JP4431529B2 - 電源装置の出力容量範囲を決定する方法およびそのプログラム - Google Patents

電源装置の出力容量範囲を決定する方法およびそのプログラム Download PDF

Info

Publication number
JP4431529B2
JP4431529B2 JP2005251713A JP2005251713A JP4431529B2 JP 4431529 B2 JP4431529 B2 JP 4431529B2 JP 2005251713 A JP2005251713 A JP 2005251713A JP 2005251713 A JP2005251713 A JP 2005251713A JP 4431529 B2 JP4431529 B2 JP 4431529B2
Authority
JP
Japan
Prior art keywords
voltage
output capacity
power
power supply
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005251713A
Other languages
English (en)
Other versions
JP2007068337A (ja
Inventor
善之 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2005251713A priority Critical patent/JP4431529B2/ja
Publication of JP2007068337A publication Critical patent/JP2007068337A/ja
Application granted granted Critical
Publication of JP4431529B2 publication Critical patent/JP4431529B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

この発明は電力系統に接続される電源装置の出力容量範囲を決定する方法およびそのプログラムに関し、特に電圧調整装置を含む電力系統において、分散度の高い状態で設置される電源装置の出力容量範囲を決定する方法およびそのプログラムに関するものである。
近年の地球環境保護の観点や電力自由化の進展に伴い、各種の分散型電源(DG:Distributed Generator)が普及しつつある。分散型電源としては、たとえば、太陽光発電、風力発電、マイクロガスタービンおよび燃料電池などが挙げられる。将来的には、分散型電源が多くの家庭や商店に設置されることが予想される。
ところで、このような分散型電源は、設備コストを抑制するため、各家庭や商店などへ電力を供給する配電系統に連系されることが多い。そのため、配電系統における電力品質や設備能力を考慮しつつ、分散型電源の出力容量などを決定する必要がある。たとえば、分散型電源の連系点においては、分散型電源から供給される電流により線路電流が線路の許容電流値を超えないようにしなければならない。また、分散型電源から供給される電力により線路電圧が電圧管理値上限を超えないようにしなければならない。
そこで、特開2002−51464号公報(特許文献1)に開示されるように、配電系統における系統状態(線路電流および線路電圧)を推定する状態推定方法が提案されている。特開2002−51464号公報(特許文献1)に開示される状態推定方法によれば、所定の計測値に基づいて、配電系統機器の特性を考慮した系統状態の推定が可能であり、分散型電源が連系される場合の事前検討を行なうことができる。
また、配電系統における電力品質は、供給電圧をいかに電圧管理値内に維持できるかという観点で決まる。そこで、負荷変動による電圧変動を抑制するため、線路電圧を調整する電圧調整装置を設置するのが一般的である。特に、亘長が長く電圧降下が大きい配電系統においては、変電所から系統末端までの間にステップ式自動電圧調整器(SVR:Step Voltage Regulator;以下、SVRと称す)が介挿されることが多い。SVRは、変圧比を段階的に切替えて、線路電圧を昇圧または降圧する装置である。
配電系統内においては、負荷で消費される電力が一様ではないので、負荷の分布状態に応じて、配電系統内の線路電圧および線路電流は大きく変化する。そのため、電圧降下率についても一様ではなく、SVRの設置位置および変圧比を最適化することが電力品質を決定する重要な要素となっている。
そこで、特開平9−65572号公報(特許文献2)に開示されるように、SVRの最適な変圧比をシミュレーションにより求める電力系統解析装置が提案されている。
特開2002−51464号公報 特開平9−65572号公報
しかしながら、特開2002−51464号公報(特許文献1)に開示される状態推定方法は、所定の計測値に基づいた計算機シミュレーションによるものであり、連系される分散型電源が増加すると、その連系される分散電源のノードに応じた数の計測値が必要となる。そのため、多くの分散型電源が連系される配電系統に適用することは、非常に労力を必要とし、収束計算が膨大となるため現実的ではなかった。
また、将来の配電系統として、小容量の分散型電源が分散性の極めて高い状態で連系される配電システム(たとえば、マイクログリッド)が検討されており、このような配電系統において、分散型電源が配電系統と連系できる出力容量範囲を決定する方法は存在しなかった。さらに、SVRの設置位置および変圧比を最適化するための計算を含めると、試行錯誤的また経験的な手法とならざるを得なかった。
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、電圧調整装置を含む電力系統において、分散性の高い状態で設置される電源装置の出力容量範囲を決定する方法およびそのプログラムを提供することである。
この発明によれば、電路上の複数の点からそれぞれの負荷へ電力を供給する電力系統において、電路上の複数の点と接続され、電力系統へそれぞれ電力を与える電源装置の出力容量範囲を決定する方法である。そして、電力系統は、電路に介挿されて電路上の電圧を調整する電圧調整装置を含み、電源装置の出力容量範囲を決定する方法は、電路に沿った負荷の連続的な分布状態を示す負荷電力密度分布を受付けるステップと、電力系統における制約条件を受付けるステップと、電圧調整装置の設置位置を決定するステップと、電路に沿った電源装置の連続的な分布状態を示し、かつ、変数として電源装置の出力容量を含む電力密度分布関数を受付けるステップと、決定された電圧調整装置の設置位置および負荷電力密度分布に基づいて、電力密度分布関数に含まれる電源装置の出力容量が制約条件を満たす範囲を導出するステップとからなる。
好ましくは、電圧調整装置の設置位置を決定するステップは、電圧調整装置の電圧調整量を受付けるステップと、負荷電力密度分布および制約条件に基づいて、制約条件に対する電路上の電圧の余裕量を算出するステップと、電圧の余裕量が最大となる電路上の設置位置を決定するステップとを含む。
好ましくは、電圧調整装置は、電圧調整量を複数の電圧調整量の中から切替えることができ、電圧調整装置の設置位置を決定するステップは、電圧調整装置の複数の電圧調整量を受付けるステップと、複数の電圧調整量のそれぞれについて、電路上の設置位置を決定するステップを繰返すステップと、複数の電圧調整量のそれぞれについて決定された設置位置のうち、対応する電圧の余裕量が最も大きい設置位置を電圧調整装置の設置位置として決定するステップとをさらに含む。
好ましくは、制約条件は、電路上の電圧管理値上限および電圧管理値下限を含み、電路上の電圧の余裕量を算出するステップは、電圧管理値上限と電路上の電圧の最大値との差である上限余裕量を算出するステップと、電路上の電圧の最小値と電圧管理値下限との差である下限余裕量を算出するステップとを含み、電路上の設置位置を決定するステップは、上限余裕量と下限余裕量とが互いに一致する場合において、余裕量が最大であると判断するステップを含む。
好ましくは、制約条件は、電路上の許容電流値をさらに含み、制約条件を満たす範囲を導出するステップは、電源装置の出力容量を所定の値だけ順次増加させるステップと、所定の値だけ順次増加される出力容量のそれぞれにおいて、電路上の電圧値および電流値が制約条件を満たすか否かを判断するステップと、制約条件を満たさなくなるまで、所定の値だけ順次増加させるステップおよび制約条件を満たすか否かを判断するステップを繰返すステップとを含む。
好ましくは、負荷電力密度分布は、電路に沿って一定値または電路の長さに関する1次関数である。
好ましくは、電力密度分布関数は、電路に沿って一定値または電路の長さに関する1次関数である。
好ましくは、電圧調整装置は、変圧比を段階的に切替えることにより電圧を調整するステップ式自動電圧調整器である。
また、この発明によれば、上述の電源装置の出力容量範囲を決定する方法をコンピュータに実行させるためのプログラムである。
この発明によれば、電路の複数の点と接続される負荷および電源装置についての離散的なモデルに代えて、電路に沿った連続的な分布状態を示す負荷電力密度分布および電力密度分布関数を用いることで、解析的な演算が可能となる。そのため、従来の計算機シミュレーションのように、いずれかの値を変更する度に収束計算をする必要がなく、電圧調整装置の設置位置を決定した後、制約条件を満たす出力容量範囲を容易に算出できる。よって、電圧調整装置を含む電力系統において、分散性の高い状態で設置される電源装置の出力容量範囲を決定する方法およびそのプログラムを実現できる。
この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
図1は、この発明の実施の形態に従う配電系統100の系統図である。
図1を参照して、配電系統100は、変電所2と、線路抵抗4と、線路リアクタンス6と、分散型電源(DG)8と、負荷10と、SVR12とからなる。
変電所2は、上位の電力系統から受けた電力を所定の電圧値に変換し、それぞれのノードから負荷10へ電力を供給する。
線路抵抗4は、それぞれのノード間を接続する線路の抵抗成分であり、その単位長あたりの値はRである。
線路リアクタンス6は、それぞれのノード間を接続する線路のリアクタンス成分であり、その単位長あたりの値はXである。
なお、以下では、線路抵抗4と線路リアクタンス6とを総称して、線路インピーダンスとも称し、その単位長あたりの値はZ(=R+jX;但し、jは虚数単位)とする。
分散型電源8は、たとえば、太陽光発電、風力発電、マイクロガスタービンおよび燃料電池などから構成される。そして、分散型電源8は、それぞれのノードにおいて配電系統と接続され、配電系統へ一定電力を供給する。
負荷10は、それぞれのノードにおいて配電系統と接続され、一定電力を消費する。
SVR12は、線路に介挿され、変圧比を段階的に切替えて、線路電圧を昇圧または降圧する。この発明の実施の形態においては、SVR12は、ノードmとノード(m+1)との間に設置される。なお、以下では、SVR12の変電所側を「1次側」と称し、系統末端側を「2次側」と称す。
(電力潮流方程式)
図1に示すノードk(1≦k≦N)において、配電系統側から見た負荷10の定電力負荷をS (=P +jQ )とし、配電系統側から見た分散型電源8の定電力出力をS (=−P +jQ )とし、線路電圧(相間電圧)をVとする。そして、ノード(k−1)からノードkへ流れる線路電流をIk−1,kとし、ノード(k−1)からノードkへ向かう複素電力のうち、ノード(k−1)とノードkとの間の線路インピーダンスを通過する前の複素電力をSとする。また、SVR12の1次側における複素電力をS (1)とし、SVR12の2次側における複素電力をS (2)とする。なお、以下の説明では、無効電力および無効電流について、遅れ側を+とする。
さらに、ノード間の線路長をΔlとすると、ノードkとノード(k+1)との間のインピーダンスは、(R+jQ)Δlとなる。
したがって、ノード(k+1)およびSVR12の1次側および2次側のノードにおける電力の授受から導かれる電力潮流方程式は、(1)式となる。なお、以下の数式においては、複素数からなる変数であることを明確にするため、その上部に「・」(ドット)を付す。
Figure 0004431529
ここで、(1)式の境界条件として、系統末端であるノードNにおいて(2)式が成立する。
Figure 0004431529
また、複素電力と、線路電圧および線路電流との間には、(3)式が成立する。
Figure 0004431529
なお、線路電流Iの右肩に付されている「*」は、複素共役を示す。
(1)式〜(3)式に基づいて、ノード数を無限大、すなわちΔl→0の極限をとり、線路における電力損失を無視すると、(4)式が成立する。
Figure 0004431529
但し、S(x)は、変電所2から距離xだけ離れた点において線路を通過する複素電力であり、P(x)およびQ(x)は、それぞれ変電所2から距離xだけ離れた点において線路を通過する負荷10の有効電力および無効電力であり、P(x)およびQ(x)は、それぞれ変電所2から距離xだけ離れた点において線路を通過する分散型電源8の有効電力および無効電力である。
さらに、変電所2から距離xだけ離れた点における複素電力S(x)の大きさ、すなわち皮相電力|S(x)|は、(4)式の絶対値をとり、(5)式となる。
Figure 0004431529
(電圧降下方程式)
図1を参照して、ノード(k−1)とノードkとの間、ノード(m−1)とノードmとの間、およびノードmとノード(m+1)との間における電圧降下量から導かれる電圧降下方程式は、(6)式となる。
Figure 0004431529
(3)式の第1の式を(6)式の第1の式に代入して線路電流Ik−1,kを消去し、さらに、Δl→0の極限をとると、(7)式となる。
Figure 0004431529
(7)式は、変電所2から距離xだけ離れた点と距離x+dxだけ離れた点との間の電圧の変化分を表したものである。
(4)式を(7)式に代入して複素電力S(x)を消去し、線路上の基準となる点をξとすると、(8)式となる。
Figure 0004431529
(8)式から、線路上の任意の点における線路電圧を負荷電力および分散型電源8の出力容量の関数として表すことができる。
ここで、配電系統100の配電系統長をlとし、SVR12が変電所2から距離mだけ離れた点に設置されているとすると、線路電圧V(x)は、以下のように、(i)変電所2からSVR12の1次側までの区間と、(ii)SVR12の2次側から系統末端までの区間とに分けて表すことができる。
(i)変電所2からSVR12の1次側までの区間(0≦x≦m)
変電所2から距離xだけ離れた点における線路電圧V(x)は、(8)式を0からxまで積分することにより、(9)式で表される。
Figure 0004431529
また、SVR12の1次側における線路電圧V(1)(m)は、(9)式にx=mを代入して、(10)式で表される。
Figure 0004431529
さらに、SVR12の変圧比nを用いて、SVR12の2次側における線路電圧V(2)(m)は、(11)式で表される。
Figure 0004431529
(ii)SVR12の2次側から系統末端までの区間(m≦x≦l)
SVR12が設置される点において、線路電圧は変圧されて不連続となる。そのため、SVR12の2次側を基準にして線路電圧V(x)を求める。すなわち、変電所2から距離xだけ離れた点における線路電圧V(x)は、(8)式をmからxまで積分することにより、(12)式で表される。
Figure 0004431529
上述のように、この発明の実施の形態においては、図1に示す配電系統100において、ノード数Nを無限大とし、線路に沿って分散型電源8および負荷10が連続的に分布するものと考える。そして、(5)式に示す電力潮流方程式、および(9)式および(12)式に示す電圧降下方程式に基づいて、解析的に以下の処理を行なう。
(電力密度分布関数)
実際の配電系統における負荷10の電力密度分布関数ρ(x)および分散型電源8の電力密度分布関数ρ(x)は、さまざまな分布形状をもつ。
図2は、電力密度分布関数の一例を示す図である。
図2(a)は、−1≦r≦0の場合である。
図2(b)は、0≦r≦1の場合である。
図2(a)および図2(b)を参照して、線CBからなる電力密度分布関数ρ(x)を考えると、変電所2から距離xだけ離れた点を通過する電力は、その点から系統末端まで分布する電力密度分布関数ρ(x)を積分したものであるので、台形DABEの面積と等しくなり、その面積A(x)は、(13)式で表される。
Figure 0004431529
但し、Amaxは、台形OABCの面積である。また、rは分散係数であり、線CBの傾きにより定まる値である。そして、分散係数rの範囲は、−1≦r≦1である。
図2(a)を参照して、−1≦r<0が成立する場合には、変電所2側から系統末端に行くに従い電力密度が単純増加する分布となる。そして、r=−1の場合には、電力密度分布は、三角形OAB’となる。
図2(b)を参照して、0<r≦1が成立する場合には、変電所2側から系統末端に行くに従い電力密度が単純減少する分布となる。そして、r=1の場合には、電力密度分布は、三角形OAC’となる。
図2(a)および図2(b)を参照して、r=0の場合には、変電所2側から系統末端にかけて一定値をもつ電力密度分布となる。
したがって、実際の配電系統に応じて、分散係数rおよびAmaxを選択することができる。(15)式のような台形型の電力密度分布を採用することにより、自由度が高く、実際の配電系統に応じて柔軟な電力密度分布関数を得ることができる。
そこで、負荷10の分布を台形型分布とし、その力率が配電系統全体で一定であるとすると、上述の電力密度分布関数を用いて、変電所2から距離xだけ離れた点を通過する負荷による複素電力P(x)+jQ(x)は、(14)式で表される。
Figure 0004431529
但し、Sは、総負荷電力であり、θは、負荷10の力率角であり、rは、負荷10の分散係数である。
同様に、分散型電源8の分布を台形型分布とし、その力率が配電系統全体で一定であるとすると、変電所2から距離xだけ離れた点を通過する分散型電源8による複素出力−P(x)+jQ(x)は、(15)式で表される。
Figure 0004431529
但し、Sは分散型電源8の総出力容量であり、φは分散型電源8の力率角であり、sは分散型電源8の分散係数である。
(変電所からの距離についての皮相電力の関数)
(14)式および(15)式を実数部および虚数部に分離し、(5)式に示す電力潮流方程式へ代入すると、変電所2から距離xだけ離れた点を通過する皮相電力|S(x)|は、(16)式で表される。
Figure 0004431529
(変電所からの距離についての線路電圧の関数)
さらに、(14)式および(15)式を実数部および虚数部に分離し、(8)式〜(11)式に示す電圧降下方程式へそれぞれ代入して整理すると、変電所2から距離xだけ離れた点における線路電圧V(x)は、(17)式となる。
Figure 0004431529
(変電所からの距離についての線路電流の関数)
(16)式および(17)式を用いて、変電所2から距離xだけ離れた点における線路電流I(x)は、(18)式となる。
Figure 0004431529
上述のように、(16)式に示す皮相電力の関数、(17)式に示す線路電圧の関数および(18)式に示す線路電流の関数を用いて配電系統上の状態値を演算する。ここで、配電系統に沿った線路電流値を線路電流プロフィールと称し、配電系統に沿った線路電圧値を線路電圧プロフィールと称す。そして、これらの線路電流プロフィールおよび線路電圧プロフィールに基づいて、分散型電源8の出力容量範囲を決定する。
(制約条件)
分散型電源8が配電系統に連系するために満たさなければならない制約条件を表1に示す。
Figure 0004431529
表1を参照して、分散型電源8が配電系統に連系されるためには、配電系統上の線路電流および線路電圧ならびに連系点における分散型電源8の力率が所定の範囲内でなければならない。
線路電流は、配電系統を構成する送電線の許容電流に基づくものであり、許容電流値Imax以下でなければならない。
線路電圧は、負荷への供給電圧を決定するものであり、電圧管理値下限Vminから電圧管理値上限Vmaxの範囲内を維持しなければならない。
連系点における分散型電源8の力率は、分散型電源の連系に関する技術要件を記載した「系統連系技術要件ガイドライン(改定版)」(資源エネルギー庁編,1998年)に基づくものであり、最低力率cosφから力率1の範囲内を維持しなければならない。
すなわち、上述した線路電流プロフィールおよび線路電圧プロフィールに基づいて、配電系統のすべての点において制約条件を満足できる最大の分散型電源8の総出力容量を算出することが、分散型電源8の出力容量範囲を決定することである。具体的には、所定の総出力容量における線路電流プロフィールおよび線路電圧プロフィールを演算し、その線路電流プロフィールの最大値ならびに線路電圧プロフィールの最大値および最小値に着目し、制約条件を満足するか否かを判断する。そして、すべての制約条件を満足する場合には、さらに分散型電源8の総出力容量を増加させて、いずれかの制約条件を満足しなくなるまで同様の演算を繰返し、分散型電源8の総出力容量の最大値を求める。
(分散型電源8の出力容量範囲の決定手順)
上述のように、分散型電源8が配電系統に連系されるためには、配電系統上の線路電流および線路電圧ならびに連系点における分散型電源の力率が所定の範囲内でなければならないが、線路電流および線路電圧は、SVR12の設置位置および変圧比により大きく変化する。すなわち、SVR12の設置位置および変圧比に応じて、分散型電源8の出力容量範囲が変化することを意味する。
また、SVR12は、線路電圧および線路電流に応じて、その変圧比を順次切替えて線路電圧を所定の電圧範囲内に維持する。そして、SVR12は、線路電流に応じて生じる線路電圧の電圧降下分を予測するための整定パラメータを有し、この整定パラメータに応じて、変圧比を切替える。したがって、分散型電源8の出力容量範囲を決定するためには、SVR12の設置位置および整定パラメータを予め最適化しておく必要がある。しかしながら、SVR12の設置位置と整定パラメータとを同時に最適化することは困難である。
そこで、まず、分散型電源8が存在しない状態において、SVR12の設置位置を最適化する。そして、SVR12の設置位置を最適化した場合に得られる基準変圧比を用いて、整定パラメータを最適化する。さらに、最適化されるSVR12の設置位置および整定パラメータに基づいて、SVR12の変圧比を分散型電源8の総出力容量に応じた値に切替えた上で、線路電流プロフィールおよび線路電圧プロフィールを演算する。
(SVR12の設置位置の最適化)
SVR12の設置位置を最適化するための指標として、余裕量を用いる。この余裕量は、電圧管理値上限Vmaxと対象とする区間内の線路電圧プロフィールの最大値との電圧差である上限余裕量、および、対象とする区間内の線路電圧プロフィールの最小値と電圧管理値下限Vminとの電圧差である下限余裕量のうち、いずれか小さい方と定める。
そして、SVR12の設置位置の最適化とは、対象とする区間内において、余裕量が最大となるSVR12の設置位置を決定することを意味する。
ここで、上限余裕量と下限余裕量とが一致できれば、その一致する場合において、余裕量は最大となる。また、上限余裕量と下限余裕量とが一致できなければ、いずれか小さい方の余裕量の最大値を求めることになる。そこで、以下では、上限余裕量と下限余裕量との関係に応じて、場合分け(モード分け)を行ない、最大の余裕量を導出する。
まず、上限余裕量と下限余裕量とが一致できるか否かを判断し、場合分けを行なう。上述した(17)式に示す線路電圧関数V(x)において、分散型電源8の定電力出力をS =0、すなわち分散型電源8が存在しないとすると、xについての単調減少関数となるので、対象とする区間内における線路電圧が最大となるのは、m=0、すなわちSVR12が変電所2の直近に設置される場合である。この場合において、系統末端の線路電圧も最大となる。
したがって、電圧管理値上限VmaxとSVR12の2次側における線路電圧との電圧差である上限余裕量は最小となり、系統末端における線路電圧と電圧管理値下限Vminとの電圧差である下限余裕量は最大となる。
そのため、SVR12が変電所2の直近に設置される場合(m=0)において、上限余裕量が下限余裕量を上回れば、SVR12を配電系統のいずれの位置に設置しても、上限余裕量と下限余裕量とが一致することはない。これは、SVR12の変圧比nまたは/および変電所2からの送り出し電圧V(0)が小さいため、線路電圧の最大値が抑制され、上限余裕量が大きい場合を意味する。以下では、このような場合を「モード1」と称する。
さらに、モード1以外の場合、すなわち、上限余裕量と下限余裕量とが一致できる場合には、その一致する値が最大の余裕量となる。
ここで、モード1以外の場合とは、SVR12の変圧比nが大きいため、SVR12が変電所2の直近に設置できない場合を意味する。この場合において、対象とする区間内における線路電圧の最大値は、SVR12の2次側における線路電圧である。一方、対象とする区間内における線路電圧の最小値は、SVR12の1次側における線路電圧、または系統末端における線路電圧である。
そこで、以下では、SVR12の1次側における線路電圧が対象とする区間内の線路電圧の最小値となる場合を「モード2」と称し、系統末端における線路電圧が対象とする区間内の線路電圧の最小値となる場合を「モード3」と称する。
図3は、SVR12の設置位置の最適化を行なう場合のモード分けを示した図である。
図3(a)は、モード1における線路電圧プロフィールを示す。
図3(b)は、モード2における線路電圧プロフィールを示す。
図3(c)は、モード3における線路電圧プロフィールを示す。
(モード1)
図3(a)を参照して、モード1となるのは、変電所2からの距離m=0とした場合に、上限余裕量が下限余裕量を上回る必要があるので、(19)式を満足する場合である。
Figure 0004431529
そして、(19)式に(17)式を代入すると、(20)式となる。
Figure 0004431529
よって、変電所2の送り出し電圧V(0)が(20)式を満たす場合(モード1)には、最適なSVRの設置位置は、m=0となる。
系統末端における線路電圧と電圧管理値下限Vminとの電圧差をEval(m,n)とすると、(21)式となる。
Figure 0004431529
さらに、余裕量をδ(n)とすると、モード1においては、系統末端における線路電圧と電圧管理値下限Vminとの電圧差が余裕量になるので、(22)式となる。
Figure 0004431529
(モード2)
図3(b)を参照して、モード2の場合には、電圧管理値上限VmaxとSVR12の2次側における線路電圧との電圧差である上限余裕量と、SVR12の1次側における線路電圧と電圧管理値下限Vminとの電圧差である下限余裕量とが一致するように、SVR12を設置する変電所2からの距離mを求める。
電圧管理値上限VmaxとSVR12の2次側における線路電圧との電圧差をEval(m,n)とし、SVR12の1次側における線路電圧と電圧管理値下限Vminとの電圧差をEval(m,n)とすると、それぞれ(23)式および(24)式となる。
Figure 0004431529
Figure 0004431529
Eval(m,n)とEval(m,n)とが等しいとすると、(25)式が導出される。
Figure 0004431529
(25)式は、mについての3次方程式であるので、Cardanoの方法を用いて、最適なSVR12の設置位置を求めることができる。
さらに、モード2における余裕量δ(n)は、(25)式の解を(23)式または(24)式に代入して、(26)式となる。
Figure 0004431529
(モード3)
図3(c)を参照して、モード3の場合には、電圧管理値上限VmaxとSVR12の2次側における線路電圧との電圧差である上限余裕量と、系統末端における線路電圧と電圧管理値下限Vminとの電圧差である下限余裕量とが互いに一致するように、SVR12を設置する変電所2からの距離mを求める。
(23)式に示すEval(m,n)と(21)式に示すEval(m,n)とが互いに等しいとすると、(27)式が導出される。
Figure 0004431529
(27)式は、mについての3次方程式であるので、モード2と同様に、Cardanoの方法を用いて、最適なSVR12の設置位置を求めることができる。
さらに、モード3における余裕量δ(n)は、(27)式の解を(23)式または(21)式に代入して、(28)式となる。
Figure 0004431529
(モード2とモード3との境界条件)
図3(b)および図3(c)を参照して、配電系統長lが長くなると、系統末端における電圧降下量が大きくなり、モード2からモード3へ移行する。すなわち、モード2とモード3とは、配電系統長に応じて定まる。そこで、モード2とモード3との境界条件を導出する。
モード2とモード3との境界となる場合には、SVR12の1次側における線路電圧と系統末端における線路電圧とが一致するので、(29)式が成立する。
Figure 0004431529
また、Eval(m,n)、Eval(m,n)およびEval(m,n)が互いに一致するので、(30)式が成立する。
Figure 0004431529
したがって、(29)式および(30)式から、モード2とモード3との境界となる配電系統長l(n)は、(31)式となる。
Figure 0004431529
よって、配電系統長l<l(n)であれば、モード2となり、配電系統長l≧l(n)であれば、モード3となる。
上述のように、SVR12の最適な設置位置を求めるために、表2に示す条件に従い、変電所2の送り出し電圧V(0)および配電系統長lに基づいてモード分けを行なう。
Figure 0004431529
さらに、それぞれのモードにおけるSVR12の最適化された設置位置は、表3のようになる。なお、SVR12の最適化された設置位置は、配電系統長lで規格化された変電所2からの距離m、すなわち配線系統の全体に対する割合で示す。
Figure 0004431529
ところで、SVR12は、段階的に変圧比を切替えるため、たとえば、基準の変圧比(n=1)に対して、昇圧側および降圧側とも4段階(1.25%単位)ずつ、計9段階の変圧比をもつ。そこで、SVR12の変圧比は、n=0.9375+0.0125k(k=1,2,・・・,9)と表すことができる。
上述した方法によれば、いずれか1つの変圧比nにおいて、SVR12の設置位置mを最適化できるが、変圧比nについても最適化するため、SVR12の昇圧側のn,n,n,nのそれぞれについて余裕量δ(n)を算出し、その中で最大となる余裕量に対応する基準変圧比nおよび設置位置を抽出する。
このように決定される基準変圧比nは、あくまでも、分散型電源8が存在しない条件下において最適化されたものであり、分散型電源8からの出力電力により線路電流が変化すると、SVR12が線路電圧を所定の電圧範囲内に維持しようと、変圧比を切替えるため、固定することはできない。
一方、SVR12の設置位置は、分散型電源8からの出力電力に関わらず一定であるので、上述の過程で決定された設置位置を以後の演算にも使用する。また、SVR12の整定パラメータについても、分散型電源8からの出力電力に関わらず一定であるので、決定された基準変圧比nに基づいて整定パラメータを決定し、その決定する整定パラメータを以後の演算にも使用する。
(整定パラメータの最適化)
SVR12の整定パラメータには、インピーダンス整定値(RおよびX)、目標電圧および不感帯幅などを含むため、自由度が高く、一意に決定することが難しい。そこで、この発明の実施の形態においては、第1および第2の条件下において、インピーダンス整定値を最適化する。第1の条件は、目標電圧および不感帯幅は、予め定められた一定値とし、インピーダンス整定値だけを任意に選択することであり、第2の条件は、インピーダンス整定値RおよびXの和が最も小さく、かつ、両者の差が最も小さいものを選択することである。
図4は、SVR12の整定パラメータの最適化方法を説明するための図である。
図4を参照して、SVR12は、系統末端側に仮想的に設置される制御点における線路電圧を予測し、その制御点における線路電圧が所定の範囲内に収まるように、変圧比を決定する。そして、SVR12は、自己のインピーダンス整定値により制御点の線路電圧を予想する。すなわち、インピーダンス整定値は、配電系統上の制御点を決定するためのパラメータである。
ここで、SVR12を変電所2から距離mだけ離れた点に設置されているとし、SVR12における、目標電圧をVref0、インピーダンス整定値をRおよびX[pu]、不感帯幅をε[pu]とする。SVR12の変圧比がnである場合の制御点の電圧をVref,nとすると、SVR12の2次側の線路電流I(2)(m)[pu]および2次側の線路電圧V(2)(m)[pu]を用いて、(32)式で表される。
Figure 0004431529
ref,nの二乗をとると、(33)式となる。
Figure 0004431529
ここで、線路電圧と線路電流および電力との関係から(34)式が成立する。
Figure 0004431529
さらに、(4)式で与えられる複素電力S(x)を用いて、かつ、(34)式を(33)式に代入すると、(35)式が成立する。
Figure 0004431529
制御点の電圧Vref,nは、目標電圧Vref0および不感帯幅εから、(36)式の不等式を満足する必要がある。
Figure 0004431529
さらに、(36)式に(35)式を代入すると、(37)式となる。
Figure 0004431529
したがって、インピーダンス整定値RおよびXは、(37)式を満足する値の組合せとなる。
図5は、インピーダンス整定値RおよびXの決定可能範囲の一例を示す図である。
図5を参照して、(37)式を満足する範囲は所定の点を中心とする同心円となる。そして、SVR12のインピーダンス整定値RおよびXは、連続値ではなく、離散値となるため、同心円のインピーダンス整定値領域内に含まれるすべての格子点が選択可能なインピーダンス整定値の候補となる。さらに、上述した第2の条件に基づいて、|R+X|が最も小さく、かつ、|R−X|が最も小さいものを選択する。
一例として、図5に示す例では、(R,X)=(0.02,0.03)[pu]となる。
(変圧比の決定)
上述の過程により、最適化される設置位置およびインピーダンス整定値に従い、SVR12は、配電系統に流れる線路電流により生じる線路電圧の変動に応じて、変圧比を切替える。そのため、以下では、配電系統に生じる線路電流に基づいて、SVR12が選択する変圧比を決定する。
再度、図4を参照して、SVR12は、インピーダンス整定値に基づいて、制御点における線路電圧を予測し、その予測する線路電圧が所定の電圧範囲内に収まるように、変圧比を切替える。そのため、変圧比を切替えた後には、上述した(36)式が成立する必要がある。すなわち、SVR12の2次側の線路電流I(2)(m)および2次側の線路電圧V(2)(m)に応じて、(36)式が成立する最適な変圧比を決定することがここでの目的である。
まず、SVR12が線路電圧の昇圧および降圧のいずれも行なわない場合、すなわち変圧比n=1の場合を基準する。そして、変圧比n=1とした場合に制御点の電圧Vref,n=1が(36)式を満たすのであれば、(38)式が成立する。
Figure 0004431529
したがって、(38)式が成立する場合には、SVR12の変圧比n=1と決定されるため、それ以外の場合について以下、場合分けを行なう。
(i)|Vref,n=1|<Vref0(1−ε)の場合
この場合には、Vref0(1−ε)≦|Vref,n|が成立する変圧比n(n>1)が存在することを意味するので、両辺を二乗して、(35)式を代入して整理すると、(39)式となる。
Figure 0004431529
さらに、n≧0であることに注意して(39)式を解くと、(40)式となる。
Figure 0004431529
そして、上述したように、SVR12の変圧比がn=0.9375+0.0125k(k=1,2,・・・,9)である場合には、(40)式を満足する最小の変圧比nをSVR12の変圧比として決定する。
(ii)Vref0(1+ε)<|Vref,n=1|の場合
この場合には、|Vref,n|≦Vref0(1+ε)が成立する変圧比n(n<1)が存在することを意味するので、両辺を二乗して、(35)式を代入して整理すると、(41)式となる。
Figure 0004431529
さらに、n≧0であることに注意して(41)式を解くと、(42)式となる。
Figure 0004431529
同様にして、SVR12の変圧比がn=0.9375+0.0125k(k=1,2,・・・,9)である場合には、(42)式を満足する最大の変圧比nをSVR12の基準変圧比nとして決定する。
(出力容量範囲の決定)
上述の過程に従い算出されるSVR12の設置位置mおよび変圧比n、ならびに、負荷10の総負荷電力S、力率角θ、分散係数rを用いて、(17)式および(18)式から所定の分散型電源8の総出力容量における、線路電流プロフィールおよび線路電圧プロフィールを演算する。そして、演算された線路電流プロフィールおよび線路電圧プロフィールがいずれかの制約条件を満足しなくなるまで、分散型電源8の総出力容量を増加させて同様の演算を繰返し、分散型電源8の最大出力容量SGmaxを求める。
したがって、線路電流の制約条件および線路電圧の制約条件のいずれも満たす必要があるので、線路電流の制約条件により求まる最大出力容量S Gmax、および線路電圧の制約条件により求まる最大出力容量S Gmaxのうち、いずれか小さい方の値が、最大出力容量SGmaxとなる。すなわち、分散型電源8の出力容量範囲は、(43)式となる。
Figure 0004431529
(分散型電源の個別の出力容量)
上述の過程に従い、分散型電源8の最大出力容量SGmaxを決定した後に、分散型電源8の個別の複素出力S を決定することもできる。
再度、図1を参照して、ノードkにおいて配電系統と接続される分散型電源8の複素出力S は、ノード(k−1)とノードkとの間に分布する電力密度分布を積分したものと考えることができる。
したがって、変電所2からノード(k−1)およびノードkまでの距離をxk−1およびxとすると、ノードkにおいて配電系統と接続可能な分散型電源8の最大複素出力SGmax は、(44)式となる。
Figure 0004431529
なお、最大複素出力SGmax は、配電系統側から見た値であるので、分散型電源8側から見た複素出力は、最大複素出力SGmax と符号が反対となることに留意する。
(出力容量範囲を決定する装置)
上述の過程に従い、分散型電源8の出力容量範囲は決定されるが、このような過程は、一般的にコンピュータで実行されるプログラムにより実現される。
図6は、この発明の実施の形態に従うコンピュータの概略構成図である。
図6を参照して、コンピュータ20には、マウス34と、キーボード36と、ディスプレイ38が接続される。
コンピュータ20は、それぞれバス40に接続された、CPU(Central Processing Unit)22と、オペレーティングシステムに送られたプログラムなどを記憶したROM(Read Only Memory)24と、実行されるプログラムをロードするための、およびプログラム実行中のデータを記憶するためのRAM(Random Access Memory)26と、ハードディスク(HDD)28と、CD−ROM(Compact Disc Read Only Memory)ドライブ30とを備える。CD−ROMドライブ30には、CD−ROM32が装着される。
図7は、この発明の実施の形態に従うプログラムのフローチャートである。
コンピュータ20は、この発明の実施の形態に従うプログラムがCPU22で実行されることにより、図7に示した各ステップの処理を実行する。
一般的にこうしたプログラムは、CD−ROM32などの記録媒体に記憶されて流通し、CD−ROMドライブ30などにより記録媒体から読取られてハードディスク28に一旦記憶される。さらにハードディスク28からRAM26に読出されてCPU22により実行される。
図7を参照して、CPU22は、線路インピーダンスZ(=R+jX),配電系統長さl,変電所2の送り出し電圧V(0)を受付ける(ステップS100)。ユーザは、対象とする配電系統に関するデータを入力する。
CPU22は、負荷10の分散係数r,力率角θ,総負荷電力Sを受付ける(ステップS102)。ユーザは、対象とする配電系統に接続される負荷10に関するデータを入力する。
CPU22は、SVR12の設置位置mおよびそのときの基準変圧比nを決定する(ステップS104)。そして、CPU22は、決定された設置位置mおよび基準変圧比nに基づいて、インピーダンス整定値RおよびXを決定する(ステップS106)。
CPU22は、分散型電源8の分散係数s,力率角φを受付ける(ステップS108)。ユーザは、対象とする配電系統に接続される分散型電源8に関するデータを入力する。なお、分散型電源8の分散係数sは、ユーザが任意に決定できる。そして、CPU22は、分散型電源8の総出力容量Sに初期値をセットする(ステップS110)。この初期値は、予めユーザが与えておいてもよく、または、ゼロとしておいてもよい。
そして、CPU22は、分散型電源8の総出力容量Sに基づいて、皮相電力|S(x)|のプロフィールを演算する(ステップS112)。さらに、CPU22は、演算された皮相電力|S(x)|から導出される線路電流に基づいて、SVR12の変圧比を決定する(ステップS114)。
CPU22は、決定されたSVR12の設置位置および変圧比に基づいて、線路電流プロフィールを演算する(ステップS116)。そして、CPU22は、決定されたSVR12の設置位置および変圧比に基づいて、線路電圧プロフィールを演算する(ステップS118)。
続いて、CPU22は、演算した線路電流プロフィールが許容電流値Imax以下であるか否かを判断する(ステップS120)。
線路電流プロフィールが許容電流値Imax以下である場合(ステップS120においてYESの場合)には、CPU22は、演算した線路電圧プロフィールが電圧管理値下限Vminから電圧管理値上限Vmaxの範囲内であるか否かを判断する(ステップS122)。
線路電流プロフィールが電圧管理値下限Vminから電圧管理値上限Vmaxの範囲内である場合(ステップS122においてYESの場合)には、CPU22は、分散型電源8の総出力容量Sに容量増分ΔSを加算する(ステップS124)。そして、CPU22は、再度ステップS112,S114,S116,S118,S120,S122を繰返す。
線路電流プロフィールが許容電流値Imax以下でない場合(ステップS120においてNOの場合)、または、線路電圧プロフィールが電圧管理値下限Vminから電圧管理値上限Vmaxの範囲内でない場合(ステップS122においてNOの場合)には、CPU22は、現在の総出力容量Sから容量増分ΔSを減算した値を分散型電源8の最大出力容量SGmaxと決定する(ステップS126)。そして、CPU22は、その演算結果をディスプレイ38などに表示し、処理を終了する。
(適用例)
以下では、本発明を実際の系統に適用した場合の適用例を示す。
まず、分散型電源が連系するために満たさなければならない具体的な制約条件を表4に示す。
Figure 0004431529
なお、表4に示す制約条件のうち電圧管理値は、配電系統の運用に際して採用される値であり、許容電流値は、一例として配電系統が80mmの絶縁電線で構成される場合の値である。
次に、本発明を適用する配電系統の系統条件を表5に示す。
Figure 0004431529
表5を参照して、負荷10については、統計的なデータから得られる重負荷および軽負荷を選定する。そして、重負荷については、系統末端における電圧降下が最も厳しくなるように、遅れ力率とし、変電所側から系統末端に行くに従い電力密度が比例して増加する分布、すなわち分散係数r=−1とする。一方、軽負荷については、系統末端における電圧上昇が最も厳しくなるように、進み力率とし、変電所側から系統末端に行くに従い電力密度が比例して減少する分布、すなわち分散係数r=1とする。また、線路インピーダンスは、80mmの絶縁電線を水平配列した場合の代表値である。
次に、SVR12の仕様を表6に示す。
Figure 0004431529
さらに、対象とする配電系統の代表的な配電系統長さlのそれぞれに対して、表6に示す仕様をもつSVR12の設置位置mを最適化し、さらにその最適化された設置位置mにおけるインピーダンス整定値RおよびXならびにそのときの基準変圧比nを演算した結果を表7に示す。なお、インピーダンス整定値RおよびXは、それぞれ0.01[pu]単位の離散値をとる。
Figure 0004431529
上述のような制約条件および系統条件の下、表5に示す重負荷および軽負荷のそれぞれについて、分散型電源8の力率を変化させながら分散型電源8の出力容量範囲を算出する。
図8は、分散型電源8の最大出力容量と分散型電源8の力率との関係を示す図である。なお、図8(a)および図8(b)においては、配電系統長を6.0kmとしている。
図8(a)は、表5に示す重負荷の場合である。
図8(b)は、表5に示す軽負荷の場合である。
図8(a)を参照して、(i)分散型電源8の電力密度分布が系統末端で最大となる場合(分散係数s=−1)、(ii)分散型電源8の電力密度分布が系統末端で最小となる場合(分散係数s=1)、(iii)分散型電源8の電力密度分布が系統上で一定となる場合(分散係数s=0)の3つの場合についてそれぞれ分散型電源8の最大出力容量SGmaxを示す。
それぞれの場合を比較すると、その値は互いに異なるものの、その形状は互いに近似することがわかる。そこで、分散型電源8の電力密度分布が系統末端で最大となる場合(分散係数s=−1)を代表例として、その形状を示す理由について説明する。
まず、連系点における分散型電源8の力率cosφが0.85〜0.98の領域においては、分散型電源8からの総出力容量が小さいと、分散型電源8から配電系統へ供給される有効電力による線路電圧を上昇させる作用と無効電力による線路電圧を低下させる作用とが均衡し、線路電圧プロフィールはあまり変化しない。しかしながら、分散型電源8の総出力容量の増加に伴い、分散型電源8から配電系統へ供給される有効電力も同様に増加するため、SVR12の2次側から1次側、すなわち系統末端から変電所2側へ有効電力が流れる、いわゆる逆潮流状態が生じる。ここで、一般的なSVRは、系統末端側の電圧降下を補償するように機能するため、逆潮流状態が生じると変圧比の切替えを停止する。そのため、SVR12の変圧比が1に固定されてしまい、線路電圧が低下して、最大出力容量は電圧管理値下限により制限されてしまう。
また、連系点における分散型電源8の力率cosφが0.98〜1.00の領域においては、分散型電源8から配電系統へ供給される有効電力が無効電力に比較して大きく、有効電力による線路電圧を上昇させる作用が優勢となる。そのため、上述のように、分散型電源8の総出力容量の増加に伴いSVR12において逆潮流状態が発生しても、線路電圧が上昇するため、電圧管理値下限による制限されることはない。その結果、分散型電源8から配電系統へ供給される有効電力により、線路電圧の上昇による電圧管理値上限の逸脱、または、線路電流の増加による許容電流値の逸脱のいずれか早く生じる方により制限される。そして、結果的には、許容電流値の逸脱が早く生じるため、最大出力容量は許容電流値により制限されてしまう。
図8(b)を参照して、図8(a)と同様に、(i)分散型電源8の電力密度分布が系統末端で最大となる場合(分散係数s=−1)、(ii)分散型電源8の電力密度分布が系統末端で最小となる場合(分散係数s=1)、(iii)分散型電源8の電力密度分布が系統上で一定となる場合(分散係数s=0)の3つの場合についてそれぞれ分散型電源8の最大出力容量SGmaxを示す。
それぞれに場合を比較すると、図8(a)と同様に、その値は互いに異なるものの、その形状は互いに近似することがわかる。そこで、分散型電源8の電力密度分布が系統末端で最大となる場合(分散係数s=−1)を代表例として、その形状を示す理由について説明する。
まず、連系点における分散型電源8の力率cosφが0.85〜0.91の領域においては、負荷10の進み力率による線路電圧を上昇させる作用と、分散型電源8から配電系統へ供給される有効電力による線路電圧を上昇させる作用と、分散型電源8から配電系統へ供給される無効電力による線路電圧を低下させる作用とが生じ、全体としては、線路電圧が上昇する。そのため、線路電圧の上昇による電圧管理値上限の逸脱、または、線路電流の増加による許容電流値の逸脱のいずれか早く生じる方により制限される。そして、結果的には、許容電流値の逸脱が早く生じるため、最大出力容量は許容電流値により制限されてしまう。
また、連系点における分散型電源8の力率cosφが0.91〜1.00の領域においては、分散型電源8から配電系統へ供給される有効電力が無効電力に比較して大きく、有効電力による線路電圧を上昇させる作用が優勢となる。そのため、分散型電源8の力率cosφが低い場合に比較して、より線路電圧が大きく上昇する。そのため、線路電圧の上昇による電圧管理値上限の逸脱、または、線路電流の増加による許容電流値の逸脱のいずれか早く生じる方により制限される。そして、結果的には、電圧管理値上限の逸脱が早く生じるため、最大出力容量は電圧管理値上限により制限されてしまう。
図8(a)に示すように、一般的なSVRを用いる場合には、逆潮流状態が発生するとその機能を停止するので、分散型電源8の最大出力容量がより制限されてしまう。そこで、逆潮流状態が発生してもその機能を継続するように改良されたSVRを用いた場合において、分散型電源8の力率を変化させながら分散型電源8の最大出力容量を算出する。
図9は、逆潮流状態を許容するSVRを用いた場合における分散型電源8の最大出力容量と分散型電源8の力率との関係を示す図である。なお、図9(a)および図9(b)においては、配電系統長を6.0kmとしている。
図9(a)は、表5に示す重負荷の場合である。
図9(b)は、表5に示す軽負荷の場合である。
図9(a)を参照して、図8(a)と同様に、(i)分散型電源8の電力密度分布が系統末端で最大となる場合(分散係数s=−1)、(ii)分散型電源8の電力密度分布が系統末端で最小となる場合(分散係数s=1)、(iii)分散型電源8の電力密度分布が系統上で一定となる場合(分散係数s=0)の3つの場合についてそれぞれ分散型電源8の最大出力容量SGmaxを示す。
それぞれに場合を比較すると、図8(a)と同様に、その値は互いに異なるものの、その形状は互いに近似することがわかる。そこで、分散型電源8の電力密度分布が系統末端で最大となる場合(分散係数s=−1)を代表例として、その形状を示す理由について説明する。
まず、連系点における分散型電源8の力率cosφが低い領域においては、分散型電源8からの総出力容量が小さいと、分散型電源8から配電系統へ供給される有効電力による線路電圧を上昇させる作用と無効電力による線路電圧を低下させる作用とが均衡し、線路電圧プロフィールはあまり変化しない。そして、分散型電源8の総出力容量の増加に伴い、分散型電源8から配電系統へ供給される有効電力も同様に増加するため、SVR12の2次側から1次側、すなわち系統末端から変電所2側へ有効電力が流れる、いわゆる逆潮流状態が生じる。ここで、逆潮流状態を許容するSVRは、変圧比を順次下降させていく。そのため、SVR12の2次側における線路電圧が低下し、最大出力容量は電圧管理値下限により制限されてしまう。また、総出力容量のジグザグ形状は、SVR12が離散的に変圧比を切替えることによりに生じる。
また、連系点における分散型電源8の力率cosφが高くなるにつれ、SVR12の2次側における線路電圧が抑制され、電圧管理値下限により制限されることはない。そのため、最大出力容量は許容電流値により制限されてしまう。
図9(b)を参照して、図8(a)と同様に、(i)分散型電源8の電力密度分布が系統末端で最大となる場合(分散係数s=−1)、(ii)分散型電源8の電力密度分布が系統末端で最小となる場合(分散係数s=1)、(iii)分散型電源8の電力密度分布が系統上で一定となる場合(分散係数s=0)の3つの場合についてそれぞれ分散型電源8の最大出力容量SGmaxを示す。
図8(b)と図9(b)とを比較すると、いずれの分散係数についても最大出力容量が増大していることがわかる。これは、連系点における分散型電源8の力率cosφが高い領域において、逆潮流状態が生じた場合にも、SVR12が変圧比を切替えて線路電圧の上昇を抑制するため、電圧管理値下限により制限される最大出力容量を増大させるためである。
上述と同一の制約条件および系統条件の下、配電系統長さに対する分散型電源8の最大出力容量の変化を算出した。
図10は、分散型電源8の最大出力容量と配電系統長さとの関係を示す図である。なお、実際の配電系統では、時間帯や季節などにより負荷が大きく変化するので、想定される負荷の変化のいずれにも制約条件を満たす分散型電源8の最大出力容量を決定する必要がある。そこで、表5に示す重負荷および軽負荷の2つのケースに分け、かつ、分散型電源8の電力密度分布についても、系統末端で最大となる場合(分散係数s=−1)、系統末端で最小となる場合(分散係数s=1)、および系統上で一定となる場合(分散係数s=0)の3つのケースに分けた。そして、合計6つのケースのそれぞれについて、分散型電源8の最大出力容量を算出し、その値が最も小さいものを許容される分散型電源8の最大出力容量と決定する。
また、配電系統長さが0.65〜3.7[km]の範囲においては、線路電圧の電圧降下量が少ないのでSVR12を設置する必要がない。そのため、SVR12を設置しない、すなわちSVR12の変圧比を1に固定した状態で演算を行なう。一方、配電系統長さが3.8〜8.0[km]の範囲においては、上述したような逆潮流時に動作を停止するSVRと、逆潮流発生時にも動作を継続するSVRとの両方の場合について分散型電源8の最大出力容量を算出する。
表8は、図10に示すそれぞれのモードを決定する制約条件を示す表である。なお、表8に示すローマ数字は、図10に示すそれぞれのモードと対応する。
Figure 0004431529
図10および表8を参照して、SVR12が設置されない範囲において、配電系統長さが極めて短い場合には、軽負荷における許容電流値Imaxにより分散型電源8の最大出力容量が決定され(モードI)、さらに、配電系統長さが長くなると、軽負荷における電圧管理値上限Vmaxにより分散型電源8の最大出力容量が決定される(モードII)。
次に、SVR12として逆潮流時に動作を停止するSVRが設置される範囲において、配電系統長さが短い場合には、軽負荷における電圧管理値上限Vmaxにより分散型電源8の最大出力容量が決定され(モードIII)、さらに、配電系統長さが長くなると、重負荷における電圧管理値下限Vminにより分散型電源8の最大出力容量が決定される(モードIV)。
一方、SVR12として逆潮流発生時にも動作を継続するSVRが設置される範囲において、配電系統長さが短い場合には、軽負荷における電圧管理値上限Vmaxにより分散型電源8の最大出力容量が決定され(モードV)、さらに、配電系統長さが長くなると、重負荷における電圧管理値下限Vminにより分散型電源8の最大出力容量が決定される(モードVI)。配電系統長さがモードVIの範囲を超過すると、SVR12が昇圧側の変圧比に切替えるため、モードVと同様に、軽負荷における電圧管理値上限Vmaxにより分散型電源8の最大出力容量が決定される(モードVII)。そして、配電系統長さがモードVIIの範囲を超過すると、モードVIと同様に、重負荷における電圧管理値下限Vminにより分散型電源8の最大出力容量が決定される(モードVIII)。
以上のように、逆潮流発生時にも動作を継続するSVRを設置する場合には、その変圧比の切替え動作に伴い、分散型電源8の最大出力容量を決定する制約条件が複雑に変化することがわかる。
また、いずれのモードについても、分散型電源8の電力密度分布が系統末端で最大となる場合(分散係数s=−1)が最も厳しい条件となる。
この発明の実施の形態によれば、配電系統の複数のノードと接続される負荷および電源装置についての離散的なモデルに代えて、配電系統に沿った連続的な分布状態を示す負荷電力密度分布および電力密度分布関数を用いることで、解析的な演算が可能となる。そのため、従来の計算機シミュレーションのように、いずれかの値を変更する度に収束計算をする必要がなく、SVRの設置位置を決定した後、制約条件を満たす出力容量範囲を容易に算出できる。よって、電圧調整装置を含む電力系統において、分散性の高い状態で設置される分散型電源の出力容量範囲を決定できる。
また、この発明の実施の形態によれば、分散型電源の電力密度分布関数を分散型電源が接続されるノード間の距離で積分することで、当該分散型電源についての出力容量範囲についても決定できる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明の実施の形態に従う配電系統の系統図である。 電力密度分布関数の一例を示す図である。 SVRの設置位置の最適化を行なう場合のモード分けを示した図である。 SVRの整定パラメータの最適化方法を説明するための図である。 インピーダンス整定値の決定可能範囲の一例を示す図である。 この発明の実施の形態に従うコンピュータの概略構成図である。 この発明の実施の形態に従うプログラムのフローチャートである。 分散型電源の最大出力容量と分散型電源の力率との関係を示す図である。 逆潮流状態を許容するSVRを用いた場合における分散型電源の最大出力容量と分散型電源の力率との関係を示す図である。 分散型電源の最大出力容量と配電系統長さとの関係を示す図である。
符号の説明
2 変電所、4 線路抵抗、6 線路リアクタンス、8 分散型電源、10 負荷、20 コンピュータ、28 ハードディスク(HDD)、30 CD−ROMドライブ、34 マウス、36 キーボード、38 ディスプレイ、40 バス、100 配電系統、cosφ 力率、cosφ 最低力率、I 線路電流、Imax 許容電流値、l,l 配電系統長、m 設置位置、N ノード数、n,n 変圧比、n 基準変圧比、P 複素電力、r,s 分散係数、R,X インピーダンス整定値、S(x) 複素電力、S 総出力容量、S 複素出力、SGmax 最大出力容量、SGmax 最大複素出力、S Gmax,S Gmax 最大出力容量、S 総負荷電力、Vmax 電圧管理値上限、Vmin 電圧管理値下限、Vref0 目標電圧、Z 線路インピーダンス、δ 余裕量、ΔS 容量増分、ε 不感帯幅、θ,φ 力率角、ρ,ρ,ρ 電力密度分布関数。

Claims (9)

  1. 電路上の複数の点からそれぞれの負荷へ電力を供給する電力系統において、前記電路上の複数の点と接続され、前記電力系統へそれぞれ電力を与える電源装置の出力容量範囲を決定する方法であって、
    前記電力系統は、前記電路に介挿されて前記電路上の電圧を調整する電圧調整装置を含み、
    前記電路に沿った前記負荷の連続的な分布状態を示す負荷電力密度分布を受付けるステップと、
    前記電力系統における制約条件を受付けるステップと、
    前記電圧調整装置の設置位置を決定するステップと、
    前記電路に沿った前記電源装置の連続的な分布状態を示し、かつ、変数として前記電源装置の出力容量を含む電力密度分布関数を受付けるステップと、
    前記決定された前記電圧調整装置の設置位置および前記負荷電力密度分布に基づいて、前記電力密度分布関数に含まれる前記電源装置の出力容量が前記制約条件を満たす範囲を導出するステップとからなる、電源装置の出力容量範囲を決定する方法。
  2. 前記電圧調整装置の設置位置を決定するステップは、
    前記電圧調整装置の電圧調整量を受付けるステップと、
    前記負荷電力密度分布および前記制約条件に基づいて、前記制約条件に対する前記電路上の電圧の余裕量を算出するステップと、
    前記電圧の余裕量が最大となる前記電路上の設置位置を決定するステップとを含む、請求項1に記載の電源装置の出力容量範囲を決定する方法。
  3. 前記電圧調整装置は、前記電圧調整量を複数の前記電圧調整量の中から切替えることができ、
    前記電圧調整装置の設置位置を決定するステップは、
    前記電圧調整装置の前記複数の電圧調整量を受付けるステップと、
    前記複数の電圧調整量のそれぞれについて、前記電路上の設置位置を決定するステップを繰返すステップと、
    前記複数の電圧調整量のそれぞれについて決定された前記設置位置のうち、対応する前記電圧の余裕量が最も大きい前記設置位置を前記電圧調整装置の設置位置として決定するステップとをさらに含む、請求項2に記載の電源装置の出力容量範囲を決定する方法。
  4. 前記制約条件は、前記電路上の電圧管理値上限および電圧管理値下限を含み、
    前記電路上の電圧の余裕量を算出するステップは、
    前記電圧管理値上限と前記電路上の電圧の最大値との差である上限余裕量を算出するステップと、
    前記電路上の電圧の最小値と前記電圧管理値下限との差である下限余裕量を算出するステップとを含み、
    前記電路上の設置位置を決定するステップは、前記上限余裕量と前記下限余裕量とが互いに一致する場合において、前記余裕量が最大であると判断するステップを含む、請求項2または3に記載の電源装置の出力容量範囲を決定する方法。
  5. 前記制約条件は、前記電路上の許容電流値をさらに含み、
    前記制約条件を満たす範囲を導出するステップは、
    前記電源装置の出力容量を所定の値だけ順次増加させるステップと、
    前記所定の値だけ順次増加される出力容量のそれぞれにおいて、前記電路上の電圧値および電流値が前記制約条件を満たすか否かを判断するステップと、
    前記制約条件を満たさなくなるまで、前記所定の値だけ順次増加させるステップおよび前記制約条件を満たすか否かを判断するステップを繰返すステップとを含む、請求項1〜4のいずれか1項に記載の電源装置の出力容量範囲を決定する方法。
  6. 前記負荷電力密度分布は、前記電路に沿って一定値または前記電路の長さに関する1次関数である、請求項1〜5のいずれか1項に記載の電源装置の出力容量範囲を決定する方法。
  7. 前記電力密度分布関数は、前記電路に沿って一定値または前記電路の長さに関する1次関数である、請求項1または6に記載の電源装置の出力容量範囲を決定する方法。
  8. 前記電圧調整装置は、変圧比を段階的に切替えることにより電圧を調整するステップ式自動電圧調整器である、請求項1〜7のいずれか1項に記載の電源装置の出力容量範囲を決定する方法。
  9. 請求項1〜8のいずれか1項に記載の電源装置の出力容量範囲を決定する方法をコンピュータに実行させるためのプログラム。

JP2005251713A 2005-08-31 2005-08-31 電源装置の出力容量範囲を決定する方法およびそのプログラム Expired - Fee Related JP4431529B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251713A JP4431529B2 (ja) 2005-08-31 2005-08-31 電源装置の出力容量範囲を決定する方法およびそのプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251713A JP4431529B2 (ja) 2005-08-31 2005-08-31 電源装置の出力容量範囲を決定する方法およびそのプログラム

Publications (2)

Publication Number Publication Date
JP2007068337A JP2007068337A (ja) 2007-03-15
JP4431529B2 true JP4431529B2 (ja) 2010-03-17

Family

ID=37929870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251713A Expired - Fee Related JP4431529B2 (ja) 2005-08-31 2005-08-31 電源装置の出力容量範囲を決定する方法およびそのプログラム

Country Status (1)

Country Link
JP (1) JP4431529B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262088A (zh) * 2015-11-25 2016-01-20 上海交通大学 考虑大规模特高压电源调节能力的机组检修计划优化系统
CN108767891A (zh) * 2018-03-15 2018-11-06 国网浙江象山县供电有限公司 中压配电网单条中压馈线光伏消纳模型

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712008B2 (ja) * 2011-03-14 2015-05-07 一般財団法人電力中央研究所 発電量算出装置、発電量算出方法及び発電量算出プログラム
KR102193439B1 (ko) * 2013-09-06 2020-12-21 한국전력공사 분산형 전원 연계 가능 용량 산정 장치 및 방법
JP6259783B2 (ja) * 2015-02-24 2018-01-10 株式会社日立製作所 送電設備計画支援システム及び方法
JP6352861B2 (ja) * 2015-06-24 2018-07-04 株式会社日立製作所 電力設備変数計算装置および方法
JP7198050B2 (ja) * 2018-11-06 2022-12-28 株式会社日立製作所 整定値候補算出装置、電圧調整装置、電圧調整システム、電圧調整方法および配電設備設計支援システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262088A (zh) * 2015-11-25 2016-01-20 上海交通大学 考虑大规模特高压电源调节能力的机组检修计划优化系统
CN108767891A (zh) * 2018-03-15 2018-11-06 国网浙江象山县供电有限公司 中压配电网单条中压馈线光伏消纳模型

Also Published As

Publication number Publication date
JP2007068337A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4431529B2 (ja) 電源装置の出力容量範囲を決定する方法およびそのプログラム
EP2289141B1 (en) Apparatus and method of optimizing power system efficiency using a power loss model
US7994658B2 (en) Windfarm collector system loss optimization
US20210036521A1 (en) Method and Regulating Device for Regulating an Electrical Power Transfer
JP5893544B2 (ja) 電圧制御装置、電圧制御方法、電力調整装置、及び電圧制御プログラム
US6492801B1 (en) Method, apparatus, and system for real time reactive power output monitoring and predicting
Kashem et al. Distributed generation as voltage support for single wire earth return systems
US9214858B2 (en) Intermediate bus architecture power supply controller
CA2908384C (en) Apparatus and method for operating distributed generator in connection with power system
Sondermeijer et al. Regression-based inverter control for decentralized optimal power flow and voltage regulation
JP5393934B1 (ja) 電圧監視制御装置、電圧制御装置および電圧監視制御方法
Džamarija et al. Autonomous curtailment control in distributed generation planning
US20150084432A1 (en) Power System Management Device and Method
JP6751335B2 (ja) 系統電圧調整システム、系統電圧調整方法、及びプログラム
KR101202576B1 (ko) 풍력발전과 전력저장장치가 연계된 전력시스템 및 그 제어방법
JP6129768B2 (ja) 需要家機器運用管理システムおよび方法
JP2020184881A (ja) エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム
CN108376994B (zh) 基于三端口电力电子变压器并网的交直流混合微网运行优化方法
JP4427476B2 (ja) 電圧調整装置の設置位置を最適化する方法およびそのプログラム
JP6189092B2 (ja) 系統用蓄電池の複数目的制御装置
US11353908B2 (en) Centralized voltage control apparatus and centralized voltage control system
JP2022094441A (ja) 電力系統監視制御装置、電力系統監視制御システム、ならびに電力系統監視制御方法
CN114006410B (zh) 一种基于机会约束规划的大规模海上风电接入点优化方法
JP5349160B2 (ja) 充放電制御装置
Mahoor et al. Distribution asset management through coordinated microgrid scheduling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees