi3と同じと考えてよい。 なお、圧電アクチュエータ1211〜121nは、インクジェットヘッドのノズルから吐出するインクを充填する圧力発生室に対応して設けられる。圧電アクチュエータに印加する電圧をコントロールすることにより、圧力発生室を伸縮させ、インクを吸引、吐出させることができる。
【0025】
ところで、中継基板12からトランスファーゲート122の入力の負帰還を掛けない構成のときは、波形発生回路116の出力電圧Vi1と圧電アクチュエータ121の端子電圧V3の増幅率は、次の(2)式で与えられる。
【0026】
【数2】
Figure 0004433709
【0027】
ここで、Gは(1)式に示す低周波域での増幅率、Aは電力増幅回路111の裸の増幅率、H(jω)はケーブル13の配線抵抗R0と圧電アクチュエータ1211〜121nの全静電容量Cで形成される低域通過フィルタの伝達関数であり、次の(3)式で与えられる。
【0028】
【数3】
Figure 0004433709
【0029】
ここで、ωは理論波形の周波数成分fに対して次の(4)式で与えられる。
【0030】
【数4】
Figure 0004433709
【0031】
ここで、jは虚数単位であり、次の(5)式で与えられる。
【0032】
【数5】
Figure 0004433709
【0033】
上記(2)式に示したように、電力増幅回路111の裸の増幅率Aが十分に大きい場合、V3/Vi1はH(jω)に等しくなる。つまり、実際に圧電アクチュエータ1211〜121nの端子電圧は理論波形の周波数成分に依存するため、高周波数帯域における波形発生回路116の出力電圧Voに対する圧電アクチュエータ121の端子電圧V3の増幅率V3/Vi1は、小さくなる。したがって、実際の圧電アクチュエータ121の端子電圧V3の波形は、なまった形となってしまう。
【0034】
これに対して、図1に示したように、中継基板12からトランスファーゲート122の入力の負帰還を掛けた構成の駆動回路では、V3/Vi1は次の(6)式によって与えられる。
【0035】
【数6】
Figure 0004433709
【0036】
この(6)式から明らかなように、図1の本実施形態における波形発生回路116の出力電圧Vi1に対する圧電アクチュエータ121の端子電圧V3の増幅率V3/Vi1は、中継基板12からトランスファーゲート122の入力の負帰還を掛けない構成の場合と同様に、電力増幅回路111の裸の増幅率Aを十分大くすれば、式1に示すGに等しくなり、理論波形の周波数成分fには依存しない。したがって、高周波帯域において増幅率V3/Vi1が小さくなり、実際の圧電アクチュエータ121の端子電圧V3の波形になまった形が生じるのを抑えることができる。
【0037】
また、前述したように、本実施形態における駆動回路は、ケーブル13の抵抗R0と圧電アクチュエータ121の全静電容量Cで低域通過フィルタを構成しているため、波形発生回路116からの出力電圧Vi1が高周波数であるほど、V3に位相遅れが大きくなり、発振を引き起こす危険性が高くなる。しかし、本実施形態では、このV3を帰還する経路上にコンデンサ115を有しており、このコンデンサ115は高周波数帯域で位相を進める作用により、低域通過フィルタの位相遅れを補償して、電力増幅回路111の反転入力端子の入力波形とすることで発振を回避することを可能とする。
【0038】
このように、圧電アクチュエータの端子電圧をフィードバックして波形なまりを補償することによってある程度は波形なまりを改善することができるが、ノズル数が増加した場合、容量性負荷も増加するため、それだけでは波形なまりを効果的に改善することができない場合がある。
【0039】
このため、本実施形態では、電力増幅回路111を図2に示すような構成とすることにより、ノズル数が増加した場合でも波形なまりを効果的に改善することを可能にしている。
【0040】
まず、本実施形態に係る電力増幅回路111について説明する前に、従来における電力増幅回路の構成を図9を参照して説明する。
【0041】
図9は、従来例に係る電力増幅回路111’の具体的な構成例を示した回路図である。トランジスタQ11、Q12、抵抗RE1、RC1は、差動増幅回路を構成しており、両トランジスタのベース入力電圧の差に比例した電圧をQ11のコレクタ端子に発生する。トランジスタQ2は電圧増幅回路であり、負荷インピーダンスはトランジスタQ21、Q22、R23からなる定電流回路で構成されている。このため、負荷インピーダンスは極めて高く、電力増幅回路111’の裸の増幅率は事実上、無限大と見なせる。
【0042】
511、Q521は、MOSFETによるソースフォロアであり、電流増幅を行う電流増幅回路として機能する。トランジスタQ41、Q42は、電圧増幅回路と電流増幅回路の間に入るバッファである。MOSFETは、高周波域まで高い増幅率を確保するために用いている。
【0043】
しかし、MOSFETは、ゲート/ソース間に入力容量があるため直接、電圧増幅回路の負荷に接続すると、高周波数域でインピーダンスが下がるため高周波域で電力増幅回路111’の裸の増幅率が下がる。バッファはこれを避けるために挿入される。
【0044】
トランジスタQ3、抵抗R31、R32はトランジスタQ41、Q551、Q42、Q521のベース/エミッタ電圧及び、ゲート/ソース間電圧を補償するバイアス回路であり、圧電アクチュエータに流れる電流が充電から放電及び、放電から充電に遷移する際に波形が歪まないようにするためのものである。コンデンサC1は、電力増幅回路111が帰還回路を構成した際に発振しないための位相補償用である。 また、負荷ZLは、中継基板12上の回路全体の負荷を表している。
【0045】
ところで、図9に示すように、トランジスタQ11、Q12はエミッタ接地増幅回路として機能する差動増幅回路、トランジスタQ2は、通常のエミッタ接地増幅回路となっている。ここで、図10にエミッタ接地増幅回路のミラー効果を示す等価回路を示した。トランジスタTr1のコレクタ−ベース間には素子の構成上微量の容量Cbcが存在する。トランジスタTr1のゲインをAVとした場合、トランジスタTr1の入力容量Ciは、次式で表される。
【0046】
Ci=Cbc(1+AV)+Cbc …(7)
この入力容量Ciとベース抵抗Rbとでローパスフィルタを構成し、高域特性が悪化する。このため、ノズル数が増加して容量性負荷が増加すると、圧電アクチュエータの端子電圧をフィードバックして波形なまりを補償するだけでは限界がある。
【0047】
そこで、本実施形態では、図2に示すように、ミラー効果補償用トランジスタQ13、Q14、Q23を設け、ミラー効果補償用トランジスタQ13、Q14を、差動増幅回路として機能するトランジスタQ11、Q12と各々カスコード接続すると共に、ミラー効果補償用トランジスタQ23を、エミッタ接地増幅回路として機能するトランジスタQ2とカスコード接続する構成とした。
【0048】
なお、抵抗R6とコンデンサC6とを直列接続した回路は発振防止のための位相補償用である。このような位相補償用の抵抗及びコンデンサを、例えばトランジスタQ2のコレクタと、抵抗RE3のトランジスタQ2と接続される側と反対側の一端との間にさらに設けても良い。また、同様に、トランジスタQ2のベースと、抵抗RE3のトランジスタQ2と接続される側と反対側の一端との間にさらに設けても良い。
【0049】
図3には、図2のようにミラー効果補償用トランジスタをエミッタ接地増幅回路にカスコード接続した増幅回路の等価回路を示した。エミッタ接地増幅回路として機能するトランジスタTr1のコレクタCは、ミラー効果補償用トランジスタTr2のエミッタE、ベースBを介して接地されるため、図3の点線で示すように、トランジスタTr1のコレクタ−エミッタ間の容量Cceの影響がなくなり、ゲインAVは0となる。
【0050】
トランジスタTr1の入力容量Ciは、上記(7)式より、Ci=Cbc(1+0)+Cbc=2Cbcで表され、従来例のエミッタ接地増幅回路と比べて少なくなる。これにより、ミラー効果を抑えることができ、周波数特性を改善することができる。従って、ノズル数が増加しても波形なまりを効果的に改善することができ、所望の微少滴を出力することが可能となる。
【0051】
なお、図11には、本実施形態に係る電力増幅回路111を用いた場合における圧電アクチュエータの端子電圧の波形をシミュレーションした結果を示した。図11に示すように、本実施形態に係る波形202は、従来例に係る波形203と比べてなまりが改善され、理想波形201に近くなっていることが明らかである。
【0052】
このように、本実施形態では、波形発生回路116からの出力波形を増幅する電力増幅回路111のエミッタ接地増幅回路に、ミラー効果補償用トランジスタをカスコード接続した構成としたため、ノズル数が増加した場合でも、ミラー効果を効果的に抑えることができ、周波数特性を改善することができる。
【0053】
なお、本実施形態では、差動増幅回路として機能するトランジスタQ11、Q12、及びトランジスタQ2の両方にミラー効果補償用トランジスタをカスコード接続する場合について説明したが、何れか一方にのみミラー効果補償用トランジスタをカスコード接続するようにしてもよい。
【0054】
(第2実施形態)
次に、本発明の第2実施形態について説明する。本実施形態では、電力増幅回路の変形例について説明する。なお、上記実施形態と同一部分については同一符号を付し、その詳細な説明は省略する。
【0055】
図4には、本実施形態に係る電力増幅回路111Aの回路図を示した。図4に示す電力増幅回路111Aが図2に示す電力増幅回路111と異なる点は、電源昇圧回路20を付加した点である。その他については、図2に示した電力増幅回路111と同様であるので、説明は省略する。
【0056】
図4に示すように、電源昇圧回路20は、MOS−FETであるQ511のドレインとトランジスタQ41はのコレクタとの間に設けられている。すなわち、電流増幅回路とバッファとの間に設けられている。
【0057】
図2に示す電力増幅回路111では、前述したように、エミッタ接地増幅回路の入力容量Ciは、コレクタ容量の2倍(2Cbc)まで低減され、ミラー効果を抑えることができる。
【0058】
しかしながら、入力信号電圧Vi1が大きくなり、電源電圧VDD近傍まで出力信号電圧Voが上昇した場合、図3で示すところのトランジスタTr1のエミッタ−コレクタ間の電圧が小さくなる。この場合、トランジスタの特性上、コレクタ容量Cbc自体が上昇する。このため、高周波特性が劣化し、駆動波形がなまってしまう場合がある。
【0059】
これに対し、本実施形態では、図4に示すように、電流増幅回路とバッファとの間に電源昇圧回路20を設けているため、電源電圧VDDを所定電圧に昇圧した電圧が電圧増幅回路側へ供給される。このため、入力信号電圧Vi1が大きくなっても、トランジスタTr1のエミッタ−コレクタ間の電圧が小さくなるのを防ぐことができるため、トランジスタTr1のコレクタ容量Cbcを十分小さくすることができる。例えば、出力電圧Voとして40Vまでの出力が必要なときに、電源電圧VDDを45Vとし、電源昇圧回路20によって、電源電圧VDDを50Vまで昇圧、すなわち5V昇圧する構成としたとする。この場合、例えばトランジスタQ2のエミッタ−コレクタ間電圧を電源昇圧回路20がない場合と比較して5V程度高くすることができる。従って、コレクタ容量Cbcを十分小さくすることができ、入力信号電圧Vi1が大きくなっても、周波数特性を改善する。
【0060】
なお、電源昇圧回路20は、例えば昇圧型チョッパレギュレータに代表される周知のDC/DCコンバータにより構成される。
【0061】
このようなDC/DCコンバータの基本的な構成を図5に、各部の信号波形を図6に示す。図6に示すように、スイッチング素子SWがオンの場合にインダクタLにエネルギーが蓄えられ、スイッチング素子SWがオフのときにインダクタLに蓄えられたエネルギーを出力側に出力する。スイッチング素子SWのスイッチング信号、インダクタ電流ΔIL_ON、ΔIL_OFF、負荷電流IO、負荷電圧VOは図6に示すような波形となる。
【0062】
レギュレーション方法、すなわちスイッチング素子SWのスイッチング方法としては、負荷電圧VOが所定閾値以上に上昇したらスイッチング素子SWをオンし、負荷電流IOを減らして負荷電圧VOを下げ、負荷電圧VOが所定閾値未満に低下したらスイッチング素子SWをオフし、負荷電流IOを増やして負荷電圧VOを上げる。
【0063】
図7には、スイッチング素子SWをスイッチングするための具体的な回路図を示した。図7に示すように、コンパレータ22が設けられており、このコンパレータ22により、検出電圧Vsと比較用の基準電圧VAとが比較される。負荷電圧VOが上昇し、検出電圧Vsが基準電圧VA以上になった場合には、コンパレータ22がオフしてトランジスタT1がオフし、スイッチング素子SWがオンする。一方、負荷電圧VOが低下し、検出電圧Vsが基準電圧VA未満になった場合には、コンパレータ22がオンしてトランジスタT1がオンし、スイッチング素子SWがオフする。
【0064】
このような構成の電源昇圧回路を電流増幅回路とバッファとの間に設けることにより、周波数特性を改善することができる。
【0065】
なお、電源昇圧回路を設けずに、電源電圧VDD自体を高い電圧とすることも考えられるが、MOS−FETであるQ511、Q521はパワートランジスタであり、高耐圧のものを使用するとコストが上昇すると共に、発熱量も大きくなるため好ましくない。
【0066】
図12には、本実施形態に係る電力増幅回路111Aを用いた場合における圧電アクチュエータの端子電圧の波形をシミュレーションした結果を示した。図12に示すように、本実施形態に係る波形212は、従来例に係る波形213と比べてなまりが改善され、理想波形211に近くなっていることが明らかである。
【0067】
(第3実施形態)
次に、本発明の第3実施形態について説明する。本実施形態では、電力増幅回路の変形例について説明する。なお、上記実施形態と同一部分には同一符号を付し、詳細な説明は省略する。
【0068】
図8には、本実施形態に係る電力増幅回路111Bの回路図を示した。図8に示す電力増幅回路111Aが図4に示す電力増幅回路111Aと異なる点は、前段増幅回路24を入力側に付加した点である。その他については、図4に示した電力増幅回路111Aと同様であるので、説明は省略する。
【0069】
図8に示すように、前段増幅回路24は、差動増幅回路を構成するトランジスタQ11の前段に設けられ、波形発生回路116からの入力信号を所定のゲインで増幅する。前段増幅回路24で増幅された信号は、前段増幅回路24以降の後段の増幅回路で所定のゲインで増幅される。
【0070】
第1実施形態及び第2実施形態で説明した図2、図4、図9に示す電力増幅回路は、すべて負帰還増幅回路であり、帰還率RF/RIが大きいほど増幅率(ゲイン)は大きく、周波数特性が悪化する。
【0071】
電力増幅回路全体で必要なゲインGは、前段増幅回路24のゲインαと後段の増幅回路βのゲインとの積で表されるため、それぞれの増幅回路のゲインα、βは、必要なゲインG以下で構成することができる。例えば、入力電圧Vi1が0〜2Vであり、出力電圧Voが入力電圧Vi1の20倍の40Vの出力が必要な場合、前段増幅回路24のゲインαが例えば2となり、後段の増幅回路のゲインβが10となるように回路を設計する。もちろん、前段増幅回路24のゲインαが4、後段の増幅回路のゲインβが5となるように回路を設計してもよい。このように、電力増幅回路全体のゲインを複数の増幅回路のゲインで分割することにより、単一の増幅回路で増幅する場合と比較して、電力増幅回路全体の周波数特性を改善することができる。
【0072】
なお、前段増幅回路24は、周知のオペアンプ等により構成することができ、、周波数特性の良い増幅回路であればどのようなものを用いてもよい。
【0073】
また、本実施形態では、増幅回路を2段に分割した場合について説明したが、3段以上に分割して構成してもよい。
【0074】
図13には、本実施形態に係る電力増幅回路111Bを用いた場合における圧電アクチュエータの端子電圧の波形をシミュレーションした結果を示した。図13に示すように、本実施形態に係る波形222は、従来例に係る波形223と比べてなまりが改善され、理想波形221に近くなっていることが明らかである。
【0075】
【発明の効果】
以上説明したように、本発明によれば、ノズル数が増加しても波形なまりを効果的に改善することができ、広帯域、高スリューレイトなインクジェットヘッドの駆動回路を提供することができる、という優れた効果を有する。
【図面の簡単な説明】
【図1】 本発明に係るインクジェットヘッド駆動回路の回路構成図である。
【図2】 第1実施形態に係る電力増幅回路の回路図である。
【図3】 エミッタ接地増幅回路の等価回路図である。
【図4】 第2実施形態に係る電力増幅回路の回路図である。
【図5】 電源昇圧回路の基本的構成を示す回路図である。
【図6】 電源昇圧回路の各信号の波形を示す波形図である。
【図7】 電源昇圧回路の具体的構成を示す回路図である。
【図8】 第3実施形態に係る電力増幅回路の回路図である。
【図9】 従来例に係る電力増幅回路の回路図である。
【図10】 従来例に係るエミッタ接地増幅回路の等価回路図である。
【図11】 第1実施形態に係る圧電アクチュエータの端子電圧の波形をシミュレーションした結果を示した図である。
【図12】 第2実施形態に係る圧電アクチュエータの端子電圧の波形をシミュレーションした結果を示した図である。
【図13】 第3実施形態に係る圧電アクチュエータの端子電圧の波形をシミュレーションした結果を示した図である。
【符号の説明】
10 インクジェットヘッド駆動回路
11 制御基板
12 中継基板
13 ケーブル
14 画像メモリ
15 データ送信回路
16 データ受信回路
17 レベルシフト回路
20 電源昇圧回路
22 コンパレータ
24 前段増幅回路
111 電力増幅回路
112 抵抗
114 配線
115 コンデンサ
116 波形発生回路
121 圧電アクチュエータ
122 トランスファーゲート
13、Q14 、Q23 ミラー効果補償用トランジスタ(補償回路)

Claims (2)

  1. ノズルから吐出するインクを充填する圧力発生室に対応して設けられた圧電アクチュエータに供給すべき駆動波形信号を増幅して前記圧電アクチュエータに出力する電力増幅回路を備えたインクジェットヘッドの駆動回路において、
    前記電力増幅回路は、入力された前記駆動波形信号の電圧と、前記圧電アクチュエータに出力する信号の電圧と、の差に比例した電圧を発生する差動増幅回路と、前記差動増幅回路から出力された信号の電圧を増幅する電圧増幅回路と、バッファ回路を介して前記電圧増幅回路に接続され、前記電圧増幅回路から出力された信号の電流を増幅して、前記圧電アクチュエータに出力する電流増幅回路と、前記電流増幅回路と前記バッファ回路との間に接続され、入力された電源電圧を昇圧して前記差動増幅回路及び前記電圧増幅回路に供給する電源昇圧回路と、ミラー効果を有する前記差動増幅回路及び前記電圧増幅回路の少なくとも一方に、カスコード接続された前記ミラー効果を補償するための補償回路と、を備えたことを特徴とするインクジェットヘッドの駆動回路。
  2. 前記電力増幅回路は、入力された前記駆動波形信号を増幅するための前段増幅回路をさらに設けたことを特徴とする請求項記載のインクジェットヘッドの駆動回路。
JP2003197031A 2003-07-15 2003-07-15 インクジェットヘッドの駆動回路 Expired - Fee Related JP4433709B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197031A JP4433709B2 (ja) 2003-07-15 2003-07-15 インクジェットヘッドの駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197031A JP4433709B2 (ja) 2003-07-15 2003-07-15 インクジェットヘッドの駆動回路

Publications (2)

Publication Number Publication Date
JP2005035001A JP2005035001A (ja) 2005-02-10
JP4433709B2 true JP4433709B2 (ja) 2010-03-17

Family

ID=34207306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197031A Expired - Fee Related JP4433709B2 (ja) 2003-07-15 2003-07-15 インクジェットヘッドの駆動回路

Country Status (1)

Country Link
JP (1) JP4433709B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770361B2 (ja) 2005-09-26 2011-09-14 富士ゼロックス株式会社 容量性負荷の駆動回路、及び液滴吐出装置
CN101898451B (zh) * 2006-01-17 2012-09-26 精工爱普生株式会社 驱动电路及液滴喷出装置
WO2007083671A1 (ja) * 2006-01-20 2007-07-26 Seiko Epson Corporation インクジェットプリンタのヘッド駆動装置およびインクジェットプリンタ
JP5287618B2 (ja) * 2009-09-07 2013-09-11 セイコーエプソン株式会社 液体噴射装置及び印刷装置

Also Published As

Publication number Publication date
JP2005035001A (ja) 2005-02-10

Similar Documents

Publication Publication Date Title
US7244007B2 (en) Capacitive load driving circuit, droplet ejection device, droplet ejection unit and inkjet head driving circuit
JP4492693B2 (ja) 容量性負荷の駆動回路及び液滴噴射装置
JP4770361B2 (ja) 容量性負荷の駆動回路、及び液滴吐出装置
US7971948B2 (en) Liquid jet apparatus and printing apparatus
JP5577811B2 (ja) 容量性負荷駆動装置、液体噴射装置およびウォーターパルスメス
JP5494108B2 (ja) 容量性負荷駆動装置、液体噴射装置および印刷装置
US8398194B2 (en) Power amplifier and liquid jet printing apparatus
CN107614268B (zh) 记录头的驱动电路以及图像记录装置
US7852127B2 (en) Driving circuit for capacitive load and fluid injecting device
US20090189453A1 (en) Driving circuit for capacitive load and fluid injecting device
CN102971147B (zh) 可切换反馈阻尼模式的按需滴墨的压电流体喷射设备、控制电路及方法
JP2009226627A (ja) 液体噴射装置
JP4433709B2 (ja) インクジェットヘッドの駆動回路
KR20120049301A (ko) 잉크젯 프린터 및 인쇄방법
JP7238986B2 (ja) 記録ヘッドの駆動回路及び画像記録装置
CN113043742B (zh) 液体喷出装置以及驱动电路
JP3677945B2 (ja) 記録装置用ヘッド駆動装置
US20210162743A1 (en) Liquid ejecting apparatus and drive circuit
JP2018099779A (ja) 液体吐出装置
JP5440684B2 (ja) 駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

R150 Certificate of patent or registration of utility model

Ref document number: 4433709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees